Using Rhythmic Nonces for Puzzle-Based DoS
Resistance

Ellick M. Chan, Carl A. Gunter, Sonia Jahid,
Evgeni Peryshkin, and Daniel Rebolledo
University of lllinois

ABSTRACT

To protect against replay attacks, many Internet proto-
cols rely on nonces to guarantee freshness. In practice,
the server generates these nonces during the initial hand-
shake, but if the server is under attack, resources con-
sumed by managing certain protocols can lead to DoS
vulnerabilities. To help alleviate this problem, we pro-
pose the concept of rhythmic nonces, a cryptographic
tool that allows servers to measure request freshness
with minimal bookkeeping costs. We explore the impact
of this service in the context of a puzzle-based DoS re-
sistance scheme we call “SYN puzzles”. Our preliminary
results based on mathematical analysis and evaluation
of a prototype suggests that our scheme is more resistant
than existing techniques.

1. INTRODUCTION

Cryptographic nonces are used to help ensure fresh-
ness in many distributed applications. They are widely
applied in common Internet protocols to help thwart
replay attacks, and hence they play a central role in
the security of the network as a whole. Traditionally,
such nonces are issued from a service provider to clients
as part of the handshake protocol, however, recent re-
source depletion attacks game the system, as the act of
nonce issuance in certain protocols can be costly when
a server is under heavy load or attack [6]. In this paper,
we postulate the existance of a global nonce broadcast
system and explore its applicability to DoS resistance
with client puzzles.

Client puzzles have been proposed as a countermea-
sure to DDoS attacks. When a server is under heavy
load, clients whom intend to access services must com-
mit to the transaction first by performing work. The
cost of this work acts as a payment and proof of intent:
legitimate clients can afford to commit some resources

CSAW 08, October 31, 2008, Fairfax, Virginia, USA.

to access a service whereas malicious computers can-
not do so without sacrificing their attack capability to
a certain extent. Although this approach does not di-
rectly solve the problem, it at least increases the number
of nodes necessary to launch a successful resource-based
DDosS attack, ideally to an unacceptable level for the at-
tacker. Puzzle schemes have evolved over time, but the
fundamental concept remains the same: a client makes
a request, gets a puzzle, solves it, and sends the result
back as part of a hash cash. This means that the puz-
zle issuance system is itself a potential vulnerability. It
is possible to off-load responsibilities to some degree,
for instance by creating a special puzzle issuer distinct
from the main server, but this puzzle issuer then itself
becomes a potential target.

This paper explores the idea of puzzles that can be
obtained without a puzzle issuer server per se. Instead
we postulate the existence of a cryptographic tool called
a “rhythmic nonce” which is basically a stream of ran-
dom numbers broadcast by a secure global source with
the property that the numbers are unpredictable but
the time intervals between them can be efficiently calcu-
lated. The idea is similar to a secure synchronized global
timestamp, but focuses on the intervals between nonces
rather than absolute times and provides a source of ran-
domness. Such a service does not exist in the Internet
now, but services such as DNS and GPS or protocols
such as secure multicast could be extended to provide
rythmic nonces.

In our approach, clients solve puzzles with parameters
harvested from broadcasts of the rhythmic nonces rather
than requesting them directly from a puzzle issuer. The
server admits new connections based on puzzle cost and
freshness which are deduced from the rhythmic nonce
used in the puzzle. Salting the rythmic nonce with in-
formation about the client and server limits the ability
of attackers to share puzzle solutions, and the global
nature of the rhythmic nonce stream (which might be
available from many sources) limits the effectiveness of
an attack on the rhythmic nonces themselves. Our de-
sign thus aims to assure that new DoS vulnerabilities are
not created by minimizing server-side state and compu-
tational costs. We substantiate our claims through a
theoretical analysis of the protocol and empirical evalu-
ation which demonstrates that our system is capable of
processing requests at about forty times line rate over
100 Mbps ethernet.



Our contributions in this work are:
1. The introduction of Rhythmic Nonces.

2. The application of Rhythmic Nonces to puzzle-
based DoS countermeasures.

3. The evaluation of a Rhythmic Nonce prototype.

This paper is organized into seven sections. Section 2
overviews the work on puzzles as a DDoS defense mech-
anism. Section 3 introduces the concept of rhythmic
nonces and sketches ideas about their implementation.
Section 4 introduces SYN puzzles, which is our appli-
cation for rhythmic nonces. Sections 5 and 6 provide
theoretical and experimental treatments respectively of
the SYN puzzles based on rhythmic nonces. Section 7
summarizes conclusions.

