
XPath LeashedMi
hael BenediktOxford University Computing Laboratorymi
hael.benedikt�
omlab.ox.a
.ukChristoph Ko
hCornell Universityko
h�
s.
ornell.eduThis survey gives an overview of formal results on the XML query language XPath. We identifyseveral important fragments of XPath, fo
using on subsets of XPath 1.0. We then give results onthe expressiveness of XPath and its fragments
ompared to other formalisms for querying trees,algorithms and
omplexity bounds for evaluation of XPath queries, and stati
 analysis of XPathqueries.Categories and Subje
t Des
riptors: H.2.3 [Languages℄: Query languages1. INTRODUCTIONXPath [World Wide Web Consortium 1999a℄ is a language for mat
hing paths and,more generally, patterns in tree-stru
tured data and XML do
uments. These pat-terns may use either just purely the tree stru
ture of an XML do
ument or datavalues o

urring in the do
ument as well.XPath is used as a
omponent in XML query languages (in parti
ular, XQuery[World Wide Web Consortium 2002℄ and XSLT [World Wide Web Consortium1999b℄), spe
i�
ations (e.g., XML S
hema [World Wide Web Consortium 2001℄),update languages (e.g., [Sur et al. 2004℄), subs
ription systems (e.g., [Altinel andFranklin 2000; Chan et al. 2000℄) and XML a

ess
ontrol (e.g., [Fan et al. 2004℄).Be
ause XPath is ubiquitous in programming tools for manipulating XML do
u-ments, and XPath pro
essing is a key
omponent of these tools, hundreds if notthousands of papers have appeared over the years dealing with the evaluation andanalysis of XPath. Indeed the popularity of XPath as a formalism may be a fa
torin the explosive growth of XML, as well as an e�e
t.The XPath standard has its rough edges, but there is an essential navigational
ore that is an elegant modal language. In this
ore of XPath there is no expli
itnotion of variable, and modal step expressions allow for navigation relative to a
ontext node and thus
an only \see" one element of the do
ument at a time.An important property of XPath (whi
h follows from its synta
ti
 restri
tionsthat make it a modal language) is that fragments
orrespond to
ertain bounded-variable logi
s. From these logi
s, XPath inherits ni
e graph-theoreti
 propertieson the \dependen
y graphs" of its queries. In parti
ular, the queries have boundedtree-width and bounded hypertree-width. These properties render them amenableto eÆ
ient evaluation [Gottlob et al. 2005℄. XPath is quite unique in the sense that(1) it is a widely used pra
ti
al language that naturally obeys synta
ti
 restri
tionsthat lead to bounded (hyper)tree-width and (2) bounded (hyper)tree-width is ofimmediate pra
ti
al relevan
e to eÆ
ient evaluation. (1) is true for modal languagesused in veri�
ation, but (2) is not, as the query evaluation te
hniques used in the
ontext of those languages are quite di�erent [Bur
h et al. 1990; Clarke et al. 2000℄.In this survey, we present the main fundamental results regarding XPath thathave been developed sin
e its introdu
tion. These results
an be grouped into the
ategories expressiveness ,
omplexity , and stati
 analysis of XPath.|We give a detailed a

ount of the known expressiveness results for XPath, but also

give a number of new results. In parti
ular, we review the
onne
tions betweenXPath and �rst-order logi
. The main results are that there are �rst-order queriesnot expressible in navigational XPath, but that navigational XPath expressespre
isely the two-variable �rst-order queries over the navigational stru
ture ofXML do
uments. We show that the navigational XPath fragment extended bythe aggregation features of XPath does express all �rst-order queries. We alsosurvey
hara
terizations of fragments of XPath in terms of tree-pattern queries,and
hara
terize XPath in terms of automata.|We present an in-depth study of XPath
omplexity and eÆ
ient evaluation thatrevolves around graph-theoreti
 properties of XPath queries. Large portions ofthe XPath language
an be pro
essed by algorithms that
an work in parallel orin streaming fashion. These issues have been studied extensively in the literature,but we present an overview here as well.|We also survey stati
 analysis problems for XPath, in parti
ular the satis�abilityand the
ontainment problem. These have diverse appli
ations su
h as in the
ontext of XML query optimization, maintaining integrity, and answering queriesusing views.The stru
ture of this arti
le is as follows. In Se
tion 2, we present the datamodel and XPath fragments
onsidered in this arti
le, and give their semanti
s.Se
tion 3 studies the expressive power of our XPath fragments, relating them tovarious logi
s, and the
ost (and blow-up) of translating between su
h languages.Se
tion 4 dis
usses the main results on the
omplexity of XPath and of eÆ
ientquery evaluation, addressing eÆ
ient algorithms both in a
lassi
al and a streampro
essing framework, as well as lower bounds. Finally, Se
tion 5 surveys the stateof the art of resear
h on stati
 analysis problems for XPath.For the
entral results in this survey, proofs are given. In some
ases, we giveproofs that are simpli�
ations of those in the literature, while in other
ases we givenew proofs.2. FRAMEWORKAny fundamental resear
h study of XPath has to de
ide what XPath really is { thatis, to distinguish whi
h language features of many to fo
us on. XPath oÆ
ially refersto the World Wide Web Consortium's (W3C) standard language. This is a movingtarget, and indeed while virtually all resear
h on XPath has fo
ussed on the XPath1.0 standard [World Wide Web Consortium 1999a℄, there is an extension, XPath 2.0[World Wide Web Consortium 2007℄, whi
h has re
ently rea
hed Re
ommendationstatus.Thus the �rst task for a formal study is to isolate a parti
ular subset of the lan-guage with attra
tive properties, and to distinguish essential language features fromprovisional design de
isions. In this survey we fo
us ex
lusively on XPath 1.0, andtake the modal and step primitives that
hara
terize XPath 1.0 as the de�nitivefeatures of the language. Furthermore, sin
e XPath 1.0 is still a large language,we
on
entrate on a sublanguage that exhibits the basi
 navigation and data ma-nipulation features. The prin
ipal aspe
ts that we ignore are string-manipulation,type
onversions, and
onstru
tion of string values from do
ument fragments. Forthe most part the operations available at the value level do not a�e
t our basi
 re-sults, but we will
omment brie
y on their impa
t in the appropriate se
tions. Thelargest language we
onsider, denoted OrdXPath, allows for the sele
tion of nodesbased on navigation within the tree stru
ture, data value
omparisons, aggrega-tion, and node position arithmeti
. Within OrdXPath, we will delineate a hierar
hyof sublanguages of XPath 1.0 to whi
h more pre
ise expressiveness or
omplexitybounds apply. We will refer to these sublanguages as XPath fragments. Of par-ti
ular interest will be Navigational XPath (NavXPath), whi
h deals only with the2

underlying tree stru
ture of the do
ument. All the fragments
onsidered in thissurvey are formally introdu
ed in Se
tion 2.2.The languages of this survey
an thus be thought of as subsets of XPath 1.0
ap-turing the more important features of the language. In our de�nition of NavXPath,we make some small super�
ial departures from the
on
rete syntax of XPath 1.0.We do this be
ause
lean syntax in some
ases allows for more readable proofs. Wedis
uss these deviations from standard syntax in the text.2.1 Data ModelA signature (or vo
abulary) is a set of relation and fun
tion names. A relationalsignature is one
onsisting only of relation names (i.e., a relational s
hema). A�-stru
ture is a stru
ture (or database) of signature �. As a
onvention, given astru
ture A, we use A (the name of the stru
ture set in roman font) to denoteits domain and jAj to denote the size of the stru
ture in a reasonable ma
hine-representation (
f. e.g. [Immerman 1999; Libkin 2004℄).Let � be a �nite alphabet of labels. An unranked ordered tree is a tree in whi
hnodes may have a variable number of
hildren, with an order among them. AnXML-tree is a relational stru
ture T of signature�nav = ((LabL)L2�; R
hild; Rnext-sibling);representing an unranked, ordered tree whose nodes are labeled using the symbolsfrom �: ea
h LabL, for L 2 �, is a unary relation representing the set of nodeslabeled L, R
hild is the binary parent-
hild relation among nodes, and Rnext-sibling isthe binary immediate right-sibling relation. That is, R
hild(x; y) means that y is a
hild of x and Rnext-sibling(x; y) means that y is the immediate right-sibling of x. Wesay that an XML-tree T of signature �nav represents the navigational stru
ture ofan XML do
ument.An XML do
ument is a stru
ture of signature �dom = �nav[f�A1; : : : ;�Ang overa two-sorted domain of nodes and values, where the relations from �nav over nodesare as above and the �A1; : : : ;�An are a �xed �nite set of asso
iated attributefun
tions, whi
h map nodes to values. For simpli
ity we assume the attributefun
tions to be total and to take values in the integers. Partial fun
tions
an bemodeled in this way, by (for example) adding a spe
ial \null" value. We useNode(D)to mean the nodes of XML do
ument D; sin
e D is usually
lear from the
ontext,we will generally write simply Node. Similarly, we write NodeSet(D) for the set ofall sets of nodes of do
ument D, omitting the argument D when it is
lear.Navigational Primitives. In XPath, the primitives employed for navigation alongthe tree stru
ture of a do
ument are
alled axes . We will
onsider the axes self,
hild, parent, des
endant, des
endant-or-self, an
estor, an
estor-or-self, next-sibling,following-sibling, previous-sibling, pre
eding-sibling, following, and �nally pre
eding.The meaning of axis � is best given by a binary axis relations R�, where R
hildand Rnext-sibling were introdu
ed above, Rself = f(n; n) : n 2 Nodeg, Rdes
endant isthe transitive
losure of R
hild, Rdes
endant-or-self is the re
exive and transitive
losureof R
hild, Rfollowing-sibling is the transitive
losure of Rnext-sibling. By the inverse of abinary relation R, we refer to the relation f(n0; n) : R(n; n0)g. The relations Rparent,Ran
estor, Ran
estor-or-self , Rpre
eding-sibling , and Rprevious-sibling are the inverses of therelations R
hild, Rdes
endant, Rdes
endant-or-self , Rnext-sibling, Rfollowing-sibling, respe
tively.Finally, Rfollowing is the
omposition Ran
estor-or-self Æ Rfollowing-sibling Æ Rdes
endant-or-selfwhile Rpre
eding is the inverse of Rfollowing . We say that an axis � is the inverse of anaxis � i� R� is the inverse of R� .Orders among Nodes. We
onsider two well-known total orders on �nite ordered3

