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ABSTRACT

Long-term archival of signed documents presents specific
challenges that do not need to be considered in short-term
storage systems. In this paper we present a Secure Long-
Term Archival System (SLTAS) that protects, in a verifi-
able way, the validity of today’s digital signatures in a dis-
tant future. Moreover, our protocol is the first proposal that
provides a proof of when a signature was created, without
the possibility of backdating. We include a description of
our scheme and an evaluation of its performance in terms of
computing time and storage space. Finally, we discuss how
to extend our system to achieve additional security proper-
ties. This paper does not focus on the long-term availability
of archived information. nor on format migration problems.
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1. INTRODUCTION

Nowadays many documents are created as (or transformed
into) digital records and plenty of electronic services (e-
government, e-commerce, stock exchange, etc.) depend on
them. This requires digital repositories where this infor-
mation can be stored and accessed in a reliable and secure
way [34]. Traditionally, archival systems aim at ensuring in-
tegrity and availability, but even if an archive initially pro-
vides these properties, in the course of time the integrity will
certainly degrade.

This paper is a step forward on the storage of digitally
signed documents and on how to preserve the eternal va-
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lidity of their digital signatures (and thus provide eternal
protection of the integrity of the documents). Secure long-
term archival of signed documents suffers from the fragile
nature of the private signing keys and the validity status of
the corresponding public verification key certificates. The
algorithms we use today to compute digital signatures will
show vulnerabilities in the long run due to progress in cryp-
tology and the increasing computing power [36]. In order to
preserve the validity of signatures, a Secure Long-Term Ar-
chival System (SLTAS) must implement a mechanism able to
provide proof that the following requirements were checked
at a particular time, namely before the document was ar-
chived:

e the document was signed between two indisputable
moments in the past,

e the content of the signed document has not changed
during the storage period, and

e the signature was generated with a signing key that
was valid when it was created.

The first requirement guarantees that the signing time can-
not be shifted before or after the two indisputable moments
in the past, a property which is indispensable in some ap-
plications. Consider the scenarios of electronic stock market
transactions, or betting systems. In these cases, allowing
backdating of an order’s signature may open the door to
fraud which can have an important monetary impact.

Meeting the last requirement ensures the eternal valid-
ity of the signed document, as the revocation status of the
signer’s certificate may influence the validity of the signed
document at a later stage. Only signed documents of which
the signer’s certificate was not revoked or suspended at the
time of verification remain valid forever and are added to the
archive. Let us consider a scenario where Alice and Bob use
digital signatures to sign a contract. Although both have
valid keys at the moment of signing, a year later Alice loses
her key and has to revoke her certificate. In this case, the
contract remains only valid if, and only if, there is a proof
that both signers’ certificates were valid when the contract
was signed, thus before Alice revoked her certificate.

Protocols to fulfill the second requirement have been pre-
sented in [6, 7, 8, 14, 22], yet, to the best of our knowledge,
there is no scheme that satisfies all three. In this paper we
present the first protocol that simultaneously meets all three
properties and at the same time requires a minimum level
of trust in the SLTAS.

Our protocol consists of three phases. In the first one,
the client creates a package including: the signed document



to be archived, a proof of when the signature was gener-
ated and a proof that the signing key was valid at that
moment. Then, the package is sent to the SLTAS, which
verifies its correctness before it is inserted into the archive.
The SLTAS returns an identification token that will be nec-
essary to retrieve the document later on. Finally, the client
can retrieve the package and confirm the consistency of the
archived package to conclude that its content is genuine and
that it was correctly validated at the time of archival.

The rest of the paper is organized as follows: Section 2
presents an overview of the research on Long-Term Archival
systems. We describe our proposal in Section 3 and we dis-
cuss its pros and cons in Section 4. We briefly evaluate its
performance in Section 5 and we outline possible future lines
of research in Section 6. Finally we conclude in Section 7.

2. RELATED WORK

Many papers propose schemes that tackle individual long-
term archival problems, mainly focusing on the long-term
availability of documents. Some of the proposals that pro-
vide long-term availability, lack of a solution for the format
migration problem stemming from the obsolescence of hard-
ware and software. Other proposals, although they provide
migration schemes, do not guarantee long-term integrity.
Moreover, nearly all of these solutions rely on cryptographic
techniques (mostly digital signatures), without taking into
account that the security of currently available algorithms
will most probably be limited or nonexistent in the long-
term.