2. RELATED WORK

The Internet was designed to forward packets effi-
ciently. However, the finite nature of network band-
width and server resources sometimes causes lapses in
service availability due to congestion resulting from flash
flooding, which involves excessive levels of legitimate re-
quests, or Denial-of-Service (DoS) attacks, where ma-
licious attackers attempt to overwhelm the network or
the server. DoS attacks can take the form of brute force
attacks on network resources or semantic attacks that
exploit vulnerabilities of specific protocols, algorithms,
or implementations [8, 12]. Effective responses include
traceback and filtering techniques and protocol modifi-
cations such as SYN cookies. However, the effectiveness
of these strategies is diminished by Distributed Denial-
of-Service (DDoS) attacks that disguise attack origins
by mimicing legitimate flash flood traffic through the
use of multiple diverse hosts.

Seminal work involving client puzzles is described
in [11, 5] where computational puzzles are used to de-
fend against connection depletion attacks. The most
widespread puzzle format is, given a bit string b and a
secure hash function h, finding a bit string x such that
h(b||z) has a certain number of leading zeros (|| denotes
concatenation). Since this means that puzzle difficulties
can only be powers of two, it has also been proposed
to require multiple puzzles, different puzzles of different
difficulties, or a hash inversion given a hint.

In most studies, puzzles are generated on-the-fly by
the server. For example, the client puzzles proposed
in [6] are created by the server as part of an extended
TLS handshake. In puzzle auctions [14], clients use the
puzzle difficulty to bid for server resources. Clients
which solve puzzles of the highest difficulty win the
auction to gain prioritized access to server resources.
To prevent pre-computation and replay, [4] requires the
server to periodically generate a server nonce and send
it to interested clients.

Puzzle schemes do not always require processing time
as payment and may use memory resources or properties
instead: [3] exploits memory latency for memory-based

puzzles to provide some degree of fairness for machines
of varying computational capability, from low-end hand-
held devices to high-end servers. The authors in [7] also
propose using memory-bound search algorithms to this
end.

[15] proposes the use of Diffie-Hellman to outsource
puzzles to an external bastion (which signs them dig-
itally) in an attempt to protect the overloaded server
from extra puzzle traffic, however the bastion itself may
become a point of failure. [10] proposes to harvest chal-
lenges from existing Internet data sources such as stock
prices and RSS feeds to generate puzzles without de-
pending on the server itself. Rhythmic nonces are based
on a similar principle, but provide a deliberate strategy
rather than attempting to exploit sources for puzzles
incidentally. However, the techniques in [10] could be
viewed as a practical implementation strategy for rhyth-
mic nonces to the extent the techniques are the same.

All but the last approach requires the server to gen-
erate puzzle parameters upon receiving a request. They
also require the server to keep some form of state whose
size or computational cost ultimately depends on the
number of client puzzle requests and therefore leaves
the server open to attack. Motivated by these limita-
tions, we propose a technique where clients themselves
generate puzzles without involving the server at all. The
only task the server must perform is to verify the puzzle
solution attached to the client’s initial SYN packet.

3. RHYTHMIC NONCES

“Rhythm” comes from a Greek word that means a
measured flow or movement. A sequence of random
numbers (u,) € AY is a rhythmic nonce stream if find-
ing un4+1 knowing wn, Un—1, ..., uo is an intractable
problem, and if for any natural j there exists an easy-
to-calculate function §; such that

05 (tun, um) = min(|n — m|, 7).

Such a sequence is made available using a global secure
broadcast at instants 7N in such a way that the time
interval between successive rhythmic nonces |[7(N+41) —
7(N)| is known to within a stipulated threshold. This
interval is the “rhythm” of the nonces; it can be com-
bined with the unpredictability of the nonces to show
freshness and as a source of common random numbers.
It can be varied according to application, for instance,
one stream of rhythmic nonces might be provided in a
allegro of milliseconds and another in an andante of sec-
onds.

