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ABSTRACT

Content identification has many applications, ranging from
preventing illegal sharing of copyrighted content on video
sharing websites, to automatic identification and tagging of
content. Several content identification techniques based on
watermarking or robust hashes have been proposed in the
literature, but they have mostly been evaluated through ex-
periments. This paper analyzes binary hash-based content
identification schemes under a decision theoretic framework
and presents a lower bound on the length of the hash re-
quired to correctly identify multimedia content that may
have undergone modifications. A practical scheme for con-
tent identification is evaluated under the proposed frame-
work. The results obtained through experiments agree very
well with the performance suggested by the theoretical anal-
ysis.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security

Keywords

Content identification, content fingerprinting, decision the-
ory

1. INTRODUCTION

Websites such as Youtube [1] have revolutionized content
sharing services by making it easy for users to upload and
share video. At the same time, concerns have been raised re-
garding potential copyright violations, as users may upload
copyrighted content to these websites [2]. To counter such
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activity, content identification schemes can be used to auto-
matically determine whether the uploaded video belongs to
a set of copyrighted content or not.

Another application of content identification is in auto-
matically identifying and associating content with metadata
such as artist and album information. Services such as Mu-
sicBrainz [3] allow users to automatically tag their entire
music collection by identifying the content. In some appli-
cations, the input may be low quality recordings (Verizon’s
VCAST service [4]) or short clips of the original content.

These applications demand content identification tech-
niques that can recognize modified versions of the content,
and are scalable to very large databases, often containing
millions of video or audio. Existing techniques that address
this problem fall into two main categories — watermarking-
based techniques and hash or fingerprint-based techniques.

In the first category of watermarking-based techniques, a
watermark is embedded in the host signal at the time of
content creation, which can later be extracted and used to
determine whether the host content is copyrighted or not,
and also possibly retrieve associated metadata [6]. Water-
marking has been an active area of research and robust wa-
termarking techniques are being developed which could po-
tentially be used for content identification. A significant
limitation of watermarking-based identification systems is
that a large volume of legacy multimedia content does not
have any embedded watermarks and cannot be identified by
watermarking-based techniques.

Hash-based techniques employ multimedia hashes designed
to produce hashes that are “similar” for perceptually similar
input, as opposed to cryptographic hashes which are de-
signed to produce independent outputs if the inputs differ
by even a single bit. Thus, multimedia hashes can be used
to identify similar multimedia content. A hash of the up-
loaded content, also referred to as a content fingerprint, is
computed and compared with a database of fingerprints to
identify the content. Hash-based systems have the advan-
tage that they can be used to identify existing content that
does not have any embedded information. For this reason,
we focus on hash-based schemes in this paper.

Several hash-based techniques have been proposed in the
literature for content identification. In [11], the signs of
the differences between Fourier Transform coefficients cor-
responding to adjacent frequency bands were used to iden-
tify audio. A similar technique for video identification was
proposed in [18]. The signs of significant wavelet coeffi-
cients of spectrograms were utilized for audio identification
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in [5]. The system in [5], called Waveprint, also uses the Min-
Hash technique [8] combined with Locality Sensitive Hash-
ing (LSH) [10] for fast comparison of fingerprints. Most of
the existing techniques compute binary fingerprints of the
content, which can be used to perform fast search over large
databases.

Identification techniques proposed in the literature are
currently evaluated mainly through experiments. A the-
oretical framework for analyzing identification schemes is
necessary, as such a framework can guide the design of “opti-
mal” identification systems. Content identification schemes
employing watermarks were analyzed under a theoretical
framework in [12], but the focus of the prior work was on
deriving suitable statistical models for images, which can
then be used to derive efficient watermark detectors. Qual-
itative guidelines for designing multimedia hash functions
were provided in [16] by considering hashing as a source cod-
ing problem, but no quantitative analysis was provided. A
decision-theoretic framework for authentication based on ro-
bust image hashing was described in [20], but is not directly
applicable to the problem of content identification. In this
paper, we address the content identification problem and fo-
cus on providing an analysis of binary hash-based content
identification schemes. We also provide quantitative guide-
lines for choosing system parameters, such as the length of
the hash, to achieve desired performance.

