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ABSTRACT
By functionally decomposing a specific algorithm (the hierarchi-
cal secure aggregation algorithm of Chan et al. [3] and Frikken
et al. [7]), we uncover a useful general functionality which we
use to generate various efficient network security primitives, in-
cluding: a signature scheme ensuring authenticity, integrity and
non-repudiation for arbitrary node-to-node communications; an ef-
ficient broadcast authentication algorithm not requiring time syn-
chronization; a scheme for managing public keys in a sensor net-
work without requiring any asymmetric cryptographic operations
to verify the validity of public keys, and without requiring nodes to
maintain node revocation lists. Each of these applications uses the
same basic data aggregation primitive and thus haveO(log n) con-
gestion performance and require only that symmetric secret keys
are shared between each node and the base station. We thus ob-
serve the fact that the optimizations developed in the application
area of secure aggregation can feed back into creating more opti-
mized versions of highly general, basic security functions.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and Protection

General Terms
Security, Algorithms
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1. INTRODUCTION
Sensor networks represent an interesting emerging applications

area where distributed computation takes place in a well-defined
network topology. One example of a common structured distributed
computation isdata aggregation. In the framework first defined in
Tiny Aggregation (TAG) by Madden et al. [16], data aggregation
occurs over a tree rooted at the base station; data is sent in a con-
vergent pattern from the leaf sensor nodes to the root with internal
nodes performing intermediate computations to summarize the data
along the way.Secure data aggregationalgorithms aim to ensure
the integrity of the results computed by this distributed computa-
tion in the presence of a small number of malicious (“Byzantine”)
nodes which may be attempting to influence the result.

In this paper, we make the following high-level observation: be-
cause data aggregation represents a general class of distributed com-
putation over a specific kind of structured network (e.g., a tree) uti-
lizing a specific pattern of communication (e.g., to and from the
base station via the tree topology), therefore, algorithms that pro-
vide integrity for data aggregation tend to contain, as part of their
design, primitives for providing certain useful general integrity prop-
erties for those specific communication patterns over those topolo-
gies. These general integrity properties may be used to construct
efficient security primitives specifically optimized to the topology
or communication pattern for which the original aggregation ap-
plication was designed. Hence, secure data aggregation is a use-
ful central research area for security in resource-constrained struc-
tured networks, feeding useful ideas for the creation of both general
primitives and specific application protocols.

We consider generalized applications of the secure hierarchi-
cal aggregation algorithm with distributed verification proposed by
Chan et al. [3] and Frikken and Dougherty [7]. Specifically, we an-
alyze the original algorithm by decomposing it into modular, gen-
eralized functionalities. One functionality of particular importance
is the ability to efficiently generate and disseminate network-wide
cryptographichash trees. We call this generalization the “HT

functionality”. We show that theHT functionality is applicable
to more general and broader problems than secure data aggrega-
tion. We describe efficient solutions to three specific open problems
for tree-based sensor networks derived from theHT functional-
ity: authenticated broadcast, public key management, and node-
to-node message signatures providing authentication, integrity and
non-repudiation. Each of these derived algorithms requires only
one symmetric key per node shared with the base station and incurs
O(log n) communication congestion per link in the network.

The remainder of the paper is structured as follows. We describe
the relevant details of the original hierarchical secure aggregation
framework in Section 2. We then provide a generalized functional
decomposition of the algorithm in Section 3. The assumptions used
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Figure 1: Standard tree-based SUM aggregation as described
in TAG. Numbers next to nodes represent data/readings; Num-
bers and sums on edges represent intermediate sums sent from
nodes to parents.

in our application domains are summarized in Section 4. We then
show how the general functionalities derived can be used to con-
struct algorithms for broadcast authentication (Section 5), public
key management (Section 6) and node-to-node message signatures
(Section 7).

2. THE CPS ALGORITHM
In this paper we will focus on using the the algorithm proposed

by Chan et al. [3] and improved by Frikken and Dougherty [7] to
derive new algorithms for our security applications. Alternative se-
cure aggregation algorithms with distributed verification may pos-
sibly be adapted for the applications listed in this paper – when
describing each application, we will specify the functionalities re-
quired of the secure aggregation algorithm. This section provides
a summary of the original algorithm (which we will call the CPS
algorithm for brevity) and references to subsequent optimizations.
For a detailed description with proofs, please refer to the original
publications [3, 7]. Readers already closely familiar with the algo-
rithm are encouraged to read Section 2.2 for some updated termi-
nology before skipping to Section 3.

2.1 Problem Definition: Secure Aggregation
For some context to the secure aggregation problem, we review

the standard aggregation framework as proposed in Tiny Aggrega-
tion (TAG) by Madden et al. [16]. We consider the example of
computing a sum over all the sensor readings in the network. First,
a spanning tree rooted at the base station is constructed over the
network topology. All communications occur over the spanning
tree subgraph; thus the remainder of the edges of the topology are
ignored for this algorithm. Next, each sensor node that is a leaf in
the spanning tree reports its sensor reading to its parent. Once an
internal node has received data from each of its children, it eval-
uates theintermediate aggregation operatorover this data and its
own reading. In the case of the summation aggregation, the inter-
mediate aggregation operator is addition, i.e., an intermediate sum
of the data received from each of the node’s children and the node’s
own reading is performed. The result of the intermediate aggrega-
tion operation is reported to the node’s parent, which then repeats
the process until the final sum is computed at the base station. An
example of this process is shown on Figure 1.

The goal of the CPS algorithm is to guarantee the integrity of
the SUM computation under the attacker model where a certain

 G0 = 〈5; G〉

F1 = 〈6; H [6||F0||G0]〉

C1 = 〈11; H [11||C0||E0||F1]〉

A1 = 〈23; H [23||A0||B1||C1||D0]〉

R = 〈30; H [30||H0||A1||I0]〉

Figure 2: Non-optimized commitment tree for the aggregation
of Figure 1, showing derivations of some of the vertices. For
each sensor nodeX, X0 is its leaf vertex, whileX1 is the in-
ternal vertex representing the aggregate computation atX. On
the right we list the labels of the vertices on the path of nodeG
to the root.

unknown subset of the nodes in the network is malicious and in-
tends to skew the computed result (the original paper describes fur-
ther generalizations of using SUM to compute other aggregates like
counts, averages and quantiles). We assume that the base station
shares a unique symmetric secret key with each sensor node. The
correctness goal is that if no attacker is present and no errors occur
in the algorithm, then the result is accepted; if an attacker tampers
with the aggregation computation then the result (if any) is dis-
carded and the algorithm reports that an adversary (or fault) must
be present in the system. Specifically, the adversary is bounded by
the algorithm such that any result it causes the system to accept is
achievable by just reportinglegal input values (i.e., values within
a predetermined fixed range, e.g., room temperature sensors only
report values between 0 to50◦ C) at the malicious nodes that it
controls; in other words, tampering with the aggregation mecha-
nism gives the adversary no added ability to influence the set of
accepted results. Furthermore, if the adversary attempts to cheat
or disrupt the algorithm, its presence will be detected (although
the exact malicious node is not pinpointed). Specific countermea-
sures may then be deployed to eliminate the adversary from the
system; the specifics of the security reaction is outside the scope of
the problem.

2.2 General Overview
A high level overview of the CPS secure hierarchical data aggre-

gation scheme is as follows. The algorithm proceeds in four phases.
Chan et al. and Frikken et al. originally used names for each phase
which referred to the aggregation computation process [3, 7]; in
anticipation of the generalization of the algorithm beyond data ag-
gregation, we rename each phase with a more general label. The
four phases and their short descriptions are as follows:

1. Commitment Tree Generation Phase:A structure similar
to a hash tree, called acommitment tree(see Figure 2), is
generated by the nodes in a distributed manner, committing
to the set of inputs and the intermediate operations in the
distributed aggregation computation. The root vertex of the
commitment tree contains the aggregation result and also acts
as an overall commitment to the operations and inputs lead-
ing to that result. Typically it is computed at the base station
at the conclusion of this phase.