There are three general strategies for freshness proofs
in security protocols, round-trip nonces, timestamps,
and sequence numbers. Each of these has similarities
and differences compared to rhythmic nonces. Like
round-trip nonces, rhythmic nonces are based on unpre-
dictable random numbers, but unlike round-trip nonces
they are not intended for a round trip, but rather for
general broadcast so they can be shared by all nodes.
Like timestamps they are shared by all nodes generally,
but unlike timestamps they add a random element and
they are not based on a global absolute time but only on
a predictable temporal interval between nonces. They



are similar to sequence-numbered passwords, but they
are used quite differently since they are released glob-
ally on a temporal schedule. Rhythmic nonces could
have many security applications and similar ideas have
been considered in the cryptography literature. For ex-
ample, Moran, Shaltiel and Ta-Shma [13] consider the
idea of using a broadcast of a random number too long
for storage as a basis for non-interactive timestamping.
Their aim is to eliminate the need to send messages to a
timestamping service when generating a timestamp on a
document. Our aim is to eliminate the need to send mes-
sages to a puzzle server when providing proof-of-work for
a request.

There are a variety of ways to represent the values
and interval function for rhythmic nonces. For instance,
a stream of consecutive integers could be encrypted un-
der a public key, or a reverse hash stream salted with a
secret can also serve the same purpose. In this paper,
we examine an implementation of Rhythmic Nonces us-
ing repeated encryption. In this context the encryption
process is performed by applying a one-way trapdoor
function e to the cleartext. Its inverse is a decryption
function d, and if we define u,+1 = d(un) then we ob-
tain a rhythmic nonce. Indeed, knowing u,, un—1, and
ug is equivalent to knowing wu, because un_x = ek(un)
(for k = 0,1,...,n), and in a public-key cryptosystem
the problem of finding wn+1 knowing u, = e(unt1) is
intractable. The distance functions d; can be generated
as follows:

min({n € [[O,j]”en(w) =y}
u{n € [0, j]le" (y) = =} U {j})

These functions are easy to calculate since they only rely
on encryption. We may, in some cases, have an incorrect
estimation (for example if €3(z) = y and €®(y) = ) but
for sufficiently small values of j, this does not happen
very often because if it did it would be a security flaw in
the encryption algorithm (as you could basically decrypt
with a few successive encryptions).

This result shows that we can use RSA or elliptic curve
cryptography to generate the rhythmic nonces and ob-
tain a very high degree of security. Indeed [9] states that
a 256-bit ECC key can provide security for the foresee-
able future (barring significantly capable quantum com-
puters).

As for the broadcast aspect of rhythmic nonces, there
is, of course, a practical challenge to accomplishing this
at the scale of the Internet. However, a variety of ser-
vices already have some or most of what is required. For
instance, GPS satellites provide times that are accurate
to within nanoseconds; perhaps these services could also
provide rhythmic nonces. DNS servers are often cited as
a scalable infrastructure for the distribution of virtually
anything; using them to supply rhythmic nonces does
not seem technically difficult. Real time Seismic data
and observations of solar activity [2, 1] can also serve
as out of band data sources. Let us add to this a short
sketch of an infrastructure based on a gossip protocol as
illustrated in Figure 1. The idea is that each router keeps
track of the most recent rhythmic nonce and, upon re-
ceiving another from an adjacent router, it checks that

di(z,y) =

» Logical
Time Server

Figure 1: Rhythmic Nonces communicated via
router gossip

it is more recent than its own and that it is authen-
tic. In that case, it updates its own rhythmic nonce
and sends it on to all other adjacent routers and clients.
The rhythmic nonces originate at a small number of root
timeservers, analogous to the DNS root servers. While
this strategy might seem implausible for deployment in
the Internet as a whole, it could be used in conjunction
with other mechanisms. For instance, it might be imple-
mented at an enterprise using as its root an enterprise
server that connects via some other architecture to the
global rhythmic nonce distribution system.

The rhythmic nonce message format we use in our
study has the form (n,un,s({n,un})), representing a
sequential identifier n, the nonce u, and a signature
of these two values. Therefore, checking freshness and
authenticity is easy, and furthermore this format foils
spoofing and replay attempts. It also allows new routers
to bootstrap efficiently because, as long as there is a
path from a root timeserver and the new router, it will
receive the correct rhythmic nonce. Further, given the
redundant nature of Internet links, this protocol would
be highly resilient to DoS attacks. The root servers can-
not be attacked as they receive no traffic and the amount
they send is constant.

