
When Cryptography Meets Storage
Sarah M. Diesburg
Florida State University

105-A Love Bldg
Tallahassee, FL 32306

diesburg@cs.fsu.edu

Christopher R. Meyers
Florida State University

105-A Love Bldg
Tallahassee, FL 32306

meyers@cs.fsu.edu

David M. Lary
Florida State University

105-A Love Bldg
Tallahassee, FL 32306

lary@cs.fsu.edu

An-I Andy Wang
Florida State University

265 Love Bldg
Tallahassee, FL 32306

awang@cs.fsu.edu

ABSTRACT

Confidential data storage through encryption is becoming
increasingly important. Designers and implementers of
encryption methods of storage media must be aware that storage
has different usage patterns and properties compared to securing
other information media such as networks. In this paper, we
empirically demonstrate two-time pad vulnerabilities in storage
that are exposed via shifting file contents, in-place file updates,
storage mechanisms hidden by layers of abstractions,
inconsistencies between memory and disk content, and backups.
We also demonstrate how a simple application of Bloom filters
can automatically extract plaintexts from two-time pads. Further,
our experience sheds light on system research directions to better
support cryptographic assumptions and guarantees.

Categories and Subject Descriptors

E.3 [Data Encryption]: Code Breaking, Standards; K.4.1

[Computers and Society]: Public Policy Issues – Privacy; K.6.5

[Management of Computing and Information Systems]:
Security and Protection

General Terms

Security.

Keywords

Block ciphers, bloom filters, modes of encryption, storage, two-
time pads.

1. INTRODUCTION
As the cost of storage rapidly declines, more and more sensitive
data are stored on media such as hard disks, CDs, and flash drives.
Inevitably, confidentially plays an increasingly important role in
protecting sensitive data from theft and leakage due to
unauthorized access, viruses, system penetration, physical loss
[33], and improper disposal [15, 2, 41].

1.1 General Encryption
The most widely-used mechanism to achieve confidentiality (of
data in general) is through encryption. Ideally, each message is
encrypted with a random unique key to achieve perfect secrecy;

real-life implementations are far from perfect. Therefore, to avoid
identical messages encrypted using the same key resulting in the
same encrypted message, initialization vectors (IVs) are
introduced to seed the encryption process.

Generally, applying encryption to communication shares the
following characteristics:

• Short-lived data streams (e.g., messages)

• Write-once content (e.g., transactions)

Given the short-lived and write-once nature of communication,
the uniqueness of keys and IVs can be probabilistically achieved
by first cycling through a very large IV space before changing to a
new key. (Of course, the assumption here is that the
communication infrastructure is largely stateless.)

1.2 Implications of Applying Encryption in

Storage
At a quick glance, storage is analogous to a communication
channel through time, in the sense that the sender sends the
message to a persistent storage medium, and the receiver can later
retrieve the message from the medium. Therefore, the same
cryptographic mechanism should be applicable. Unfortunately,
the usage patterns of storage are different from those of
communications in fundamental ways.

• In-place updates: Unlike ephemeral communication
messages, a file is persistent. Thus, an update to a file can be
performed in-place (i.e., old content is overwritten with the
new content at the same file location). Therefore, if keys and
IVs are generated as a function of data positions within a file
or storage medium, the uniqueness of keys and IVs relative
to data content is compromised.

• Content shifting: In addition to in-place updates, content
can be inserted into a file, resulting in the shifting of original
content. Therefore, potentially a large quantity of original
plaintext is encrypted via reusing the keys and IVs defined as
a function of file and disk locations.

• Backups: Backups are often considered a problem domain
orthogonal to confidential storage. Unfortunately, naïve
users may rely on encryption without using proper secure
backup schemes. For example, byte-to-byte image dumps of
storage enable a passive form of “dead forensic” attack,
where an attacker can simply collect different versions of
backups, which violates the uniqueness of IVs and keys.
This form of attack can be formidable, since an attacker at
the archival site can potentially extract the plaintexts with
neither access to keys nor user account information.

Another problem occurs when rolling back more than one
version of backup. Should the generation process of unique

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
International Workshop on Storage Security and Survivability, October
27-31, 2008, Alexandra, Virginia, USA.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

IVs and keys be deterministic after the restore point, all
subsequent updates with different content will reuse the same
IVs and keys used for content stored in previous backups.

Additionally, the storage data path, which bridges user-space
applications and the physical storage media, contains many states,
with legacy design choices that are incompatible with the goal of
data confidentiality.

• Single generic data type: A storage data path generally
does not discern encrypted data from non-encrypted data.
Therefore, sensitive data may not be handled properly (e.g.,
cached in plaintext). This is commonly referred to as the
data lifetime problem [16, 8, 7].

• Poor consistency guarantees: Even if encrypted at all
times, a newer, uncommitted version of an encrypted file
may reside in memory while an older version of the file may
reside on a disk. Therefore, operating system mechanisms
such as swapping and hibernation can lead to different
versions of encrypted data stored on disks, potentially
reusing the keys and IVs.

• Information hiding: Many storage data path components
only provide logical views of the underlying storage and may
not honor the intent of the security measures imposed above.
For example, old and newly encrypted data may coexist,
even though a user application can only see the latest
version. Should an attacker have access to the raw storage
device, the attacker may find blocks pertaining to older file
versions, potentially encrypted with reused keys and IVs.

With these different usage patterns and infrastructures, we can
identify encryption methods that are used in communications but
vulnerable in storage.

1.3 Contributions and Non-contributions
The two-time-pad problem [27] describes how a key is reused to

encrypt two plaintexts P and P’, where P ⊕ key and P’ ⊕ key can

be XORed to recover P ⊕ P’. Although XOR-based stream-
cipher attacks are well-known, these weaknesses have not stopped
storage designers from using fast encryption modes to support
efficient random in-place updates without re-encrypting the
remaining file after the updated file location. The fundamental
assumption is that the randomness and uniqueness of keys and
IVs, relative to encrypted content, can be largely achieved, but
that, as we will demonstrate, can be very difficult in modern
storage systems.

Another reason for recurring two-time-pad storage solutions is
that the ease with which automation can extract plaintexts is
doubtful without advanced linguistic expertise and the general
availability of such tools. We demonstrate that English plaintexts
can be automatically extracted from two-time pads via the simple
application of a Bloom filter [3].

This paper is not about rediscovering the XOR-based stream-
cipher attacks, nor is it meant to criticize particular storage
encryption systems. The fact that systems with such problems
exist shows a lack of cross-dissemination between the
cryptography and storage arenas. Therefore, we hope that this
paper can empirically show what can go wrong when
cryptography and storage constraints collide. In particular, we
will demonstrate various attacks that leverage vulnerabilities
exposed via shifting file contents, in-place file updates, backups,

storage mechanisms hidden by layers of abstractions, and
inconsistencies between memory and disk content.

