
 Is Complexity Really the Enemy of Software Security?
Yonghee Shin

Department of Computer Science
North Carolina State University

Raleigh, NC 27695
yonghee.shin@ncsu.edu

Laurie Williams
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

williams@csc.ncsu.edu

ABSTRACT
Software complexity is often hypothesized to be the enemy of
software security. We performed statistical analysis on nine
code complexity metrics from the JavaScript Engine in the
Mozilla application framework to investigate if this hypothesis
is true. Our initial results show that the nine complexity
measures have weak correlation (ρ=0.30 at best) with security
problems for Mozilla JavaScript Engine. The study should be
replicated on more products with design and code-level metrics.
It may be necessary to create new complexity metrics to
embody the type of complexity that leads to security problems.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Complexity measures, Product
metrics

General Terms
Measurement, Reliability, Security.

Keywords
Software metrics, security metrics, software complexity,
reliability, fault prediction, vulnerability prediction

1. INTRODUCTION
Software security is the ability to defend attacker’s exploitation
of software problems by building software to be secure
throughout the whole development life cycle [4]. Software
complexity is often hypothesized to be the enemy of software
security [8]. The wisdom of security experts is that complexity
leads to security problems [3, 8]. Geer [3] stated that
“complexity provides both opportunity and hiding places for
attackers” and “security failures come from it [complexity] as
surely as dawn comes from the east” when he addressed the
importance of cybersecurity in a hearing at the Subcommittee of
Homeland Security on Emerging Threats, Cybersecurity, and
Science and Technology on 23rd, April, 2007. McGraw [8] also
points out complexity as one of three major causes of software
security problems (the “Trinity of Trouble”); the other causes
together are connectivity and extensibility.

The wisdom of these experts, though, has not been substantiated
by empirical evidence using quantifiable metrics in terms of
software security. However, we cannot control what we cannot
measure [2]. Geer [3] also emphasized that a system of security
metrics is in the first priority among the tasks for cybersecurity.
Software complexity may be related to security problems or
may not. If an empirical relationship can be discovered between
software security metrics and security problems at any level (e.g.
code, design, or architecture level), these metrics could aid
organizations in their efforts to fortify their products early in the
development lifecycle.

The study of the relationship between software complexity and
vulnerabilities is similar to the study of the relationship between
software complexity and faults. A fault is an accidental
condition that causes a functional unit to fail to perform its
required function [5]. A software vulnerability is an instance of
a [fault] in the specification, development, or configuration of
software such that its execution can violate an [implicit or
explicit] security policy [7]. Previous studies have shown that
complexity is related with software faults [6, 9]. However, other
studies argue that the currently-known complexity metrics seem
not to be good indicators of faults. The previous studies [6, 9]
can be replicated in the context of vulnerabilities. However, the
results might not be necessarily the same as fault prediction,
because even though vulnerabilities are a subset of faults [10],
the differences in the characteristics of vulnerable code and
faulty code have not been investigated quantitatively yet.

The objective of this research is to explore if more complex code
is less secure.

We conducted a case study on the JavaScript Engine (JSE) in
the Mozilla application framework1 to identify the relationship
between complexity and vulnerabilities.

2. METHODOLOGY
We examine the following two hypotheses in this study.

H1: More complex code has more discovered vulnerabilities.

H2: Vulnerable code has different complexity from faulty code.

If H1 is true, complexity metrics might be helpful to determine
how to allocate testing resources. If H2 is true, complexity
metrics that can explain faults are not necessarily also can
explain vulnerabilities. Therefore, using metrics that are
appropriate for vulnerability testing might be more beneficial
than using the same metrics used to find faults. To test these

1 http://www.mozilla.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
QoP’08, October 27, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-60558-321-1/08/10...$5.00.

47

hypotheses, we collected complexity metrics and vulnerability
information from the Mozilla JSE, an open source project, and
applied statistical analysis. We chose the Mozilla JSE for our
case study because the source code, faults, and vulnerability
information are publicly available and the sample size of faults
and vulnerabilities reported were large enough for our initial
statistical analysis. We performed our analysis at function level.

2.1 Complexity Metrics Collection
We collected nine code complexity metrics using a commercial
metrics tool, Understand C++ 2 : (1) McCabe’s cyclomatic
complexity, the number of decision statements plus one; (2)
modified cyclomatic complexity and (3) strict cyclomatic
complexity which are the same as McCabe’s cyclomatic
complexity except for the differences in the way that switch
statements and conditions in decision statements are counted;
(4) essential cyclomatic complexity, a measure of the
structuredness of code by counting cyclomatic complexity after
iteratively replacing all structured programming primitives to a
single statement; (5) nesting complexity, a measure of the
deepest level of nested control constructs; (6) paths, the number
of possible paths; (7) SLOC, the number of lines of source code
excluding comments; (8) SLOC_exe, the number of SLOC
excluding declarations; and (9) Stmt_exe, the number of
executable statements.