4. SYNPUZZLES

A proper implementation of client puzzles must take
into account several constraints: it must not only ensure
that a client cannot forge a puzzle solution without ac-
tually solving it, but it must also guarantee that puzzles
cannot be solved in advance, that they cannot be eas-
ily shared by several clients, and that the puzzle scheme
does not introduce any additional DoS vulnerabilities.
Since network state (viz. SYN or TCP tables) has been
repeatedly exploited to perform DoS attacks, one of our
innovations is that we force the client to send the puz-
zle solution on the very first packet to the server using
the TCP SYN packet. This can be contrasted with ap-
proaches like [6] where the puzzle exchange occurs in the
TLS handshake after the server has already allocated
significant resources for the handshake itself. Moreover,
the use of SYN puzzles works for any type of TCP link,
not just for those running TLS.



To gain access to a protected server, the client must
solve a puzzle. Assuming that it knows the required
puzzle difficulty k, it listens for the most recent rhyth-
mic nonce ¢, chooses a random session nonce n, and the
task is then to find z such that h(t||n||z) has k leading
zeros. As mentioned, although processing costs seem to
increase geometrically, we can exert finer control over
them by requesting more than one, in the same way we
can pay thirty-three dollars with one, two, five and ten
dollar bills.

The client then solves the puzzle and sends its param-
eters and the solution to the server. If the puzzle is valid,
has sufficient difficulty, and is fresh enough, it accepts
the connection. Naturally, the server decides how recent
a puzzle needs to be in order to be considered fresh. The
server can also use the session nonce n or a hash thereof
to create virtual channels and so thwart replay attacks
or to fingerprint botnet clusters.

To discover the puzzle difficulty, the client first sends
a puzzle solution of nonzero difficulty. If, by the time
the server receives it, the puzzle is valid but the packet
is not fresh enough then it replies with a modified reset
packet indicating this error condition. If, on the other
hand, the puzzle is valid and fresh enough but of insuf-
ficient difficulty, the server replies with a modified reset
packet indicating the required difficulty for access. This
approach limits the use of SYN-puzzle-enabled servers
as reflectors (since RST packets are small when com-
pared to SYN+puzzle packets) and, at the same time,
avoids any resource commitment on the server side until
the client has performed enough work, thereby limiting
secondary DoS vulnerabilities.

So far, our scheme prevents cheating (as long as we
use a secure hashing function), pre-computation (since
puzzles must be relatively fresh), we’ve been careful not
to expose any state that might induce additional DoS
vulnerabilities and, as we will see later, experimental re-
sults show that a typical server can process SYN-+puzzle
packets at about forty times line rate over 100 Mbps eth-
ernet. However, our scheme is still vulnerable to replay:
a malicious client can send the same puzzle solution in
the small window during which it is still fresh. Intu-
itively, if we make this window smaller, the server be-
comes less vulnerable to attacks, but this may put clients
located further away at a disadvantage (in terms of la-
tency). However, we claim that by carefully choosing
the size of the window we can ensure that a large per-
centage of legitimate clients get access even in an attack
scenario.

5. THEORETICAL EVALUATION

We now perform a theoretic evaluation of our scheme,
and our goal is threefold: first, we want to know how
often we should broadcast the rhythmic nonces; second,
we would like to see whether in the absence of DoS at-
tacks a large percentage of users can send their puzzle
solutions in time; and finally, we evaluate the same per-
centage in a DoS attack scenario.

First we will assume, without loss of generality, that
rhythmic nonces are sent at instants 7N and their se-
quence numbers start at 0. If a client ¢ contacts a server

0
PA

101
0.8+
0.6
041
0.2+
kr: Effective
1 1 1 1 1 W| ndow
0.1 0.2 0.3 0.4 05  gge ©®

Figure 2: Packet accept rate (P}) without DoS
as a function of the effective window k7

s at time ¢, he has access to rhythmic nonces up to [%}
(seq. number) where [. is the latency between the ma-
chine and the nearest root timeserver. The server re-
ceives the solution at time ¢ + ¢ + [ where c is the cost
(in time) to solve a puzzle and [ is the latency between
the client and the server. The server’s rhythmic nonce
is then [#¢t=Ls] and it accepts the connection if

tretl—L] [t—l
T T

Where 7 is called the window. This condition is the same
if we take ¢ modulo 7, so we can assume that t € [0, 7).
We now give probability distributions to each of these
variables: first it is reasonable in a first approximation
analysis to assume that all these variables are indepen-
dent, that c¢ is constant, that, for a given server, [, is
constant and that ¢ is uniform. Further, we model I and
l. as exponential variables with averages 1/a = 100ms
and 1/3 = 50ms (as that there are many geographically-
spread root timeservers): probabilities, in this context,
therefore represent percentages of packets.