The rest of the paper is organized as follows. Our pro-
posed framework for analyzing hash-based content identifi-
cation schemes is described in Section 2. Under this frame-
work, we examine binary hash-based content identification
schemes in Section 3. We examine the applicability of the
theoretical results to a practical identification scheme in Sec-
tion 4. We summarize the findings and conclude in Section 5.

2. SYSTEM MODEL

The system model for a hash-based content identification
scheme is shown in Fig. 1. Our system model is applicable
to any hash-based identification scheme, but for ease of pre-
sentation, we illustrate our approach using the example of a
video sharing website. Suppose the detector has a collection
of N copyrighted videos Vi, Va,..., V. It first computes
the hash X1, Xa,..., Xn for each of these videos and stores
them in its database. These hashes may be binary valued,
such as the hashes computed in [18] and [5] or integer valued,
such as color histograms or quantized SIFT features [7].

When a user uploads a video Z, the detector computes
the hash Y of the uploaded video, and uses Y to decide
whether the uploaded video is copyrighted or not. To evade
detection, users may modify the video before uploading it
to the website. Such modifications are represented by the

attack block in Fig. 1(b). In these cases, the hash Y of
the attacked content, may be different from the hash of the
original video.

We consider two different detection scenarios based on the
requirements of different applications. In some applications,
such as a video sharing website implementing content filter-
ing, it may be sufficient to determine if the content is sub-
ject to a copyright or not. In this case, the detector is only
interested in determining whether a given video is present
in a database of copyrighted material or not. We refer to
this scenario as the copyright detection problem,which can
be formulated as a binary hypothesis test:

Hy : Z does not correspond to a copyrighted video,
H: : Z corresponds to a copyrighted video. (1)

In some applications, such as automatic tagging of con-
tent, the detector is further interested in identifying the orig-
inal video corresponding to a query video. We refer to this
scenario as the identification problem. The identification
problem can be modelled as a multiple hypothesis test with
each hypothesis corresponding to one original content and a
null hypothesis corresponding to the case that the uploaded
video is not present in the database:

Hy : Z isnot from a database {Vi,Va,...,Vn},

Hi : Z corresponds to video Vi,

Hy : Z corresponds to video V. (2)

In the next section, we analyze binary hash-based schemes
under this framework and derive a lower bound on the length
of the hash required to achieve low error probabilities.

3. ANALYSIS OF BINARY HASH SCHEMES

Binary strings are commonly employed in hashing schemes,
as comparison of binary strings can be performed efficiently.
In this section, we examine both the detection and identifi-
cation problems for binary hash-based content identification
schemes.

3.1 Hash and Attack Models

From the designer’s point of view, it is desirable for the
hash bits to be independent of each other, so that an attacker
cannot alter a significant number of hash bits at once by
making minor changes to the content. Further, if the hash
bits are equally likely to be 0 or 1, the overall entropy is
maximized and each bit conveys the maximum amount of
information. If the hash bits are not equally likely to be 0



or 1, they could be compressed into a shorter vector with
equiprobable bits. Therefore, in our analysis, we assume
that the bits comprising the hash are independent of each
other and are 0 or 1 with probability 0.5.

A user wishing to upload copyrighted content onto a web-
site, may make modifications to the content so as to evade
detection. These attacks on the image content are reflected
as changes in the computed fingerprint. By a suitable choice
of hash features and appropriate preprocessing and synchro-
nization, such attacks can be modeled as additive noise in
the hash space [16]. We illustrate the importance of proper
choice of hash features in Section 4.5. For the remainder of
the paper, we assume that the attacks can be represented as
additive noise applied to the original hash.

Since the hash bits are designed to be independent and
identically distributed (i.i.d.), we model the effect of attacks
on the multimedia content as altering each bit of the hash in-
dependently with probability p < 0.5. The maximum possi-
ble value of p is linked to the maximum amount of distortion
an attacker may introduce into the multimedia content.