2. Result Dissemination Phase:The base station distributes
the root vertex of the commitment tree using an authenticated
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broadcast to the entire network.
3. Distributed Verification Phase: The nodes exchange infor-

mation which allows each node to verify that their respective
contributions were indeed correctly incorporated into each
of the intermediate results computed during the aggregation
process.

4. Verification Confirmation Phase: Once each node has suc-
cessfully performed verification, it must notify the base sta-
tion of success. Verification success confirmation messages
are generated at each node and efficiently aggregated towards
the base station. If the base station detects that all nodes suc-
ceeded in verification then the result is accepted, otherwise it
is rejected.

2.3 The Commitment Tree
The foundational data structure of the CPS secure data aggre-

gation algorithm is the commitment tree. In this section we de-
scribe this structure in more detail, describing the operation of the
four phases with reference to the data structure. For clarity, we
first focus on the basic (non-optimized) version of the commitment
tree, which has a structure reflecting the network topology. In Sec-
tion 2.4 we briefly discuss optimizations by Frikken and Dougherty
which bound the depth of the commitment tree toO(log n) where
n is the total number of leaves in the tree [7].

For clarity, we focus on a general simplification of the commit-
ment tree and omit essential details in the original CPS publication
such as nonces, node counts, and complement sums.

Figure 2 shows an example of how a basic commitment tree can
be constructed. Figure 1 shows the logical network topology as
well as the aggregation operations. For clarity, we will refer to the
verticesof the commitment tree and the sensornodesin the topol-
ogy. Comparing Figures 1 and 2 side by side, it is apparent that the
commitment tree follows the shape of the network topology. Each
commitment-tree vertex is a hash-based commitment to the aggre-
gation inputs and result occuring at the corresponding node in the
topology. For example, vertexC1 contains a hash on the result (i.e.,
11) computed at nodeC as well as the set of inputs used to compute
this result (i.e., commitment-tree verticesC0, E0, F1).

2.3.1 Commitment Tree Generation
In the commitment-tree generation phase, the commitment tree

is constructed from the bottom up in a distributed fashion, with
new internal vertices added on each aggregation operation which
are then transmitted on to the aggregating node’s parent node in the
network topology. The leaf vertex of the commitment tree for a
node with IDi contains its input to the computationxi as well as
its identityi:

vi = 〈xi; i〉

For example, in Figure 2, sensor nodeG constructs a leaf vertex
consisting of its input valuexG (e.g., a sensor reading) and its node
ID G. Each leaf node in the network topology transmits its leaf
vertex to its parent (e.g.,G sends its leaf vertex toF ).

Each internal (non-leaf) sensor nodei in the topology receives
from each of its children a commitment tree vertex. The parent
nodei then performs its own aggregation operation over its own
leaf vertex and the vertices supplied by its children, and generates
a new internal vertex in the commitment tree.

ui = 〈yi; H [yi||u1||u2|| · · · ||uk]〉

Whereui is an internal vertex created by nodei, yi is the result of
the intermediate aggregation operation performed on the data con-
tained in the commitment tree verticesu1, · · · , uk received from

Figure 3: Off path vertices of vertexu

the children ofi (or generated byi itself). For example, in Fig-
ure 2, the sensor nodeA performs an aggregation over the received
internal verticesB1 andC1 and the leaf vertexD0 as well as its
own leaf vertexA0. Based on the received inputs, it generates the
aggregated result value23 (as the sum of the values from all its
children and itself) and commits to the set of inputs used in the
computation, by computing a hash over23||A0||B1||C1||D0. The
result is a new internal vertex in the commitment tree which is the
parent of all the vertices received byA. Once each nodei has com-
puted all its internal commitment tree vertices it transmits them to
its parent, which will then construct its own internal vertex as the
parent of all the vertices it receives, and so on.

2.3.2 Result Dissemination
At the conclusion of the aggregate commit phase, the base station

disseminates the root vertex of the commitment tree via an authen-
ticated broadcast to all nodes in the network. It may also include a
unique nonceN in the broadcast message; this nonce is used in the
verification confirmation phase.

2.3.3 Distributed Verification
Each node is then required to verify that its own contribution to

the network-wide aggregation computation was incorporated cor-
rectly in the commitment tree. Specifically, the node must check
that its leaf vertex is indeed a descendant of the root vertex that
was broadcast by the base station; furthermore, it must check the
correctness of all the aggregation operations computed which in-
volve its input value as an upstream input. To check this, each
node must recompute the sequence of commitment tree vertices
between its leaf vertex and the root. For example, nodeG in Fig-
ure 2 must recompute the verticesF1, C1, A1 andR1. To perform
this series of computations, each node must receive all theoff-path
verticesof its leaf vertex. The off-path vertices of a tree vertex
u are the sibling vertices of all nodes on the path fromu to the
root of the tree. A graphical depiction is shown in Figure 3. In
Figure 2 this means that nodeG must receive all the child ver-
tices ofF1, C1, A1 andR1 respectively; this corresponds to the set
{F0, E0, C0, B1, A0, D0, H0, I0}. To facilitate this verification,
each internal node in the network topology broadcasts the set of
commitment-tree vertices it received to all the nodes in its subtree.
For example, nodeA would broadcast the verticesA0, B1, C1, D0

to all the vertices in the subtree rooted atA on Figure 1.

2.3.4 Verification Confirmation
Once each node has successfully performed its respective verifi-

cations, they have to notify the base station of their success. Each
node performs this operation by forwarding a specificverification
confirmation messagewhich is the message authentication code
over a specific “OK” string and a nonceN specific to the cur-
rent query, computed using the secret key shared between the node
and the base station:Mi = MACKi

(N ||OK). Individually for-
warding each of these confirmation messages would be too costly
in terms of communication; hence the algorithm makes use of the
fact that the base station only wishes to know ifall of the sensor
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nodes have released their respective confirmation messages. Thus
the confirmation messages are aggregated using the XOR opera-
tion: each internal node in the topology waits to receive the confir-
mation messages from each of its children, then computes the XOR
of all the received messages with its own confirmation message and
forwards the final result to its own parent. If all nodes successfully
verified the aggregation process, then the final confirmation value
transmitted to the base station is the XOR of all the confirmation
messages, i.e., MACK1

(N ||OK)⊕· · ·⊕MACKn
(N ||OK). Since

the base station has knowledge of all the secret keys used in the con-
struction of this aggregate confirmation message, it can reconstruct
what it “should” expect to receive if every node did indeed suc-
cesfully perform distributed verification. The base station can then
compare this expected value with the aggregated confirmation mes-
sage that it receives from the network: if the values are the same
then it can accept the aggregation result; if not then it discards the
aggregation result.

2.4 Optimizations
In aggregation algorithms (as for most sensor network applica-

tions), we measure communication overhead bycongestion, which
is defined as the worst-case heaviest communication load on any
single link in the network. The reason for this metric is that for
sensor networks communication is costly because it drains battery
power, which affects node lifetimes. Algorithms with low conges-
tion tend to spread out the communication load, leading to a longer
lifetime until the first sensor node death.

The limiting step in the congestion bound is the distributed ver-
ification phase where each sensor nodei must verify the path in
the commitment-tree from each of the vertices it created to the root
vertexr. To do this, nodei must collect (or recompute) all the child
vertices of each vertex that is an ancestor of each of the vertices that
nodei is verifying. Thus, the height and degree of the commitment
tree affects the cost of the algorithm. Fortunately, the structure of
the commitment tree does not necessarily have to follow the shape
of the network topology. Aggregation operations can be re-ordered
such that the resultant commitment trees formed are well-balanced.
The original CPS algorithm balanced its commitment trees using a
rule which ensured that only trees of similar size could be joined
by creating a parent vertex over them. This resulted in a conges-
tion bound ofO(log2 n) [3]. Frikken and Dougherty greatly im-
proved this optimization by using a more sophisticated heuristic
which ensured that all the new vertices created by a sensor node
always shared the same verification path [7]. This improved the
congestion bound toO(log n).