Several publications present schemes that provide “eter-
nal” availability. In 1996, Anderson proposed a system that
replicates data across the Internet in such a way that the
owner only knows some of its locations [2]. Hence, a cen-
sor (not even the owner) cannot delete all existing copies of
a file. Ganger et al. present PASIS [21], a survivable stor-
age based on a decentralized architecture. It uses data dis-
tribution and redundancy schemes to ensure fault tolerance
and to protect integrity and confidentiality of the documents
by forcing the attacker to compromise several nodes in or-
der to become a real threat. Another approach based on
distributed storage, SafeStore [28], achieves data durability
by combining replication across different publicly available
Storage Service Providers. An efficient audit protocol is pro-
vided to take care of checking that the integrity of the stored
documents is preserved over time. POTSHARDS [41] is a
different distributed scheme where secrets are not replicated
but split into shares [10, 40] and disseminated through differ-
ent machines. A file can be recovered by recovering a portion
of the shares that allows the original file’s recovery. A user
can only recover the file if she knows the correct combination
of shares. In addition, the system uses so-called “approxi-
mate pointers” to allow data recovery even when the key is
no longer available. An acclaimed proposal, LOCKSS [33],
has become an international initiative to support libraries
in the preservation of web-published documents in an easy
and efficient way. LOCKSS is a peer-to-peer system where
documents are replicated over peers. These peers cooperate
to detect and repair damage to their content by voting. In
this approach the main goal is availability of content in the
future, even if little modifications have happened to the doc-
uments. Our protocol, on the contrary, aims at preserving
the integrity of these documents.

Although all these proposals guarantee the existence and

accessibility of documents in the future, none of them pre-
sents a solution for weakening of cryptographic primitives,
nor for the obsolescence of software to access or convert these
documents. Thus, even if documents are available in the far
future, it is most likely that recovering their content or prov-
ing that their integrity has been maintained is impossible.

Other systems concentrate on dealing with the future ob-
solescence of software and hardware; i.e., how to store and
migrate data such that it is readable well into the future.
The Public Record Office Victoria, in Australia, proposes
VERS (Victorian Electronic Records Strategy) [44]. The
system uses XML encapsulation to include metadata to-
gether with the stored document. This extra data ensures
the existence of enough information to read the document in
the future, even if the software or hardware which was used
to create the document is no longer available. VERS uses
digital signatures to preserve the integrity of a document,
but does not provide a method to confirm the validity of
these signatures over time. If the signing algorithms are bro-
ken, tampering with the documents cannot be detected any-
more, thus its usability is questionable. Further, the revo-
cation of any of the archived document’s signing certificates
invalidates the archived documents’ signature(s). A similar
approach to preserve the ability to read (and interpret) in-
formation from a given media in the far future has been pre-
sented in [16, 17]. This architecture is based on three open
standards: the Open Archival Information System Reference
Model (OAIS) [20], Extensible Access Method (XAM) [12]
and Object-based Storage Device (OSD) [19]. It preserves
records by encapsulating them with the metadata needed to
ensure its future availability. Amongst this information, the
field Fizity accounts for the integrity of the document.

Various papers [6, 7, 8, 14, 22] address the obsolescence of
cryptography when dealing with digital signatures validation
far in time (including the fact that the public key certificates
used may be invalid or no longer available at the time of vali-
dation). In all these approaches, a digitally signed document
is stored in an SLTAS which uses timestamps [1] in order to
protect the validity of the initial signature over time. The
archive verifies the signatures at regular intervals, and, if
they are valid, retimestamps them. This process serves to
account for any weakness that may have appeared in the
signing algorithms (under the reasonable assumption that
a Time Stamping Authority will always use a non-broken
state-of-the-art algorithm to issue timestamps). Again, the
proposed systems do not consider migration of formats, lim-
iting their functionality with respect to the long-term avail-
ability of the documents.

The system presented by Maniatis and Baker in FAST
2002 [31] comes close to our work. However, it does not in-
corporate timestamping and retimestamping of the archive,
and focuses on minimizing the trust in the key-archiving ser-
vice, a property which is not required when protecting the
integrity of archived information. A later work [32], pro-
poses a mechanism to create a secure timeline to protect
historic integrity.