3.2 Detection Problem

Under the assumptions outlined above, the copyright de-
tection problem becomes:

Hy Y¢{X1,X2,...,XN}+71,
Hy : Y=X;+n, forsomeic {1,2,...,N}. (3)

where Y, X;,i = 1,2,..., N and the noise n are all binary
vectors of length L. Under hypothesis Ho, Y can take any
value with equal probability, since the hash bits are designed
to be ii.d. with equal probability of being 0 or 1. Thus,
under Ho, p(Y|Ho) = 5. The distribution of the hash
Y, given that it is a modified version of hash X;, p(Y|X;)
can be specified by considering its Hamming distance. Let
d; = d(Y, X;) be the Hamming distance between the hash
of the video being uploaded and a hash X; in the database.
Since the probability of a bit flipping is p, the probability
that exactly d; bits are altered is p(Y|X;) = p% (1 — p)F =%,

The alternative hypothesis, Hi, is thus a composite hy-
pothesis, as the computed hash can have different distribu-
tions depending on which original hash it corresponds to.
The optimal decision rule for composite hypothesis testing
is given as [19]:

(Y|H1) "

Decide H; if 2 > 7 (4)

p(Y[Ho)

where the threshold 7" can be chosen to satisfy some op-
timality criterion. If the priors of the hypotheses and the
associated costs are known, then 7"/ can be computed so as
to minimize the expected Bayes’ risk. If the costs are known,
but not the priors, the threshold 7 can be chosen to min-
imize the maximum expected risk. In this paper, we use a
Neyman-Pearson approach [19] to maximize the probability
of detection Py subject to the constraint that the probability
of false alarm Py < «.

To simplify the analysis, we assume that all copyrighted
videos are equally likely to be uploaded. In situations where
some videos may be uploaded more often than those which
are less popular, the analysis can be extended by appropri-
ately modifying the prior probabilities. With this assump-

tion, the likelihood ratio test in Eqn. (4) becomes:

S p(Y|Xi)p(Xi|Hy) o
p(Y'|Ho) ’

Substituting p(Y|Ho) = 2%7 p(Y|X:) = p%(1 — p)-=% and
p(Xi|Hy) = <+, we get:

N

N d; d; L

> (pta-pt) sr (5)
i=1

where the constants have been absorbed into the threshold
7’/. We note that the left hand side is a sum of exponentials,
and for large L, only the largest term would be relevant.
Further, since p®(1 — p)* ™ is a decreasing function of z for
p < 0.5, the largest term in the left hand side of Eqn. (5)
would be the one with the smallest value of d;. Thus, we
arrive at the decision rule:

Decide Hi if dmin < T,
Decide Hy with probability ¢ if dp;, =7, (6)
Decide Hy if dpin > 7

where dmin = 1:11121111 d; and 7 an integer threshold ex-

pressed in terms of the Hamming distance. ¢ and 7 are cho-
sen to achieve a desired probability of false alarm «. Based
on this decision rule, we decide that the uploaded video is
a modified version of some video in the database if the dis-
tance of the hash of the uploaded video to the closest hash
in the database is less than a threshold.

The corresponding probability of false alarm Py for a
threshold 7 is given by Py = Pr(dy;y < 7|Ho)+qPr(dy;, =
7|Ho), and the probability of detection is given as Py =
Pr(dyin < 7|H1) + qPr(dyi, = 7|H1). The final expres-
sions for Py and Py are derived in Appendix A.

In Fig. 2, we show the receiver operating characteristics
(ROC) [19] computed using the expressions derived in Ap-
pendix A, for various values of the parameters L, N, and p.
Fig. 2(a) shows the ROC curves as the strength of the at-
tack p is increased from 0.2 to 0.3 for N = 23° videos in the
database and a hash length of 256 bits. We observe that as
the attack strength p increases, the probability of detecting
a copyrighted video, Py, reduces, for a given probability of
false alarm Py. As p approaches 0.5, the probability of detec-
tion approaches the lower bound Py = Py. Fig. 2(b) shows
that for a given attack strength, the detector performance
can be improved by using a longer hash. As the hash length
is increased, P; increases for a given Py. Fig. 2(c) shows the
influence of the number of videos in the database, N, on the
detector performance for a fixed hash length L = 256 bits
and attack strength p = 0.3. As N increases, the probabil-
ity of false alarm increases. Hence, for a given Py, the Py
is higher, or equivalently, for a fixed Py, the probability of
detection is lower.

3.3 Identification Problem

We now consider the identification problem for binary
hash-based schemes, which can be modelled as a multiple
hypothesis test:

Hy : §/¢{.XM.X%H.,‘XN}—"-’N,7
Hi @ Y=Xi1+n,

Hy : Y=Xny+n. (7)
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Figure 2: Receiver Operating Characteristics (ROC) for the binary hypothesis testing problem obtained from

theoretical analysis.

