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ABSTRACT 
Software complexity is often hypothesized to be the enemy of 
software security. We performed statistical analysis on nine 
code complexity metrics from the JavaScript Engine in the 
Mozilla application framework to investigate if this hypothesis 
is true. Our initial results show that the nine complexity 
measures have weak correlation (ρ=0.30 at best) with security 
problems for Mozilla JavaScript Engine. The study should be 
replicated on more products with design and code-level metrics.  
It may be necessary to create new complexity metrics to 
embody the type of complexity that leads to security problems. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Complexity measures, Product 
metrics 

General Terms 
Measurement, Reliability, Security. 

Keywords 
Software metrics, security metrics, software complexity, 
reliability, fault prediction, vulnerability prediction 

1. INTRODUCTION 
Software security is the ability to defend attacker’s exploitation 
of software problems by building software to be secure 
throughout the whole development life cycle [4]. Software 
complexity is often hypothesized to be the enemy of software 
security [8]. The wisdom of security experts is that complexity 
leads to security problems [3, 8]. Geer [3]  stated that 
“complexity provides both opportunity and hiding places for 
attackers” and “security failures come from it [complexity] as 
surely as dawn comes from the east” when he addressed the 
importance of cybersecurity in a hearing at the Subcommittee of 
Homeland Security on Emerging Threats, Cybersecurity, and 
Science and Technology on 23rd, April, 2007. McGraw [8] also 
points out complexity as one of three major causes of software 
security problems (the “Trinity of Trouble”); the other causes 
together are connectivity and extensibility.  

The wisdom of these experts, though, has not been substantiated 
by empirical evidence using quantifiable metrics in terms of 
software security. However, we cannot control what we cannot 
measure [2]. Geer [3] also emphasized that a system of security 
metrics is in the first priority among the tasks for cybersecurity. 
Software complexity may be related to security problems or 
may not. If an empirical relationship can be discovered between 
software security metrics and security problems at any level (e.g. 
code, design, or architecture level), these metrics could aid 
organizations in their efforts to fortify their products early in the 
development lifecycle.  

The study of the relationship between software complexity and 
vulnerabilities is similar to the study of the relationship between 
software complexity and faults.  A fault is an accidental 
condition that causes a functional unit to fail to perform its 
required function [5]. A software vulnerability is an instance of 
a [fault] in the specification, development, or configuration of 
software such that its execution can violate an [implicit or 
explicit] security policy [7]. Previous studies have shown that 
complexity is related with software faults [6, 9]. However, other 
studies argue that the currently-known complexity metrics seem 
not to be good indicators of faults. The previous studies [6, 9] 
can be replicated in the context of vulnerabilities. However, the 
results might not be necessarily the same as fault prediction, 
because even though vulnerabilities are a subset of faults [10], 
the differences in the characteristics of vulnerable code and 
faulty code have not been investigated quantitatively yet. 

The objective of this research is to explore if more complex code 
is less secure. 

We conducted a case study on the JavaScript Engine (JSE) in 
the Mozilla application framework1 to identify the relationship 
between complexity and vulnerabilities.  

2. METHODOLOGY 
We examine the following two hypotheses in this study. 

H1: More complex code has more discovered vulnerabilities.  

H2: Vulnerable code has different complexity from faulty code. 

If H1 is true, complexity metrics might be helpful to determine 
how to allocate testing resources. If H2 is true, complexity 
metrics that can explain faults are not necessarily also can 
explain vulnerabilities. Therefore, using metrics that are 
appropriate for vulnerability testing might be more beneficial 
than using the same metrics used to find faults. To test these 

                                                                 
1 http://www.mozilla.org 
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hypotheses, we collected complexity metrics and vulnerability 
information from the Mozilla JSE, an open source project, and 
applied statistical analysis. We chose the Mozilla JSE for our 
case study because the source code, faults, and vulnerability 
information are publicly available and the sample size of faults 
and vulnerabilities reported were large enough for our initial 
statistical analysis. We performed our analysis at function level. 