Finally, standards [9, 42] are being developed describ-
ing the requirements for an SLTAS. They provide guide-
lines for its implementation including all aspects of security:
availability (submit, manage, retrieve or delete archived ob-
jects), integrity (the archive should support demonstration
of integrity of a document), confidentiality (against third
parties and the archive managers), etc. In the same line,



XAdES [24] is a W3C note that proposes an XML for-
mat for advanced signatures including long term properties
(XAdES-X, XAdES-XL and XAdES-A).

In the next section we present our protocol, a scheme that
protects the integrity and validity over time of the signed
documents in the archive. The protocol uses timestamps
as in previous publications, but goes one step further al-
lowing to prove that the signature existed, and was valid,
at a certain point in time (even before being stored in the
SLTAS). Retimestamping the archived information with the
current state-of-the-art algorithms prevents against the ag-
ing of cryptographic algorithms used for the archived pack-
ages.

Note that our scheme does not focus on the long-term
availability, nor does it on the format migration problem,
or key-archival, but on the reliable integrity protection and
trustworthy archival of signed documents.

3. OUR SCHEME

In this section we present our scheme to achieve long-
term integrity of signed documents providing proof of the
indisputable validity in a distant future of the document’s
signature(s). Our scheme uses timestamps as in [6, 7, 8, 14,
22] to place objective limits on the period between which the
signature must have been produced, and to bind the times
when the correctness of the signature and the validity of the
corresponding signer(s) certificate(s) were formally verified.

The main difference between our approach and previous
ones is twofold. First, all previous work considers as first
proof of existence of a signature the timestamp collected by
the SLTAS upon reception of a signed document. Our pro-
tocol, on the contrary, moves this proof to the client side.
For this purpose, the client collects a timestamp before the
document is first signed to prove that the signature was cre-
ated after a certain moment, and (optionally) a second time-
stamp after the signature was created. This is crucial for
the archival of contracts, patents, etc. as these signed doc-
uments are typically retrieved from an archive much later
than the actual time of signing, and this period could be of
great importance. Secondly, our design differs from preced-
ing approaches in that we collect and archive indisputable
evidence of the validity of the signer’s certificate. This is im-
portant because the validity of the signer’s certificate may
have changed since the document had been added to the
archive.

3.1 Architecture

Our scheme considers a client-server architecture, with
two additional trusted parties (TPs), as shown in Figure 1.
For simplicity, the figure represents both client and server
using the same TPs. We note that this is not required for
the correct functioning of the protocol.

The first trusted party is a Certification Authority (CA)
that is needed to issue public-key certificates for both the
client and the server, and to provide proofs of their validity,
e.g., in the form of Certificate Revocation Lists (CRL) [23]
or Online Certificate Status Protocol (OCSP) [37] responses
(we recommend the use of OCSP responses over CRLs, as
the former provide an explicit and size-efficient confirmation
of a certificate’s revocation status). These proofs are used,
together with the public key certificate of the creator of the
signature, as reference information when verifying digital
signatures (a signature is invalid if the corresponding cer-
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Figure 1: System architecture

tificate is not valid). One has to be aware that, in the long
run, the certificates may be revoked or even simply expire.
For that matter, whenever a signature is placed during the
protocol, the verification reference information is collected
and stored beside the signature itself to allow further vali-
dations.

In order to provide the timestamps needed to achieve
the desired functionality, our architecture includes a sec-
ond trusted party: the Time Stamping Authority (TSA).
A timestamp consists of a cryptographic hash given by the
client (a hash of the signed document and its signature in
our case), and the current time (provided by the TSA) that
are digitally signed by the TSA. This timestamp proves the
existence of the signed data before that moment without the
possibility of post- or backdating. Client and server make
in our scheme, unlike previous proposals [6, 7, 8, 14, 22],
use of a TSA. The client requests two timestamps (one be-
fore and one after signing a document) to place a limit on
the period during which the signature generation must have
taken place, and the proof that the corresponding signer’s
certificate was valid (see Section 3.2). The server uses the
TSA to provide evidence of the archival time of the pack-
age received from the client, and to refresh the validity of
the signatures later in time by retimestamping the archived
information (see Section 3.3).