The paper is written to be as self-contained as possible, so that
both storage and security researchers can be exposed to the
primitives and constraints from the other field.

2. BACKGROUND

2.1 Block Cipher Modes of Operation
The operating mode of an encryption algorithm allows block
ciphers to output messages of arbitrary length or turns block
ciphers into self-synchronizing stream ciphers, which generate a
continuous key stream to produce ciphertexts of arbitrary length.
For example, using AES alone, one may only input and output
blocks of 128 bits. Using AES with a mode of operation for a
block cipher, one may input and output data of any length.

The most common modes of operation for block ciphers
include electronic codebook (ECB) mode, cipher-feedback (CFB)
mode, cipher-block-chaining (CBC) mode, output-feedback
(OFB) mode, and counter (CTR) mode. Table 1 lists the various
modes of operation, along with the corresponding encryption and
decryption specifications. E and D stand for encryption and
decryption respectively. C is the ciphertext; P, the plaintext; and
O, the temporary output.

Table 1. Block cipher modes of operations.

Mode of

operation

Encryption/decryption

ECB Ci = Ekey(Pi); Pi = Dkey(Ci)

CFB Ci = Ekey(Ci-1) ⊕ Pi, C0 = IV

Pi = E key(Ci-1) ⊕ Ci, C0 = IV

CBC Ci = Ekey(Pi ⊕ Ci-1), C0 = IV

Pi = Dkey(Ci) ⊕ Ci-1, C0 = IV

OFB Ci = Pi ⊕ Oi; Oi = Ekey(Oi-1), O0 = IV

Pi = Ci ⊕ Oi; Oi = Ekey(Oi-1), O0 = IV

CTR Ci = Ekey(IV ⊕ CTRi) ⊕ Pi

Pi = Ekey(IV ⊕ CTRi) ⊕ Ci

2.2 Vulnerabilities of Certain Block Cipher

Modes of Operation
A common problem with stream ciphers is that generating two
ciphertexts with the same key and IV can leak information about
both original plaintexts. A stream cipher operates by producing a
key stream based on a key and IV. The plaintext is then XORed
to the stream to produce the ciphertext. When two ciphertexts
created with the same key and IV are XORed together, the key
stream is canceled out, and the result is the XOR of the two
original plaintexts.

Some block cipher operation modes can behave similarly to a
stream cipher. For example, the CFB, OFB, and CTR modes all
create a mask based on a key and IV, and the ciphertext block in
question is created by XORing the mask together with the
plaintext. If two versions of the ciphertext are found to have been
created by the same key and IV, the mask can be canceled out to
generate the XOR of the two plaintexts.

We formally demonstrate a vulnerability, which involves two
known versions of blocks of ciphertext (C and C’) that share
identical keys and IVs in certain block cipher modes of operation.

The vulnerability occurs when C ⊕ C’ = P ⊕ P’, where P and P’

are the plaintext versions of the block. Once the attacker has P ⊕

P’ of the block in question, the attacker may employ various
methods to extract plaintext, as discussed later in the paper.

The following sub-sections demonstrate the vulnerability with the
following modes of operation: CFB, CTR, and OFB. Our
examples may be used with many common block ciphers as the
encryption algorithm used to create the mask (such as DES, 3-
DES, and AES). These examples also explore a single encrypted
block of text, but could easily be extended to address entire files.

2.2.1 CFB
In cipher feedback mode, a ciphertext block is encrypted by
XORing the current plaintext block with the previous ciphertext

block (i.e., Ci = Ekey(Ci-1) ⊕ Pi, where C0 = IV). If we refer Ekey(C-

i-1) as the key mask, M, then we have Ci = M ⊕ Pi. Similarly, by

updating Pi to Pi’ in-place, we have Ci’ = Ekey(Ci-1) ⊕ Pi’, or Ci’ =

M ⊕ Pi’, assuming that the key and IV remain unchanged. Thus,
by XORing Ci and Ci’ on the left-hand side, we have the

following right-hand side: M ⊕ Pi ⊕ M ⊕ Pi’, or Pi ⊕ Pi’. With
CFB, the scope of vulnerability is limited to the current in-place
updated block, since the key masks for subsequent blocks differ

(i.e., Ci+1 = Ekey(Ci) ⊕ Pi+1, while Ci+1’ = Ekey(CI’) ⊕ Pi+1).
Another implication is that an in-place update can cause the
remaining file to be re-encrypted.

2.2.2 CTR
In counter mode, a block is encrypted via XORing a plaintext
block with a key mask produced by encrypting content based on a

per-block unique counter (i.e., Ci = Ekey(IV ⊕ CTRi) ⊕ Pi). If we

refer Ekey(IV ⊕ CTRi) as the key mask, M, we can see that Ci = M

⊕ Pi, similar to the CFB case. An in-place update from Pi to Pi’

yields Ci’ = Ekey(IV ⊕ CTRi) ⊕ Pi’, or Ci’ = M ⊕ Pi’. With the IV
and counter unchanged by the in-place update, it is easy to see

that Ci ⊕ Ci’ = Pi ⊕ Pi’.

Unlike CFB, the counter mode supports random access, where an
in-place update does not require the remaining file to be re-
encrypted. However, since the key stream for the entire file can
be reused, different versions of the file can be XORed to reveal
changed information. This vulnerability is particularly
pronounced, given that a common file operation is content
insertion, which can cause a significant portion of the original
content to be shifted. In this situation, CTR mode leaks
information about the plaintext beginning with the first changed
block and potentially ending with the last block in the file or
extent. While it can be challenging to extract original information
from XORed plaintexts, the knowledge of content shifting can
significantly improve the chance of extracting the plaintexts.

2.2.3 OFB
In output-feedback mode, a ciphertext block is generated via
XORing the plaintext with the encryption of the previous key

mask (i.e., Ci = Ekey(Oi-1) ⊕ Pi, O0 = IV). In this case, the key

mask is Ekey(Oi-1), or M; therefore, Ci = M ⊕ Pi. An in-place

update from P to P’ yields Ci’ = M ⊕ Pi’, and one can see that

again Ci ⊕ Ci’ = Pi ⊕ Pi’.

Both the support for random access and vulnerability
characteristics of the OFB mode is the similar to the counter mode
in the storage context, since the key stream is based on only the
original key and IV. This key stream can be pre-generated and
can stay the same, even if a block is modified. Like CTR mode,
the OFB mode leaks information about the plaintext from the first
changed block to potentially the last block in the file or extent.

3. CRYPTANALYSIS METHODS
With different versions of data encrypted with the same key and
IV under CFB, CTR, or OFB mode, we may perform

cryptanalysis on the resulting Ci ⊕ Ci’, which is just Pi ⊕ Pi’ with
an entropy that is likely to be significantly lower than that of a
random data stream. As proof of this concept, we prototyped a
utility to extract XORed English texts.