Further optimizations may be possible in future work to further
reduce the commitment tree congestion overhead; the applications
described in this paper are viable independently of such optimiza-
tions.

3. FUNCTIONALITY DECOMPOSITION
In this section we extract and analyze the general properties pro-

vided to the protocol designer by the CPS algorithm.
To understand the usefulness of the CPS algorithm, we decom-

pose its four phases into three distinct functionalities. Phase 1
and 3, the commitment tree generation and distributed verifica-
tion phases, correspond to the ability to efficiently generate com-
mitment trees and disseminate them such that each sensor node
which contributed a vertex can verify that vertex is properly in-
cluded in the commitment tree. We call this functionality theCT

(for “commitment tree”) functionality. Phase 2, the result dissemi-
nation phase, corresponds to an authenticated broadcast functional-
ity. Phase 4, the verification confirmation phase, corresponds to an

Figure 4: Functional decomposition of the CPS algorithm.
Dashed boxes represent phases/functionalities in the original
CPS scheme, with the Commitment Tree Generation and Dis-
tributed Verification phases combined to form theCT function-
ality. Square lettered nodes represent sensor nodes and round
vertices represent hash tree vertices. Thick arrows represent
communication to/from the functionalities, thin arrows repre-
sent hash function inputs. The verification path of nodeD is
highlighted by the grey shaded nodes;D receives all nodes out-
lined in bold.

VERIFICATION CONFIRMATION FUNCTIONALITY

Inputs: (from each sensor nodei)
Confirmation message:Ci

Outputs:
To Base Station:

XOR of all confirmation messages:C1 ⊕ C2 ⊕ · · · ⊕ Cn

Table 1: Interface of the Verification Confirmation Functional-
ity

efficient network-wide acknowledgement functionality. The three
functionalities are illustrated in relation to one another in Figure 4.
Note that since each of these functionalities is network-based, they
are considereduntrustedfunctionalities, i.e., it is up to any nodes
communicating with these functionalities to perform the necessary
verifications of integrity based on the authenticating information
returned by the functionalities.

To more rigorously define these modular functionalities, we de-
fine their respective interfaces (i.e., parameters, inputs and outputs)
in turn. We skip discussion of the functionality for the result dis-
semination phase: it is simply authenticated broadcast which is
well-understood.

The verification confirmation functionality is an efficient method
for collecting a set of acknowledgements; Section 2.3.4 describes
the verification confirmation phase of CPS which performs exactly
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CT FUNCTIONALITY

Inputs: (from each sensor nodei)
Data Valuexi

Computes:
Tree via the following:

Leaf vertexvi (one per nodei): v(xi, i)
Internal vertexu0 with child verticesu1, . . . , uk:

u(u1, . . . , uk)
Outputs:
To Base Station: Commitment tree root vertexr

To each sensor nodei: Off path vertices forvi

Table 2: Definition of the CT Functionality

this function. Table 1 shows the interface of this functionality.
The CT (for “commitment tree”) functionality is the ability to

form and disseminate arbitarily defined trees. It is derived as a gen-
eralization of the process of forming and disseminating the specific
type of commitment-tree defined in the CPS algorithm. After defin-
ing the generalCT functionality, we will instantiate it to operate
on simple hash trees; this is the more practicalHT functionality
we will use for the practical applications in subsequent sections.

TheCT functionality is defined as follows: consider a network
consisting of some number of nodes and a trusted base station (or
central authority). Define an untrusted functionalityCT which per-
forms the following function: it queries each of the nodes in turn,
receiving from each nodei a data valuexi. FunctionalityCT then
constructs a tree. First a leaf vertexvi is created for each nodei;
thenCT repeatedly adds internal vertices until a tree is created over
the given leaves. The shape of the tree can be freely decided by the
algorithm implementing theCT functionality. The internal ver-
tices are computed using the fixed parent vertex creation ruleu(),
i.e. for each internal vertexu0 with child verticesu1, . . . , uk, we
computeu0 = u(u1, . . . , uk). Once the tree has been constructed,
functionalityCT reports the rootr of the hash tree to the base sta-
tion. Then, for each node in the network,CT provides enough
information for the node to verify the inclusion of its provided leaf
values in the tree; specifically, each nodei receives the siblings of
all the vertices in the commitment tree from their leaf vertexvi to
the root vertexr. TheCT functionality is summarized in Table 2.

Note that since the nodes do not trust the functionalityCT , typ-
ically they need to have some prior knowledge of what root vertex
value to expect (i.e.,r) when performing distributed verification.
One method of providing this knowledge is for the base station to
disseminate the valuer with an authenticated broadcast (i.e., via the
result dissemination phase of CPS ). In certain applications (e.g.,
Section 5) the valuer is already known prior to the invocation of
the CT functionality, hence authenticated broadcast is not neces-
sary.

For reference, the specific parameterization of theCT function-
ality as used in the (simplified) CPS algorithm as described in Sec-
tion 2 is shown in Table 3. We make the following observation:

Observation 1 The CPS algorithm contains anO(log n) - conges-
tion implementation of the generalCT functionality.

This is because the parameterization of theCT functionality only
changes how the commitment tree vertices are defined; for any such
definition we can replace the standard definitions ofCTCPS di-
rectly without affecting the operation of the algorithm.

In subsequent applications, we move away from the function-
computation aspect of theCT functionality and use it purely for its

CTCPS FUNCTIONALITY

Inputs: (from each sensor nodei)
Data Valuexi

Computes:
Tree via the following:

Leaf vertexvi (one per nodei): 〈xi; i〉
Internal vertexu0 with child verticesu1, . . . , uk

containing valuesy1, . . . , yk respectively:
〈

y0 =
∑k

j=1
yj ; H[y0||u1|| · · · ||uk]

〉

Outputs:
To Base Station: Commitment tree root vertexr

To each sensor nodei: Off path vertices forvi

Table 3: The instance ofCT implemented in CPS

HT FUNCTIONALITY

Inputs: (from each sensor nodei)
String or valueLi

Computes:
Tree via the following:

Leaf vertexvi (one per nodei): 〈Li〉
Internal vertexu0 with child verticesu1, . . . , uk:

〈H[u1|| · · · ||uk]〉
Outputs:
To Base Station: Commitment tree root vertexr

To each sensor nodei: Off path vertices forvi

Table 4: Definition of the HT Functionality

commitment properties. In other words, we use a version ofCT

that does not perform data aggregation computations and simply
computes a conventional hash tree instead of a commitment tree.
We call theCT functionality parameterized in this fashion, theHT

(hash-tree) functionality.
As mentioned, the commitment tree generation and distributed

verification phases of the CPS algorithm can realize theHT func-
tionality simply by changing the definition of the commitment-tree
vertices to the ones in Table 4. All the other operations of Sec-
tion 2.3.1 and 2.3.3 remain unchanged; in particular the optimiza-
tions of Section 2.4 still apply; the hash trees created by this real-
ization of theHT functionality are binary trees ofO(log n) height,
and the cost of distributed verification isO(log n) congestion.

Observation 2 Given theHT functionality, the network can effi-
ciently generate and disseminate hash trees.

In other words,HT functionality gives us the ability to construct
protocols which use network-wide authenticated hash trees with
very little overhead. The most common use of a hash tree is as
a batched signatureby the base station over a set of values: this
functionality will drive most of the applications for the subsequent
sections.