trees. The pre-order <pre and the post-order <post
an be de�ned byx <pre y :, Rdes
endant(x; y) _Rfollowing(x; y)x <post y :, Rdes
endant(y; x) _Rfollowing(x; y):Intuitively, the pre- and postorder
orrespond to the order in whi
h the openingresp.
losing tag of ea
h node of a tree is seen when reading the
orrespondingXML do
ument from left to right. In XML jargon, <pre is also known as do
umentorder [World Wide Web Consortium 1999a℄.2.2 XPath Fragments Considered in this SurveyMany results on XPath apply to the fragment that deals only with the navigationalstru
ture of an XML do
ument. We will look at two fragments that look only atthe navigational stru
ture.Navigational XPath and Core XPath. We de�ne here a
lean language fornavigating the tag stru
ture whi
h we denote NavXPath. It
onsists of expressionswhose input is a node and whose output is either a set of nodes (an element ofNodeSet) or a Boolean. The latter are also referred to as quali�ers or �lters. Wewill generally use p; p0 : : : to vary over general XPath expressions, of any type, whileq; q0 : : : will be used to denote quali�ers. Expressions are built up from the grammarp ::= step j p=p j p [pstep ::= axis j step[q℄q ::= p j lab() = L j q ^ q j q _ q j :q;where axis stands for the axes named above, L denotes the labels in �, and ^;_;:stand for and (
onjun
tion), or (disjun
tion) and not (negation), respe
tively.An expression p in NavXPath over a �nav-stru
ture D is interpreted as a fun
tion[[p℄℄NodeSet from a node to a set of nodes, while a quali�er q is interpreted as a unarypredi
ate [[q℄℄Boolean : Node ! ftrue; falseg. In both
ases, we refer to the inputnode of these fun
tions as the
ontext node. The semanti
 fun
tions are de�nedindu
tively on the stru
ture of p; q. For NodeSet expressions p we have(P1) [[axis℄℄NodeSet(n) := fn0 : Raxis(n; n0)g.(P2) [[step[q℄℄℄NodeSet(n) := fn0 : n0 2 [[step℄℄NodeSet(n) ^ [[q℄℄Boolean(n0) =trueg.(P3) [[p1=p2℄℄NodeSet(n) := fv : 9w 2 [[p1℄℄NodeSet(n) ^ v 2 [[p2℄℄NodeSet(w)g.(P4) [[p1 [p2℄℄NodeSet(n) := [[p1℄℄NodeSet(n) [[[p2℄℄NodeSet(n).For quali�ers q we have(Q1) [[lab() = L℄℄Boolean(n) := LabL(n)(Q2) [[p℄℄Boolean(n) := [[p℄℄NodeSet(n) 6= ;(Q3) [[q1 ^ q2℄℄Boolean(n) := [[q1℄℄Boolean(n) ^ [[q2℄℄Boolean(n)(Q4) [[q1 _ q2℄℄Boolean(n) := [[q1℄℄Boolean(n) _ [[q2℄℄Boolean(n)(Q5) [[:q℄℄Boolean(n) := :[[q℄℄Boolean(n)In the above, we have departed from standard XPath syntax in several ways: i)we have a label test as a �lter, while in XPath one has testing a label as part ofa step, ii) union is allowed nested arbitrarily within expressions, while in XPathit is allowed only at top-level, and iii) the set of axes in
ludes the next-sibling andprevious-sibling axes. As we will see, this gives us a fragment with ni
er theoreti
alproperties.CoreXPath is a faithful (i.e., stri
tly synta
ti
al) fragment of XPath
apturingnavigational properties. It is de�ned by making the following
hanges to NavXPath:|We eliminate the �lter lab() = L and repla
e the produ
tion step ::= axis j step[q℄by step ::= axis::L[q℄ j axis::*[q℄, where L is a label. axis::L[q℄ has the samesemanti
s as axis[lab() = L℄[q℄ in NavXPath, while axis::*[q℄ is the same as axis[q℄in NavXPath. 4

|We disallow nested union, repla
ing the �rst produ
tion by the following two:p0 ::= p [p j p ; p ::= step j p=p. p0 is now the root nonterminal of the grammar.|We remove the axes next-sibling and previous-sibling.|We add absolute paths, ap ::= "="p, and allow them in �lters, i.e. adding a pro-du
tion q ::= ap. A �lter q = =p has semanti
s [[q℄℄Boolean(n) := [[p℄℄Boolean(n0),where n0 is the root of the do
ument.CoreXPath is thus properly a synta
ti
 subset of XPath 1.0.First-Order XPath (FOXPath). We extend CoreXPath above to allow queriesthat
an look at the data value stru
ture of an input do
ument of signature �dom.FOXPath adds path expressions of the formid(p=�A)and quali�ers of the formsi RelOp i p=�A RelOp i p=�A RelOp p0=�Bto the syntax of NavXPath, where p and p0 are path expressions, �A and �B areattributes, RelOp 2 f=;�; <;>;�; 6=g, and i is a nonterminal denoting the
onstantintegers.FOXPath operates on �dom-stru
tures with an attribute fun
tion �ID. The id(p=�A)expressions model the id() fun
tion of XPath, and to be fully faithful we
ould as-sume that the attribute fun
tion �ID is inje
tive.The semanti
 fun
tions [[�℄℄NodeSet : Node ! NodeSet and [[�℄℄Boolean : Node !Boolean of NavXPath are extended as follows to handle the additional
onstru
ts:(P5) [[id(p=�A)℄℄NodeSet(n) := fn0 : 9n00 2 [[p℄℄NodeSet(n) �ID(n0) = �A(n00)g,(Q6) [[i RelOp i0℄℄Boolean(n) := [[i℄℄Int(n) RelOp [[i0℄℄Int(n),(Q7) [[p=�A RelOp i℄℄Boolean(n) := 9n0 2 [[p℄℄NodeSet(n) �A(n0) RelOp [[i℄℄Int(n),and(Q8) [[p=�A RelOp p0=�B℄℄Boolean(n) := 9n0 2 [[p℄℄NodeSet(n) 9n00 2 [[p0℄℄NodeSet(n)�A(n0) RelOp B(n00),where [[
℄℄Int(n) =
 for
onstant
.Aggregate XPath (AggXPath). Next, we add on expressions to FOXPath thatmanipulate integers and
ompute aggregates.The syntax of AggXPath is obtained from FOXPath by extending number-typedexpressions i (from ex
lusively integer
onstants in FOXPath) toi ::= `
' j i+ i j i � i j
ount(p) j sum(p=�A)where p ranges over path expressions and �A is an attribute fun
tion. We
all \+"and \�" arithmeti
 operators and \
ount" and \sum" aggregate operators .The semanti
 fun
tion [[i℄℄Int : Node ! Int for numeri
al expressions of FOXPathis extended to(I1) [[
℄℄Int(n) :=
(I2) [[i Æ i0℄℄Int(n) := [[i℄℄Int(n) Æ [[i0℄℄Int(n) (Æ 2 f+; �g)(I3) [[
ount(p)℄℄Int(n) := j[[p℄℄NodeSet(n)j(I4) [[sum(p=�A)℄℄Int(n) := �f�A(n0)jn0 2 [[p℄℄NodeSet(n)gAggregate XPath with position arithmeti
 (OrdXPath). Finally, we add thenumeri
al operations \position()" and \last()" to AggXPath; these are
alled posi-tional operators .If we look at the semanti
 fun
tions [[�℄℄NodeSet, [[�℄℄Int, and [[�℄℄Boolean of AggXPath,we say that they map from a
ontext node (e.g., the root node of the do
umenttree) to either a node set, a Boolean, or an integer value. In OrdXPath, quali�ers5

and numeri
al expressions are de�ned with respe
t to a more extensive \
ontext"
onsisting of a node and two additional integers, whi
h
an be a

essed by thepositional operators.(1) [[�℄℄NodeSet : Node ! NodeSet is as in AggXPath ex
ept for(P20) [[step[q℄℄℄NodeSet(n) := fnj j [[step℄℄NodeSet(n) = fn1; : : : ; nkg^n1 � n2 � � � � � nk ^ 1 � j � k ^ [[q℄℄Boolean(nj ; j; k)g;where � denotes either the do
ument order , i.e. the total ordern � n0 , Rdes
endant(n; n0) _ Rfollowing(n; n0);if step begins with a forward axis (
hild; des
endant; following; : : :) or the inverseof the do
ument order if step begins with any of the other axes (parent, an
estor,pre
eding-sibling, : : :).(2) [[�℄℄Boolean : Node � Int� Int! Boolean is de�ned analogously to [[�℄℄Boolean ofAggXPath, however taking a
ontext
onsisting of a triple (n; j; k) and pass-ing it on to all quali�er and numeri
al subexpressions (for instan
e, [[q1 ^q2℄℄Boolean(n; j; k) := [[q1℄℄Boolean(n; j; k) ^ [[q2℄℄Boolean(n; j; k)), and(3) [[�℄℄Int : Node � Int � Int ! Int is de�ned analogously to [[�℄℄Int of AggXPath,however passing on the full
ontext triple (n; j; k) to its numeri
al subexpres-sions (for instan
e, [[i + i0℄℄Int(n; j; k) := [[i℄℄Int(n; j; k) + [[i0℄℄Int(n; j; k;)). Forthe new operators of OrdXPath, we have:(I5) [[position()℄℄Int(n; j; k) := j(I6) [[last()℄℄Int(n; j; k) := kBy positive FOXPath, denoted PFOXPath, (resp., NavXPath, denoted PNavXPath),we will refer to FOXPath (resp., NavXPath) without negation and inequalities (i.e.,expressions pRelOp p0 with RelOp di�erent from \="). We say that a FOXPathquery (resp., NavXPath query) is
onjun
tive (and
onne
ted) if it does not usedisjun
tion, union, negation, or inequalities.Remark 2.1. The XPath fragments just presented { just like XPath 1.0 { al-low for multiple quali�er bra
kets as part of a step expression. In all our XPathlanguages ex
ept for OrdXPath, this ability is redundant, sin
e steps
ontainingmultiple quali�er bra
kets axis[�℄ : : : [�℄
an be simpli�ed to axis[� ^ � � � ^ �℄. Inthe proofs of our survey, we will sometimes assume the simpli�ed syntax withoutmultiple quali�ers for
onvenien
e.In OrdXPath this simpli�
ation is not appli
able in general, and hen
e for thisfragment the ability to use multiple quali�ers does add expressiveness.Example 2.2. On a
ontext node n with three
hildren n1; n2; n3, of whi
h the�rst is labeled B and the se
ond and third are labeled A,[[
hild[lab() = A℄[position() = 1℄℄℄NodeSet(n) = fn2g;sin
e n2 is the �rst
hild of n in do
ument order that is labeled A. One
an showthat this query
annot be phrased with a single quali�er bra
ket in ea
h step. Forinstan
e,[[
hild[lab() = A ^ position() = 1℄℄℄NodeSet(n) =fnj j 1 � j � 3 ^ [[lab() = A ^ position() = 1℄℄Boolean(nj ; j; 3)g = ;;while[[
hild[lab() = A℄=self[position()=1℄℄℄NodeSet(n) =[f[[self[position()=1℄℄℄NodeSet(ni) j ni 2 [[
hild[lab() = A℄℄℄NodeSet(n)g =[[self[position()=1℄℄℄NodeSet(n2) [[[self[position()=1℄℄℄NodeSet(n3) = fn2; n3g:6