We define the probability of correct identification, P., as the
probability of correctly identifying the original video cor-
responding to an uploaded video. As the hashes X;,i =
1,2,..., N are identically distributed, and the distribution
of the noise n under each of the hypotheses is the same,
the overall probability of correct identification P. will be
equal to the probability of correct identification under a
given hypothesis ¢, P. = Pr(deciding H;|H; is true), ¢ # 0.
The probability of misclassification, P,,, can be obtained as
P,, = Pr(deciding H;,i # j # 0|H; is true). The probabil-
ity of falsely classifying a non-copyrighted video as copy-
righted (false alarm) is defined as P; = Pr(deciding H;|
Hj is true), i # 0.

As before, we assume that the hash bits are i.i.d. and
equally likely to be 0 or 1. The noise is modelled as inde-
pendently altering each bit with probability p. Under this
model, the Maximum Likelihood (ML) decision rule can be
derived as:

decide H; if (z
decide Hy

argmin d; | and d; < 7,
j=12,...,N
otherwise.

(8)

If hashes of several copyrighted videos have the same dis-
tance to the hash of the uploaded video Y, one of them is
chosen randomly. For this ML detector, the expressions for

the performance metrics P., P, and Py can be derived as
shown in Appendix B.

Fig. 3 shows the influence of the various parameters on
the performance metrics for the ML detector in Eqn. (8).
Fig. 3(a) shows the influence of the attack strength p. We
observe that as p increases, the probability of correct identi-
fication P. at a given false alarm probability Py reduces, and
the probability of misclassification Py, increases. Fig. 3(b)
shows that the probability of correct identification under a
given attack strength p and a given Py can be increased
by increasing the hash length. The influence of the num-
ber of videos N on the accuracy of identification is shown in
Fig. 3(c). As the number of videos in the database increases,
the probability of false alarm increases, or equivalently, at
a given Py, the value of P. is lower. These results are sim-
ilar to that obtained for the detection problem (Eqn. (3)).
Thus, given the number of videos N and a desired probabil-
ity of false alarm Py, the content identification system can
be made more robust by choosing a longer hash length L.

3.4 Bound on the Required Hash Length

As shown in the previous sections, the length of the hash
is an important parameter that controls the performance of
the system. We now derive a lower bound on the length of
the hash, as a guideline for choosing the length to achieve
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Figure 3: ROC curves for the multiple hypothesis testing problem obtained from theoretical analysis.

a desired probability of false alarm Py = e given a certain
number of videos N, with probability of detection P; — 1.
We present results for the detection problem and similar
results can be derived for the identification problem.

For simplicity, we set ¢ = 1 in Eqn (6). As derived in
Appendix A (Eqn. (14)),

For small e,

e 1 T (L)
~ R o7 .
N 2 = \J

For large L, it can be shown that

1 (L
9Lh(A) < < 9Lh(N).
A <5 (1) <

i=o \/
Using the above result, we obtain

1 T

Llo&%%l—h(z), (9)

where h(z) is the binary entropy function given by
h(z) = —zlogy z — (1 — z) log, (1 — z).
Let (k) = Z?:o (L)pj(l — p)®77 be the cumulative dis-

J
tribution function (c.d.f.) of a binomial random variable

with parameters L and p. It can be shown that

1= - S5 - e,

(N —1)e
T(l - &(7)).

Since € is small, to have P; — 1, we require ®(7) — 1,
for which a necessary condition is 7 > Lp. Combining this
condition with Eqn. (9), we obtain the following important
result:

Py

Q

= ®(r)+ (10)

THEOREM 1. Given a database of N videos and an attack
strength p < %, a desired probability of false alarm Py = €
can be achieved with the probability of detection Py ~ 1,
by choosing a large enough hash length L that satisfies the
bound

1
L>——
>1_

) log, - (11)

or equivalently,

%logz g <1-h(p). (12)

Fig. 4 shows the variation of the lower bound on the length
of the hash required to resist an attack strength p under dif-
ferent requirements on the probability of false alarm Pj.
We observe that with a database of approximately one bil-
lion (2%°) videos and a desired false alarm probability of
2750 2 10715, a hash length of approximately 3000 bits suf-
fices to resist strong attacks that alter 40% of the hash bits.
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4. EVALUATION OF A PRACTICAL HASH
SCHEME

In this section, we examine the applicability of our the-
oretical results to a practical identification scheme. We il-
lustrate using a simple image hashing scheme based on the
wavelet transform coefficients [15]. A similar scheme for
video hashing based on DCT coefficients has been proposed
in [9]. We present results for image identification, but the
results can be easily extended to the case of video or audio
identification using schemes such as [9].