3.1 CPS Without Authenticated Broadcast
Our decomposition of the CPS algorithm into four phases shows

that the authenticated broadcast of Phase 2 is not intrinsically part
of the CT (or HT ) functionality of Phase 1 and 3. Specifically,
consider the removal of the authenticity property from Phase 2,
i.e., by using normal broadcast instead of authenticated broadcast
to disseminate the rootr of the commitment tree. Without authen-
tication, the distributed verification of Phase 3 may be performed
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on a falsified root hash value valuer′ 6= r. However, as long as the
protocol eventually aborts (instead of accepting) on the injection of
a falsified root hash value, the correctness of the overall algorithm
remains unchanged. More precisely, instead of using authenticated
broadcast to provide integrity for the root hash value in Phase 2,
we can defer this check to later phases. In particular, we can easily
make the success of Phase 4 dependent on each node receiving the
correct root hash valuer. This yields a version of CPS that does
not require an authenticated broadcast primitive. Subsequently, in
Section 5 we show that in some applications it is possible to cause
Phase 3 to abort if any legitimate node is given a falsified root hash
value: this itself yields an authenticated broadcast algorithm.

The modification to the CPS algorithm to remove the need for
authenticated broadcast involves modifying the “verification suc-
cessful” message in the final phase of the algorithm to include data
about the root vertex that the verification process was computed
against. Hence, if the wrong root vertex was used, then the “veri-
fication successful” message simply becomes invalid and the base
station will (correctly) discard the aggregation result.

The specific modification is as follows. After the base station
receives (or computes) the root vertex of the commitment tree, it
disseminates the value using conventional (unauthenticated) broad-
cast. The sensor nodes then carry out the distributed verification
phase as usual against the (possibly invalid) root vertex value that
they receive. In verification confirmation phase, each node then
replies with an authentication code that is efficiently aggregated
using XOR and delivered to the base station. In the original proto-
col, each nodei releases an authentication code MACKi

(N ||OK)
whereKi is the key thati shares with the base station andN is a
nonce associated with the aggregation query. We modify this mes-
sage to also include the value of the root vertex that was used in the
verification, i.e. nodei will reply with MACKi

(N ||OK||r) where
r is the root vertex that the successful verification was computed
against. The rest of the protocol continues unchanged, i.e. the base
station collects the XOR of all the authentication codes and com-
pares it with the value that it expects.

An intuition for the correctness of the scheme is as follows.
The reason whyr needs to be authenticated in the original pro-
tocol was to prevent the adversary from injecting some arbitrary
r′ 6= r which may cause certain nodes to fail to detect that their
values were not correctly incorporated in the commitment tree sent
to the base station; in other words, these nodes could be fed an
alternative, false commitment tree with rootr′ which contained
their input values but which has no relation with the actual commit-
ment tree reported to the base station. The modified authentication
code message removes the ability to perform this attack since any
node verifying against the wrong root valuer′ will also (with high
probability under standard MAC unforgeability assumptions) re-
lease the wrong authentication code reply MACKi

(N ||OK||r) 6=
MACKi

(N ||OK||r′). This will cause the base station to reject the
(possibly incorrect) aggregation result.

4. ASSUMPTIONS
We are now ready to start deriving applications from theHT

functionality. First, we state the operating assumptions of the new
protocols.

• Preloaded Keys. We require only that each sensor node
share a unique symmetric key with the trusted base station.

• Limited Resistance to Denial-of-Service (DoS) Attacks.
In our protocols we will mainly be concerned with data in-
tegrity rather than availability. Our definition of correctness
is based on a tight definition of soundness and a looser in-
terpretation of completeness, as follows. Soundness: data is

accepted only if it is authentic. Completeness: if no adver-
sary is present and no messages are lost, then the data must
be accepted. In particular we allow the case where the adver-
sary is present and the data is authentic, but the protocol re-
jects it. In practical terms this means we inherit the original
CPS algorithm’s vulnerability to denial-of-service, where a
single malicious node can cause the protocol to abort (with-
out a result) by behaving badly. The argument for this is
that in each disrupted round of the protocol, the adversary
nodes must deviate from the protocol in some way (by either
sending the wrong messages or not sending a message when
expected), and if this behavior persists then it is a clear in-
dication of an error condition and an out-of-band remedial
action can be taken. One particular form of DoS that we do
attempt to prevent is long-lived DoS, where misbehavior in
a single round causes the protocol to stop functioning for an
extended number of subsequent rounds. This will be noted
wherever appropriate.

• Fixed known network topology. We assume that the sen-
sor network is mostly static, with a topology that is a-priori
known to the base station, and changes in the network topol-
ogy are sufficiently infrequent to be ignored in the estimation
of communication and memory overheads. This appears to
be true of many modern sensor network applications such
as building and home instrumentation and automation. We
assume that only reliable links are included in the network
topology and retransmissions are performed to a sufficient
degree that message loss is a negligible factor.

5. AUTHENTICATED BROADCAST
In this section we show how theHT functionality of the CPS

algorithm can be used to generate an authenticated broadcast prim-
itive. Specifically, this primitive enables the base station to send an
authenticated broadcast messageM such that all nodes can verify
thatM truly originated from the base station.

Before describing the details of the algorithm, we first describe
the intuition behind the approach. Consider a base station which
shares a unique secret keyKi with each sensor nodei. To authen-
ticate messageM to nodei, the base station can attach a MAC us-
ing the key they share, e.g., MACKi

(M ||N) (the nonce / sequence
numberN is used to prevent replay ofM in the future: we assume
the nodes keep track of which nonces have been used). However,
since each MAC for each sensor node uses a different key, unicast-
ing a different MAC to each node in the network is very inefficient,
incurringO(n) congestion in the worst case (see Figure 5(a)).

Alternatively, we can use a hash tree to “batch” the entire set of
MACs into a single structure. Specifically, construct a hash tree
whose set of leaves is the set of MACs ofM using each of the keys
shared with the nodes in the network, i.e.,{MACK1

(M ||N), . . . ,

MACKn
(M ||N)}. Let the root vertex of the hash tree ber. Then,

for each nodei, assuming that nodei itself has never divulged the
value of MACKi

(M ||N) in the past, exhibiting the valuer suffices
as proof of the ability to independently compute MACKi

(M ||N)
sincer was computed via a sequence of collision-resistant hash
functions evaluated with MACKi

(M ||N) as an input. In other
words, it is computationally infeasible for an adversary that does
not knowKi or MACKi

(M ||N) to produce a new pairM ′, r′, N ′

in such a way that MACKi
(M ′||N ′) is a leaf vertex in some hash

tree with rootr′ (the adversary has to break either the collision re-
sistance of the hash function or the unforgeability of the MAC).
Note that in such a construction, each node only needs to verify the
inclusion of its own MAC as a leaf in the hash tree; other MACs
are irrelevant.
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(a) Using unicast (b) Using theHT functionality

Figure 5: Disseminating per node MACs: Naive method andHT method

Hence, theHT functionality is perfectly suited for efficiently
generating and disseminating exactly such a hash tree. The details
are shown on Figure 5(b). We assume that the base station is a pri-
ori aware of the specific method used byHT to construct the hash
tree, i.e. given the list of leaf data values, it is able to replicate the
hash tree constructed byHT . To construct an authentication tag
for a messageM , the base station internally replicates the hash-
tree construction ofHT using the leaf values{MACK1

(M ||N),
. . . , MACKn

(M ||N)} whereKi is the key shared with nodei
and N is a nonce that is never re-used (e.g., a sequence num-
ber). Once the rootr of the hash tree is computed, the base sta-
tion can then broadcast the triplet(M, r, N). To authenticateM ,
each node first checks that it has never seenN before, then releases
MACKi

(M ||N) to theHT functionality. TheHT functionality
recomputes the hash tree and releases the relevant verification in-
formation to each nodei allowing it to verify that MACKi

(M ||N)
is a leaf of the hash tree with rootr. If the node successfully verifies
this then it can acceptM as authentic.