2The example above also shows that �lters do not
ommute in OrdXPath.2.3 Query Equivalen
eBy a query, we mean any expression from one of the XPath fragments introdu
edabove. Two queries p and p0 with domain Node are fully equivalent (or simplyequivalent when it is
lear from the
ontext), denoted by p � p0, i� for any XMLdo
ument D and all nodes n 2 D, [[p℄℄NodeSet(n) = [[p0℄℄NodeSet(n), and similarly forOrdXPath queries with
ontext Node � Int� Int.Let true be a short
ut for the quali�er (lab() = A) _ :(lab() = A). We saytwo queries are equivalent over �0 (denoted by ��0) where �0 is a �xed �nitelabel alphabet, if the above holds for any do
ument D whose labels are in �0. Forexample, true is equivalent to lab() = A _ lab() = B over the alphabet fA;Bg, butnot in general. We will usually work with the stronger notion of general equivalen
e�, and spe
ify when results also hold for restri
ted equivalen
e { equivalen
e w.r.t.some �nite alphabet �0.For queries with domain Node (whi
h in
lude all NavXPath expressions), a weakerequivalen
e relation is de�ned as follows: p and p0 are
alled root equivalent , denotedby p �r p0, i� for any XML do
ument D, [[p℄℄NodeSet(rt) = [[p0℄℄NodeSet(rt), where rtis the root of D. For NavXPath queries de�ned using upward axes, root equivalen
e
an be weaker than general equivalen
e: for example self[parent℄ �r self[:true℄,sin
e the root node has no parent, but
learly these two expressions are not fullyequivalent.2.4 Histori
al and Bibliographi
 RemarksXPath was initially developed by James Clark and formalized and promulgated asan independent standard by the W3C starting in 1999, as XPath 1.0 [World WideWeb Consortium 1999a℄. The standard de�nes the syntax of the language, alongwith use
ases, but gives the semanti
s only informally. An early attempt to give aformal semanti
s is found in [Wadler 2000; 1999℄. A
omplete and yet very
on
iseformal semanti
s of XPath 1.0
an be found in [Gottlob et al. 2002℄.In the pro
ess of the development of XQuery, a signi�
ant extension of XPath 1.0was developed, released as XPath 2.0 [World Wide Web Consortium 2007℄. XPath2.0 is the result of the integration of XPath and XQuery into a
ommon syntax andsemanti
s de�nition, and its semanti
s is presented as part of the XQuery 1.0 FormalSemanti
s [World Wide Web Consortium 2002℄. XPath 2.0 is a radi
ally di�erentlanguage from XPath 1.0, in
luding variables and expli
it quanti�
ation. From atheoreti
al perspe
tive, no polynomial time bounds
an be given on basi
 problemslike XPath 2.0 evaluation (while this is possible for XPath 1.0, see Se
tion 4).From a pra
ti
al point of view the breadth of XPath 2.0 and XQuery would requiredis
ussion to subsume nearly every aspe
t of general-purpose program optimizationand analysis.The extensions of XPath 2.0 over XPath 1.0 are mostly by programming language
onstru
ts that do not preserve the theoreti
al properties of XPath pointed outin the introdu
tion. The largest language studied in this arti
le, OrdXPath is asubset of XPath 1.0 (and hen
e, of XPath 2.0) whi
h subsumes most of the XPathfragments for whi
h fundamental results have been presented in the literature.3. EXPRESSIVENESSWe now investigate where XPath \�ts" in terms of other formalisms for queryingtrees and tree-stru
tured data. One natural ben
hmark is �rst-order logi
 (FO), butwe will also
onsider Monadi
 Se
ond Order logi
 (MSO), the existential fragmentof FO (9FO), the positive existential fragment of FO (9+FO) and the fragment7

FOk of FO formulas that use at most k distin
t variables. The semanti
s of theselanguages is standard [Libkin 2004℄. For a logi
al language L, we will use L[�℄ todenote the formulas of L over vo
abulary �. We dis
uss our
hoi
e of predi
atelogi
s as a ben
hmark, and mention alternatives, at the end of this se
tion.3.1 Expressiveness of NavXPath and CoreXPathWe start by investigating how NavXPath and CoreXPath
ompare to �rst-order logi
over the navigational stru
ture of XML do
uments, and to ea
h other. Note thata formula of �rst-order logi
 with two free variables
an be thought of as de�ninga mapping from Node to NodeSet , while a formula with one free variable de�nes amapping from Node to Boolean. We say that a Boolean query q in one of our XPathfragments is fully equivalent to a �rst-order formula �(x) if for any XML do
umentD and all nodes n 2 D, [[p℄℄Boolean(n)$ D j= �(n). We say that a nodeset query pin one of our XPath fragments is fully equivalent to a �rst-order formula �(x; y) if forany XML do
ument D and all nodes m;n 2 D, n 2 [[p℄℄NodeSet(m)$ D j= �(m;n).The semanti
s of NavXPath presented in Se
tion 2.2 already gives a translationinto these �rst-order languages.Re
all that �transnav is the vo
abulary extending �nav with Rdes
endant andRfollowing-sibling .Then,Proposition 3.1. For every NavXPath expression e one
an �nd (in linear time)a
orresponding formula � in FO[�transnav ℄ fully equivalent to e. Furthermore,|� 2 FO[(LabL)L2�; R
hild℄ if e uses only
hild and parent axes,|� 2 FO[(LabL)L2�; Rdes
endant℄ if e uses only upward and downward axes, and|� 2 FO[�nav ℄ if e uses only
hild; parent; next-sibling; previous-sibling.CoreXPath
an be translated into NavXPath in linear time, just by expanding outthe de�nitions. Hen
e this proposition holds for CoreXPath as well. Note also thatthis proposition holds both for path expressions returning nodesets (in this
ase �has two free variables) and for those returning Boolean expressions (here � has onefree variable).However, this is not an exa
t
hara
terization of the expressiveness of NavXPath.It is easy to �nd �rst-order queries over trees that are not expressible in NavXPath:for example, the query that asks whether the tree has two nodes labeled C that arein an an
estor relationship, and su
h that all nodes between them are labeled B.We now show that NavXPath does have an exa
t
hara
terization,
orrespondingpre
isely to two-variable logi
.We �rst work on
hara
terizing NavXPath nodeset queries. To do this we in-trodu
e a normal form for queries with two free variables that are built from FO2formulas in one free variable. over vo
abulary �transnav . XPNF is the set of queriesthat are disjun
tions of �transnav formulas
(z1; zn) of the form:9z2 : : : 9zn�1 �1(z1) ^ �1(z1; z2) ^ �2(z2) ^ : : : ^ �n�1(zn�1; zn) ^ �n(zn)where the zi here are distin
t variables, the �i are FO2 formulae, and the �i(zi; zi+1)are disjun
tions of binary atomi
 formulas over predi
ates from �transnav .Theorem 3.2 [Marx and de Rijke 2004℄. NavXPath
orresponds to FO2 inexpressiveness, in the following sense.|For every NavXPath expression returning a Boolean there is a
orresponding fullyequivalent expression in FO2 over the signature �transnav, and for every FO2expression there is a
orresponding fully equivalent NavXPath expression.|For every NavXPath expression returning a NodeSet, there is a
orrespondingexpression in XPNF and vi
e versa. 8

Proof (Sket
h). We �rst show the dire
tion from NavXPath NodeSet expressionsto XPNF and from NavXPath Boolean expressions to FO2. We will restri
t tounnested NavXPath expressions , that is, NavXPath expressions that have union onlyat top-level. These have the same expressiveness as general NavXPath expressions.Sin
e the target
lasses FO2 and XPNF are
losed under disjun
tion, it suÆ
es totranslate expressions that have no o

urren
e of the union operator. So it suÆ
esto show that all NavXPath NodeSet expressions that do not use the union operatortranslate to XPNF expressions without top-level disjun
tion, and every NavXPathBoolean expression that does not use the union operator translates to an FO2expression. We show this pair of statements by simultaneous indu
tion. The base
ase for lab() = A is simple, as is the
ase for Boolean operations in Booleanexpressions (sin
e FO2 is
losed under Boolean operators). The
ase step[q℄
an betranslated into XPNF formula �(x; y) ^ �(y), where � is a XPNF formula withouttop-level disjun
tion formed indu
tively for step, and � is an FO2 formula formedfor q. We now do the indu
tive proof for p = p1=p2. By indu
tion, we assumewe have XPNF formulas (without top-level disjun
tion)
1 equivalent to p1 and
2equivalent to p2. If we have
1 = 9z2 : : : 9zm�1 �m�1̂i=1 �0i(zi) ^ �i(zi; zi+1)� ^ �0m(zm)and
2 = 9zm : : :9zn�1 � n�1̂i=m �00i (zi) ^ �i(zi; zi+1)� ^ �00n(zn)then we
an write
1=
2 as9z2 : : : 9zn�1� n�1̂i=1 �i(zi) ^ �i(zi; zi+1)� ^ �n(zn) (1)where �i(zi) is �0i(zi) for i < m, �0i(zi) ^ �00i (zi) for i = m, and �00i (zi) for i > m.The other interesting indu
tive
ase is that of quali�ers of the form p. By indu
-tion we have a XPNF formula
 representing p. We will assume
(z1; zn) to be asshown in equation (1).We need to show that the formula 9zn
(z1; zn) is in FO2. Suppose that n isodd (the
ase where n is even is similar). Let var(i) = z1 for i odd and z2 for ieven. Let �([x 7! y℄) denote the formula obtained by substituting all o

urren
esof variable x by y in �. De�ne n = �n([zn 7! var(n)℄) and i�1 = �i�1([zi�1 7!var(i� 1)℄) ^ 9var(i) �i(var(i� 1); var(i)) ^ i. Then i is an FO2 senten
e withvar(i) free. We
an verify that 1 is equivalent to 9zn
(z1; zn).The
onverse dire
tion is to show by indu
tion that formulas in XPNF
an betranslated to NavXPath NodeSet expressions, while FO2 formulas with one free vari-able
an be translated to NavXPath Boolean expressions. Sin
e the �rst statementfollows easily from the se
ond, we fo
us on the proof of the se
ond. The transla-tion fun
tion T is formed by indu
tion on the stru
ture of an FO2 formula. Theatomi