4.1 Hash Generation

Wavelet coefficients, and in particular, signs of wavelet
coefficients have been used for content identification [5], re-
trieval of similar images [13], and to generate hashes for
image authentication [17]. It has been shown that detail co-
efficients of the wavelet transform are symmetric around zero
and can be modelled as i.i.d. generalized Gaussian random
variables [14]. Thus, quantizing wavelet detail coefficients
to 1 bit would yield i.i.d. equiprobable bits, which could be
used as fingerprints to represent the image.

We decompose a 512 x 512 image up to five levels using the
Haar wavelet [15], which is chosen because of the low cost for
computing the transform. Each of the four subbands at the
coarsest level of decomposition thus has coefficients of size
16 x 16. We retain only the signs of the coefficients belonging
to these subbands to obtain a 1024-bit sequence. A ‘1’ at a
particular location indicates a positive coefficient, whereas
a ‘0’ indicates a negative coefficient. Fig. 5 shows the dis-
tribution of the bits comprising this bit sequence estimated
from 1000 grayscale images of size 512 x 512. In Fig. 5(a),
we show the fraction of images (out of 1000) that have a ‘1’
at a particular location. The first 256 bits correspond to the
signs of the approximation coefficients, followed by 256 bits
for each of the horizontal, vertical and diagonal detail coef-
ficients. From this figure, we observe that the signs of the
approximation coefficients are not independent and equally
likely. This is due to the fact that the approximation coef-
ficients for natural images are likely to be correlated with
each other. The same holds true for the horizontal and ver-
tical detail coefficients, since coefficients which correspond
to strong horizontal or vertical edges would lie along the
same row or column, respectively. The signs of the diagonal

detail coefficients, however, appear to be less correlated and
approximately equally likely to be ‘0’ or ‘1’. Fig. 5(b) shows
the fraction of bits that are ‘1’ for a given image. We observe
that approximately half the bits are ‘1’, indicating that these
bits are approximately independent and equally likely. The
coefficients at the lowest level of decomposition are also ex-
pected to be robust to common signal processing operations
and can be used as hashes for image identification.

Thus, given an image, we resample it to size 512 x 512,
perform wavelet decomposition up to 5 levels, and extract
the diagonal detail coefficients. We then retain the signs of
these coefficients to form a 256-bit hash for the given image.

4.2 Attacks

We evaluate the ability of these hashes to correctly iden-
tify an image after it has undergone the potential malicious
attacks listed in Table 1. As the image pixel values are
normalized to lie between 0 and 1, addition of zero mean
Gaussian noise with standard deviation o = 0.2 represents
a strong attack and introduces a lot of distortion, as shown
in Fig. 6. Rotation by multiples of 90° (Attack No. 32-
34) are very strong attacks that may be of concern if the
image/video is being viewed on a portable device, which
provides freedom in adjusting the orientation.

The strength of an attack can be measured in terms of the
probability (p) of a hash bit being altered after the attack.
Fig. 7 shows the probability of a hash bit being changed
as a result of each attack, averaged over 1000 images. We
observe that the rotation attacks are devastating, and the
probability of a hash bit being altered is almost 0.5 for each
of them. Theorem 1 suggests that the hashing scheme will
not accurately identify the images after these attacks due
to the high value of p. Among the other attacks, Gaussian
noise addition with standard deviation of 0.2 (Attack No. 4)
causes the highest number of changes to the hash bits.