The specifics of the broadcast algorithm as it relates to the CPS
algorithm are evident from the way the CPS algorithm implements
the HT functionality. Specifically, we assume that the topology
is static and known to the base station: this allows the base sta-
tion to anticipate exactly the hash tree that will be generated. The
base station then simulates (internally) the commitment tree gen-
eration phase (where the leaf vertex associated with each node is
MACKi

(M ||N)), and derives the root of the commitment treer,
and broadcasts the triplet(M, r, N). The nodes each check that the
nonceN has not been previously used, then collaborate to perform
the commitment tree generation phase and the distributed verifica-
tion phase to verify that their respective MACs were included in
the computation ofr. Note that there is no need for a root ver-
tex broadcast phase because the root vertexr was already known
from the original broadcast. If the nodes successfully complete
distributed verification, then they acceptM as authentic. The fi-
nal acknowledgement phase is optional; its inclusion can help the
base station detect protocol failure due to malicious injection, node
error or message loss, but does not affect correctness. Omitting
this phase does not allow a node to accept an inauthentic triplet
(M ′, r′, N ′). The algorithm is summarized in Algorithm 1.

5.1 Analysis and Refinements
It is computationally infeasible for an adversary to produce a

triplet (M ′, r′, N ′) that correctly verifies for any legitimate node

Algorithm 1 Authenticated Broadcast usingHT Functionality
Input: NonceN not previously used; MessageM
1. Base station simulates the operation ofHT on the leaf vertex

definitionsLi = MACKi
(M ||N), computes root vertexr.

2. Base station broadcasts(M, r, N).
3. Each nodei checks thatN was not previously seen; if so, stop.
4. Otherwise, releaseLi = MACKi

(M ||N).
5. Nodes collaborate to implementHT functionality, recomput-

ing the hash tree with rootr.
6. As perHT functionality, verification paths are disseminated

back to the nodes after hash tree is computed.
7. Each nodei verifies thatLi is a leaf vertex in the hash tree with

rootr.
8. If verification successful, nodei acceptsM .
9. (Optional) Base station can request a network-wide ACK by

implementing verification confirmation functionality over con-
firmation messagesCi = MACKi

(M ||r||N ||ACK) where
ACK is a unique identifier indicate broadcast authentication
success.

i in the network. This is because, assuming the adversary does
not know MACKi

(M ′||N ′) (since the MAC is hard to forge and
Ki is unknown to the adversary), the adversary is computationally
unlikely to be able to (a priori) deduce anr′ that is the root of a
hash tree containing MACKi

(M ′||N ′). On the other hand, once
a triple (M ′, r′, N ′) with a valid nonceN ′ is received by nodei,
the node will release MACKi

(M ′||N ′) to allow the rest of the net-
work to perform distributed verification. The release of this value
potentially allows an adversary to now compute some newr′′ such
that (M ′, r′′, N ′) will verify correctly and be accepted by nodei.
Hence it is important that a nonce must never be re-used for the
same key, e.g., they could be increasing sequence numbers.

Keeping track of which nonces have been used introduces a new
problem. Suppose we use increasing sequence numbers, and nodes
keep track of the largest sequence number they have seen. Hence, a
node will only release its MAC for triples with sequence numbers
larger than the largest one yet seen. This introduces a long-term de-
nial of service attack where the adversary can shut down a node for
an extended period of time with a single spurious triple containing a
huge sequence number. To address this issue, we propose replacing
the sequence number with a hash chain. A hash chain is constructed
by repeatedly evaluating a pre-image resistant hash functionh on
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some (random) initial value. The final result (or “anchor value”) is
preloaded on the nodes and the base station uses the pre-image of
the last-used value as the nonce for the next broadcast. For exam-
ple, if the last known value of the hash chain washm(IV ), then
the next broadcast would usehm−1(IV ) as the nonce. When a
node receives a new nonceN ′, it verifies thatN ′ is a precursor
to the most recently received (and authenticated) nonceN on the
hash chain, i.e.,hi(N ′) = N for somei bounded by a fixedk
of number of hash applications. This prevents an adversary from
performing sequence number exhaustion denial of service attacks
since it would have to reverse the hash chain computation to get
an acceptable pre-image. The hash computations do presents an
additional minor opportunity for a computational DoS (by flood-
ing a node with multiple messages containing invalid nonces, each
of which must be checked to show it does not belong on the hash
chain); however since hash computations are efficient and the to-
tal hash computations per message is bounded by some parameter
k, such attacks cannot cause persistent outages. New nodes enter-
ing the network can be sent their hash chain anchors via unicast:
this is a one-time operation and does not increase the congestion
complexity of the protocol.

Since the hash chain is generated at the resource-rich base station
(not on the nodes), it can potentially be extremely long. When the
base station wishes to generate a new hash chain, the new anchor
value can be efficiently broadcast to the nodes in the network using
the remaining values on the old hash chain. This renewal process
is subject to disruption by adversary nodes in the usual way (e.g.
by releasing spurious leaf values to cause the hash tree authentica-
tion step to fail). Hence, if hash chain renewal is performed too
late (e.g. when the old hash chain only has a few values remain-
ing), then, if the renewal broadcasts are disrupted by the adversary,
legitimate nodes may not receive the new anchors. In this case en-
tire protocol must be reinitialized via an expensive unicast from the
base station to each node. To remedy this, hash chain renewals can
be performed early, when there is a sufficient number of remaining
hash values such that a short period of disruption attacks by an ad-
versary does not result in exhaustion of the values in the old hash
chain. Obviously acontinuousDoS by a stubborn adversary in ev-
ery round of broadcasts can still incapacitate the broadcast mech-
anism; as discussed in Section 4 we assume that such persistent
adversarial behavior can be addressed out-of-band.

Like all protocols in this paper, the overhead of this protocol is a
bound ofO(log n) congestion on all links in the network. Further-
more, it is the only known broadcast authentication scheme that is
efficient and works using only unique symmetric keys shared be-
tween the base station and the nodes and which does not require
time synchronization.

6. PUBLIC KEY MANAGEMENT
With the authenticated broadcast primitive described in Section 5,

we now have access to the ability to create and disseminate hash
trees with root vertices that are authenticated by the base station.

One application of this is to use a single authenticated value (i.e.,
the root vertex of a hash tree) to attest to the integrity of many
different leaf values. In this section we consider the problem of
authentically binding information to specific nodes using this struc-
ture. The general formulation of the problem is as follows: suppose
that each nodei has a labelLi which is known to itself and to the
base station. Our goal is to be able to prove to an arbitrary nodej

that the labelLi is legitimate, e.g., it was approved by the base sta-
tion and not fabricated by an adversary (which could be controlling
nodei itself).

6.1 The Public Key Management Problem
Public key management is one of the most important applica-

tions of the information-binding functionality. With continued im-
provements in the performance of elliptic curve algorithms, pub-
lic key cryptography hardware and software are becoming increas-
ingly feasible for low cost sensor nodes. However, at the mo-
ment it is still unclear how to manage public keys in a sensor net-
work. There are two major problems with deploying asymmetric
key cryptography related to public key management.

Public key authentication. To prevent node-in-the-middle at-
tacks, sensor nodes should not accept public keys from any other
sensor node except those with which it knows it should associate.
The standard method of implementing this is with a PKI, i.e., all
public keys are certified (signed) by a central authority (e.g., the
trusted base station). This is subject to a battery-exhaustion denial
of service attack from an outsider who can bombard a legitimate
node with thousands of false public key certificates. This problem
is particularly serious in sensor networks due to the resource con-
straints of sensor nodes.

Public key revocation. As nodes die or are revoked from the
network, their old public keys must be invalidated. The simplest
approach is a centralized approach: for each public key that a node
receives, the node must communicate with the base station to ver-
ify the current status of the newly received public key. This is
expensive in communication overhead and does not scale to large
networks. The standard distributed method for public key revo-
cation is either for a node to keep extensive certificate revocation
lists (CRLs), or for authority signatures on public key certificates
to periodically time out. Neither approach is practical for sensor
networks. CRLs are impractical because sensor nodes cannot spare
the RAM to exhaustively remember the identities of every dead
node. Certificate timeouts are also impractical since periodically
unicasting a newly signed public key certificate to every node in
the network is prohibitively expensive.