ases are straightforward, as are the Boolean operations. The interesting
ase is 9y �(x; y), where � is in FO2. Formula �
an be assumed to be a Boolean
ombination of atomi
 binary formulas and FO2 formulas in one free variable oflower quanti�er rank. Let �0 be a formula equivalent to � obtained by turning� into a Disjun
tive Normal Form (DNF) over formulas of the two forms above,and then repla
ing ea
h disjun
t �(x; y) that does not
ontain a binary atom by(�(x; y) ^ x = y) _ (�(x; y) ^ x 6= y). This repla
ement preserves the DNF.The atomi
 binary predi
ates in �0 are either equality, inequality, or axis relations;however, equality x = y
an be repla
ed by self(x; y), and an inequality x 6= y
anbe repla
ed by a disjun
tion of four axis relations (y is either and an
estor or9

des
endant of x or follows or pre
edes x). Let �00 be obtained by applying thesesubstitutions to �0 and again turning the formula into DNF.Sin
e two axis predi
ates are either in
onsistent with one another (i.e., the axisrelations have an empty interse
tion) or subsume ea
h other, we
an assume �00(x; y)to be of the form _i �i(x) ^R�i(x; y) ^ i(y);that is, ea
h disjun
t
ontains pre
isely one binary atom.We
an easily translate �00(x; y) into NavXPath asT (�00) ::=[i self[T (�i)℄=�i[T (i)℄: 2We note that the argument from NavXPath to FO2 shows that there is a poly-nomial time translation from unnested NavXPath to FO2; for general NavXPathexpressions the best translation we know of is in exponential time. This mappingintrodu
es atomi
 predi
ates in the output
orresponding only to axes mentionedin the input; hen
e NavXPath �lters without the next-sibling or previous-sibling axesmap to FO2 formulas that do not use (atomi
 relations for) these axes.In the dire
tion from FO2 to NavXPath, the translation also yields an outputthat is exponential in the input in the worst
ase, and this has been shown to beunavoidable. See [Marx and de Rijke 2004℄ for dis
ussion and proof of this; we willgive a further argument that there is no polynomial translation in Se
tion 5.1 Thisdire
tion does introdu
e new axes. The sibling axes may appear in the output evenwhen the original formula mentions only the
hild axis; the XPNF formula x 6= y
annot be translated into NavXPath unless the sibling axis is present. Similarly,transitive axes are introdu
ed in the translation.On the other hand, next-sibling and previous-sibling are not introdu
ed in thistranslation unless the
orresponding atomi
 predi
ates o

ur in the input. Sin
enext-sibling and previous-sibling are not introdu
ed in either dire
tion, we have thatNavXPath �lters without these axes
orrespond exa
tly to FO2 formulas that donot have atomi
 relations for these axes. Sin
e CoreXPath expressions are, up tosynta
ti
 sugar, exa
tly those NavXPath expressions that do not in
lude the non-transitive sibling axes, we have:Theorem 3.3. CoreXPath
orresponds in expressiveness to two-variable logi
over the vo
ubulary formed by removing the relation Rnext-sibling from �transnav.From these two results and prior known results about FO2, we obtain:Proposition 3.4. There are queries expressible in NavXPath (and hen
e in FO2)that are not expressible in CoreXPath.Proof. If we restri
t to trees of depth 2, all axes
ollapse to sibling axes, andhen
e CoreXPath
orresponds to FO2 with only the transitive sibling axes whileNavXPath
orresponds to all sibling axes. Taking the natural
orresponden
e be-tween trees of depth 2
orrespond and words, CoreXPath maps to FO2 with onlythe linear order relation, while NavXPath
orresponds to FO2 with su

essor andlinear order. But it is known that a su

essor relation of a linear order
annot beexpressed in FO2 over the signature whose only binary predi
ate is for the linearorder (see e.g. Se
tion 7 of [Th�erien and Wilke 1998℄). 2We now turn to the
onsequen
es of this
hara
terization for
losure propertiesof NavXPath and CoreXPath. It is
lear that NavXPath quali�ers are
losed under1Although the argument there is relative to a
omplexity-theoreti
 assumption.10

Boolean operations, sin
e we have expli
it operators for these; it
an also be seen tofollow from Theorem 3.2, sin
e FO2 is obviously Boolean
losed. What about the
losure properties of NavXPath expressions? In [Marx 2005℄, the following is shown:Theorem 3.5 [Marx 2005℄. NavXPath and CoreXPath expressions returningnodesets are
losed under interse
tion and union, but not under
omplement.Closure under union is obvious, sin
e NavXPath has a built-in union operator.Closure under interse
tion follows from the fa
t that the
onjun
tion of XPNFqueries
an be rewritten as a
onjun
tion of atomi
 �transnav formulas and a singleFO2 formula. Every
onjun
tive query on trees
an be transformed into an equiva-lent union of a
y
li

onjun
tive queries [Benedikt et al. 2003; Gottlob et al. 2004℄(
f. Theorem 3.9 below), and unions of a
y
li

onjun
tive queries
an be easilytranslated into NavXPath. The same argument holds for CoreXPath.The la
k of
losure under
omplementation may seem surprising. In fa
t, [Marx2005℄ shows a stronger result: any extension of NavXPath
losed under
omplemen-tation
an express all �rst-order properties. The proof is by showing that an \until"operator
an be de�ned by
omplementing NavXPath expressions. The following ex-ample is taken from page 7 of [Marx 2005℄: Let �(x; y) hold i� y is an A-labeleddes
endant of x and every des
endant of x that is an an
estor of y is labeled B.Then � is expressible in NavXPath extended with a
omplement operator (�)
 as:des
endant[lab() = A)℄ \ (des
endant[lab() 6= B℄=des
endant)
Above, we use also the interse
tion operator \, but this
an easily be de�ned using
omplementation and union.The translation of unnested NavXPath to FO2
an be extended as follows: letNavXPath\ be the extension of NavXPath with the interse
tion operator \, and letunnested NavXPath\ be the same but with union allowed only at top-level. ByTheorem 3.5 above, we have NavXPath\ has the same expressiveness as NavXPath(for both expressions and quali�ers). Hen
e NavXPath\ quali�ers have the sameexpressiveness as FO2 formulas. Using the argument of [Olteanu et al. 2002℄, one
an show that even unnested NavXPath\ formulas
an be exponentially more su
-
in
t than NavXPath formulas. However, unnested NavXPath\ formulas
an still betranslated into FO2 eÆ
iently:Proposition 3.6. There is a polynomial time fun
tion taking an unnested NavXPath\�lter and produ
ing a FO2 formula �(x) fully equivalent to it.Proof. We extend the dual translations from the proof of Theorem 3.2 to gofrom NavXPath\ NodeSet expressions without union to XPNF queries and fromNavXPath Boolean expressions without union to FO2 queries. We use exa
tly thesame
onstru
tion of a translation fun
tion, let us
all it f , as for NavXPath, butfor the indu
tive step for f(E1 \ E2) we translate into f(E1) ^ f(E2). 2We now provide an example of a navigational FO query that we prove not tobe expressible in NavXPath. Our example, a new immediately-following axis, has apra
ti
al motivation. Computational linguists have proposed the addition of su
h anaxis to XPath to ask pra
ti
al queries on linguisti
 trees [Bird et al. 2005℄. We
angive a semanti
s to this axis using a
orresponding binary relationRimmediately-following ,whi
h holds of (x; y) i�Rfollowing(x; y) ^ :9z (Rfollowing(x; z) ^ Rfollowing(z; y)):In [Bird et al. 2005℄ an extension of XPath with immediately-following is proposed.We show here the following:Proposition 3.7. There is no NavXPath expression E fully equivalent as anodeset query to immediately-following. 11

Proof. Consider do
uments that in
lude a
hain of A elements starting from theroot to a leaf, with one of the following holding for ea
h element x in the
hain:(1) x has a single A
hild (the next element of the
hain), and no other
hildren,(2) x has no
hildren (i.e. it is the lowest element of the
hain),(3) x has a single A
hild and a single B
hild, or(4) x has a single A
hild and a single C
hild.It is easy to
onstru
t a NavXPath quali�erQ0 that holds of the root of a do
umenti� the do
ument is of the above form. Consider the quali�er Q1lab() = A ^ immediately-following[lab() = B℄in NavXPath extended with immediately-following.That is, Q1 holds of an A node i� it has an immediately-following node that is aB. For a node n in a tree whose root satis�es Q0, Q holds at n i� the �rst an
estorof n whi
h has a non-A
hild has a B
hild. We
laim that there is no NavXPathquali�er equivalent to Q1 ^Q0. From this, the proposition follows. From Theorem3.2, it suÆ
es to show that no two-variable logi
 formula
an express Q1 ^Q0.We will redu
e expressibility of Q1 ^Q0 over trees to a statement about express-ibility of a
ertain property in two-variable logi
 over strings. Let FO� be the logi
built up using quanti�
ation only over A nodes, where the vo
abulary in
ludes thebinary predi
ates Rdes
endant and R
hild and unary predi
ates P1; P2; P3; P4, wherePi holds of x i�
ase i holds above.Claim 3.8. For every FO[�transnav ℄ senten
e �(x) there is an FO� senten
e��(x) with the same number of variables as � whi
h is equivalent to � over allA-nodes within all do
uments whose root satis�es Q0.Informally, �� is obtained indu
tively by repla
ing variables over B;C nodes byvariables over their A parents. A senten
e � = 9x B(x) would map to �� = 9x 2A P3(x). Formally, we pro
eed as follows. Let Se
Child(D; x) be the partial fun
tionon nodes of D that maps a node labeled A to its se
ond
hild, if su
h a
hild exists,and Self(D; x) be the identity fun
tion on nodes labeled A. We
reate a fun
tionT (�; b) for � 2 FO[�transnav ℄, b a fun
tion from the free variables of � to eitherSe
Child or Self, returning a formula �0 2 FO� with the same free variables as �,and su
h that: for all do
uments D, T (�(x; y); b) holds of A nodes m;n i� �(x; y)holds when applied to b(D;m); b(D;n), and similarly for �(x); �(y).The main atomi

ases for T are:|T (Rnext-sibling(x; y); b) is (P3(y) _ P4(y)) ^ R
hild(y; x) if b(x) = Self and b(y) =Se
Child, and is false otherwise.|T (R
hild(x; y); b) is R
hild(x; y) if b(x) = Self and b(y) = Self, is (P3(x) _ P4(x)) ^x = y if b(x) = Self and b(y) = Se
Child, and is false otherwise.|T (Rdes
endant(x; y); b) is Rdes
endant(x; y) if b(x) = Self and b(y) = Self, is P3(y) _P4(y) if b(x) = Self and b(y) = Se
Child, and is false otherwise.|T (B(x); b) is P3(x) if b(x) = Se
Child, and is false otherwise.|T (C(x); b) is P4(x) if b(x) = Se
Child and is false otherwise.|T (A(x); b) is true if b(x) = Self, and is false otherwise.The other atomi