3.1 Common Methods
Many methods exist to separate plaintexts from Pi ⊕ Pi’. For
example, if one of the plaintexts is known apriori, the other
plaintext is easily extractable. Often times, an attacker may guess
a probable plaintext string in Pi and use a “dragging crib” method
[40] to XOR the probable plaintext against every position in Pi’ to
detect intelligible text. An attacker could also use language-
specific heuristics (e.g., average word length and word frequency)

to solve to Pi ⊕ Pi’ [9].

Another method to extract XORed plaintexts is based on letter
frequency analysis. Depending on the file type (e.g., English
plain text, source code, or word processing document), a
frequency table of each character’s occurrence in a representative
training set can be tallied. For example, several such tabulations
exist for letters in the English language [1, 12, 28, 39]. With
these statistical distributions, emphasis can be given to those
XORed character pairs that contain high frequency characters,
while enumerating all possibilities.

N-gram analysis [18, 27] can be used in conjunction with
frequency analysis or on its own. Like frequency analysis, lists of
n-character strings, or n-grams, can be tallied from a
representative training set. Then, while enumerating all
possibilities, emphasis may be given to texts that appear
frequently in the tally.

3.2 Automated Extraction of XORed

Plaintexts
We prototyped a DecodeXOR utility to extract XORed English
plaintexts based on the concept of N-grams. However, our
simple prototype extracted plaintexts only based on constraints
imposed by XORs and texts seen in the training set. We did not
track the frequency of N-gram occurrences, build Markov and
hidden Markov models, or apply dynamic programming methods
such as the Viterbi algorithm [42]. The predominant algorithm
used was hashing. Unlike many studies, we made no restrictions
on the absence of punctuations, capital and small case letters,
numbers, and extended ASCII characters.

DecodeXOR consists of three design components: (1) n-gram
table representation and construction, (2) solving plaintext
substrings under various constraints, and (3) data structures for
tracking and assembling candidate plaintext substrings.

3.2.1 N-gram Table Representation and

Construction
The program takes in a training file, in our case, enwik8 [24],

which consists of 100MB of (mostly) English content from
random web pages. To capture all 2-grams in the file with
characters {p0, p1, … p100 x 2

20
-- 1}, we hashed all two consecutive

characters into a bitmap, where the hash(pi, pi+1)
th bit is set to 1 to

indicate the possible transition from pi to pi+1; 0, otherwise.

Collisions are possible and allowed. Therefore, it is possible to
explore letter transitions not present in the training set. However,
out of 256 x 256, or 64K possible extended ASCII character
transitions, only 18% of edges are used in our training set.
Therefore, we can reduce the collision rate to an arbitrary
threshold (in our case < 1%) by increasing the number of hash
bins.

The method used to capture 2-grams was extended to capture 3- to
6-grams. Collisions are also allowed. To verify that two 6-letter
strings are identical, all possible substrings of 2- to 5-grams also
need to be checked. Fortunately, knowing that the training file is
processed sequentially, an optimization can be applied to check
only the 2- to 5-grams containing the last letter of a 6-letter string.

One concern is the memory size requirement. For the 6-gram
case, 223 edges (out of 240 possible) are present in our training set,
and we allocated 228 hash bins, which can be represented with
32MB of memory if each bin is represented by one bit. Also,
hash tables for 2- to 6-grams can be collapsed into a single table,
where various hashing mechanisms can be consolidated into a
Bloom filter [3], where five hash functions are based on different
n-gram lengths.

3.2.2 Solving Plaintext Substrings
Without the frequency information, DecodeXOR had to solve
XORed plaintexts based on the constraints of individual letters.
Formally, given a stream {c0, c1, …} created by XORing the
corresponding letters in plaintext stream1 {p0, p1, …}, and
plaintext stream2 {p0’, p1’,…}, the candidate plaintexts need to
conform to the following constraints for each 7-character XORed
substring {ci, ci+1, …, ci+6}:

1. pj ⊕ pj’ = ci, for all i < j < j+6

2. {pi, pi+1, …, pi+5}, {pi’, pi+1’, …, pi+5’}, {pi+1, pi+2, …, pi+6}, and
{pi+1’, pi+2’, …, pi+6’} are legitimate 6-grams.

3. The last five characters of {pi, pi+1, …, pi+5} need to match the
first five characters of {pi+1, pi+2, pi+3, …, pi+6}, same for p’
substrings.

Interestingly, we allowed the analysis for the entire extended
ASCII character set due to the second constraint. If we disallow
certain characters, the second constraint may not be satisfied.

3.2.3 Tracking and Assembling Candidate Plaintext

Substrings
For each plaintext solving window of 7 characters (XORed
substring), DecodeXOR can identify many 6-character candidate
plaintext substrings that satisfy constraints listed in Section 3.2.2.
To track and eventually assemble the final plaintexts, we need to
have a dedicated data structure.

DecodeXOR uses a hash table to track 6-character candidate
substrings. Its key design is the hash function. For each

candidate 6-character substring, only the last 5 characters are used
for hashing, to determine the storage location of the 6-character
substring. In other words, for a given 6-character substring, the
hash of the first 5 characters points to the hash bin location of the
previous candidate substring with the last 5 characters matched.
(Hash collisions are resolved via a linked list.) Therefore, when
the decoding process reaches the last 6 characters, a series of hash
operations will connect various candidate substrings to form the
final plaintext string.

3.2.4 Observations and Limitations
Although this decoder is simple, written in C, with only 363
semicolons, it is sufficient to be used to demonstrate various two-
time-pad-related vulnerabilities in storage. DecodeXOR can
process the 100MB training file in 5 minutes (a single pass) on a
3Ghz Pentium® D with 2GB of RAM, and decode short XORed
strings in seconds.

Of course, this naïve decoder has ample room for enhancements.
First, as with any decoder, our ability to decode relies heavily on
the training data set. Second, the XOR of two lower-case letters
are the same as capital letters. Therefore, in certain cases,
determining the capitalization at the beginning of a sentence
requires a higher level of language processing [21]. Third,
decoding XORed numbers is problematic. Again, a higher level
semantic process is required. Fourth, we did not take advantage
of possible content shifting, which can further enhance the
decoding ability due to additional decoding constraints.

4. REAL STORAGE EXAMPLES
This section demonstrates how real storage mechanisms can turn
the original intended one-time pads into two-time pads. We need
to reiterate that the intent of this paper is not to criticize particular
implementation; rather, it aims to show that (1) although not
necessarily straightforward, these attacks can be materialized, and
(2) the scope of the problem proliferates throughout the storage
data path, ranging from high-level file systems and memory
management to low-level device management. First, we use a
widely used file system to demonstrate the problems with in-place
updates and shifting content. We then explore the issue of
inconsistency in memory and disk content via hibernation and
demonstrate how, through entropy analysis and the DecodeXOR
tool, we can extract newer versions of encrypted data from swap.
Additionally, we illustrate how storage layer abstractions, such as
wear-leveling applied to flash storage can lead to this
vulnerability. Finally, we show how backups can cause reuses of
keys and IVs in an all-or-nothing secure deletion system.