3.2 C(lient Side

When a client has a document which she wants to archive
in the SLTAS, she first signs it in order to provide an initial
proof of authenticity. Additionally, the client has to provide
a proof of the time of the signature generation, and refer-
ence information that proves that the signing key was valid
at that point. Both requirements are indispensable later
on as evidence in case of disputes over the document (e.g.,
existence of a contract, registration time of a patent, etc).
For instance, this proof can consist of the most recently is-
sued CRL, or a fresh OCSP response that proves that the
document’s signing key was valid at that time. In previous
schemes, the time of the signature generation is given by
a timestamp (7°S1) over the signature itself. However, this
proves only that the signature was created at any point be-
fore the timestamp, but there is no proof of how long before
this time the creation took place. To solve this issue, our
protocol demands from the client two timestamps (T'So and
TS1), one before and one after the signature of the docu-
ment to bound the time of signing. Figure 2 illustrates the
problem and our solution.
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In order to complete the submission of a signed docu-
ment to the SLTAS, the client has to create a package with:
the signed document (doc), the two timestamps mentioned
above, and a proof of the validity of the signing key used
for the signature (CRL, OCSP, etc.). Besides, the client in-
cludes the certificates necessary to verify these timestamps
and signature later in time. The client proceeds as follows
(Figure 3 illustrates the steps and the final result):

1. Requests a timestamp (7'So) from the TSA over an
initialization vector (IV) and collects the TSA cer-
tificate chain. The IV is a value known both to the
client and the SLTAS (this value needs to be known
in order to allow the complete validation described in
Section 3.3.3).

2. Signs the document, together with the first timestamp
(this guarantees that the signature was generated after
the time indicated by T'So):

DScli = DS(TS() ‘ |dOC)7

and collects the appropriate certificate. Optionally,
the client can also collect the reference information
necessary to prove the validity of this certificate at
the time of signing.

3. Requests a second timestamp (7'S1) over DS, and
collects the corresponding T'SA certificate chain. This
proves that the client signed the document between the
times mentioned in T'Sy and T'S1, and (if the proof was
collected) that the signer’s certificate was valid at the
time the signature was created. The signature thus
cannot be post- or backdated, and the archival system
will be able to confirm that the signing key was valid
at the time the signed document was archived.

4. Create a packet with all the information (packet A in
Figure 3).

Once this packet is ready, the client can submit it to the
SLTAS.

We note that although we have considered only one user
signing a document, it is easy to extend the protocol to mul-
tiple signers. In this case, the second step of the protocol
would be split into as many steps as there are users sign-
ing the document. T'Sp and T'S; would then bind the time
of the global signing. The signers would create their signa-
tures in sequential order, such that this order can be proved
afterward, obtaining:
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Figure 3: Creating the packet at the client side.

3.3 Server Side

The Secure Long Term Archival System (SLTAS) per-
forms four types of operations: archiving (receive a new doc-
ument from a client and store it), retimestamping (refresh
the integrity, validity and time of signing proofs), retrieval
(answer client requests for documents) and removal (elimi-
nate a document from the storage). The rest of this section
explains how the server carries out these operations.

3.3.1 Archiving a document

Upon reception of a document, the SLTAS checks that
the signature and timestamps are valid and collects the in-
formation necessary to confirm the signature’s validity in
the future (if it was not already provided by the client).

Once the signatures have been successfully validated, the
SLTAS will request a timestamp (7'S2), which proves that
the packet validation and archival took place between T'S1
(the last timestamp requested by the client) and T'S>. Fi-
nally, the SLTAS will store all the collected information.
The complete procedure is as follows:

1. The SLTAS receives a packet and checks that its signa-
ture and timestamps are valid. If it was not provided
by the client, the SLTAS also collects the reference in-
formation necessary to validate the signatures in a far
future (packet B in Figure 4).

2. Optionally, if the SLTAS has a policy with respect to
the maximum time allowed between the generation of
the two first timestamps, it checks the time span be-
tween T'So and T'S;.

3. Once the correctness of the packet is confirmed, the
SLTAS requests a new timestamp (7'S2) that bounds
the packet verification time between T'S1 and T'Sa.