ases are similar. The indu
tive
ases are:|T (9x�(x; y); b) = Wb0:b0jfyg=b 9x 2 A T (�(x; y); b0)|T (8x�(x; y); b) = Vb0:b0jfyg=b 9x 2 A T (�(x; y); b0)|T (�1 ^ �2; b) = T (�1; b) ^ T (�2; b)|T (�1 _ �2; b) = T (�1; b) _ T (�2; b) 12

|T (:�; b) = :T (�; b)Finally, for a senten
e we let ��(x) be Wb T (�(x); b), where in the disjun
tion branges over all the bindings for x. One
an verify indu
tively that T , and hen
e ��has the required properties.From this
onstru
tion, we see that if �(x) 2 NavXPath expresses Q0 ^Q1, then��(x) must hold of an A-node n i� the �rst an
estor of n whi
h satis�es P3 _ P4satis�es P3. Let S0 be the set of strings from alphabet � = fP1; P2; P3; P4g, endingwith the symbol P1. There is an obvious bije
tion F from do
uments whose rootsatis�es Q0 to strings in S0. Using this fun
tion, we
an see that ��(x),
onsideredas a predi
ate on strings in S0, holds at node n i� the �rst an
estor of n whi
hsatis�es P3 _ P4 satis�es P3. But then by
ipping the variables in every predi
ateRdes
endant or R
hild in �� we obtain a two-variable formula ��(x) that holds atnode n of string s i� the �rst des
endant of n satisfying P3 _ P4 satis�es P3. Fromthis we easily get a
ontradi
tion of prior results about the inexpressibility of theUntil operator in two variable logi
 (for strings, those of [Etessami and Wilke 2000;Etessami et al. 2002℄, or for trees those of [Marx 2004b℄). Consider the query Q thatholds of a string s i� s has a substring that
ontains two nodes satisfying P3 butnone satisfying P4. If ��(x) were expressible in two-variable logi
, then Q wouldbe expressible over strings in two-variable logi
 over the vo
abulary
onsisting ofthe labels, the des
endant predi
ates, and the
hild predi
ate. But in [Etessamiand Wilke 2000℄ it is shown that Q (denoted there by FAIR2) is not expressible inUnary Temporal Logi
, and by [Etessami et al. 2002℄ Unary Temporal Logi
 is thesame as two-variable logi
 over strings. Hen
e Q is not expressible in two-variablelogi
, and we have a
ontradi
tion. 2Note that the problem of de
iding whether a given FO senten
e over trees is inNavXPath (i.e. is a two-variable senten
e in �transnav) is still open, as is the mem-bership problem for CoreXPath. The analogous problem for strings (membership inFO2) is known to be de
idable [Beauquier and Pin 1989℄.3.2 Expressiveness of Fragments of NavXPathNavXPath is still a large language, and many appli
ations make use only of thepositive fragment.Following [Benedikt et al. 2003℄, we
hara
terize NavXPath both using logi
 anda visual query formalism, tree patterns.A tree pattern (over label alphabet �) is a node and edge-labeled tree. Edges arelabeled with a forward axis (
hild, des
endant, following-sibling). In a Boolean treepattern node labels have one
omponent that is either a label from � or wild
ardand another
omponent that identi�es whether a node is the distinguished
ontextnode or not. In a unary tree pattern the additional
omponent identi�es a nodeas either the
ontext node, the sele
ted node, or neither. Figure 1 shows a unarytree pattern. Following the standard
onvention for drawing patterns, double linesare used for a des
endant edge and single lines for a
hild edge. A star is usedto denote the sele
ted node, and the
ontext node is impli
itly the root node. ABoolean pattern
orresponds to a Boolean query, returning true at
ontext noden in a do
ument i� there is a homomorphism from the pattern to the do
umentmapping the
ontext to n. A unary tree pattern
orresponds to a NodeSet query,whi
h returns node n0 on input n i� there is a homomorphism from the pattern tothe do
ument whi
h maps a node labeled
ontext to n and the sele
ted node to n0.The pattern in the �gure is equivalent to the XPath expressionself::A[
hild::B℄[des
endant::D℄=
hild::CA �nite set of tree patterns
an be
onsidered as a query, returning the unionof the results of the individual patterns in the
ase of unary tree patterns, and13

A

B C*

DFig. 1. Tree patternreturning the disjun
tion of the results in the
ase of Boolean tree patterns.Theorem 3.9. The following have equal expressiveness (up to full equivalen
e)|PNavXPath NodeSet queries,|9+FO formulas �(x; y) in the signature �transnav, and|sets of unary tree patterns.A similar result holds for negation-free CoreXPath, but where the formulas do notin
lude Rnext-sibling . Note that this result is in
omparable to Theorem 3.2. Theorem3.2 applies to arbitrary NavXPath, and says that they are fully equivalent to a
y
li

onjun
tive queries over atoms that in
lude arbitrary FO2 formulas, possibly withnegation. This result applies only to PNavXPath queries, but states that that they
an be written as
onjun
tions of only atomi
 formulas, where the the
onjun
tionmust
onstrain the variables to be \tree-like".We give a sket
h of why the above holds: further details (for the
ase wherethere are only upward or downward axes, but no sideways axes su
h as following orfollowing-sibling)
an be found in [Benedikt et al. 2003℄; the general
ase is proved in[Gottlob et al. 2004℄. For every PNavXPath NodeSet query, and unary tree patterns,the
orresponding equivalent 9+FO formula
an be found in linear time, simply bytranslating the semanti
s of PNavXPath or of tree patterns into logi
. Translatingfrom unary tree pattern queries to PNavXPath queries is likewise straightforward:path steps are used to traverse the path from the
ontext node upward to theleast
ommon an
estor of the
ontext and sele
ted node, then downwards from thisan
estor to the sele
ted node. The existen
e of subtrees sprouting o� from this pathis asserted using �lters. Translation of 9+FO formulas into tree patterns is done by�rst translating them into a
y
li
 positive queries, whi
h immediately
orrespondto forests of tree patterns:Lemma 3.10 [Olteanu et al. 2002; Benedikt et al. 2003; Gottlob et al. 2004℄.For every
onjun
tive query over trees there is an equivalent a
y
li
 positive query.This query
an be
omputed in exponential time.Proof. For notational simpli
ity, we will assume that the input query 9x1 � � �xk Q(k � 0), with Q a
onjun
tion of atomi
 formulas that uses variables x1; : : : ; xk,is Boolean. The proof, however, immediately generalizes to
onjun
tive queries ofarbitrary arity. W.l.o.g., we assume that Q
ontains no Rfollowing-atoms. (Ea
h atomRfollowing(x;w)
an be rewritten using R�
hild and R+next-sibling atoms as R�
hild(x; y) ^R+next-sibling(y; z) ^ R�
hild(z; w), where y and z are new variables.)Consider the
onjun
tive normal form formula� := ^1�i<j�k(xi = xj _ xi <pre xj _ xj <pre xi):14

R n S R
hild R+
hild Rnext-sibling R+next-siblingR
hild unsat unsat sat satR+
hild sat sat sat satRnext-sibling unsat unsat unsat unsatR+next-sibling unsat unsat sat satTable I. Satis�ability of R(x; z) ^ S(y; z) ^ x <pre y for pairs of axes R; S.Let 	 be the set
onsisting of the 3(k2) disjun
ts of the disjun
tive normal form of�. For 2 	 let Q be the
onjun
tion of atomi
 formulas obtained from Q ^ by the following steps, in the indi
ated order.(1) We remove all o

urren
es of equality atoms x = y in arbitrary order andrepla
e, for ea
h su
h atom, all o

urren
es of y by x.(2) For R 2 fR
hild; Rnext-siblingg, we remove all atoms R�(x; x) from Q and repla
eall o

urren
es of R�(x; y) (where x and y are di�erent variables) by R+(x; y).The latter is an equivalent rewriting sin
e Q
ontains either atom x <pre yor y <pre x, thus x and y must map to di�erent nodes.(3) ForR 2 fR
hild; Rnext-siblingg, ifQ
ontains atomsR(x; y), R+(x; y) then R+(x; y)is removed from Q .Observe that the binary atoms orQ use only R
hild, R+
hild, Rnext-sibling, R+next-sibling ,and <pre as predi
ates. We
an verify that 9~x Q is true if and only if 9~x Q ^ .Let Q = f9~x Q j 2 	g. ThenQ � 9~x Q ^ � � _f9~x Q ^ j 2 	g � _Q:In the following, we will
all the binary relation E withxEy :, there is an atomi
 formula R(x; y) in Q (with R a binary predi
ate { either an axis or <pre) the graph of Q . Note that Eis either
y
li
 or de�nes a total order on the variables in Q be
ause there is anedge between any two variables of Q .Now, for ea
h Q of Q, we repeat the following steps until we terminate:|If the graph of Q is
y
li
, Q is unsatis�able and is removed from Q. Termi-nation. Otherwise, the graph of Q is a
y
li
 and thus
onstitutes a total orderof the variables in Q .|IfQ
ontains atomsR(x; y); S(x; y) whereR 2 fR
hild, R+
hildg and S 2 fRnext-sibling ,R+next-siblingg, Q is unsatis�able and is removed from Q. Termination.|If there are no two atoms R(x; z); S(y; z) in Q with x and y distin
t variablesand R;S di�erent from <pre then Q is a
y
li
. Termination.|We
hoose the pairs of atoms R(x; z); S(y; z) (x and y distin
t variables andR;S di�erent from <pre) su
h that z is maximal with respe
t to the total ordergiven by the graph of Q . From among these, we
hoose a pair su
h that x isminimal with respe
t to the total order. By our
hoi
e, x <pre y is in Q . IfR(x; z) ^ S(y; z)^ x <pre y is unsatis�able (the unsatis�able
ases
an be foundin Table I), remove Q from Q and terminate. Otherwise, repla
e atom R(x; z)by R(x; y).The above algorithm terminates be
ause there are no more than �k2� non-<pre-atoms and whenever we repla
e an atom R(x; z) by an atom R(x; y), y is smallerthan z with respe
t to the total order. On
e we have pro
essed a pair of atomsR(x; z), S(y; z), we never have to pro
ess pairs of atoms R0(x; z), S0(y0; z) for thesame x and z again. Thus pro
essing a single Q takes polynomial time and the
omplete rewriting of Q takes exponential time.15