4.3 Performance Evaluation

We now evaluate the accuracy of the content identification
system under these attacks. Our database consists of N =
1000 grayscale images of size 512 x 512. The attacks in
Table 1 are applied to each of these images to obtain a set of
34,000 attacked images. The length of the hash used is L =
256 bits. The threshold for detection 7 is chosen to achieve
a probability of false alarm € = 107%. From Eqn. (11), the
maximum attack strength that can be resisted under these
settings is found to be p = 0.3. Thus, we expect that the
rotated images (Attack No. 32-34) which have p = 0.5 will
not be detected correctly. The other attacks no. 1 — 31 have
p < 0.3 and hence we expect the probability of detection Py
to be close to 1.

For the detection problem, we compute the hash of an at-
tacked image and compare it with each hash in the database.
We then use the decision rule described in Eqn. (6) to per-
form the classification. If the minimum distance dmin < 7,
we declare the image to be present in the database. Fig. 8
shows the probability of detection obtained using this deci-
sion rule under each of the attacks. As expected, the im-
ages which correspond to rotated versions of images in the
database are almost never detected (Attacks No. 32 — 34).
This problem can be alleviated by suitably designing the
hashes, as discussed in Section 4.5.

Under most of the other attacks, the probability of detec-
tion Py is close to 1, except for addition of Gaussian noise
with large variance (Attacks No. 2-4). Under these attacks,
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Table 1: List of attacks tested.

Attack No. || Attack | Parameters
1-4 Zero-mean Gaussian Noise Addition o =0.05,0.1,0.15,0.2
5-8 Uniform Noise Addition [-2, 2 A =0.05,0.1,0.15,0.2
9 Histogram Equalization
10-19 Gamma Correction v=0.75:0.05:1251
20-28 Average, Median, and Gaussian Filtering Filter Size = 3,5,7
29-31 JPEG Compression Quality Factor = 25,50, 75
32-34 Rotation by multiples of 90°

Attack 4 Attack 9

Attack 33

Attack 34

Attack 32

Figure 6: Some attacked versions of the Lena image. The list of attacks is provided in Table 1.
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database P;.
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Figure 9: Probability of a hash bit flipping under an
attack on the image as a function of the hash length.

the fraction of hash bits altered for some images is larger
than 0.3. Thus, according to our theoretical analysis, these
images cannot be identified and the probability of detection,
Py, is less than 1 for these attacks. The overall probability
of detection for attacks no. 1-31 was 0.991.

For the identification problem, we use the ML detector in
Eqn. (8) to perform the classification. We found that every
image that was detected as being present in the database
in the detection problem was correctly identified, so that
P. =0.991 and the probability of misclassification P,, = 0.

The probability of false alarm Py was estimated using the
leave-one-out procedure in both the detection and identifi-
cation problems. Every image in the database was treated
as a probe image and compared with the remaining images.
If the minimum distance of the hash dmin < 7, the image
constituted a false alarm. Using the hash of length 256 bits,
no false alarms were observed in our experiments.

4.4 Influence of the Hash Length

From Theorem 1, we know that longer hashes can resist
stronger attacks. In this subsection, we perform simulations
to determine the influence of the hash length on the detec-
tion performance.

To generate hashes of different lengths, the number of lev-
els of the wavelet decomposition is varied. For example, to
generate hashes of length 1024 bits, we resample the image
to size 512 x 512 and decompose it to four levels using the
Haar wavelet. We then extract the signs of the diagonal de-
tail coefficients at the coarsest level of decomposition. As
the number of levels of decompositions becomes smaller, the
diagonal detail coefficients correspond to higher frequencies
and we expect these features to be less robust to modifica-
tions. Fig. 9 shows the probability of a hash bit flipping after
attacks, for hashes of length 64, 256, and 1024 corresponding
to 6, 5, and 4 levels of decomposition respectively. We ob-
serve that as the number of decomposition levels decreases
(corresponding to longer hashes), the probability that a hash
bit changes increases, indicating that these coefficients are
less robust to modifications.

From our theoretical analysis (Eqn. (12)), we find that for
N = 1000 and € = 10~°, the maximum probability of a bit
flipping (p) that can be tolerated by hashes of length 64,
256, and 1024 bits is 0.1, 0.3, and 0.4, respectively. Thus,
we expect the hash with length 1024 bits to have a higher
value of P, as it can resist stronger attacks.
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Figure 10: Probability of detection under various
attacks as a function of the hash length.

Table 2: Overall P; and P; obtained against Attacks
No. 1-31 as a function of the hash length.