4.1 File System Encryption
CryptoFS [20] is a file system that takes advantage of the Linux
Userland FileSystem (LUFS) kernel module [26], which allows a
file system to be built in user space without having to write any
kernel-level code. CryptoFS adds cryptographic functionality in a
layer above an underlying file system (e.g., ext3). Encrypted file
names and data are stored in a regular directory. This directory
becomes accessible as plaintext by mounting to a special
unencrypted directory after a user provides the password.

CryptoFS uses libgcrypt, a general-purpose cryptographic

library based on GnuPG [17], and supports the symmetric ciphers

AES, DES, Blowfish, CAST5, Twofish, and Arcfour. The
message digest algorithm, the granularity of encryption per IV

(e.g., extent size), and number of unique IVs (i.e., default 256) are
user-configurable. The message digest algorithm produces the
encryption key from a passphrase. Files are divided into extents,
and CFB mode is used within each extent to support faster
random access times. The extent size is configurable, although it
is recommended to be the disk block size (usually 4096 bytes in
Linux). Initialization vectors are generated as the disk block

number % number of IVs. Therefore, the ciphertext will repeat
after number of IVs x extent size bytes if the same data is being
encrypted. The CFB mode is hardcoded and cannot be changed
without changing the source code.

Our test system is a Debian Sarge VMware virtual machine
running a 2.4.27-3-386 kernel. We installed the lufs-

cryptofs-0.3.1-1.1 package from the main stable Debain

repository [10]. We also downloaded and installed lufs-

source-0.9.7-6 to make the lufs kernel module.

We began by creating a mount point /crypt and a regular ext3

directory /root/secrets, which is later designated to store

encrypted content. We then used a special mount command to
mount /root/secrets over /crypt:

>lufsmount cryptofs:///root/secrets /crypt

Enter password:

>

This special mount operation allows us to create encrypted
content under /root/secrets. However, while the directory

is mounted, we can access the content in plaintexts via the
/crypt path. Next, we created a file under /crypt called

secret.txt, containing the string: “Now is the time for all

good people to worry about their privacy.” The directory
/root/secrets now holds a corresponding file called

TdedtcxtXL5j5g==, which is the encrypted name for

secret.txt.

After we unmounted CryptoFS, the plaintext is no longer
accessible, and /crypt appears to be empty. However, suppose

the owner of the encrypted file makes a backup copy of
/root/secrets/TdedtcxtXL5j5g== to a removal

medium but leaves the copy sitting around due to the confidence
of encryption. Then, an attacker can just secretly make copies of
different versions of the encrypted file over time. With two

different versions of the ciphertext, the attacker can perform Ci ⊕
Ci’ and run DecodeXOR to extract plaintexts.

To illustrate information leaks due to both in-place updates and
content shifting, we inserted a space at the beginning of the file to
generate the second version of the encrypted file. Due to
unchanged IVs, in-place updates imply that we can extract 128
bits (or 16 bytes) of information from the updated block (Figure
1).

Additionally, due to the way CryptoFS handles encryption in
extents, every extent is associated with a predictable, unchanging,
per-extent IV. Therefore, once the content starts to shift, an
attacker can decrypt the first 128 bits (or 16 bytes) of subsequent
extents after the content insertion point. Thus, as an attacker
accumulates different versions of the same encrypted file over
time, more information can be revealed due to both in-place
updates and content shifting.

Figure 1. XOR of ciphertext compared to XOR of

plaintext in hexadecimal from file secret.txt.

With our simple DecodeXOR, we were able to extract five
possible XOR pairings of 16-byte English plaintexts that can
generate the same ciphertext (Table 2). Should DecodeXOR
leverage additional information such as content shifting, the
fourth pair will be favored over others.

Table 2. Possible pairings of 16-byte English plaintexts

that generate the same XORed ciphertext.

1
st
 XOR pair

Now is the tied
 Now is the tale

2
nd
 XOR pair

Now is the tied.
 Now is the talk

3
rd
 XOR pair

Now is the time
 Now is the timb

4
th
 XOR pair

Now is the time'
 Now is the time

5
th
 XOR pair

Now is the time,
 Now is the timi

We also note that this type of attack may be possible without
either physical access to the machine or root privileges on a
shared network folder or server if the owner of the encrypted files
does not properly protect the files from unauthorized read access.

4.2 Swap via Hibernation
Two storage-related components can interact in ways that
introduce the two-time-pad vulnerability. One component is
memory caching, which may keep recently modified encrypted
data around, in hope to consolidate multiple updates to the same
disk location into a single write to disk. The other component is
hibernation, which allows a system to save current memory states
to non-volatile storage and power down. The system can then
later resume execution from the state saved before hibernation by
restoring power. Although the cached data can be encrypted at all
times, the memory version is not always consistent with the disk
version due to the write-back policy. A trigger of hibernation will
lead to two versions of encrypted data to be stored on disk, with a
potential reuse of the same key and IV.

We demonstrate this vulnerability under Linux 2.6.22.6, in which
swsusp implements a software suspend mechanism that allows

for non-volatile hibernation. To suspend, swsusp creates a list

of active pages excluding bus addresses used between peripheral
buses and memory. Next, swsusp writes both the user memory

and kernel memory to the swap device. Then, swsusp follows

the three-level page cache, starting from the page global directory,
and writes the pages in sequence onto the disk. Note that the
kernel memory always gets written to the beginning of the swap
partition, and only active pages are written during suspend We
can use this knowledge to reduce the search space significantly
when examining a large swap device.

Ci ⊕ Ci’
6e 21 18 57 49 1a 53 54 1c 0d 45

54 1d 04 08 45 ea 71 93 52 8a 7d

Pi ⊕ Pi’
6e 21 18 57 49 1a 53 54 1c 0d 45

54 1d 04 08 45 46 09 1d 52 41 0d

To verify that kernel memory is written to the swap partition
during suspend (instead of having memory retaining the content in
a low-power mode), we conducted the following experiment. We
modified the kernel init() function to kmalloc 512 bytes 20

times. Each time we filled the 512 bytes with the same
predetermined content. Before each test, we verified that the
predetermined string was not present in memory initially, and
zeroed out the swap partition. We then ran mkswap to create a

clean swap device. The machine was then rebooted, followed by
a suspend, resume, and another reboot. Next, we searched the
swap partition for the predetermined 512 byte string, which
appeared 20 times. This experiment told us that the suspend
mechanism does write kernel memory to the swap partition when
invoked.