2.2 Faults and Vulnerability Collection
The faults in the Mozilla JSE can be found from the Bugzilla3, a
bug tracking system. A bug is a fault in code. The Bugzilla
records include a description of identified bugs, related
components, developers, and current status of bug fixes and
verification. Bugzilla also provides a link to modified code for
each bug fix. Figure 1 shows a screen shot of a bug report in the
Buzilla. The bug report tells that the bug 319872 was found
from JSE component and the bug fix was verified for the release
1.8.0.1 and the release 1.8.0.2. The changed code can be found
by following the Diff link.

2 http://www.scitools.com/
3 http://bugzilla.mozilla.org

The mitigated vulnerabilities in the Mozilla JSE are posted to
the Mozilla Foundation Security Advisories (MFSA)4 and also
listed in Common Vulnerabilities and Exposures (CVE)5. Each
MFSA has links to one or more bug reports in the Bugzilla. The
total number of bug reports in Bugzilla was 51370 (as of 29th,
February, 2008) and the number of bug reports linked from the
MFSAs was 458. The percentage of vulnerabilities among the
total bug reports is around 0.89%. There were 106 bug reports
on the JSE linked from the MFSAs and 15 of them were not
accessible from the bug reports due to the security policy of the
Mozilla project. These could not be included in our analysis.
Figure 2 shows an example of an MFSA. The vulnerability in
bug 319872 was on integer overflows found from the Firefox
1.5.0.1 that uses JSE as one of its components. An integer
overflow occurs when a numeric value is stored to a storage that
is smaller than the value. As a consequence, incorrect value will
be stored which could lead to an incorrect financial transaction
or unexpected behavior of a system such as denial of service.

The MFSAs report vulnerabilities with product names such as
Firefox instead of component names included in the products
such as JSE and all the vulnerabilities fixes for JSE were
incorporated into Firefox. Therefore, we use release numbers of
Firefox in this paper instead of using the release numbers for
JSE. At the time of data collection (November, 2007), 28
releases of Firefox had fixes for vulnerabilities starting from
Release 1.0 to Release 2.0.0.8. Among these release we chose
four releases (R1.0.2, R1.5, R2.0, and R2.0.0.7) that represent
each major releases and the last release that had vulnerabilities.

To identify faulty and vulnerable functions, we counted the
number of functions that were changed due to faults and
vulnerabilities. We know in which release a vulnerability was
fixed, however, we do not know when the vulnerability was
introduced. Therefore, when there is a vulnerability fix in a
release of a function (e.g. v1.5.0.8), we assumed that the same
vulnerability existed in all the previous releases of the function
(e.g. v1.5.0.7, v1.5.0.6, etc.). After all, 0.5% to 16.6% of
functions were changed due to identified faults, and 0.4% to

4 http://www.mozilla.org/projects/security/known-

vulnerabilities.html
5 http://cve.mitre.org/

Figure 1. An example of a bug report in the Bugzilla

Figure 2. An example of an MFSA

48

9.4% of functions due to vulnerabilities. Table 1 shows the
summary of the facts for those releases including the number of
functions, lines of source code, the number of functions with
faults, and the number of functions with vulnerabilities.

Table1. JavaScript Engine Information

Releases No of
Fun. LOC Fun. with

faults

Fun. with
vulnerabiliti

es

R1.0.2 1352 39,282 224 (16.6%) 125 (9.4%)
R1.5 1680 50,230 289 (17.2%) 148 (8.8%)
R2.0 1848 56,881 172 (9.3%) 61 (3.3%)
R2.0.0.7 1864 57,420 9 (0.5%) 8 (0.4%)

2.3 Analysis Methods and Evaluation
Criteria
H1 can be tested by computing the correlations between
complexity measures and the number of vulnerabilities in each
function. Pearson correlation coefficient (r) and Spearman rank
correlation coefficient (ρ) are the statistics often used to
measure the strength of correlations between two variables.
Pearson correlation coefficient assumes normal distribution of
data, while Spearman rank correlation coefficient is a non-
parametric test that does not assume any distribution. Spearman
rank correlation is performed on the ranks of the values without
considering the magnitudes of the values, and therefore,
Spearman rank correlation coefficient is not sensitive to outliers.
Because our data was not normally distributed, we used
Spearman rank correlation coefficient in this study.