It
an be veri�ed that repla
ingR(x; z) in the satis�able
ases of R(x; z)^S(y; z)^x <pre y by R(x; y) is an equivalent rewriting:|R = R+
hild, S 2 fR
hild; R+
hildg: if x and y are an
estors of z, then x <pre yimplies that x is an an
estor of y.|R = R+next-sibling , S 2 fRnext-sibling, R+next-siblingg: analogous.|R 2 fR
hild; R+
hildg, S 2 fRnext-sibling, R+next-siblingg: Sin
e x is a parent/an
estor ofz and y is a left sibling of z, x is also a parent/an
estor of y.Ea
h
onjun
tive query Q in the set Q obtained as des
ribed above is a
y
li
if all the <pre-atoms are removed. Doing just that is an equivalent rewriting: LetQ0 be the
onjun
tion of atoms of Q ex
luding the <pre-atoms of Q . Then9~x Q � 9~x Q0 � 9~x Q; thus, 9~x Q � WQ � Wf9~x Q0 j Q 2 Qg � 9~x Q. 2The translations from PNavXPath into FO2 and from tree pattern queries intoboth PNavXPath and (hen
e) FO2 are linear, but every other translation in theabove theorem is exponential in the worst
ase; from 9+FO to PNavXPath andfrom 9+FO to tree patterns, this is shown in [Gottlob et al. 2004℄. For the trans-lation from PNavXPath to tree patterns, note that PNavXPath
an en
ode a Con-jun
tive Normal Form of a propositional formula (e.g. proposition pi en
oded by[R
hild=[lab() = Ai℄). A set of tree patterns would
orrespond to a Disjun
tive Nor-mal Form representation of the same formula. Sin
e it is known that there is anexponential blow-up in going from CNF to DNF, the exponential blow-up of thistranslation follows.A similar argument gives:Theorem 3.11. The following have equal expressiveness (up to full equivalen
e)|Boolean PNavXPath queries,|9+FO formulas �(x) in the signature �transnav,|9+FO formulas �(x) in the signature �transnav with at most two variables, and|sets of Boolean tree patterns.It is easy to show that 9+FO[�transnav ℄ is
losed under interse
tion and union,but not
omplement. From this and the theorem above, one has:Corollary 3.12. Boolean PNavXPath queries are
losed under interse
tion andunion, but not under
omplementation.Another
onsequen
e of the above is:Corollary 3.13 [Olteanu et al. 2002℄. For every PNavXPath query p, thereis a query p0 that
ontains none of the axes pre
eding-sibling, previous-sibling, andis equivalent to p. In addition there is a query p0
ontaining none of the \ba
kwardaxes" (parent, an
estor, an
estor-or-self, pre
eding-sibling, previous-sibling) su
h thatp �r p0.To see this,
onsider the translation of a tree pattern into PNavXPath. Thistranslation
an be done in su
h a way as to never introdu
e pre
eding-sibling orprevious-sibling. The upward axes parent and an
estor are introdu
ed only when the
ontext node in the pattern is not the root. But under root equivalen
e, a treepattern
an always be taken to have the
ontext node to the root (sin
e otherwisethe pattern is root equivalent to true).[Olteanu et al. 2002℄ gives a rewrite system that removes the ba
kward axes(parent, an
estor, an
estor-or-self, pre
eding-sibling), assuming root equivalen
e.It is known that upward axes and ba
kward axes
annot be removed in thepresen
e of negation or data values: for negation, one
an
onsider the query p =des
endant[lab() = B ^ :an
estor[lab() = A℄℄. One
an show by an analysis of16

NavXPath queries without upward axes that this
annot be expressed without theuse of an
estor.3.3 Expressiveness of FOXPathMu
h less is known about the expressiveness of FOXPath and AggXPath than forNavXPath. It is easy to see that FOXPath expressions
an be translated into �rst-order logi
 over the signature�+val = �nav [fRelOp�Ai;�Aj j i; j 2 f1; : : : ; ng;RelOp 2 f=; 6=; <;�; >;�gg[fRdes
endant; Rfollowing-siblingg;where RelOp�Ai;�Aj (x; y) holds of nodes x and y i� x:Ai RelOp y:Aj . An importantobservation is the following, analogous to one dire
tion of Theorem 3.2:Proposition 3.14. Every FOXPath expression p
an be translated (in lineartime) to a fully equivalent formula �p over vo
abulary �+val su
h that �p uses atmost three variables. In
ase p is a Boolean expression, p will have one free vari-able, and in
ase p is a NodeSet expression it will have two free variables.Proof. The translation is indu
tive; the only new
ase over NavXPath is the
ase ofa quali�er F = E RelOp E0. Letting �E(x; y); �E0(x; y) be the translations formedindu
tively from E;E0 respe
tively. Then we
an set�F = 9y 9y0 �E(x; y) ^ �E0(x; y0) ^ RelOp(y; y0);and note that �F has at most 3 variables. 2However, it is
lear that the
onverse does not hold: there are �rst-order logi
formulas using only three variables that have no equivalent in FOXPath. This isbe
ause FOXPath gives no added expressiveness on the navigational stru
ture ofa do
ument. Formally, we say that a Boolean query Q over XML do
uments isnavigational if Q
annot distinguish two do
uments that are isomorphi
 as unrankedordered trees (that is, the two do
uments have isomorphi
 interpretations for �nav).Then we haveProposition 3.15. Any navigational Boolean query expressible in FOXPath isexpressible in NavXPath, and hen
e is expressible in FO2. In parti
ular (by [Etes-sami et al. 2002℄), there are FO[�nav ; Rdes
endant℄ queries not expressible in FOXPath.Proof Sket
h. We say that a set of XML do
uments R is a representative familyi� for ea
h XML-tree t there is an XML do
ument d su
h that d is an expansion oft and d 2 R (i.e. the redu
t-map is surje
tive).Let � be an arbitrary FOXPath query that is navigational.Perform the following rewriting of �. Repla
e ea
h atomi
 �lter of form �=�a =�0=�b or �=�a � �0=�b by � ^ �0 and ea
h atomi
 �lter of form �=�a 6= �0=�b or�=�a < �0=�b by false. Call the NavXPath query obtained by this rewriting �0. Itis easy to observe that for any labeled tree t, it is true for the expansion to the XMLdo
ument d obtained by mapping ea
h node to the same value, say val : x 7! 1for all x, that �(t) � �0(d). Thus the set of these expansions is a representativefamily, and for all navigational queries � and all d from that representative family,�(d) � �0(d). The theorem then follows from the followingClaim 3.16. If � and �0 are navigational queries and �(d) � �0(d) for all XMLdo
uments d in a representative family, then �(d0) � �0(d0) on all XML do
umentsd0.Proof of
laim: Assume that there exists a representative family R su
h that�(d) � �0(d) for all d 2 R. Given an arbitrary XML do
uments d, we take itsredu
t d0 to �nav . Of
ourse there exists an expansion dR 2 R of d0. By assumption,17

FOXPath

NavXPath=

NavXPathÅ=FO2(transnav)

CoreXPath=FO2(transnav-NextSib)

AggXP

FO3(+
val)

FO(transnav)

=FO3(transnav)

Fig. 2. Expressive power of XPath Language fragments versus �rst-order languages.�(dR) � �0(dR). If � and �0 are navigational, �(dR) � �(d) and �0(dR) � �0(d).Thus �(d) = �0(d).In the
ase of AggXPath, in
ontrast, it is known that all navigational �rst-orderqueries are expressible:Proposition 3.17. Any FO[�transnav ℄ boolean query is expressible in AggXPath.In parti
ular, the axis immediately-following is expressible in AggXPath.Proof Sket
h. We use a result of [Marx 2004a℄, whi
h states that it is suÆ
ient toshow
losure under the following variant of the modal until operators. For an axis� 2 f
hild; parent; next-sibling; previous-siblingg, we write �+ for the
orrespondingtransitive axis (
hild+ = des
endant , et
.) and �� for the union of �+ with the selfaxis (
hild+ = des
endant-or-self, et
.). For axis � 2 f
hild; parent; next-sibling; previous-siblinggand queries Q1(x); Q2(x), the query Until�(Q2; Q1)(x) (\propertyQ1 until propertyQ2") holds at a node n i� there is n0 su
h that R�+(n; n0) holds, Q2(n0) holds, andfor all n00 su
h that R�+(n; n00) and R�+(n00; n0) we have Q1(n00). Marx has shown(
ombination of Theorems 6 and 7 of [Marx 2004a℄) that any language
ontainingunary label tests and
losed under boolean operations and the until operators above
an express any �rst-order formula in one free variable. Sin
e AggXPath is
losedunder boolean operations, it is thus suÆ
ient to show
losure under until. But if E1and E2 are AggXPath expressions returning Booleans, then Until�(E2; E1)
an beexpressed as �+::� [E2℄^:�
ount(�+::� [:E1℄=�+::� [E2℄) =
ount(�+::� [E2℄)�. 2A summary of our expressiveness results is shown in Figure 2.3.4 Further Bibliographi
 RemarksIn this se
tion, we have dis
ussed exa
t
hara
terizations of sublanguages of XPathvia logi
 and tree patterns. We have fo
used on the relationship between NavXPathand logi
s, be
ause this is where the
leanest
hara
terization
an be shown. How-ever, the relationship between XPath 1.0 and logi
s with few variables extendsto logi
s that manipulate data, as shown in our results on FOXPath above. Thisrelationship will play a role in the
omplexity results of the next se
tion. The re-lationship between PNavXPath queries and a
y
li
 �rst-order queries is exploredfurther in [Gottlob et al. 2004℄.There are other formalisms in whi
h NavXPath and CoreXPath
an be embeddedas a stri
t subset, and we review them below.[Neven and S
hwenti
k 2002℄ deals with query automata, an automata modelthat de�nes NodeSet queries. Query automata have the expressiveness of Monadi
18