Hash Length (bits) | Py | P

64 0.924 0
256 0.991 0
1024 0.996 | 0.002

In Fig. 10, we examine the influence of the hash length L
on the probability of detection P; under various attacks. In
each case, the threshold for detection 7 was chosen to attain
the desired value of Py = ¢ = 107° as given by Eqn. (9). We
observe that the hash with length 1024 bits has the highest
probability of detection. Even though the probability of a
bit being altered after an attack p is higher for the 1024-bit
hash than the other hashes, the longer length of the hash
compensates for the reduced robustness of each individual
bit, and leads to a higher overall probability of detection.

In Table 2, we compare the overall probability of detection
under attacks no. 1—31 as a function of the hash length. We
observe that as the hash length increases, P; also increases.
There was only one case of false alarm when using hashes of
length 1024 bits. Upon closer observation, it was found that
these two images actually corresponded to the same scene,
but the number of objects and illumination conditions in
the picture were slightly different. These two images can be
regarded as being obtained from each other after significant
modification, such as insertion or deletion of objects, change
in brightness, and modification of the details in the image.
The overall attack would change a large fraction of the hash
bits, and is hence not identified using the shorter hashes.
Since the 1024 bit hash is more robust against changes in
the hash bits, it is able to determine that these two images
are not independent of each other, and could have originated
from the same source. Thus, the length of the hash plays a
crucial factor in determining the performance of the hashing
scheme, as predicted by our theoretical analysis in Section 3.

Under the identification problem, every image that is de-
tected as having originated from an image present in the
database is also correctly identified, so that P. = P4. Thus,
the probability of misclassification as obtained from our ex-
periments is P, = 0 and the probability of correct identifi-
cation is the same as the second column in Table 2.



0.5r
04r
0.3r
0.2r

L *
0.1 -
* .
* ** - *
* * * * *
0 + pRL TP Sk ST I T
0 5 10 15 20 25 30
Attack Index

Figure 11: Probability of a hash bit flipping p for the
rotationally invariant hashes under various attacks.

4.5 Proper Choice of Hash Features

Our attack model assumes that most attacks on multime-
dia can be modelled as additive noise in the hash space. For
some hashing schemes, desynchronization attacks, including
rotation, cropping, and geometric attacks, may not be di-
rectly modelled as additive noise hash space. However, by
suitably designing the hash features and applying appropri-
ate preprocessing, it is possible to reduce these attacks to the
additive noise model. We briefly illustrate the importance of
appropriate choice of hash features using the example of the
rotation attacks studied in Section 4.2. If robustness against
rotations by multiples of 90° is desired, the following mod-
ification of the hash scheme in Section 4.1 can improve the
robustness against rotations.

Given a 512 x 512 image, we obtain four images corre-
sponding to rotations by multiples of 90°, which are then
summed pixelwise. The resulting image is decomposed up
to four levels using the Haar wavelet and the signs of the
1024 diagonal detail coefficients at the coarsest level of de-
composition are extracted. As these bits are dependent, we
retain only 25% of the bits that correspond to the coeffi-
cients in the upper left corner of the subband. The 256 bits
thus obtained form the hash for the image, which is invariant
under rotations of the original image by multiples of 90°.

Fig. 11 shows the probability of a hash bit flipping under
the attacks listed in Table 1 for this modified hash scheme.
We observe that none of the hash bits are altered under
rotations by multiples of 90°. The hash bits are also mod-
erately robust under the other attacks no. 1-31. Under the
detection problem we obtained P; = 1 under the rotation
attacks no. 32-34, while the overall P, for attacks no. 1 — 31
was 0.99. Thus, a suitable choice of the hash features can
enhance the robustness against attacks.

5. CONCLUSIONS

In this paper, we have presented a decision theoretic frame-
work for analyzing binary hash-based content identification
schemes. We formulate the problem of detecting whether a
given video or audio is present in a database of copyrighted
material as a binary hypothesis test and the problem of cor-
rectly identifying the original content corresponding to a
given query object as a multiple hypothesis test. Under
this framework, we have derived expressions for the relevant
performance metrics such as probability of detection, the
probability of correct identification and the probability of
false alarm. We have obtained a lower bound on the length
of the hash required to resist a given attack strength.