2.1 Complexity Metrics Collection 
We collected nine code complexity metrics using a commercial 
metrics tool, Understand C++ 2 :  (1) McCabe’s cyclomatic 
complexity, the number of decision statements plus one; (2) 
modified cyclomatic complexity and (3) strict cyclomatic 
complexity which are the same as McCabe’s cyclomatic 
complexity except for the differences in the way that switch 
statements and conditions in decision statements are counted; 
(4) essential cyclomatic complexity, a measure of the 
structuredness of code by counting cyclomatic complexity after 
iteratively replacing all structured programming primitives to a 
single statement; (5) nesting complexity, a measure of the 
deepest level of nested control constructs; (6) paths, the number 
of possible paths; (7) SLOC, the number of lines of source code 
excluding comments; (8) SLOC_exe, the number of SLOC 
excluding declarations; and (9) Stmt_exe, the number of 
executable statements. 

2.2 Faults and Vulnerability Collection 
The faults in the Mozilla JSE can be found from the Bugzilla3, a 
bug tracking system. A bug is a fault in code. The Bugzilla 
records include a description of identified bugs, related 
components, developers, and current status of bug fixes and 
verification. Bugzilla also provides a link to modified code for 
each bug fix. Figure 1 shows a screen shot of a bug report in the 
Buzilla. The bug report tells that the bug 319872 was found 
from JSE component and the bug fix was verified for the release 
1.8.0.1 and the release 1.8.0.2. The changed code can be found 
by following the Diff link. 

                                                                 
2 http://www.scitools.com/ 
3 http://bugzilla.mozilla.org 

The mitigated vulnerabilities in the Mozilla JSE are posted to 
the Mozilla Foundation Security Advisories (MFSA)4 and also 
listed in Common Vulnerabilities and Exposures (CVE)5. Each 
MFSA has links to one or more bug reports in the Bugzilla. The 
total number of bug reports in Bugzilla was 51370 (as of 29th, 
February, 2008) and the number of bug reports linked from the 
MFSAs was 458. The percentage of vulnerabilities among the 
total bug reports is around 0.89%. There were 106 bug reports 
on the JSE linked from the MFSAs and 15 of them were not 
accessible from the bug reports due to the security policy of the 
Mozilla project. These could not be included in our analysis. 
Figure 2 shows an example of an MFSA. The vulnerability in 
bug 319872 was on integer overflows found from the Firefox 
1.5.0.1 that uses JSE as one of its components. An integer 
overflow occurs when a numeric value is stored to a storage that 
is smaller than the value. As a consequence, incorrect value will 
be stored which could lead to an incorrect financial transaction 
or unexpected behavior of a system such as denial of service.  

The MFSAs report vulnerabilities with product names such as 
Firefox instead of component names included in the products 
such as JSE and all the vulnerabilities fixes for JSE were 
incorporated into Firefox. Therefore, we use release numbers of 
Firefox in this paper instead of using the release numbers for 
JSE. At the time of data collection (November, 2007), 28 
releases of Firefox had fixes for vulnerabilities starting from 
Release 1.0 to Release 2.0.0.8. Among these release we chose 
four releases (R1.0.2, R1.5, R2.0, and R2.0.0.7) that represent 
each major releases and the last release that had vulnerabilities.  

To identify faulty and vulnerable functions, we counted the 
number of functions that were changed due to faults and 
vulnerabilities. We know in which release a vulnerability was 
fixed, however, we do not know when the vulnerability was 
introduced. Therefore, when there is a vulnerability fix in a 
release of a function (e.g. v1.5.0.8), we assumed that the same 
vulnerability existed in all the previous releases of the function 
(e.g. v1.5.0.7, v1.5.0.6, etc.). After all, 0.5% to 16.6% of 
functions were changed due to identified faults, and 0.4% to 

                                                                 
4 http://www.mozilla.org/projects/security/known-

vulnerabilities.html 
5 http://cve.mitre.org/ 

 
Figure 1. An example of a bug report in the Bugzilla 

Figure 2. An example of an MFSA 
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9.4% of functions due to vulnerabilities. Table 1 shows the 
summary of the facts for those releases including the number of 
functions, lines of source code, the number of functions with 
faults, and the number of functions with vulnerabilities. 