With this model, we can give a lower bound to the
probability of accepting a packet independently of the
(nonzero) window size n:

aQe—Br(l _ e—B'r) _ 2e—a7(1 _ e—OtT)
af(B—a)r

We observe that this function of 7 increases and tends
towards 1. Now, 7 must be as small as possible to allow
the server to fine-tune the window, but large enough to
maximize the overall number of legitimate packets ac-
cepted. Luckily, this expression has an inflection point,
so values close to this point are reasonable trade-offs
between these two constraints, and we may choose the
frequency of the rhythmic nonces as the inverse of this
value.

We also proved that, without attacks, the probability
that a packet gets accepted by the server is

Q?(1—eP)e Pk — g2(1 — e ™)e ok
af(a—p)r

where we call k =7 —p =n— =!= the (reduced) size of

<n

1—

Pi=1-



P ke ()

y=0.5
=075
> =l
_— ///
06 S
//
04l | /
02}/
’/ pr: Effective
‘ | ‘ ' Puzzle
05 10 15 20 cosys)
Figure 3: Maximum packet accept rate

(PX(p, kmax(p))) under DoS as a function of the
effective cost pr with v =1,0.75,0.5

the effective window on the server side. This is plotted
in Figure 2). Indeed, we call p = <<= the (reduced)
effective cost of the puzzle as seen by a client: even
though a puzzle takes c seconds to solve, each client gets
bonus time from the fact that the server’s clock running
ls seconds late, and we use the word reduced because
this cost is expressed in units of 7. As we can see, even
with a very small window we can ensure that a high
percentage of clients get serviced.

Now we determine the efficiency of our scheme under
a distributed denial-of-service attack. The scenario is
as follows: a botnet of m agents is trying to attack a
server and they all have the most up-to-date rhythmic
nonce (as this is a worst-case scenario). We assume that
the agents cannot cooperate because latencies between
them would make this impractical (as real-world botnets
are spread all around the world). We now denote ¢, the
server’s capacity, and therefore its maximum number of
virtual channels. Of course m < ¢s, as we do not claim
to solve DoS attacks that masquerade as flash floods.

Since the client session nonces are mapped to the vir-
tual channels, changing channels means re-computing
puzzle solutions and therefore we assume each agent
tries to attack a single channel at a time. To do so, each
one solves a puzzle and replays it until it expires: this
means the attack is successful during a fraction k/p of
the time. Therefore, a legitimate packet gets rejected if
it would normally be rejected or if it would normally be
accepted but arrives at an attacked channel during the
attack, so with total probability (1—P3)+ cm WPBX.
This means the packet gets accepted with probability

P — (1 B mmln(hp)) PO
Cs p

We show that, if we view PJ* as a function of the (re-
duced) effective puzzle cost p and the (reduced) effective
window size k (so P} (p,k)), for each value of p there
exists a k = kmaz(p) that maximizes PY*(p,e). We now
plot these maxima as a function of p for different values
of the attacker-to-capacity ratio v = 7* in Figure 3.

As we can see, even under very Heavy distributed
denial-of-service attacks we can ensure that a high per-

centage of legitimate packets are accepted, and in fact
the server can decide how high this percentage should
be by choosing higher puzzle costs.

Now, we see that malicious machines can only coop-
erate by inverting the hash function together. However,
if a machine finds an inverse, it has very little time to
communicate it to the other nodes in the botnet as the
rhythmic nonce is short-lived. In practice, other bot-
nets in the network will only be able to use this in-
verse to mount an attack if their latencies are small.
We have therefore effectively split the botnet into small
geographically-localized groups where the potential for
cooperation exists. As botnets are distributed through-
out the entire world, this considerably slashes their at-
tack capability.

To further inhibit attackers, puzzle solutions may be
salted with various parameters to limit their domain.
For example, salting the client IP address may help to
prevent widescale reuse of a solution. However some
clients, such as those behind a NAT firewall or proxy,
may not know their IP addresses and will not be able
to include this parameter in the request packet. In this
situation, request packets fortified with additional IP
address information will receive priority access. With
this scheme, clients are no worse off than before, since
a degraded level of service is provided to certain clients,
rather than a total service blackout. Spoofing these re-
quest addresses does not pose any additional threat, as
the salting mechanism requires an IP attribute match as
a precondition, however, a clique of nodes in a botnet
can cooperate amongst themselves to solve puzzles for a
particular node in the botnet and use that host as a con-
centrator; this is not distinguished from the case where
each bot node individually creates puzzle requests.