Up to now, we have shown that known plaintext can be found at
unknown locations on a suspend partition. We then need to
illustrate how to find encrypted data at unknown locations on a
swap partition. In this experiment we (1) injected encrypted data
into memory that is then propagated to swap via the swsusp

mechanism, (2) identified swap candidate blocks with high
entropy, (3) created XOR blocks by XORing encrypted file blocks
with the candidate swap blocks, and (4) used DecodeXOR to
analyze XOR blocks that exhibit low, but non-zero entropy.

We began with two versions of a file. The first was an 8-KB file
with the repeating string “This is a test” encrypted with AES
using CTR mode. The second was the same file with a space
character inserted somewhere in the second 4-KB block of the
file, and the modified file was truncated to 8 KB. The file was
then encrypted with AES using CTR mode. Both versions used
the same IV and key. The modified version was loaded into page-
aligned kernel memory and the machine is suspended using
swsusp. This simulated a request to modify an encrypted file

that did not immediately reach the disk.

At this point we assume that an attacker has access to the entire
disk image. The unmodified 8-KB encrypted file can be identified
and retrieved if the file system does not hide its directory
structure. The entropy was then computed via the ent tool [43]

on each 4-KB block on the swap partition. Blocks with high
entropy were marked as candidate blocks. This step filters out
half of the swap partition blocks. Each candidate swap block was
XORed with each 4-KB block in the unmodified encrypted data
file, and the entropy was again calculated.

The resulting entropy placed the XORed block into one of three
categories. When the entropy is high, either one of the two
XORed blocks is encrypted, or both blocks are encrypted with
different key masks. Therefore, the XORed block is not
considered further. This step reduces the number of candidate
swap blocks down to two. When the entropy is zero, the
candidate swap block is the same as the unmodified file block. In
our case, only one block was XORed to zero. Knowing how the
Linux memory allocator strives to allocate memory contiguously
whenever possible, the zero-block location can serve as a valuable
reference point to speed up searches. The remaining non-zero
entropy candidate blocks are then examined further to determine
the position of the modification within the 4-KB block.
Specifically, we took the XORed 4-KB block and found the first
non-zero byte at the starting position. The end of the modified
encrypted data is found by traversing from the last byte of the
block and back to the beginning of the block until a non-zero byte

is reached. The identified XORed string between the beginning
and the end were then analyzed by DecodeXOR.

Although the above experiment is a minimalist example, we
illustrated key steps to exploit the vulnerability. We also tried a
larger example with 500 MB of swap pair-wise XORed with every
encrypted block in a 2-GB partition. The search time only took
about 30 seconds on a 2.8 GHz Pentium® D machine with 1 GB
of RAM. A more realistic setup would include a system that has
been in use for some time, which would result in versions of
random content in the memory swap overlapped at times from
various hibernation sessions, making it more difficult to identify
candidate blocks. With the knowledge that swsusp writes the

content of the kernel memory to the beginning of the swap
partition and that memory is divided into regions and allocated
consecutively whenever possible, together with the result of
unmodified encrypted data XORed into zeros, we can reduce our
search space drastically when analyzing the swap partition.

4.3 Flash Storage
The use of flash-based memory storage is now ubiquitous due to
its low cost, the lack of moving parts (when compared to hard
disks), low levels of energy consumption, and fast read times.
Flash comes in two forms: NAND and NOR. NOR flash memory
allows applications to execute in-place and has been traditionally
used in embedded computing devices, such as cell phones and
PDAs. NAND flash is less expensive, is accessed on a page basis
(typically 512 bytes), and is typically used in digital cameras,
flash drives, USB thumb drives, solid state hard disks, and mp3
players. In this paper, we are only concerned with NAND flash.

Although popular, NAND flash has a number of physical
limitations [13]: (1) Each memory location can only be written
from 10,000 to 1,000,000 times before they become unreliable.
(2) The erasure time of a memory location is orders of magnitude
longer than reads. (3) Overwriting a memory location with
existing data involves first erasing the memory location before
writing new data. To overcome the limited number of erasure
cycles for a given memory location, a technique called wear-
leveling [6, 22] rotates the usage, or wear and tear, of memory
locations evenly to prolong the life of the device. To avoid slow
erasures and overwrites, many storage optimizations, such as flash
translation, allow new updates to be stored in empty memory
locations, while the locations with old content are erased in the
background.

Various optimizations are problematic when encryption methods
are applied to common NAND flash devices. Old versions of
ciphertext blocks may be frequently left on the device due to the
lack of provision of in-place updates. To demonstrate this, we
used the file system jffs2, which is the second version of the
Journaling Flash File System [44]. Flash file systems like jffs2
are typically log-structure-based [36], tailored to provide wear-
leveling and performance optimizations for flash devices, and they
operate directly on the flash chips. Since these mechanisms are
performed at the file-system level and are not sensitive to the
underlying medium, we used a 256MB on-disk partition to
emulate flash storage. The main reason for emulation is to isolate
the optimizations performed by jffs2 from built-in wear-leveling
and translation mechanisms on flash, which are not always well
documented or exposed for direct manipulations and observations.
The emulation was done via the following steps.

1. We loaded the emulation module block2mtd, which came

with the jffs2 source [45]. We also loaded modules
mtdblock and jffs2 for our test system running Linux 2.6.18-

5-686.

2. We issued the command mkfs.jffs2 -o /dev/sdb4 to

create the file system, where sdb4 is our emulated flash

partition.

3. We issued the command mount -t jffs2

/dev/mtdblock0 /dev/sdb4 to mount the file system.

We then wanted to simulate a user making a supposed “in-place”
update to an encrypted file stored on our emulated flash partition.
We began with two versions of a file encrypted with 128-bit AES
in OFB mode. The file was an 8-KB file with the repeating string
“This is a test”, and the second was the same encrypted file with a
space character inserted somewhere in the second 4-KB block of
the file, with the file truncated to 8KB. Both versions used the
same random IV and key. The original version was placed on the
emulated flash partition. The modified file was stored under a
different file system. We copied the modified 4-KB block to
overwrite the second block of the original file.

Using a hex editor on the raw emulated flash partition, we were
able to verify large portions of the second 4 KB of the original
file. An attacker could similarly use tools based on entropy, such
as the tools we used in Section 4.2, to discover probable old
ciphertext blocks. By XORing two versions of ciphertexts and
feeding the result to DecodeXOR, we were able to reconstruct
plaintexts from the last 4KB of each ciphertext file.

4.4 Secure Storage and Deletion using the

AON Transform
All-or-nothing (AON) [35, 5] is defined as a cryptographic
transform that, given only partial output, reveals nothing about its
input. In other words, no one block of ciphertext can be
decrypted without obtaining all blocks of ciphertext. The original
intention of AON was to increase the difficulty of brute-force
attacks on the key.