When the value of a Spearman rank correlation is negative, the
two data sets are negatively associated (when the values of one
data set go up, the values of the other data set go down); and the
positive value of a Spearman rank correlation indicates that two
data sets are positively associated. The magnitudes of the values
tell the strengths of correlations. Cohen [1] suggests that less
than 0.3 value of correlation coefficient means weak correlation,
0.3 to 0.5 means medium correlation, and greater than 0.5
means strong correlation. However, the interpretation depends
on the context of the usage of correlation. Nagappan et al. [9]
considered correlation over 0.4 strong in their study on software
failure prediction.

H2 can be tested by comparing the means or ranks of the
complexity measures between vulnerable code and faulty code.
T-test and Wilcoxon rank sum test [2] are representative
statistical methods used to compare the means or ranks of two
groups. Similar to Spearman rank correlation, Wilcoxon rank
sum test is a non-parametric test that is not sensitive to outliers
and does not assume any distribution of sample data. Therefore,
we use Wilcoxon rank sum test instead of using t-test.

3. RESULTS & CONCLUSION
To test H1, we computed the Spearman rank correlation
coefficients between the measures of complexity and the
number of vulnerabilities. Table 2 presents the results. The
correlations that are statistically significant at 95% confidence
level are presented in bold face. The reason that the correlation
at Release 2.0.0.7 is not significant might be because the
number of vulnerabilities is too small. Table 2 shows that there

are weak correlations between vulnerabilities and complexity
measures. The reason might be because there is not actually
strong correlation between complexity measures and
vulnerabilities. Another possible reason of low correlation might
be because we assumed that all the functions that have been
changed due to a vulnerability are vulnerable. However, even
though a set of functions changed together, that does not mean
all the functions are directly related with the vulnerability.
Changes for functional enhancement regardless of
vulnerabilities might have been occurred together with
vulnerability fixes.

Table 2. Correlation between complexity and vulnerabilities

Complexity metrics R1.0.2 R1.5 R2.0 R2.0.0.7
McCabe’s cyclomatic 0.300 0.236 0.175 0.044
Modified cyclomatic 0.300 0.236 0.174 0.045
Strict cyclomatic 0.295 0.231 0.170 0.045
Essential cyclomatic 0.307 0.233 0.160 0.022
Nesting 0.280 0.231 0.178 0.055
Paths 0.300 0.238 0.172 0.044
SLOC 0.292 0.240 0.171 0.030
SLOC_exe 0.288 0.240 0.170 0.031
Stmt_exe 0.292 0.240 0.175 0.037

Table 2 also shows that the older versions have stronger
correlation than the later versions. The reason might be because
we assumed that when there is a vulnerability fix in a release of
a function, the same vulnerability exists in all the previous
releases of the function. More precise analysis would be
necessary to identify when the vulnerability has been introduced.
We are currently investigating the ways to count vulnerabilities
more precisely. A technique that identifies code changes at
function level using the CVS repository such as APFEL [11]
might be useful.

To test H2, we performed Wilcoxon rank sum test on the
vulnerable functions and the faulty-but-non-vulnerable functions.
Table 3 shows the p-values from two-sided Wilcoxon rank sum
test. The p-values that are less than 0.05 are presented in bold
face.

Table 3. P-values from Wilcoxon rank sum test

Complexity metrics R1.0.2 R1.5 R2.0 R2.0.0.7
McCabe’s cyclomatic < .0001 < .0001 0.0921 0.2724
Modified cyclomatic < .0001 < .0001 0.1224 0.2724
Strict cyclomatic < .0001 < .0001 0.1334 0.2724
Essential cyclomatic < .0001 < .0001 0.5798 0.4855
Nesting < .0001 < .0001 0.0169 0.2636
Paths < .0001 < .0001 0.1733 0.2724
SLOC 0.0005 < .0001 0.3234 0.1904
SLOC_exe 0.0005 < .0001 0.3019 0.1904
Stmt_exe 0.0006 < .0001 0.2465 0.1904

The measures of complexity for the vulnerable functions and the
faulty-but-non-vulnerable functions in Release 1.0.2 and
Release 1.5 were significantly different in the nine complexity

49

metrics. However, in Release 2.0, the measures of complexity
for the vulnerable functions and the faulty-but-non-vulnerable
functions were significantly different only in the nesting
complexity. This result indicates that the nesting complexity can
be a differentiating factor of vulnerable functions from faulty
functions in JSE. Therefore, giving more attention to highly
nested functions than to other functions in security inspection
could be an efficient strategy. There was only 1 faulty-but-non-
vulnerable function in Release 2.0.0.7. Therefore, drawing any
conclusion from Release 2.0.0.7 is difficult.