6.2 UsingHT for PK Management
We show that public key dissemination can be performed simi-

larly to the process described in Section 5. The general primitive
is very similar to the process described in Section 5. We use the
HT functionality with leaf vertex valuesLi = (PKi, i, T ) where
PKi is the public key of nodei (which is known to both nodei
and the base station), andT is a sequence number or timestamp
which guarantees the freshness of the certificate. Similarly to Sec-
tion 5, we assume that the topology is static and the hash tree for-
mation/dissemination algorithmHT is known to the base station.
Hence, the base station can, internally (i.e., without communicat-
ing with any nodes), construct a hash tree with each of theLi as the
leaves in an identical manner to theHT functionality. The rootr
of this hash tree is then disseminated to the network using authen-
ticated broadcast. The method of Section 5 may be used for the
authenticated broadcast (if so, the protocol rounds of the authen-
ticated broadcast may be merged with the protocol rounds of this
section; the details are straightforward and are omitted for brevity).
Depending on the freshness method used,T may also be included
in the authenticated broadcast (to invalidate any old certificates).
To prevent desynchronization, a network-wide acknowledgement
of receipt of this broadcast is performed using the verification con-
firmation functionality. This ensures that all nodes receive the most
up-to-date root vertexr. Subsequently, each node releases itsLi.
Using these as leaf vertices, theHT functionality generates a hash
tree with the same root vertexr as was broadcast by the base sta-
tion, and disseminates sufficient information to each node to allow
it to reconstruct the sequence of hashes leading fromLi to r. Once
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Figure 6: Use ofHT as a Public Key distribution primitive

each node has successfully performed verification, then it can retain
the information it used in verification for use as a proof of validity
to any other node in the network which also remembers or can ver-
ify that r is a valid root vertex from the base station. To ensure
that all nodes receive their respective proofs of validity for their la-
bels, one final round of the verification confirmation functionality
is performed. The algorithm is summarized in Algorithm 2.

Algorithm 2 Public Key Dissemination usingHT Functionality
Input: NonceT not previously used; Public keysPKi for each

nodei (known to BS and nodei).
1. Base station simulates the operation ofHT on the leaf vertex

definitionsLi = (PKi, i, T ), computes root vertexr.
2. Base station authentically broadcasts(r, T ).
3. Each node, on reception, discards old root vertex and updates

its current root vertex tor.
4. Verification confirmation functionality is used to ensure all

nodes received the broadcast. If not, stop.
5. Each node releasesLi = (PKi, i, T ).
6. Nodes collaborate to implementHT functionality, recomput-

ing the hash tree with rootr.
7. As perHT functionality, verification pathsPi are dissemi-

nated back to the nodes after hash tree is computed.
8. Each nodei verifies thatLi is a leaf vertex in the hash tree with

rootr.
9. Verification confirmation functionality used to check that all

nodes received their correct verification paths successfully. If
not, stop.

Public Key Authentication Procedure:
1. When nodei declares its public key certificateLi =

(PKi, i, T ) to another nodej, nodei authenticatesLi by in-
cluding the information to recompute verification pathPi.

2. Nodej can authenticate thatPKi is a valid key by recom-
puting the pathPi and checking that it terminates in the most
recent root vertexr.

6.3 Analysis
The protocol involves the dissemination of a hash tree through-

out the network with an authenticated root hash value. Correctness
thus follows from the observation that, for each hash treeT with a
root hash valuer, it is computationally infeasible for an adversary
to find another hash treeT ′ 6= T that also has root hash valuer. If
the protocol is completed successfully, then every unrevoked node

will have received its certificate and can compute the sequence of
hashes to the publicly-known rootr; revoked nodes are not part of
the tree and cannot produce any sequence of hashes tor.

The public key dissemination method described in this section
incursO(log n) congestion overhead, and can be used to either re-
fresh keys periodically or as needed to revoke old keys. TheHT

method of public key management has two advantages over con-
ventional mechanisms:

1. The certificate-verification attack is negated because authen-
ticating a public key only requiresO(log n) hash function
evaluations, which is significantly faster than a public key
signature verification.

2. Public key revocation is greatly simplified: each time a node
is revoked, the base station reforms the topology around the
revoked node (via a series of authenticated unicasts to the
nodes affected by the change) and then repeats the public key
binding algorithm for a total ofO(log n) congestion over-
head. Given that node revocations are infrequent occurrences,
this is a significantly lower overhead than periodically uni-
casting newly signed certificates to each node, and also does
not require the use of node revocation lists.

One potential drawback of using theHT functionality in this man-
ner is its vulnerability to denial of service attacks. Specifically, a
malicious node in the CPS algorithm can sabotage the hash tree dis-
semination process causing the verification of legitimate nodes to
fail. However, such an attack is much less severe than the certificate-
revocation attack because (a) it is easily detectable (via the verifi-
cation confirmation functionality in the algorithm) and, once de-
tected, countermeasures can then be taken to locate and revoke the
malicious node; (b) the attacker can only disrupt one round of the
algorithm per attack, with no lasting impact on the network, instead
of being able to completely drain the physical battery reserves of
a given node; (c) the attacker can only perform the attack from in-
side the network using a compromised node instead of being able
to freely perform the attack from an external device outside of the
network.

Hence, using the information-binding functionality in this man-
ner to perform public key management addresses a difficult prob-
lem in a highly efficient manner.

6.4 Further Applications
Public key management is only one example of the usefulness of

the HT structure in authoritatively binding information to a spe-
cific node. In general, the same algorithm can be applied to create
a publicly verifiable attestation to the veracity of any determinis-
tic node property. We call the general property the “information-
binding functionality”. We include a short list of some briefly de-
scribed examples to highlight its generality and usefulness.
Network access prioritization. In certain applications, nodes with
tighter requirements on latency or bandwidth may need prioritized
access to the network. For example, more aggressive MAC layer
access, or prioritized traffic queues. The information binding func-
tionality can be used to efficiently bind priority levels to nodes such
that any neighbor node can readily verify the authorized priority
level of a node.
Local topology control. The only topology that is required to be
static for the purposes of applying theHT functionality is the ag-
gregation tree structure; nodes may be free to associate with other
nodes within their immediate neighborhood to exchange sensed in-
formation or for coordination functions such as sleep scheduling.
Topology control may be necessary in such situations to prevent
a given node from associating with nodes outside of its designated
neighbor set. This can be implemented with an authorized neighbor
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list bound to each node.
Node type credentials.Nodes should not be able to masquerade as
entities that they are not. For example, a light switch should not be
allowed to claim that it is a fire alarm. Credentials binding nodes to
their roles can be used to prevent this kind of unauthorized claims
by malicious nodes.
Coordination schedules.Deterministic schedules can be bound to
nodes. For example, to ensure a fair rotation as cluster head node,
to ensure sensor coverage in sleep scheduling, and to ensure even
power consumption. Publicly verifiable bindings of specific sched-
ules to nodes can allow local groups to work out fair schedules
without fear of cheating. For example, if a deterministic random
sequence is bound to each node, this can be used to arbitrate which
node gets to be cluster head at any given time.

7. NODE-TO-NODE SIGNATURES
TheHT functionality can be further applied to create a node-to-

node signature scheme requiring only each node to share a secret
key with the (univerally trusted) base station.

The problem is defined as follows: suppose each nodei in the
network has a messageLi (whereLi could be arbitrarily chosen by
i itself, with the base station unaware of this choice). We wish to
provide the capability for each nodei create a single tag (signature)
indicating thati was responsible forLi. This signature should be
verifiable by any other node in the network, i.e. it should have the
nonrepudiation property (given the signature as evidence,i cannot
deny that it was responsible forLi).

Consider the following simple solution: for each nodei, the node
sends its messageLi (authentically, using the secret key shared
with the base station) to the base station. When nodei wants to
prove the authenticity ofLi to another nodej, it just instructsj to
check with the base station. Since the base station is completely
trusted to tell the truth, we achieve all the properties we require.
Unfortunately having every authentication go directly through the
base station is prohibitively expensive in terms communication con-
gestion.