This concept was adapted by a versioning file system [32], which
was based on ext3cow [31], a copy-on-write file system. This
system used authenticated encryption to store data confidentially,
provide file integrity, and delete unwanted versions of files on
versioning file systems. Specifically, versions of files are deleted
by overwriting a small 128-bit stub. Once a stub is overwritten,
the corresponding version of a file cannot be recovered.

The encryption algorithm takes the following as inputs:

• One plaintext data block divided into 128-bit plaintext blocks
{d1, d2, …, dm}.

• A unique identifier id for the block (block’s physical address).

• A unique global counter x (a system-wide epoch currently
stored in the superblock).

• An encryption key K.

• A message authentication (MAC) key M.

To encrypt, as shown in Figure 2, the algorithm generates a
unique encryption counter ctr1 (step 1) by concatenating the
unique block identifier id with the unique global counter x,
padded with zeros. The algorithm then performs an AES
encryption in CTR mode (step 2) using the XOR of the encryption

key K and ctr1, resulting in the encrypted ciphertext blocks {c1, c2,

…, cm}.

Figure 2. The adopted AON transform encryption operation.

The encrypted blocks are authenticated (Step 3) using SHA-1 and
MAC key M as a keyed-hash for message authentication codes
(HMAC) to produce the authenticator t. A second unique
encryption counter ctr2 is created (step 4), and t and ctr2 are used
to re-encrypt the data via the AES-CTR mode to produce double-
ciphertext blocks {x1, x2, …, xm}. The stub x0 is generated (Step 6)
by XORing all the double-ciphertext blocks {x1, x2, …, xm} with
the authenticator t. The resulting stub is an expansion of the
encrypted data and is not secret. Decryption is detailed in [32].

A number of properties in this AON encryption make it an
intriguing example. (1) The ciphertext is doubly encrypted.
Therefore, at the first glance little information is available to
extract versions of singly encrypted text. (2) The second
encryption is in counter mode, but with a changing key, namely t
the authenticator, which is a function of all singly encrypted text.
(3) The counters are based on physical disk locations, which are
unique, and the epoch number x (also unique). In addition, the
copy-on-write semantics may avoid in-place updates, which
further prevents different versions of data to reuse the same disk
location and epoch number.

With a closer look, we have the access to ctr1, ctr2, x0, {x1, x2, …,

xm} as public knowledge. Therefore, the authenticator t can be
retrieved, reflecting that the second round of encryption is only a
transformation to achieve the all-or-nothing property. Therefore,
we once again have the access to singly encrypted {c1, c2, …, cm}
for cryptanalysis. Since the two counters are based on the disk
location and the epoch number, we have to check and verify the
circumstances where in-place updates are allowed and how the
epoch number is incremented. The ext3cow design conserves
storage by allowing in-place updates for the same file blocks
within the same epoch. The epoch number is incremented when a
snapshot is taken. Therefore, as long as snapshots are not taken
frequently, an attacker can use disk backup images to locate
different file versions within the same epoch for cryptanalysis.

To demonstrate this weakness, we created a scenario with the
following steps:

• Create file 1 with two encrypted 4-KB blocks, C1 and C2

• Create a backup B1

• Update C2 with C2’

• An attacker can take a disk image dump B2 and analyze B1 and
B2

Input: Data Block {d1, d2, …, dm}, Block ID id,

Counter x, Encryption key K, MAC key M

1: ctr1 ← id||x||1||0128−|x|−|id|−1

2: {c1, c2, …, cm} ← AES-CTR[ctr1, K, {d1, d2, …, dm}]

3: t ← HMAC-SHA-1[M, {c1, c2, …, cm}]

4: ctr2 ← id||x||0||0128−|x|−|id|−1

5: {x1, x2, …, xm} ← AES-CTR[ctr2, t, {c1, c2, …, cm}]

6: x0 ← x1 ⊕ … ⊕ xm ⊕ t

Output: Stub x0, Ciphertext {x1, x2, …, xm}

We gained access to the original source of AON-ext3cow.
However, we were unable to retrofit the environment to conduct
our experiments on the actual system. Instead, we duplicated the
AON-ext3cow encryption scheme via a user-level program using
the nettle encryption library [29] (libnettle2 and

libnettle-dev packages under Ubuntu Linux), so that we

could create the same files that would be generated in the above
scenario. Through static code reviews of AON-ext3cow, we were
glad to find out that this particular vulnerability is actually fixed,
via replacing the CTR mode with CBC. However, our point is not
about showing the flaw of a particular system. Rather, even the
design of modern and sophisticated storage systems can still
mismatch diverse storage usage patterns and become vulnerable.
Therefore, we implemented our user-level encryption program
according to the scheme described in the original paper.

Without a running instance of AON-ext3cow, we divided our
demonstration into two parts: (1) showing that we can update a
file in-place with the same epoch under ext3cow (2) showing that
we can decrypt AON-encryption via two versions of ciphertext.

For the former, we downloaded and installed ext3cow-2.6.20.3
and an epoch query program called tt from the ext3cow-tools

package. We then performed the following steps. (1) We created
a plaintext file with two 4-KB blocks and noted their relative
positions within the file system partition, which were 10,240 and
10,241. (2) We ran tt to check the epoch number, which was

also the file creation time, represented in the number of seconds
since 1/1/1970. This number was 1201314595. (3) We updated
the file content in the second 4-KB block and searched for the
original content in the first block and the modified content in the
second block. Both blocks stayed at the same location, indicating
in-place updates. (4) We ran tt again, and the epoch number

remained the same.

For demonstrating the decryption capability, we first created two
versions of an encrypted 8-KB file with the same content as the
files in the flash example in Section 4.3. We assume the same
user-provided encryption key K is used to encrypt both files, since
the AON-ext3cow code suggests one key K is used to encrypt the
entire file system. We used the hex string
“9DFE54BFABA6A065FD1091F7B98524E4” as key K, the hex
string “C27CB47DDAC849FCA4F90656E694CF90” as MAC
key M, 41,943,040 and 41,947,136 (byte offsets) as block ID id,
and 1201314595 as the global epoch number x. To extract the
authenticator t for each version, we XORed all doubly-encrypted
blocks, including the stub x0. To extract the singly-encrypted
ciphertext, reverse the second encryption operation by performing
the AES-CTR operation with ctr2, the authenticator t, and doubly-
encrypted blocks {x1, x2, …, xm}. With singly-encrypted
ciphertext, we were able to use DecodeXOR to extract the
plaintext. If the entire disk images B1 and B2 were available, an
attacker could use tools based on entropy, such as the tools we
used in Section 4.2, to discover probable old ciphertext blocks.

5. DISCUSSION
Through the above demonstrations, we experience first-hand that
applying cryptography to storage is different from applying
cryptography to networks in both theory and in practice. The
attacks are quite feasible with simple home-grown tools and the
speed of modern computers.