Even when the results of Wilcoxon rank sum test were not
significant, the means and the medians of all the nine metrics for
vulnerable functions were equal to or higher than both the faulty
functions and the faulty-but-non-vulnerable functions. Table 4
shows the means and medians for the cyclomatic complexity

Table 4. Means and Medians of the cyclomatic complexity

Releases Criteria Vulnerable
functions

Faulty
functions

Faulty-
but-non-

vulnerable
functions

R1.0.2 Mean 32.48 24.52 14.46
 Median 11 8 4
R1.5 Mean 33.42 24.50 15.14
 Median 13 9 5
R2.0 Mean 63.02 34.30 18.51
 Median 12 9 8
R.2.0.0.7 Mean 21.43 18.88 1.00
 Median 9 7 1

Table 5 shows the means and medians for the nesting
complexity.

Table 5. Means and Medians of the nesting complexity

Releases Criteria Vulnerable
functions

Faulty
functions

Faulty-but-
non-

vulnerable
functions

R1.0.2 Mean 2.90 2.55 2.11
 Median 2 2 1
R1.5 Mean 3.21 2.73 2.23
 Median 3 2 2
R2.0 Mean 3.33 2.84 2.58
 Median 3 2 2
R.2.0.0.7 Mean 3.14 2.75 0.00
 Median 4 3 0

The above results show that vulnerable functions are more
complex than faulty functions. This fact indicates that the fault
prediction models that use complexity metrics also might be
useful for vulnerability prediction in general. However, some
metrics such as nesting complexity metrics might be more
effective to locate vulnerable code than to locate faulty code.

To summarize, the results of our study show weak evidence that
software complexity is the enemy of software security for the
nine complexity metrics we collected. However, vulnerable
code seems to be more complex than faulty code. Before we
make any conclusion, we will examine more precise way to
count vulnerabilities and analyze Mozilla JSE again and will
analyze other projects. We will also include more design and
code-level metrics available and will devise new metrics.

4. ACKNOWLEDGMENTS
This work is supported in part by the National Science
Foundation Grant No. 0716176. Any opinions expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

5. REFERENCES
[1] Cohen, J., Statistical Power Analysis for the Behavioral

Sciences, 2nd ed. Hillsdale, NJ: Lawrence Erlbaum
Associates, 1988.

[2] Fenton, N. E. and Pfleeger, S. L., Software Metrics: A
Rigorous and Practical Approach, 1997.

[3] Geer, D. E., "A Witness Testimony in the Hearing,
Wednesday 25 April 07, entitled Addressing the Nation's
Cybersecurity Challenges: Reducing Vulnerabilities
Requires Strategic Investment and Immediate Action,"
submitted to the Subcommittee on Emerging Threats,
Cybersecurity, and Science and Technology, 2007.

[4] Hoglund, G. and McGraw, G., Exploiting Software: How
to Break Code. Boston: Addison-Wesley, 2004.

[5] IEEE, "IEEE Std 982.1-1988 IEEE Standard Dictionary
of Measures to Produce Reliable Software," The Institute
of Electrical and Electronics Engineers, June 9, 1988.

[6] Khoshgoftaar, T. M., Allen, E. B., Kalaichelvan, K. S.,
and Goel, N., "Early Quality Prediction: A Case Study in
Telecommunications," IEEE Software, vol. 13, no. 1 pp.
65 - 71, Jan.,1996.

[7] Krsul, I. V., Software Vulnerability Analysis, PhD Thesis,
West Lafayette, Purdue University, 1998.

[8] McGraw, G., Software Security: Building Security In.
Boston, NY: Addison-Wesley, 2006.

[9] Nagappan, N., Ball, T., and Zeller, A., "Mining Metrics
to Predict Component Failures," in Proceedings of the
28th International Conference on Software Engineering
(ICSE'06), Shanghai, China, May 20-28, 2006, pp. 452-
461.

[10] Viega, J. and Mcgraw, G., Building Secure Software.
Boston, NY: Addison-Wesley, 2002.

[11] Zimmermann, T., "Fine-grained processing of CVS
archives with APFEL," in Proceedings of Proceedings of
the 2006 OOPSLA workshop on eclipse technology
eXchange, Portland, Oregon, 2006, pp. 16 - 20.

50