Our observation is that, through the use of a hash tree, the base
station can efficiently “batch authenticate” the origin of an entire set
of messagesL1, . . . , Ln by just authenticating the root vertexr of
the hash tree constructed over these messages. The verification path
of eachLi to the root vertexr then acts as a proof of authenticity
which can be verified by any node that also knows the veracity of
the root vertexr.

7.1 Algorithm Description
Before the algorithm can be executed, we must first bind each

node identity to a specific verification path of the hash tree. We as-
sume that the node topology is static and known to the base station.
For a givenHT algorithm operating on a fixed topology, assum-
ing that each node contributes exactly one vertex to the hash tree,
each node must have a fixed path from its vertex to the root of the
hash tree constructed byHT . The base station can compute this
verification path from its knowledge of the topology and theHT

algorithm, and can thus bind the path to the node identity using the
protocol of Section 6. Note that this path is constant regardless of
the data value contributed by the node to theHT functionality; in a
network with (mostly) fixed topology this binding only needs to be
performed each time the topology is changed. We assume that each
topological bindingb has an identifiersb (e.g., a sequence number
that increases by one each time the topology changes and a new
binding is issued to the nodes). This identifier is embedded into the
binding of nodes to paths; specifically, in bindingb for each node
with identifierIDi, we bind the tuple〈sb, Pi, IDi〉 indicating that

in the topological bindingsb, nodeIDi has pathPi.
As mentioned, the intuition behind the algorithm is that the base

station performs a “batch authentication”. The algorithm proceeds
in the following steps: (1)HT constructs a hash tree over the set
of values to be authenticated; (2) each nodei self-validates thatLi

is in the correct position in the hash tree and (3) the base station
confirms this to all nodes using an additional broadcast.

We make the standard assumption that the messagesLi have
some property that makes them useless for replay (e.g., timestamp,
or sequence number, or application-level message idempotency).

The details of the algorithm are as follows: each sensor node
i reports itsLi to the HT functionality, which then constructs
the hash tree in the usual way. The rootr of this hash tree is
reported to the base station. The base station then authentically
broadcasts to all nodes the message〈r, sb, h(N ′)〉 wheresb is the
identifier for the current topological binding,N ′ is a randomly cho-
sen nonce andh is pre-image resistant. Note that the method of
Section 5 can be used for the authenticated broadcast. TheHT

functionality also provides the requisite information to the sen-
sor nodes for each node to perform distributed verification (i.e.,
each nodei recomputes the hash tree vertices from its leaf vertex
Li to the authenticated root vertexr). An importantadditional
step is performed during this verification: each nodei must check
that the verification path computed in this process is exactly the
authenticated verification pathPi that is bound to its ID prior to
the algorithm. Verification confirmations are collected from all
nodes with the verification confirmation message from nodei be-
ing MACKi

(r||sb||h(N ′)||OK). If the base station determines
that all distributed verification has succeeded, then it broadcasts the
valueN ′ (this message is self-authenticating sinceh(N ′) was part
of an earlier authenticated broadcast). This means thatr should
be considered valid and can be used to verify the authenticity of
messages from other nodes. Once the valueN ′ is received by a
node, a final round of verification confirmations is performed using
MACKi

(r||sb||N
′||OK) as the confirmation message.

After this process, a nodei can authenticate its messageLi to
nodej as follows. As a signature overLi, Nodei transmits to node
j all the verifying information it used in the distributed verification
step it performed (i.e.,j gets enough information to reconstruct
the path fromLi to r). Node i also transmits the binding of its
verification path to its identity (for the topological binding with
identifiersb). Upon reception, Nodej checks that the valuer is a
valid root vertex, i.e. in some earlier phase, the hash pre-imageN ′

was released by the base station indicating that all nodes (including
i) must have successfully completed distributed verification overr

prior to this. Nodej also checks that whenr was broadcast by the
base station, the topological binding identifier associated withr is
sb. Nodej then verifiesLi using the information provided by Node
i, confirming that the verification path is indeed the one bound to
nodei’s identity (in the topological bindingsb) and that the final
root vertex computed isr. If the checks complete successfully then
Nodej knows thatLi must have been originated from nodei. Since
the verification process is identical for all nodes, nodej can retain
all the verification information it used and use it to prove the origin
of Li to any third-party nodej′. This shows the non-repudiable
quality of the signature, i.e. oncei proves toj that it originated
Li, it cannot retract that claim since the proof thatj now holds is
publicly verifiable. The algorithm is summarized in Algorithm 3.

7.2 Analysis
A proof sketch of unforgeability follows. Suppose for contra-

diction that an adversary has a non-negligible probability of being
able to forge a messageL′

i 6= Li purportedly from some legiti-
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Algorithm 3 Signature Scheme usingHT Functionality
Input: Replay-resistant messagesLi for each nodei
Input: Each nodei bound to a fixed verification path topology

with a proofP ′

i and a binding identifiersb (See Section 6)
1. Each node releasesLi.
2. Nodes collaborate to implementHT functionality, recomput-

ing the hash tree with root vertexr.
3. Root vertexr is reported to the base station. Base station picks

a randomN ′ and disseminates (r, sb, h(N ′)) using authenti-
cated broadcast.

4. As perHT functionality, verification pathsPi are dissemi-
nated back to the nodes after hash tree is computed.

5. Each nodei verifies thatLi is a leaf vertex in the hash tree with
rootr via its fixed, known verification path.

6. Verification confirmation functionality (with Ci =
MACKi

(r||sb||h(N ′)||OK)) used to check that all nodes
succeeded in verification. If not, stop.

7. Base station broadcastsN ′

8. Upon receipt ofN ′, nodes storer as being usable for authenti-
cation.

9. Verification confirmation functionality (with Ci =
MACKi

(r||sb||N
′||OK)) is used to ensure all nodes re-

ceived the broadcast. If not, stop.
Message Authentication Procedure:
Input: Senderi, Receiverj, MessageLi

1. Nodei transmitsLi, r along with information to recompute its
verification pathPi and proof of correct path topologyP ′

i .
2. Nodej checks thatr is a valid root vertex, recalls the topo-

logical binding identifiersb that was associated withr, then
verifies thatLi is a descendant ofr in the position expected of
i as established byP ′

i for binding identifiersb.

mate nodei that successfully passed the checks of some legitimate
nodej. Let r be the hash tree root computed byj. Sincej ac-
cepted the message authentication, the base station must have re-
leasedN ′, 〈r, sb, h(N ′)〉 in a prior authenticated broadcast from
the base station. This means that (assuming that the nonceN ′ was
not repeated, andMACKi

is a MAC whose forgeability is negli-
gible) in some prior execution of the algorithm, nodei has (with
almost-certainty) successfully verified the inclusion ofLi in the
hash tree with root vertexr, in the location bound to its ID in the
topological bindingsb. SinceL′

i 6= Li this implies a hash colli-
sion somewhere in the verification path thatj computed and the
verification path thati computed (i.e. the two sequences are the
same length, but started with different pre-images and resulted in
the same imager). This implies that the adversary was able to
engineer a hash collision with non-neglible probability.

The authentication primitive described in this section allows the
protocol designer to build protocols where nodes can construct mes-
sages that can be origin-authenticated by any other node in the net-
work. Previously, the only known method for such a capability
involves the use of public-key cryptography; our scheme uses only
symmetric key cryptography. More significantly, the protocol does
not involve any kind of prior key establishment algorithm to pro-
vide this authenticity: each node only needs a single unique key
shared with the base station.

We note that not only does the authentication structure give un-
forgeability (i.e. integrity and source verification) properties, it also
has the property of non-repudiation in the sense that once a message
with an authentic tag of this form is released, the originating node
cannot plausibly deny that it was responsible for creating the mes-

sage (assuming the base station is not compromised). This makes
this authentication structure somewhat more useful than, for exam-
ple, a MAC using a shared secret key between two nodes (where the
originating node can always claim that the verifying node was the
one which actually originated the message). Based on this property,
it is clear that such tags can be used to create publicly-verifiable
commitments; such commitments can be used, for example, to ex-
pose nodes which attempt to cheat in a protocol.