Se
ond Order Logi
, hen
e they are stri
tly more powerful than NavXPath. [Fri
ket al. 2003; Ko
h 2003℄ deal with a variant of non-deterministi
 tree automata that
an de�ne unary rather than Boolean queries. [Carme et al. 2004℄ de�ne querieson unranked trees via automata that work on binary en
odings. As with queryautomata, both these formalisms stri
tly subsume NavXPath in expressiveness. Onestarting point in looking for an automata
hara
terization of XPath is [S
hwenti
ket al. 2001℄, whi
h gives a
hara
terization of two-variable logi
 over strings in termsof partially-ordered two-way deterministi
 automata. We do not know of a similar
hara
terization for two-variable logi
 on trees. A
omprehensive survey of therelationship of XML queries to automata is given in [S
hwenti
k 2007℄.As mentioned in the introdu
tion, there is a natural
onne
tion between navi-gational XPath and modal logi
s, whi
h was �rst observed in [Miklau and Su
iu2002℄ and [Gottlob and Ko
h 2002℄ and subsequently revisited in several works(e.g. [Marx 2004b; 2004a; Afanasiev et al. 2004℄). The
losest relation is to lineartemporal logi
 (LTL) and Propositional Dynami
 Logi
 (PDL). LTL formulas giveproperties of nodes within a string. They are built up from formulas
he
king thelabel of a node via boolean operators and the operators \at the next pla
e �" \even-tually �" and \� until ". The restri
tion of LTL obtained by removing the untiloperator is
alled Unary Temporal Logi
. NavXPath quali�ers
an be
onsideredas an extension of Unary Temporal Logi
 from strings to trees. In parti
ular, theexpressiveness of NavXPath quali�ers over strings is exa
tly that of Unary TemporalLogi
. Bran
hing time temporal logi
s, su
h as CTL�, generalize LTL from stringsto graphs, rather than to trees. The te
hniques for proving expressiveness resultsfor NavXPath quali�ers borrow heavily from the prior work on LTL and CTL�expressiveness.PDL formulas give formulas mapping nodes to nodesets within an edge-labeledgraph. They are built up from operators that
an move forward on any labeled edge.XPath nodeset expressions
an be
onsidered, roughly as PDL formulas where theedge-labeled graph is obtained from an ordered tree. Many of the stati
 analysisresults (see, for example, Theorem 5.8) follow from modifying prior results for PDL.We do not pursue the relationship with either automata or modal logi
s in detailbe
ause the expressiveness of XPath does not exa
tly mat
h either PDL or LTL. Anapproa
h to �lling this gap would be to de�ne natural extensions of either temporallogi
 or PDL to deal with trees. For temporal logi
s, see [Bar
elo and Libkin 2005℄for an extended dis
ussion of this approa
h, while for PDL see [Afanasiev et al.2005℄.A natural question is what should be added to NavXPath to
apture all of �rst-order logi
. It is known that �rst-order logi
 with 3 variables
aptures FO (estab-lished in [Marx 2004a℄ for ordered unranked trees). Marx [Marx 2004a℄ proposestwo extensions of NavXPath to
apture FO3, and thus be �rst-order
omplete. Oneis by adding a path
omplementation feature to NavXPath and the other is by in-trodu
ing
onditional axes in the spirit of the until operator of CTL. These results
an be seen as extensions of Kamp's Theorem [Kamp 1968℄, whi
h states that lineartemporal logi
 (with \until")
aptures �rst-order logi
 over in�nite words, to thesetting of unranked trees.4. COMPLEXITY AND EFFICIENT EVALUATIONThis se
tion studies the
omplexity of XPath queries. XPath is a variable-freequery language in whi
h many queries { in parti
ular, all NavXPath queries { aretree-shaped in a natural sense when
onverted into �rst-order logi
. At the sametime the navigational stru
ture of XML do
uments is tree-shaped. We �rst look atsome of the
lassi
al results about tree-like queries and queries on tree-like stru
-tures. Then we explore the
onne
tions between the powerful notion of hypertree-width and XPath and show the new result that
onjun
tive FOXPath queries have19

hypertree-width 2. After that, we generalize from XPath evaluation based on hy-pertree de
ompositions and illustrate the dynami
 programming te
hnique that hasyielded a polynomial time algorithm for full XPath 1.0. Then we survey the par-allel
omplexity of XPath and give a new simpli�ed proof that XPath is hard forpolynomial time. Finally, we study XPath pro
essing on data streams and give anoverview over further work on eÆ
ient XPath pro
essing.4.1 Complexity Ba
kgroundThroughout this se
tion, we will
onsider logi
s and query languages as problem
lasses and will simply identify the languages with their evaluation problems. Twokinds of
omplexity of query evaluation will be
onsidered, data
omplexity (wherequeries are assumed to be �xed and data variable) and
ombined
omplexity (whereboth data and query are
onsidered variable) [Vardi 1982℄.We brie
y dis
uss the
omplexity
lasses and some of their
hara
terizations usedthroughout the remainder of this survey. For more thorough surveys of
omplexity
lasses and the related theory see [Johnson 1990; Papadimitriou 1994; Greenlawet al. 1995℄.By PTime, ExpTime, NExpTime, LogSpa
e, NLogSpa
e, and PSpa
e wedenote the well-known
omplexity
lasses of problems solvable on Turing ma
hinesin deterministi
 polynomial time, deterministi
 exponential time, nondeterminis-ti
 exponential time, deterministi
 logarithmi
 spa
e, nondeterministi
 logarithmi
spa
e, and (deterministi
) polynomial spa
e, respe
tively. By NP, we denote thede
ision problems solvable in nondeterministi
 polynomial time and
o-NP denotesthe
lass of their
omplements.It is a widely-held
onje
ture that problems
omplete for PTime are inherentlysequential and
annot pro�t from parallel
omputation (
f. e.g. [Greenlaw et al.1995℄). Instead, a problem is
alled highly parallelizable if it
an be solved withinthe
omplexity
lass NC of all problems solvable in polylogarithmi
 time on apolynomial number of pro
essors working in parallel [Greenlaw et al. 1995℄.A simple model of parallel
omputation is that of Boolean
ir
uits. By a monotone
ir
uit, we denote a
ir
uit in whi
h only the input gates may possibly be negated.All other gates are either ^-gates or _-gates (but no :-gates). A family of
ir
uitsis a sequen
e G0;G1;G2; : : : , where the n-th
ir
uit Gn has n inputs. Su
h a familyis
alled LogSpa
e-uniform if there exists a LogSpa
e-bounded deterministi
Turing ma
hine whi
h, on the input of n bits 1 (the string 1n), outputs the
ir
uitGn. A family of
ir
uits has bounded fan-in if all of the gates in these
ir
uitshave fan-in bounded by some
onstant. On the other hand, a family of monotone
ir
uits is
alled semi-unbounded if all ^-gates are of bounded fan-in (without loss ofgenerality, we may restri
t the fan-in to two) but the _-gates may have unboundedfan-in.NCi denotes the
lass of languages re
ognizable using LogSpa
e-uniform Boolean
ir
uit families of polynomial size and depth O(logi n) (in terms of the size n of theinput). SAC1 is the
lass of languages re
ognizable by LogSpa
e-uniform familiesof semi-unbounded
ir
uits of depth O(log n) (SAC1
ir
uits).A nondeterministi
 auxiliary pushdown automaton (NAuxPDA) is a nondeter-ministi
 Turing ma
hine with a distinguished input tape, a worktape, and a sta
k(of whi
h stri
tly only the topmost element
an be a

essed at any time).LogCFL is usually de�ned as the
omplexity
lass
onsisting of all problemsLogSpa
e-redu
ible to a
ontext-free language. There are two important alterna-tive
hara
terizations of LogCFL that we are going to use. They are re
alled inProposition 4.1 and 4.2, respe
tively.Proposition 4.1 [Venkateswaran 1991℄. LogCFL = SAC1. SAC1 Cir
uitValue is LogCFL-
omplete. 20

Proposition 4.2 [Sudborough 1977℄. LogCFL is the
lass of all de
isionproblems solvable by a NAuxPDA with a logarithmi
 spa
e-bounded worktape inpolynomial time.We have LogSpa
e � NLogSpa
e � LogCFL � NC2 � NC � PTime � NP� PSpa
e � ExpTime � NExpTime. All in
lusions � are suspe
ted to be stri
t,and all these
omplexity
lasses are
losed under LogSpa
e-redu
tions.Unless stated otherwise, we assume the input represented as a �dom-stru
tureen
oded in the usual way.4.2 Tree-like Data and Tree-like QueriesAs a warm-up, we use the well-studied graph-theoreti
al notion of tree-width toderive a few results about the
omplexity of XPath that follow immediately fromthe literature.Let G = (V G; EG) be a graph. A tree de
omposition of G is a pair (T; �) su
h thatT is a rooted tree with nodes V T , � is a fun
tion � : V T ! 2V G that maps ea
h nodeof tree T to a subset of V G, for ea
h edge (u; v) 2 EG there exists a node w 2 V Tsu
h that u; v 2 �(w), and for ea
h node u 2 V G, the set fv 2 V T j u 2 �(v)gindu
es a
onne
ted subtree of T . The width of tree de
omposition (T; �) is de�nedas �maxfj�(v)j j v 2 V T g�� 1. The tree-width of a graph G is the smallest widthover all tree de
ompositions of G. Intuitively, graphs of low tree-width are verytree-like. As a spe
ial
ase, the
onne
ted graphs of tree-width one are pre
isely thetrees. An example of a graph and a tree de
omposition (of width 2) for it is givenin Figures 3 (a) and (b), respe
tively.We say that a stru
ture
onsisting only of unary and binary relations has tree-width k if the union of (the symmetri

losure of) its binary relations has tree-widthk. We do not give a formal de�nition of the general
ase of queries of bounded tree-width here; however, for
onjun
tive queries Q over a vo
abulary of at most binaryrelation symbols, the tree-width of Q is de�ned as the tree-width of the graphG = (V;E) where V
onsists of the variables of Q and (x; y); (y; x) 2 E if there isan atom a(x; y) in Q.x1: Tree-like data lead to linear-time data
omplexity. The Boolean MSO querieson trees labeled with a �nite alphabet (e.g. �nav-trees) de�ne pre
isely the regu-lar tree languages , whi
h
orrespond to the deterministi
 bottom-up tree automata[That
her and Wright 1968; Doner 1970; Br�uggemann-Klein et al. 2001℄. Ea
hBoolean MSO query
an be mapped to su
h an automaton, whose a

eptan
e ofa given input tree
an be
he
ked in linear time in the size of the tree (traversingit on
e bottom-up). Thus, Boolean MSO queries on trees have linear-time data
omplexity. A slightly more general version of this fa
t for bounded tree-widthstru
tures is known as Cour
elle's Theorem [Cour
elle 1990℄, whi
h
an be furthergeneralized toTheorem 4.3 [Flum et al. 2002℄. Let C be a
lass of stru
tures of boundedtree-width. For a �xed MSO formula �, there is an algorithm that evaluates � onea
h stru
ture A 2 C in time O(jAj + j�(A)j).That is, this algorithm runs in time linear in the size of the input and the output,and in parti
ular in linear time in the size of the input on MSO formulas with atmost one free variable.It
an be veri�ed that unranked ordered trees represented by �nav-stru
tures, thatis, the union of their binary relations R
hild and Rnext-sibling , have tree-width two22Note, however, that in the
ontext of MSO, it is more wide-spread [Neven 2002; Gottlob and Ko
h2004℄ to use a signature �0nav obtained from �nav by repla
ing R
hild by a relation FirstChild su
hthat FirstChild(x; y) i� y is the leftmost
hild of x. Then, MSO on �nav and �0nav are equivalentand all �0nav-stru
tures have tree-width 1. 21