Under the proposed framework, we also examined a prac-
tical binary hash-based content identification scheme which
utilizes the signs of the diagonal detail coefficients in the
wavelet decomposition of the image. The simulation re-
sults confirm our theoretical predictions. We also briefly
discussed the importance of choosing appropriate hash fea-
tures to achieve robustness against attacks.

As future work, we plan to extend the theoretical results
derived for binary hashes to other hash-based content iden-
tification systems and use the analytic results to guide the
design of hash-based schemes with higher accuracy of iden-
tification.
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APPENDIX

A. PROBABILITIES OF ERROR FOR DE-
TECTION PROBLEM

As discussed in Section 3, the copyright detection problem
can be formulated as a binary hypothesis test. We now
derive expressions for the probability of false alarm, Py, and
the probability of detection, P4, under this setting.

The probability of false alarm, Py, is given by

P; = Pr(dyip < 7|Ho)+ qPr(dyi, = 7|Ho),
Py = 1—[Pr(d; >7|Ho)N +

qz ( ) [Pr(di = | Ho)P [Pr(d; > r|Ho)]V 7 .(13)

The hamming distance between Y and X; d; = d(Y, X;) =
wt(Y + X;), where wt(-) denotes the Hamming weight of
a binary vector and + denotes modular addition over the
binary field. Under Hy, since Y is uniformly distributed
over the entire space of binary strings of length L, Y + X is
also uniformly distributed. The probability distribution of
wt(Y + X;) thus corresponds to the weight of a uniformly
distributed random vector, which is a binomial distribution
with parameters L and 0.5. Thus,

2 ()

Pr(d; = 7|Ho)

,_.\_/

Pr(di < T‘Ho)

()

Substituting the above expressions into Eqn. (13), the prob-
ability of false alarm can be written as

Pf:1_|:lLi( )

2= R

0

J

N

+

N

S-S0 5.0

Z%( )andfl( )=
Z fo(j) to be the

To simplify the notation, define fo(k)

(i)pk(l —p)E7*. Also define Fy(k)

tail probability of the binomial distribution with parameters
L and %, and Fi(k) = ZJL:k f1(j). The probability of false
alarm can now be written as:

Pr = 1-[R@N+

q§j(ﬁmv%%w+mNﬂ

1= (1= Fo(nN = qlFo(r + DIV. (14)
The probability of detection is given as
Py =Pr(dyi, < 7|H1)+qPr(d

min = T|H1).

Suppose H; is true and that the uploaded video is actually
an attacked version of copyrighted video V. Then we have,
Pr(ds =d) = (Z)pd(l —p)t™?. For i # s, since the X;s are
uniformly distributed over the entire space, Y + X; is also

uniformly distributed. The distance d; = wt(Y + X;) follows
a binomial distribution with parameters L and 0.5. Thus,

Pr(d; = d,i # s) = 2%(5) and the probability of detection
can be derived as

Py = 1-[F@OIFo@N ™t +afi(n)[Fo(r)V 1 +
N—-1 N—1 ) .
alh+ ] Y j ) o () [Fo(r + DIV,
j=1

1= (1= g[F(7)][Fo(r)]

B. PROBABILITIES OF ERROR FOR IDEN-
TIFICATION PROBLEM

We now compute the performance metrics for the ML de-
tector (Eqn. (8)) under the identification problem (Eqn.( 2)).
The probability of false alarm is given by

P; = Pr(at least one of di,d2,...,dy < 7|Hp),

1 — Pr(none of d1,da,...,dy < 7|Hop),
1—[Fo(r + D]V
As the distribution of the noise and the hashes under the
different hypotheses are identical, the overall probability of
correct classification is equal to the probability of correctly
identifying video V; given as:

P Pr(deciding s|Hs)

= Pr(ds <7 and ds < n’;jndi|H5) +
1£S

Pr(r_nindi =ds < 7 and s is decided|Hs),

T

Z f1(d) [{Fo G+

D) oG IR + )N

Nz =

Similarly, the probability of misclassification can be com-
puted as:

P, = Pr(deciding i # s # 0|Hs),
= Pr(mind; <7 and mind; < ds|Hs) +
1#£S 1#£S

Pr(n’gr}di =ds <7 and i # s is decided|Hy),

>

j=0
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