4. Tt stores the whole packet (packet C' in Figure 4).

Lastly, the SLTAS calculates an identification token for
the packet that the client can use as a proof of ownership of
the archived information. This token is sent to the client,
who stores it to retrieve the document later in time.

3.3.2 Retimestamping

The main purpose of an SLTAS is to extend the reliability
of the claim that a signed document was validly signed in
the past. In our scheme, as in [6, 7, 8, 14, 22], this property
is achieved by retimestamping the stored documents and
all the additional information that supports this claim at
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Figure 4: Processing the packet at the server side.

regular intervals (the duration of this interval depends on
the application, content, importance, etc. of the archived
information).

Each new timestamp is applied using the state-of-the-art
cryptographic algorithms at the time of retimestamping, and
is used to add an extra layer of security creating an onion.
The inner onion layer consists of the package originally sent
by the client, and subsequent layers that are added by the
server are linked to it. For each of the archived documents,
the SLTAS tests its integrity by validating the latest signa-
ture on the package and then requests a timestamp over the
complete onion. We illustrate a retimestamping operation in
Fig 5. At time given by timestamp 7'Sp, the onion contains
packet C (see Fig 4), the timestamp itself and the reference
information to validate it. When later on a new layer has
to be added (at time given by T'Sg), packet D is validated,
reference information of this validation collected and a new
timestamp is required.

| | -
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Figure 5: Retimestamping process.

The protocol works under the reasonable assumption that
the Time Stamping Authority always uses the latest — state-
of-the-art — signing and hashing algorithms, which ensures
the protection of the integrity of the full onion until the next
timestamping cycle.

3.3.3  Retrieval of documents

By storing all the timestamps (the initial and the refresh-
ing ones), along with their certificates and proofs of validity
(CRL, OCSP responses,. .. ), we create a verifiable path to
assert that the archived document has not been tampered
with between the moment it was first signed and the time
given by the timestamp in the outer onion.

When a client requests an archived signed document, she
is first asked for a proof of ownership or for the identifi-
cation token that was issued as a result of storing the in-
formation in the SLTAS (see Section 4.4). Assuming this
proof is correct, the client receives the whole onion; i.e., the

original document and signature and all the layers of time-
stamps. After having verified the information received from
the SLTAS, the client (or anyone else such as a judge) will
be convinced that the signed document’s integrity has been
preserved. The verifier proceeds with any of the following
two validations:

e Simple validation: if the verifier completely trusts
the correct operation of the SLTAS, she will also trust
that the retimestamping process has been correctly
performed. In this case, the verifier only confirms that
the last timestamp is indeed valid to conclude that the
signed document from the archive originates from its
claimed signer(s) and has remained unmodified since
the time of archival. This follows from the properties
of the inner onion layers that have been verified each
time a new layer was added by the SLTAS.

e Complete validation: the verifier can also perform
a complete confirmation of the correctness of all the
timestamping layers over the document to confirm that
the archived document is genuine. In this case the ver-
ifier starts with the simple validation, after which she
will unwrap it and check the next layer with the in-
formation available (i.e., certificate of the TSA and
proof of its validity at the time the timestamp was
requested). The verifier repeats this validation pro-
cedure until she reaches the original signature of the
document and the document itself. At this point, she
can also verify the time when the signature was cre-
ated and validated. An example of this operation is
depicted in Figure 6.
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Figure 6: Validation process.

3.3.4 Removal of a document

Although the main purpose of an SLTAS is to provide
evidence far in the future that a signed document was validly
signed in the past, it may be the case that a client (or the
archival system itself) would like to delete a document from
the archive.

When considering an SLTAS, the removal of a document
could have two interpretations. On the one hand, the tra-
ditional sense of physically eliminating all content related
with the document (the archived information together with
its associated onion). On the other hand, the removal op-
eration can also be seen as stopping the archival protection
operations of the SLTAS over the document, i.e., the onion
corresponding with the archived information is no longer re-
timestamped. This implies that it will be no longer possible
to demonstrate the validity and time of signing of the ar-
chived information once the cryptographic algorithms that



were used to calculate the outer onion get compromised.
One method or the other would be more appropriate de-
pending on the type of archived information, the storage
space available, or the type of service the SLTAS offers.

4. DISCUSSION

4.1 Modification and migration of documents

Our system does not support any modifications to ar-
chived information, as its main goal is to preserve the long-
term integrity of signed documents, and these are inherently
unmodifiable.