If the puzzle protocol omits the server address as a
parameter, the same solution can be reused horizontally
among multiple servers. To prevent this type of abuse,
server attributes must be considered as part of the hash
parameters. The use of this technique can help to inhibit
the attacker’s ability to magnify the attack intensity by
constraining the domain of the solution to particular
services. Finally, due to the salt characteristics, cooper-
ating botnets form a unique fingerprint that can be used
to trace and locate cooperating cliques within the net.

6. EXPERIMENTAL EVALUATION

Our implementation is based on the TCP proto-
col over IP version 4. Puzzle messages are embed-
ded into the TCP headers, which enables us to with-
stand connection-oriented attacks like SYN floods or
NAPTHA. We distribute simple UDP packets to gos-
sip rhythmic nonces with 96-bit RSA values. We use
the TCP options field to transmit the puzzle solution
(96 bits), the rhythmic nonce (96 bits), the client nonce
(32 bits), the puzzle difficulty k (8 bits), and some
other implementation-related bits totaling to 248 bits.
We chose these sizes to be able to fit all the data into
the TCP options field. Naturally, 96-bit RSA rhythmic
nonces are notoriously insecure. Nonetheless, our im-
plementation should be considered a proof of concept as
other techniques exist to embed more secure (perhaps



Client =
SYN
wait S
YN + Puzz|e Soln (Diff k) k=07
wait SYN 2
* Puzzle soip (e k1) ktoo small?

SYN + ACK + ks big enough,
TSis valid,
ACK Puzzle solution
is correct

Figure 4: Message sequence chart of protocol ne-
gotiation

ECC) rhythmic nonces into IPv4 and IPv6 packets.

Our prototype client relies on a user-space TCP stack.
Raw IP packets are sent using the sendto() call. The
server runs a modified Linux kernel which has support
for client puzzles: the networking stack only admits SYN
packets that have valid puzzle solutions of sufficient dif-
ficulty. When a server is not under load, the server ac-
cepts all SYN packets. When under heavy load, the
difficulty level is increased by setting a kernel parame-
ter.

The client sends a SYN message to the server with
the aforementioned parameters in the options field. We
have not yet implemented modified RST packets so we
use an auctioning mechanism: the server, if under heavy
load, discards unacceptable packets. The client, on the
other hand, waits for a timeout period before retrying
with a harder puzzle. This goes on until the client re-
ceives a SYN+ACK from the server or until the difficulty
reaches a threshold. The server, upon receiving a puzzle
solution, first checks the difficulty level; if it is sufficient,
it then checks the rhythmic nonce for freshness, and if
that test succeeds, it checks the puzzle solution. If every
check is successful, the server proceeds with the normal
connection sequence by sending back a SYN+ACK. The
message sequence chart for our protocol is depicted in
Figure 4.

As the implementation is still in its early stages, we
only have preliminary performance metrics. We at-
tacked our server with a conventional SYN flood over a
100 Mbps LAN. With client puzzles enabled, the server
successfully refused connection requests from clients
that didn’t provide a solution or that provided a weak so-
lution. It only accepted legitimate requests from clients
that solved hard enough puzzles. We also verified that
solving a puzzle of difficulty k (that is, finding a solu-
tion with k leading zeros) takes a time proportional to
2k (Figure 5), and therefore so does establishing a con-
nection. As mentioned, we can easily have more fine-
grained control over this cost by modifying the protocol
slightly. Further, we determined that checking a rhyth-

o
o
o

o
(o)
o

o
N
o
1

Y

o
-
o
'
\
3

Puzzle Solution Time (sec)
¢ ¢ o N ¢
w N
=) o
\\\\
N

0.00

10 N 12 13 14 15 16 17 18 19
Difficulty Level (k)

Figure 5: Puzzle solution time is exponentially
related to difficulty level

mic nonce for authenticity (at the client or router level)
takes in the order of tens of microseconds (32.06 ps with
a standard deviation of 53%) on a standard 2 GHz pro-
cessor, which is an acceptable overhead and does not
significantly alter internet latencies; and finally, we were
able to determine that it takes on average 9.3 ns to verify
a puzzle solution, which means that with our implemen-
tation we can process SYN+puzzle packets at line rate
(100 Mbps) using only 2.5% of CPU time.