The overhead of the scheme is a signature of lengthO(log n), the
generation of which causesO(log n) congestion in the network.

7.3 Applications
The use of node-to-node authenticated broadcast in constructing

general resilient applications are too numerous to discuss in detail.
Some examples include: allowing node cluster heads to authen-
tically broadcast schedules to their children; authenticated broad-
casts of node power levels (e.g., for traffic shaping); authenticated
routing distance metrics (for secure routing). In this section we
briefly focus on some examples of uses of the authentication prim-
itive in constructing other basic security protocols.

7.3.1 Multi-message Signatures
A basic limitation of thisHT -based signature scheme is that

nodes must generate signatures in coordinated network-wide phases;
each phase allows each node to generate an authenticator for an ar-
bitrary messageLi. In the case where a node has several messages
M1, . . . , Mk that it may wish to authenticate in a given phase, it
could generate a hash tree over thesek messages and setLi to be
the root of the tree. Then each messageMi could be individually
authenticated by showing thatMi is a leaf in the hash tree rooted
at Li. Clearly, the messagesM1, . . . , Mk must be fixed prior to
executing the network-wide phase and cannot be changed onceLi

has been signed. For a more flexible signature method, we can as-
sign eachMi as the “public key” of a one-time signature (such as
Merkle-Winternitz signatures [20]). The nodes may then use these
authenticated one-time public keys to sign up tok fixed-length mes-
sages at any time without needing network-wide coordination. If
loose time synchronization is available, then broadcast authentica-
tion techniques likeµTesla are more efficient and can effectively
sign a much larger number of messages without byte-length con-
straints. We describe the details below.

7.3.2 Initializing Hash Chains forµTesla.
TheHT -based signature primitive described in this section com-

plements nicely with theµTesla broadcast authentication scheme
described by Perrig et al. [22]. When theHT -based signature
scheme is used to bootstrapµTesla, the two schemes cover each
other’s weaknesses. TheHT -based signature has the following
weaknesses: (1) inflexibility: it requires the entire network to par-
ticipate in signing one message from each node; (2) long signa-
tures: each signature carriesO(log n) hash values of authenticat-
ing information. TheµTesla scheme does not suffer either of these
weaknesses but instead has the drawback of being troublesome to
bootstrap: it requires a per-source hash chain “anchor” value to be
somehow loaded onto every verifying node. Due to these issues,
µTesla is typically only used for authentication from base station
to node. TheHT -based signature scheme enables node-to-node
use ofµTesla, because it provides an easy way to reload hash chain
anchors onto the receiving nodes. When used in this fashion the
drawbacks ofHT -based signatures are minimized since, due to the
time-synchronized nature ofµTesla, all nodes need to refresh their
hash chain anchors at approximately the same time. Once the hash
chain anchors are initialized on the receiver nodes, the more effi-
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cient and flexibleµTesla can be used for broadcast authentication.

7.3.3 Distributed Node Revocation.
One application of this authentication primitive is in the dis-

tributed revocation protocol of Chan, Gligor, Perrig and Muralidha-
ran [1]. In that protocol, when one nodeu detects another nodev to
be acting maliciously, a local broadcast (i.e. a broadcast transmis-
sion to all nodes in the neighborhood ofv) is used to issue “revoca-
tion votes” against the detected node, such that if enough neighbors
vote indicating they believev to be malicious thenv is ejected from
the network. The original protocol required the use of deterministic
key establishment schemes (e.g. the random pairwise scheme [2]).
In such key distribution schemes, for each nodev, there exists a
fixed set of nodesSv each of which shares a preloaded key withv.
In the revocation scheme, each of the nodes inSv is thus given a
revocation vote against nodev and these votes are authenticated us-
ing a hash-tree mechanism with the votes as the leaves. Since each
of these votes (and their authenticating information) needs to be
stored on the node, this yields a massive memory overhead: each
node must store around|Sv| revocation votes each of which re-
quiresO(log |Sv|) authentication information; since|Sv| = O(n),
this meansO(n log n) 128-bit hash values must be a-priori loaded
onto each sensor node. Furthermore, since the nodes that share a
pairwise keys with a given node are a subset of the neighbors of
a given node, only a small subset of a given node’s neighbors can
issue a revocation vote against it. With the use of theHT -based
signature scheme, distributed revocation can now work indepen-
dently of the key distribution scheme, because any nodeu can is-
sue a signed message voting for the revocation of any other nodev.
This signature can be verified by any other nodex without need-
ing any additional preloaded information except for the single key
x shares with the base station. Specifically, each node can cre-
ate a message voting for the revocation of each of its neighbors in
the network, and authenticate each of them in a single pass of the
HT -based signature protocol using the multi-message signature of
Section 7.3.1. This reduces the storage overhead of the scheme to
O(log n + δ) for a node withδ neighbors. This greatly increases
the practicality of distributed node revocation.

8. RELATED WORK
Many secure data aggregation mechanisms for sensor networks

have been proposed [3, 5, 7, 10, 11, 17, 19, 23–25], we review the
CPS and Frikken and Dougherty’s scheme that the mechanisms in
this paper build on in Section 2.

Since we are not aware of other work that studies uses of secure
data aggregation mechanisms to applications other than data aggre-
gation, we discuss other work that addresses authenticated broad-
cast, public key management, and signature schemes for sensor net-
works.

In the area of broadcast authentication for sensor networks, Per-
rig et al. proposeµTESLA [22], which unfortunately requires lose
time synchronization. Improvements toµTESLA have been pro-
posed, but they all require lose time synchronization [13]. Luk et al.
propose families of broadcast authentication mechanisms [15], but
the communication overhead of their one-time signature schemes
can be quite substantial.

To provide resistance against computational DoS attacks for sig-
nature-based broadcast authentication in sensor networks, Ning et al.
propose several mechanisms [4, 21]. Fortunately, our approaches
for authentication and signature are inherently robust against com-
putational DoS attacks.

Several works also target the problem of preventing the injection
of false information into the sensor network, for example the work

by Ye et al. [25] or Zhu et al. [26]. The problem we consider in this
work is orthogonal.

Relatively little work has been dedicated to the important prob-
lem of performing public key management in sensor networks. Ning
et al. propose to use hash trees for distribution of node certifi-
cates [6, 14]. By updating the hash trees they provide a mecha-
nism to revoke entities. Chan et al. develop mechanisms for node
revocation in sensor networks [1]. However, their approach is not
applicable for public key management.

Many researchers have studied the problem of efficient sensor
network signatures, for example Liu and Ning [12], Malan et al. [18],
Gupta et al. [9], and Gaubatz et al. [8]. In contrast, we propose a
novel approach that enables a signature operation based on purely
symmetric functions without using one-time signatures, by only
trusting the base station.

9. CONCLUSION
We describe how theHT functionality encapsulated in the CPS

algorithm for secure data aggregation is useful for developing a va-
riety of useful and efficient security applications. In particular, we
show fast and efficient primitives for broadcast authentication, pub-
lic key management, and node-to-node signatures, each of which
has important properties superior in some way to the current best
known protocols in the literature. The reason for this performance
is because they directly inherit, from the original secure data aggre-
gation protocol, specific optimizations that work best in the struc-
tured tree network on which they operate.

These results highlight the significance of the secure data aggre-
gation problem. As data aggregation represents a general descrip-
tion of the specific distributed computation pattern common in sen-
sor networks, secure algorithms for this problem also represent se-
cure versions of the communication and computation patterns that
are most useful in sensor networks. Hence, secure data aggregation
should not be considered simply a secure version of a sensor net
application, but may be recognized as an important foundational
problem closely related to the ideal of efficient secure computation
and communication in structured networks.
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