Migration of format is a special type of modification, to
ensure the availability of content against the obsolescence of
hardware and software. However, in our scheme any modifi-
cation to a stored document implies the meaninglessness of
the validity proofs. Haber and Kamat propose in [22] a tech-
nique to modify the content of a document not by erasing
or changing the original document itself, but by storing the
modifications performed and the modified document along
with the original. This method can be applied to the prob-
lem of format/software obsolescence, as updates to the for-
mat of the documents to maintain their readability could be
addressed as any other modification. Storing the transfor-
mation algorithm would create an auditable path between
original and reformatted document such that one can be
sure that they present the same content. However, this ap-
proach is limited by the fact that applying the algorithm to
the original document may no longer be possible due to the
obsolescence of conversion software for the archived content.

We note that, although our protocol does not focus on the
availability of a document’s content, it is easy to adapt it to
include a mechanism similar to Haber and Kamat’s to deal
with the migration problem. Moreover, even if the document
is no longer available due to obsolescence, the validity check
could still be performed thus guaranteeing that the original
document has not been modified.

4.2 Storage overhead

The approach presented in this paper implies an ever
growing storage space need. In order to preserve proofs
of validity and existence at a point in time of a signature,
we need to store the initial timestamps, the signed docu-
ment itself, the initial reference information, and the onion
of timestamps (a new signature and its corresponding ref-
erence information for each onion layer). As available disk
space grows exponentially in time [43], the retimestamping
overhead becomes negligible.

We note that the overhead of the signatures and their cor-
responding reference information becomes even more negli-
gible with respect to the size of the files stored in the system
when they grow, for example, if the SLTAS would store video
or other kinds of multimedia information (see Section 5).

4.3 More security properties

Our protocol, as described, focuses on providing the eter-
nal validity of digitally signed information, and does not
guarantee “eternal” availability against large-scale disasters,
human errors, component faults, etc. [4, 5]. Possible so-
lutions to provide such properties have been introduced in
existing systems such as SafeStore [28] or PASIS [21], and
are out of the scope of our proposed scheme. However, the
output of our system can be used as input of any of the

proposals mentioned in Section 2 to improve the long-term
availability of the documents and their content.

An additional desired property (as stated in [42]) is con-
fidentiality of archived documents (including confidentiality
towards the SLTAS). In order to provide this functionality,
an SLTAS must accept encrypted data which has several
drawbacks in the long run that no technical measures can
prevent. Over time, the encryption algorithm will become
weaker. If this is the case, the SLTAS (or an outside at-
tacker) may be able to decrypt the original document and
violate its confidentiality. Furthermore, when receiving an
encrypted document, the SLTAS does not know what it is
archiving, as the plaintext corresponding to the ciphertext is
only known by its owner/owners. The SLTAS only protects
the integrity of the encrypted bit string, and cannot pro-
vide any guarantees regarding the actual content of the file.
Moreover, the owner of the encrypted information stored in
the SLTAS is responsible for the key management of the
archived information in the long-term, to ensure the doc-
ument can be decrypted in the future. Management and
escrow mechanisms to protect encryption keys are outside
the scope of our scheme. Note that the scheme we propose
does not depend on the availability of genuine signing keys
of the signer(s), and on the genuine signing keys of the Time
Stamping Authorities that are involved while timestamping
and retimestamping. Signing keys do not need to be ar-
chived to prevent key compromises, and are therefore not
subject to key archival services.

4.4 Other issues

An SLTAS can be used for numerous purposes that may
require different levels of authentication. This can be ex-
tended to each of the operations a user performs on the
SLTAS. In most applications, the SLTAS needs to be au-
thenticated towards the user, but this does not necessarily
hold in the other direction. A user may need to be authenti-
cated to insert new documents into the archive, but not for
reading them (e.g., public repositories). Furthermore, for
some applications (e.g., patents repository) a user may like
to have anonymity when accessing the SLTAS, or at least
privacy when retrieving information [15, 38]. In our scheme,
we did not consider any authentication [35] at the beginning
of the protocol, as it depends on the concrete specification
of the SLTAS.