7. CONCLUDING REMARKS

In summary, we have explored the concept of Rhyth-
mic nonces in the context of DoS protection with client
puzzles. Our preliminary evaluation of a puzzle scheme
using this service suggests that these nonces can help
improve certain aspects of DoS resistance that current
schemes are unable to effectively address.

Since freshness and replay resistance are desired char-
acteristics for many security protocols, we suspect that
the introduction of Rhythmic nonces to the Internet will
spur changes to existing protocols in a way that makes
them more resilient and efficient.

The techniques we propose in this paper suggest that
the inclusion of DoS countermeasures as part of the
intrinsic design of the Internet would be beneficial to
address today’s systemic availability issues regarding
the Internet. Furthermore, techniques involving dis-
tributed puzzles through systematic outsourcing can
help to choke off malicious traffic early on upstream
from the originating ISP. ISP-side cooperation to fil-
ter and throttle packets based on puzzle attributes can
help shape traffic much in the same manner as push-
back schemes which are used by current DoS counter-
measures.

In conclusion, we have shown that the additional avail-
ability of freshness information via a pervasive internet
broadcast has many potential benefits to addressing in-
trinsic availability problems.



Acknowledgements

This work was supported in part by NSF CNS 07-
16626, NSF CNS 07-16421, NSF CNS 05-24695, ONR
N00014-08-1-0248, NSF CNS 05-24516, DHS 2006-CS-
001-000001, and grants from the MacArthur Founda-
tion, Motorola and Boeing Corporation. Ellick Chan
and Daniel Rebolledo were supported by a Siebel fel-
lowship. The views expressed are those of the authors

only.

8.
1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(1]

(12]

(13]

REFERENCES

National Solar Observatory/Sacremento Peak.
Images and Current data.
http://nsosp.nso.edu/data.

USGS Earthquake Hazards Program. Latest
earthquakes in the world - past 7 days.
http://earthquake.usgs.gov/eqcenter
/recentgsww/Quakes/quakes_all.php.

M. Abadi, M. Burrows, M. Manasse, and

T. Wobber. Moderately Hard, Memory-Bound
Functions. ACM Transactions on Internet
Technology (TOIT), 5(2):299-327, 2005.

T. Aura, P. Nikander, and J. Leiwo. DOS-resistant
Authentication with Client Puzzles. Proceedings of
the 8th International Workshop on Security
Protocols, Lecture Notes in Computer Science,
Cambridge, UK, April, 2000.

A. Back. Hashcash - A Denial of Service
Countermeasure.
http://www.hashcash.org/hashcash.pdf, 2002.

D. Dean and A. Stubblefield. Using Client Puzzles
to Protect TLS. Useniz, 2001.

S. Doshi, F. Monrose, and A. D. Rubin. Efficient
Memory Bound Puzzles Using Pattern Databases.
In ACNS, pages 98—-113, 2006.

C. Douligeris and A. Mitrokotsa. Denial-of-Service
Attacks, Network Security: Current Status and
Future Directions. Wiley, 2007.

European Network of Excellence for Cryptology.
Ecrypt yearly report on algorithms and keysizes
2006.

J. Halderman and B. Waters. Harvesting
Verifiable Challenges from Oblivious Online
Sources. Proceedings of the 14th ACM Conference
on Computer and Communications Security (CCS
2007), 2007.

A. Juels and J. Brainard. Client puzzles: A
Cryptographic Countermeasure against
Connection Depletion Attacks. Proceedings of the
Network and Distributed System Security
Symposium, pages 151-165, 1999.

J. Mirkovic, J. Martin, and P. Reiher. A
Taxonomy of DDoS Attacks and DDoS Defense
Mechanisms, 2001.

T. Moran, R. Shaltiel, and A. Ta-Shma.
Non-interactive timestamping in the bounded
storage model. In Advances in Cryptology
(CRYPTO 04), volume 3152 of Lecture Notes in
Computer Science. Springer, December 2004.

(14]

(15]

X. Wang and M. Reiter. Defending against
Denial-of-Service Attacks with Puzzle Auctions.
IEEE Symposium on Security and Privacy, 3,
2003.

B. Waters, A. Juels, J. A. Halderman, and E. W.
Felten. New client puzzle outsourcing techniques
for dos resistance. In CCS ’04, pages 246—256,
2004.