Table1. JavaScript Engine Information 

Releases No of 
Fun. LOC Fun. with 

faults 

Fun. with 
vulnerabiliti

es

R1.0.2 1352 39,282 224 (16.6%)  125 (9.4%)
R1.5 1680 50,230 289 (17.2%) 148 (8.8%)
R2.0 1848 56,881 172 (9.3%) 61 (3.3%)
R2.0.0.7 1864 57,420 9 (0.5%) 8 (0.4%)

2.3 Analysis Methods and Evaluation 
Criteria 
H1 can be tested by computing the correlations between 
complexity measures and the number of vulnerabilities in each 
function. Pearson correlation coefficient (r) and Spearman rank 
correlation coefficient (ρ) are the statistics often used to 
measure the strength of correlations between two variables. 
Pearson correlation coefficient assumes normal distribution of 
data, while Spearman rank correlation coefficient is a non-
parametric test that does not assume any distribution. Spearman 
rank correlation is performed on the ranks of the values without 
considering the magnitudes of the values, and therefore, 
Spearman rank correlation coefficient is not sensitive to outliers. 
Because our data was not normally distributed, we used 
Spearman rank correlation coefficient in this study.  

When the value of a Spearman rank correlation is negative, the 
two data sets are negatively associated (when the values of one 
data set go up, the values of the other data set go down); and the 
positive value of a Spearman rank correlation indicates that two 
data sets are positively associated. The magnitudes of the values 
tell the strengths of correlations. Cohen [1] suggests that less 
than 0.3 value of correlation coefficient means weak correlation, 
0.3 to 0.5 means medium correlation, and greater than 0.5 
means strong correlation. However, the interpretation depends 
on the context of the usage of correlation. Nagappan et al. [9] 
considered correlation over 0.4 strong in their study on software 
failure prediction. 

H2 can be tested by comparing the means or ranks of the 
complexity measures between vulnerable code and faulty code. 
T-test and Wilcoxon rank sum test [2] are representative 
statistical methods used to compare the means or ranks of two 
groups. Similar to Spearman rank correlation, Wilcoxon rank 
sum test is a non-parametric test that is not sensitive to outliers 
and does not assume any distribution of sample data. Therefore, 
we use Wilcoxon rank sum test instead of using t-test.  

3. RESULTS & CONCLUSION 
To test H1, we computed the Spearman rank correlation 
coefficients between the measures of complexity and the 
number of vulnerabilities. Table 2 presents the results. The 
correlations that are statistically significant at 95% confidence 
level are presented in bold face. The reason that the correlation 
at Release 2.0.0.7 is not significant might be because the 
number of vulnerabilities is too small. Table 2 shows that there 

are weak correlations between vulnerabilities and complexity 
measures. The reason might be because there is not actually 
strong correlation between complexity measures and 
vulnerabilities. Another possible reason of low correlation might 
be because we assumed that all the functions that have been 
changed due to a vulnerability are vulnerable. However, even 
though a set of functions changed together, that does not mean 
all the functions are directly related with the vulnerability. 
Changes for functional enhancement regardless of 
vulnerabilities might have been occurred together with 
vulnerability fixes.  

Table 2. Correlation between complexity and vulnerabilities 

Complexity metrics R1.0.2 R1.5 R2.0 R2.0.0.7
McCabe’s cyclomatic  0.300 0.236 0.175 0.044
Modified cyclomatic  0.300 0.236 0.174 0.045
Strict cyclomatic  0.295 0.231 0.170 0.045
Essential cyclomatic  0.307 0.233 0.160 0.022
Nesting 0.280 0.231 0.178 0.055
Paths 0.300 0.238 0.172 0.044
SLOC 0.292 0.240 0.171 0.030
SLOC_exe 0.288 0.240 0.170 0.031
Stmt_exe 0.292 0.240 0.175 0.037
 

Table 2 also shows that the older versions have stronger 
correlation than the later versions. The reason might be because 
we assumed that when there is a vulnerability fix in a release of 
a function, the same vulnerability exists in all the previous 
releases of the function. More precise analysis would be 
necessary to identify when the vulnerability has been introduced. 
We are currently investigating the ways to count vulnerabilities 
more precisely. A technique that identifies code changes at 
function level using the CVS repository such as APFEL [11] 
might be useful.  