The effectiveness of our protocol is based on the rea-
sonable assumption that, in general, signature algorithms
and cryptographic hash functions that are used in signature
schemes (for instance, RSASSA-PSS [29]) are not suddenly
broken. Normally these algorithms become weak in sev-
eral steps, first theoretically and later in practice, giving
time to the Time Stamping Authority to update its signa-
ture scheme and the corresponding algorithms, and to the
SLTAS to retimestamp the documents it stores before there
is any danger to compromise the archived information’s in-
tegrity. If this assumption becomes invalid, the integrity of
the last layer cannot be guaranteed any longer. An archived
onion will then only be protected by its inner layers, and if
all the signing and hashing algorithms that were used are
broken, the integrity of the document and the proof of its
validity can no longer be sustained.

Finally, at the client side measures have to be taken in
order to securely store the identification token of a docu-
ment. Tampering with this token must be prevented, as any



modification could mean losing the ability to recover the
archived information. This is a very delicate issue, as the
obsolescence of the signature algorithms may also affect the
signed token. If a document stored in the archive must be
kept confidential, i.e., if the document should only be made
available to the entity that archived the information, the
SLTAS must require authentication before granting access
to the archived information (e.g., using access control lists)
because the SLTAS does not perform any encryption or de-
cryption services. This would complicate sharing archived
documents but this is outside the scope of this paper.

5. IMPLEMENTATION
AND EVALUATION

In order to evaluate our protocol, we have written a Java
implementation of our SLTAS using RSASSA-PSS [29] sig-
natures as an example. Our implementation confirms that
the creation of the initial onion and retimestamping previous
onions require negligible time. Furthermore, given Moore’s
law, this becomes even cheaper on a daily basis. Finally, we
show that the storage overhead is affordable.

To carry out our experiments we assumed that the client
generates a 1024-bit RSA [39] signature, and that the CAs,
Root CAs, OCSP responders, and Time Stamping Authority
involved generate 2048-bit RSA signatures to issue the cer-
tificates, OCSP responses and timestamps that are included
in the first onion. In order to consider the increasing need of
security, we chose to enlarge the RSA modulus length of the
signing keys that are used to issue the certificates, OCSP
responses and timestamps for each onion layer with 256 bits
per iteration.

We assume that the SLTAS would retimestamp its archive
every three years over a period of 75 years, i.e., starting to-
day with a 2048-bit RSA modulus, ending in 2080 with an
8192-bit RSA modulus. Given [30], it would be conservative
to expect that an 8192-bit RSA modulus offers adequate
protection until 2100. Therefore the overhead figures pre-
sented overestimate by far the authentic numbers that a
real system would need to deal with. It is also important to
consider that the RSA-based signing scheme may be com-
promised, in which case the SLTAS would update its signing
scheme to use stronger cryptographic techniques to protect
the integrity of information (e.g., elliptic or hyper-elliptic
curves [27]).

The timings we present do not include hashing the infor-
mation in the onion nor network latencies when collecting
OCSP responses and timestamps; only the generation and
verification of the signatures and timestamps were taken into
account.

5.1 Archiving a document

As explained in Section 3.2, in order to submit a signed
document to the SLTAS the client has to bound the time the
signature was generated by requesting two timestamps from
the TSA, one before and one after signing. Additionally, the
client has to include the certificate chains corresponding to
the signatures that are necessary to verify the signing cer-
tificate and, optionally, a proof of their validity at the time
of signature creation. Once all evidence is accumulated, the
client can submit this information to the SLTAS. The over-
head given by the timestamps and the reference information
for the first onion layer is only 9.7 Kbytes when using real-

istic X.509 [25] certificate chains with a document signer’s
certificate of 1400 bytes, Certification Authority (CA) or
Timestamping Authority (TSA) certificates of 975 bytes,
and self-signed Root CA certificates of 920 bytes. Creat-
ing the first onion takes less than one second in our non-
optimized implementation.

Upon reception of the packet with the document and the
reference information, the SLTAS has to verify its correct-
ness and add a new timestamp that bounds the time of
archival. This operation takes less than 350 milliseconds
nowadays, and most probably much less in the future [36],
which makes it suitable for a large scale server.