One alternative is to use full-disk encryption, which can be
provided by the new generation of hard disks that claim low
performance overhead [38]. Since this solution defines the disk
drive as the boundary for encrypted data and the uniqueness of
keys and IVs, this makes it unclear whether different versions of
encrypted disk images may reveal crucial information. Another
alternative may lay with the narrow-block tweakable [25]
encryption mode XTS. At the time of this writing, the IEEE
Security in Storage Working Group (SISWG) has submitted an
active, approved draft to the IEEE for narrow-block encryption
P1619/D18 titled “Draft Standard for Cryptographic Protection of
Data on Block-oriented Storage Devices” which details the use of
XTS for data at rest. Further analysis of this new mode may be
needed.

Other traditional modes of encryption, such as CBC and ECB, do
not suffer from the vulnerabilities mentioned in this paper.
However, they need to be combined with other mechanisms in
order to overcome structural analysis. For example, Microsoft’s
BitLocker encrypts a specified volume sector-by-sector using
AES in CBC mode with a diffuser called Elephant [11]. The
diffuser is necessary due to a weakness in CBC mode, which
allows an attacker to flip an ith bit in the next block’s plaintext by
flipping the ith bit in the current block’s ciphertext. This is done
at the risk of randomizing the current block’s plaintext. This
diffuser runs a series of XORs and rotations on words within a
sector, which enables one flipped bit to cause more random bit
flips within the same sector.

Perhaps the encryption scheme used in IBM’s eCryptfs [19] is
part of the answer. eCryptFS divides files into encryption extents
to support fast random access. IVs are changed for each write,
and the CBC mode is used within each extent. However, so far,
we have found that design assumptions of various solutions are
typically violated by implementations and unanticipated
interactions between the encryption layer and the other storage
layers. Therefore, unless the design makes no assumptions about
other system components, it is likely that the weakest point is not
the file system itself (e.g., RAID parities and backups).

One possible approach to a solution is to rethink the entire storage
data path with a clean slate in the context of cryptography. The
storage equivalence of a theoretical one-time pad is beyond the
boundary and lifetime of the system itself. At one extreme,
whenever a piece of encrypted data is updated, shifted, or even
copied, the unique key or the IV of the encrypted data needs to be
changed. The encryption component can make no assumptions
about whether versions of encrypted data can be properly
removed, once generated. The resulting characteristics of this
system will be similar to write-once [37] or copy-on-write [31]
storage systems. Unfortunately, such a design is likely to be cost-
prohibitive in terms of performance, storage requirements, and
key management complexity.

To relax the design constraints, the interface of storage layers
needs to become more expressive for communicating and
controlling ways of handling encrypted data. For example, a layer
needs mechanisms to provide verifiable guarantees of removing
encrypted data and not moving or copying encrypted data.
However, given the backward compatibility and legacy constraints
of storage mechanisms such as read-copy-update [14], versioning
[31], journaling [44], RAIDs [30], and so on, achieving secure

storage will remain a difficult research area, ripe with challenges
and opportunities.

6. RELATED WORK
Much of the related work on algorithms [18, 27, 42] and
implementations [40, 9] of cryptanalysis on two-time pads was
already discussed in Sections 3.1 and 3.2. Most of the work
reviewing two-time pad vulnerabilities is explored in the context
of network communications. We discuss a similar weakness
found in the Wired Equivalent Privacy (WEP) protocol, which
was introduced by the 802.11 standard for wireless
communications [23] and is based on the believed-to-be-secure
RC4 stream cipher [34]. Borisov et. al. [4] discuss many security
weaknesses of WEP, including implementation and architectural
problems which causes the keystream to be repeated much more
frequently than necessary.

WEP expands a secret key and a public per-packet IV into a
keystream of pseudorandom bits which is XORed with the
plaintext to produce ciphertext. Plaintext is recovered by
producing an identical second keystream and XORing it with the
ciphertext. The WEP standard recommends using different IVs
for each packet, but some implementations use a somewhat less
than random approach to changing IVs. For example, the
particular PCMCIA cards that Borisov et. al. examined reset the
IV to 0 every time they were re-initialized and incremented the IV
by 1 for each packet. Those cards would similarly re-initialize
every time they were plugged into the laptop. Thus, keystreams
corresponding to low-valued IV’s were found frequently. An
architectural problem of a small IV field (24 bits) was also found
in the WEP standard that nearly guarantees that the same IV will
be used for multiple packets.

7. CONCLUSION
Through empirical demonstrations, we have shown that the
characteristics of storage are fundamentally different from those
of network, and cryptographic assumptions on the uniqueness of
keys and IVs relative to content can be violated through
unanticipated side effects from various storage mechanisms. In
particular, we have demonstrated storage mechanisms that can
convert intended one-time pads into two-time pads: in-place
updates, backups, inconsistencies between memory and disk
content, and wear-leveling for flash storage. Additionally, we
illustrate the feasibility to exploit two-time pads to extract
plaintexts efficiently with home-grown tools, bringing attacks
from the theoretical realm to life.

While these examples cover a spectrum of storage mechanisms,
they are still the tip of the iceberg. Legacy storage mechanisms
and semantics such as RAIDs, versioning, etc. and their
interactions with cryptography are yet to be examined. We
believe that a clean-slate rethinking of storage requirements and
usage patterns in the context of cryptography is one direction from
which to envision a holistic solution. Expanding the interface of
individual storage components to better support cryptographic
assumptions and guarantees is another.

Given that two-time pads are just one of many security problems
in the storage domain, a deeper problem lies in the lack of
fostering of cross-understanding between the storage and security
domains. Hopefully, this paper takes steps toward bridging the
understanding of requirements and constraints between the two
fields.

8. ACKNOWLEDGEMENTS
We thank Peter Reiher and Geoff Kuenning for reviewing an early
draft of this paper. We also thank Zachary N. J. Peterson et. al for
providing accesses to various to the AON secure deletion
versioning file system code. Cory Fox, Ryan Fishel, Dragan
Lojpur, Mark Stanovic, and Ted Baker also have contributed to
this work. This work is sponsored in part by DoE grant number
P200A060279. Opinions, findings, and conclusions or
recommendations expressed in this document do not necessarily
reflect the views of the DoE, FSU, or the U.S. Government.

9. REFERENCES
[1] Baddeley AD, Conrad R, Thompson WE. Letter structure in

the English language. Nature, 186, pp. 414-416, 1960.

[2] Bennison PF, Lasher PJ. Data security issues relating to end
of life equipment. Proceedings of the 2004 IEEE

International Symposium on Electronics and the

Environment, May 2004.

[3] Bloom B, Space/time tradeoffs in hash coding with allowable
errors, Communications of the ACM, 13(7), pp. 422–426,
July 1970.

[4] Borisov N, Goldberg I, Wagner D. Intercepting mobile
communications: The insecurity of 802.11. Proceedings of

the 7th Annual International Conference on Mobile

Computing and Networking, 2001.