To test H2, we performed Wilcoxon rank sum test on the 
vulnerable functions and the faulty-but-non-vulnerable functions. 
Table 3 shows the p-values from two-sided Wilcoxon rank sum 
test. The p-values that are less than 0.05 are presented in bold 
face.  

Table 3. P-values  from  Wilcoxon rank sum test  

Complexity metrics R1.0.2 R1.5 R2.0 R2.0.0.7
McCabe’s cyclomatic  < .0001 < .0001 0.0921 0.2724
Modified cyclomatic  < .0001 < .0001 0.1224 0.2724
Strict cyclomatic  < .0001 < .0001 0.1334 0.2724
Essential cyclomatic  < .0001 < .0001 0.5798 0.4855
Nesting < .0001 < .0001 0.0169 0.2636
Paths < .0001 < .0001 0.1733 0.2724
SLOC 0.0005 < .0001 0.3234 0.1904
SLOC_exe 0.0005 < .0001 0.3019 0.1904
Stmt_exe 0.0006 < .0001 0.2465 0.1904
 

The measures of complexity for the vulnerable functions and the 
faulty-but-non-vulnerable functions in Release 1.0.2 and 
Release 1.5 were significantly different in the nine complexity 
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metrics.  However, in Release 2.0, the measures of complexity 
for the vulnerable functions and the faulty-but-non-vulnerable 
functions were significantly different only in the nesting 
complexity. This result indicates that the nesting complexity can 
be a differentiating factor of vulnerable functions from faulty 
functions in JSE. Therefore, giving more attention to highly 
nested functions than to other functions in security inspection 
could be an efficient strategy. There was only 1 faulty-but-non-
vulnerable function in Release 2.0.0.7. Therefore, drawing any 
conclusion from Release 2.0.0.7 is difficult.  

Even when the results of Wilcoxon rank sum test were not 
significant, the means and the medians of all the nine metrics for 
vulnerable functions were equal to or higher than both the faulty 
functions and the faulty-but-non-vulnerable functions. Table 4 
shows the means and medians for the cyclomatic complexity 

Table 4. Means and Medians of the cyclomatic complexity 

Releases Criteria Vulnerable 
functions 

Faulty 
functions 

Faulty-
but-non-

vulnerable 
functions 

R1.0.2 Mean 32.48  24.52  14.46 
 Median 11  8  4 
R1.5 Mean 33.42  24.50  15.14 
 Median 13  9  5 
R2.0 Mean 63.02  34.30  18.51 
 Median 12  9  8 
R.2.0.0.7 Mean 21.43  18.88  1.00 
 Median 9  7  1 
 

Table 5 shows the means and medians for the nesting 
complexity. 

Table 5. Means and Medians of the nesting complexity 

Releases Criteria Vulnerable 
functions 

Faulty 
functions 

Faulty-but-
non-

vulnerable 
functions 

R1.0.2 Mean 2.90  2.55  2.11 
 Median 2 2  1 
R1.5 Mean 3.21  2.73  2.23 
 Median 3 2 2
R2.0 Mean 3.33  2.84  2.58 
 Median 3 2 2
R.2.0.0.7 Mean 3.14  2.75  0.00 
 Median 4  3  0 
 

The above results show that vulnerable functions are more 
complex than faulty functions. This fact indicates that the fault 
prediction models that use complexity metrics also might be 
useful for vulnerability prediction in general. However, some 
metrics such as nesting complexity metrics might be more 
effective to locate vulnerable code than to locate faulty code. 

To summarize, the results of our study show weak evidence that 
software complexity is the enemy of software security for the 
nine complexity metrics we collected. However, vulnerable 
code seems to be more complex than faulty code. Before we 
make any conclusion, we will examine more precise way to 
count vulnerabilities and analyze Mozilla JSE again and will 
analyze other projects.  We will also include more design and 
code-level metrics available and will devise new metrics.  
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