5.2 SLTAS Internal operations

In order to preserve the validity of the signatures, the
SLTAS periodically retimestamps all the documents it stores.
The time needed to retimestamp an individual document us-
ing the model described above decreases significantly each
time the retimestamping operation if we also take into ac-
count that the available computing power doubles every 18
months [36]. We conclude that the operation time is not a
restriction for the good functioning of the server.

5.3 Retrieving a document

When a client or a judge needs to verify that the integrity
of a signed document has been successfully maintained over
time, she can perform any of the validation schemes de-
scribed in Section 3.3.3. The complete validation operation
implies the validation of each of the signatures in the onion
layers, including the client’s signature; therefore it gives an
upper bound for the time of verification of both validation
schemes. In Figure 7 we can see the time needed to perform
a complete validation depending on the number of retimes-
tamping layers on the document (we recall that we consider
three years as retimestamping period, and that we apply the
correction of Moore’s law). Again, the time to validate 25
retimestamping layers (equivalent to 75 years in our model)
is very reasonable.

Time to validate an onion (including Moore's law correction)
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Figure 7: Time to validate an onion (including
Moore’s correction).

5.4 Storage overhead

As argued in the Section 4, the storage space needed by
the SLTAS grows indefinitely. In order to preserve the in-
tegrity of the document over time, it is necessary to store the



initial and subsequent timestamps, together with their va-
lidity reference information. However, as shown in Figure 8,
the overhead of the growing certificates, OCSP responses
and timestamps in each onion layer’s is affordable, and for
certain types of documents (e.g. multimedia information) it
is even negligible (see Figure 9).
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Figure 8: Overhead of the onion.

Onion overhead as a function of document size
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Figure 9: Onion overhead as a function of the doc-
ument size.

6. FUTURE WORK

The presented design for an SLTAS uses PKI technology
to protect the archive. This implies the use of public-key cer-
tificates of the document signer, that may contain sensitive
information (e.g., official name, unique identifiers). During
the period of archival, these certificates are not only val-
idated by the SLTAS, but they are stored along with the
document itself and therefore available to any client that
retrieves it. To avoid privacy concerns, a line of future re-
search would be to extend the protocol to use anonymous
credentials [11, 13], which would protect sensitive data from
the server and other clients.

The obsolescence of cryptography also affects the solu-
tion of other problems associated with long-term archiving.
Lately, several papers [3, 18, 26] address the problem of prov-
ing data possession, where the user of an external archival
facility wants to check that the server correctly maintains
archived her document while avoiding the cost of retrieving
it in terms of bandwidth, memory, etc. The authors provide
“long-term” solutions based on RSA signatures, symmetric
cryptography or MAC algorithms without accounting for the
possible weakening of these primitives over time and its con-
sequences. More work is needed to improve these protocols
to ensure that the obsolescence of cryptography will not be
an impediment for their correct functioning in the future.

7. CONCLUSION

The correct archival of signed documents is an essential
building block for systems that depend on the indisputabil-
ity of these documents. Applications for e-government, e-
health, e-commerce or even more basic cases, such as simple
web services (like forums or web browsing) have the need
to securely archive their signed application-level informa-
tion [34] to prevent that actors can deny the production
of these signatures, e.g., by simply revoking the certificate
corresponding with the signing key. Guaranteeing this prop-
erty involves two aspects. First, collecting a proof that the
signer’s certificate was valid as soon as possible after the sig-
nature was created. Second, the careful retimestamping of
the signed information and its validity proof, so that this ev-
idence does not become obsolete over time as a consequence
of the aging of the underlying cryptographic primitives.

The contribution of this paper consists in a protocol that
deals with the weakening of cryptography over time and the
need to re-validate signed documents and their certificates.
Our scheme permits to prove far in the future the validity
of a digital signature in the past, thus providing the eternal
validity of this signature. Furthermore, it allows binding the
time span of the signature generation.

Our protocol improves all previous schemes [6, 7, 8, 14,
22], by bounding the time of existence and validity of the sig-
nature between two moments in time, instead of just proving
that it existed before the moment of archival. Our approach
requires the minimum amount of trust in the participating
servers and provides full verifiability of the actions taken by
the SLTAS. We have also shown that the time and space
overhead associated with our protocol does not present an
impediment to its usability. Finally, as discussed in Sec-
tion 4, our protocol can be integrated with other proposed
solutions to account for migration problems, availability, etc.
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