[5] Boyko V. On the security properties of OAEP as an all-or-
nothing transform. In Advances in Cryptology - Crypto’99

Proceedings, Springer-Verlag, pp. 503–518, August 1999.

[6] Chang L. On efficient wear leveling for large-scale flash-
memory storage systems. Proceedings of the 2007 ACM

Symposium on Applied Computing, March 2007.

[7] Chow J, Pfaff B, Garfinkel T, Christopher K, Rosenblum M.
Understanding data lifetime via whole system simulation,
Proceedings of the 12th USENIX Security Symposium, 2004.

[8] Chow J, Pfaff B, Garfinkel T, Rosenblum M. Shredding
your garbage: Reducing data lifetime through secure
deallocation, Proceedings of the USENIX Security

Symposium, August 2005.

[9] Dawson E, Nielsen L. Automated cryptanalysis of XOR
plaintext strings, Cryptologia, 20(2):165-181,April 1996.

[10] Debian Source Repository, http://ftp.de.debian.org/debian,
2008.

[11] Ferguson, N. AES-CBC + Elephant diffuser: A Disk
Encryption Algorithm for Windows Vista. Technical Report,
August 2006. Available online at
http://www.microsoft.com/downloads/details.aspx?FamilyID
=131dae03-39ae-48be-a8d6-
8b0034c92555&DisplayLang=en.

[12] Gaines HF, Cryptanalysis: A study of ciphers and their
solutions. New York: Dover., 1939.

[13] Gal E, Toledo S, Mapping structures for flash memories:
techniques and open problems, Proceedings of the IEEE

International Conference on Software - Science, Technology

and Engineering, February 2005.

[14] Ganger G, Patt Y. Metadata Update Performance in File
Systems, Proceedings of the First USENIX Conference on

Operating Systems Design and Implementation, 1994.

[15] Garfinkel SL, Shelat A. Remembrance of Data Passed: A
Study of Disk Sanitization Practices, IEEE Security &

Privacy, 1(1), pp. 17-28, 2003.

[16] Garfinkel T, Pfaff B, Chow J, Rosenblum M. Data Lifetime
is a Systems Problem, Proceedings of the 11th Workshop on

ACM SIGOPS European Workshop: Beyond the PC,
September 2004.

[17] The GNU Privacy Guard, http://gnupg.org, 2008.

[18] Griffing A. Solving XOR Plaintext Strings with the Viterbi
Algorithm. Cryptologia, 30(3), pp. 258-265, 2006.

[19] Halcrow M. eCryptfs: a Stacked Cryptographic Filesystem.
Linux Journal. April 2007.

[20] Hohmann C. CryptoFS. http://reboot.animeirc.de/cryptofs/.
August 2007.

[21] Jones MN, Mewhort DJK. Case-sensitive letter and bigram
frequency counts from large-scale English corpora. Behavior

Research Methods, Instruments, & Computers, 36, pp. 388-
396, 2004.

[22] Kawaguchi A, Nishioka S, Motoda H, A flash-memory based
file system, Proceedings of the USENIX 1995 Technical

Conference, January 1995.

[23] L. M. S. C. of the IEEE Computer Society. Wireless LAN
medium access control (MAC) and physical layer (PHY)
specifications. IEEE Standard 802.11, 1999 Edition, 1999.

[24] Large Text Compression Benchmark,
http://www.cs.fit.edu/~mmahoney/compression/text.html,
2008.

[25] Liskov, M., Rivest, R., And Wagner, D. Tweakable block
ciphers. In Advances in Cryptology (CRYPTO '02), Lecture
Notes in Computer Science, Springer-Verlag.

[26] Malita F. LUFS Userland Filesystem - Default branch.
http://freshmeat.net/projects/lufs/. October 2003.

[27] Mason J, Watkins K, Eisner J, Stubblefield A. A natural
language approach to automated cryptanalysis of two-time
pads. Proceedings of the 13th ACM Conference on

Computer and Communications Security, October 2006.

[28] Mayzner MS, Tresselt ME. Tables of single-letter and
digram frequency counts for various word-length and letter-
position combinations. Psychonomic Monograph

Supplements, 1(2), pp, 13-32, 1965.

[29] Nettle – A Low-Level Cryptographic Library,
http://www.lysator.liu.se/~nisse/nettle/, 2008.

[30] Patterson DA, Gibson GA, Katz RH. A case for redundant
arrays of inexpensive disks (RAID). Proceedings of the

1988 ACM SIGMOD International Conference on

Management of Data, September 1988.

[31] Peterson Z, Burns R. Ext3cow: A time-shifting file system
for regulatory compliance. ACM Transactions on Storage
1(2), pp. 190-212, 2005.

[32] Peterson ZNJ, Burns R, Herring J, Stubblefield A, Rubin
AD. Secure Deletion for a Versioning File System.
Proceedings of the 4th USENIX Conference on File and

Storage Technologies, December 2005.

[33] Richardson, R. 2007. CSI Survey 2007: The 12th Annual
Computer Crime and Security Survey. Computer Security
Institute. http://www.gocsi.com/forms/csi_survey.jhtml.

[34] Rivest RL. The RC4 Encryption Algorithm. RSA Data
Security, Inc., March 1992.

[35] Rivest RL. All-or-nothing encryption and the package
transform. Proceedings of the Fast Software Encryption

Conference, 1997.

[36] Rosenblum M, Ousterhout JK, The Design and
Implementation of a Log-Structured File System,
Proceedings of the 13th Symposium on Operating Systems

Principles, October 1991.

[37] Santry DJ, Feeley MJ, Hutchinson NC, Veitch AC. Elephant:
The file system that never forgets. Proceedings of the 7th
Workshop on Hot Topics in Operating Systems, 1999.

[38] Seagate Momentus Hard Drive Family,
http://www.seagate.com/www/en-
us/products/laptops/momentus/, 2008.

[39] Solso RL, King JF. Frequency and versatility of letters in the
English language. Behavior Research Methods &

Instrumentation, 8, 283-286, 1976.

[40] Tutte W. FISH and I, A transcript of Tutte’s lecture at the
University of Waterloo, June 1998.

[41] Valli C. Throwing out the Enterprise with the Hard Disk,
Proceedings of the 2nd Australian Computer, Networks &

Information Forensics Conference, 2004.

[42] Viterbi AJ. Error Bounds for Convolutional Codes and
Asymptotically Optimal Decoding Algorithm. IEEE

Transactions on Information Theory, 13(2), pp. 260-267,
1967.

[43] Walker J. Ent – A Pseudorandom Number Sequence Test
Program, http://www.fourmilab.ch/random/, 2008.

[44] Woodhouse D. JFFS: The Journaling Flash File System.
Proceedings of the Ottawa Linux Symposium. RedHat Inc.,
2001.

[45] Woodhouse D. JFFS2: The Journalling Flash File System,
version 2. http://sourceware.org/jffs2/, 2008.