v1v2v3 v4 v5v6v7 v8 v9 v10 v11v12 v13v14 v15(a)v1; v2; v5v2; v3; v4 v1; v5; v11v5; v6; v9v6; v7; v8 v5; v9; v10 v1; v11; v13v11; v12 v13; v14; v15(b)Fig. 3. A �nav-tree is a graph of tree-width two.(see Figure 3, where ea
h node v is labeled with �(v)). Transitive axis relationssu
h as Rdes
endant or Rfollowing-sibling (
f. Se
tion 2.1) do not have bounded tree-widthin general, but it is not diÆ
ult to map NavXPath queries with transitive axes toMSO over signature �nav [Gottlob and Ko
h 2002℄. The
onstru
tion is similar tothe one of Theorem 3.2 mapping NavXPath to FO2, de�ning R�(x; y), where R� isthe re
exive and transitive
losure of relation R, in MSO as 8S �S(x)^8u8v S(u)^R(u; v)! S(v)�! S(y): From this we
an
on
lude the following bound.Corollary 4.4. NavXPath NodeSet queries (and hen
e, CoreXPath NodeSetqueries) are in linear time with respe
t to data
omplexity.x2: Tree-like data do not yield low
ombined
omplexity. The usual te
hnique forproving linear-time data
omplexity of MSO is by redu
tion to automata. For unaryMSO formulas, somewhat sophisti
ated automata with a
apability for sele
tingnodes are required. It has been observed that su
h automata with the power ofunary MSO
an be designed to traverse the data tree only twi
e [Neven and Vanden Buss
he 2002; Fri
k et al. 2003℄. Redu
tions fromMSO to automata do not yieldgood upper bounds on the
ombined
omplexity of NavXPath, however. Indeed, theyare ne
essarily nonelementary [Meyer 1975; Reinhardt 2002℄ (i.e., their
ost
annotbe bounded by any tower of exponentials 222�2n of �xed height). For NavXPath,a doubly exponential translation to sele
ting tree automata [Fri
k et al. 2003℄ isimpli
it in [Ko
h 2003℄.x3: Tree-like queries yield polynomial-time
ombined
omplexity. While MSO overtrees is known to be PSpa
e-
omplete with respe
t to
ombined
omplexity, FOk(even over arbitrary relational stru
tures) is known to be in time O(nk � jQj): 3Proposition 4.5 [Kolaitis and Vardi 2000℄. Conjun
tive FOk+1 queries havetree-width � k.3This
an be shown dire
tly without tree-width as well [Vardi 1995℄, however.22

Theorem 4.6 [Chekuri and Rajaraman 1997℄. Given a Boolean
onjun
tivequery Q of tree-width k and a database A with domain size n, Q
an be evaluatedon the database in time O((nk+1 + jAj) � jQj).Both results generalize from
onjun
tive to FO queries [Flum et al. 2002℄.Sin
e boolean NavXPath queries
an be translated eÆ
iently, in linear time, intoequivalent FO2 queries (Theorem 3.2) and FOXPath queries
an be translated inlinear time into FO3 (Proposition 3.14),Corollary 4.7. Boolean NavXPath and FOXPath
an be evaluated in time O(jDj2�jQj) and O(jDj3 � jQj), respe
tively, on a �dom stru
ture D.As we will see later on in this se
tion, these
ombined
omplexity bounds
an beimproved upon.4.3 Hypertree-width and Conjun
tive XPathAll results of Se
tions 4.3 and 4.4 will apply both to nodeset and to Boolean queriesof the respe
tive fragments indi
ated.LetQ be a
onjun
tive query over a relational database, and let vars(Q), free(Q),and atoms(Q) denote the set of variables, free variables, and atoms o

urring in Q,respe
tively.A (
omplete) hypertree de
omposition of Q is a triple (T; �; �) su
h that T is arooted tree with nodes V (T) and root node r, � : V (T)! 2vars(Q) maps ea
h nodeof tree T to a set of variables from Q, � : V (T) ! 2atoms(Q) maps ea
h node of Tto a set of body atoms of Q,(1) free(Q) � �(r),(2) for ea
h atom A 2 atoms(Q), there exists a node v 2 V (T) su
h that A 2 �(v)and vars(A) � �(v),(3) for ea
h variable x 2 vars(Q), the set fv 2 V (T) j x 2 �(v)g indu
es a
onne
ted subtree of T , and(4) for ea
h node v 2 V (T), �(v) � vars(�(v)) andvars(�(v)) \[f�(v0) j v = v0 or v0 is a des
endant of v in Tg � �(v):The width of a hypertree de
omposition (T; �; �) is the maximum number ofatoms o

urring in any single node of T , i.e. maxfj�(v)j j v 2 V (T)g. The hypertree-width of a
onjun
tive query Q is the smallest width over all hypertree de
omposi-tions of Q. The
onjun
tive queries of hypertree-width 1
oin
ide with the so-
alleda
y
li

onjun
tive queries (
f. e.g. [Abiteboul et al. 1995℄). As shown in [Yan-nakakis 1981℄, the a
y
li

onjun
tive queries
an be evaluated in time O(n � jQj).Yannakakis' result was generalized to hypertree-width k, for arbitrary k:Theorem 4.8 [Gottlob et al. 2002℄. Let Q be a
onjun
tive query and H ahypertree de
omposition of width k of Q. Then Q
an be evaluated on a database Ain time O((jHj+ jAj)k).Let �0dom be the signature obtained from �dom by repla
ing ea
h attribute fun
tion�A by its graph (i.e., the binary relation f(n;�A(n)) j n 2 Nodeg) and adding therelations Rdes
endant and Rfollowing-sibling.A
onsiderable fragment of FOXPath
an be modeled by
onjun
tive queries overa stru
ture of relational signature �0dom. We say that a FOXPath query (resp.,NavXPath query) is
onjun
tive (and
onne
ted) if it does not use disjun
tion,negation, inequalities (i.e., expressions pRelOp p0 with RelOp 6= \="), or the rootslash =. The notions of hypertree de
omposition and hypertree-width
an be read-ily applied to
onjun
tive FOXPath (and thus NavXPath) queries. A
onjun
tiveFOXPath query maps to a
onjun
tive query over �0dom, and we
an speak of itshypertreewidth using this mapping. 23

Example 4.9. The
onjun
tive FOXPath querydes
endant::A=
hild::B[
hild::C=�D =
hild::E=�F ℄
an be phrased as a
onjun
tive query over signature �0domQ(v; x) Rdes
endant(v; w); A(w); R
hild(w; x); B(x); R
hild(x; x1); C(x1);�D(x1; z);R
hild(x; y1); E(y1);�F (y1; z):Consider the following hypertree de
omposition, H, of Q, where the nodes v havebeen labeled with �(v) and �(v) = vars(�(v)):Rdes
endant(v; w); R
hild(w; x)A(w) B(x) R
hild(x; x1);�D(x1; z)C(x1) R
hild(x; y1);�F (y1; z)E(y1)Note that H is of width 2. There exists obviously no hypertree de
omposition ofwidth 1: the atoms fR
hild(x; x1);�D(x1; z); R
hild(x; y1);�F (y1; z)g of Q indu
e a
y
le. Thus Q is of hypertree-width 2. 2By Propositions 4.5 and 3.14,
onjun
tive FOXPath queries have tree-width � 2.It is known that
onjun
tive queries of tree-width k have hypertree-width � k + 1[Gottlob et al. 2002℄, so we
an obtain the O(n3) data
omplexity bound observedin Corollary 4.7 also from Theorem 4.8. However, fortunately,Theorem 4.10. The
onjun
tive FOXPath NodeSet queries have hypertree-width� 2.Proof. We �rst
ompute a �rst-order query (using just 9 and ^) over �0dom for agiven
onjun
tive FOXPath query and then show that it yields a hypertree de
om-position of width � 2. From the �rst-order formula an equivalent relational algebraplan
an be obtained immediately by rewriting ^ by a join and 9 by a proje
tionWe will assume that our query is a path expression p. The proof works analogouslyfor quali�ers. We translate p into a �rst-order formula FO(p)2 as follows:FO(axis)2(x; y) := Raxis(x; y)FO(step[q℄)2(x; y) := FO(step)2(x; y) ^ FO(q)1(y)FO(p=step)2(x; z) := 9y FO(p)2(x; y) ^ FO(step)2(y; z)FO(lab() = L)1(x) := L(x)FO(p)1(x) := 9y FO(p)2(x; y)FO(q ^ q0)1(x) := FO(q)1(x) ^ FO(q0)1(x)FO(p=�A = p0=�B)1(x) := 9z �9y1 FO(p)2(x; y1) ^�A(y1; z)� ^�9y2 FO(p0)2(x; y2) ^�B(y2; z)�Without loss of generality, we will assume that there are no two distin
t o

ur-ren
es of existential quanti�
ation over the same variable in FO(p)2; thus, any twoo

urren
es of the same variable name in formula FO(p)2 indeed refer to the samevariable.FO(�)2 is only a minor variation of [[�℄℄NodeSet and it is easy to verify that FO(p)2de�nes a binary relation f(n; n0) j n0 2 [[p℄℄NodeSet(n)g.24

We now
onstru
t a hypertree de
omposition of FO(p)2. Consider the parse treeT of formula FO(p)2. This parse tree has relation atoms as its leaves and 9x- and^-labels on its internal nodes. Ea
h node of the tree
orresponds to a subformula� of FO(p)2. We will identify ea
h tree node with the subformula � it denotes.We de�ne a fun
tion � that maps ea
h node � of T to a set of leaf nodes (andthus relational atoms). We do this indu
tively, bottom-up:(i) for ea
h leaf node �, �(�) := f�g;(ii) for ea
h node � of the form 1(x)^ 2(x), 1(x; y)^ 2(y), or 1(x; y)^ 2(x; y),let �(�) := �(1);(iii) for ea
h node � = 1(x; y)^ 2(y; z), let �(�) := f 0g[�(2), where 0 is anyatom over x from �(1); �nally,(iv) for ea
h node � = 9x , �(�) := �().Note, in parti
ular, that ea
h free variable of � o

urs in at least one atom of�(�). Now let fun
tion � map ea
h node � of T to vars(�(�)).To verify that (T; �; �) is indeed a hypertree de
omposition of p, we have to
he
k points (1) to (4) of the de�nition. (1) and (4) are due to the de�nition of� as � 7! vars(�(�)). (2) is immediate from (i). The
onne
tedness
ondition (3)follows from the fa
t that in a �rst-order query without any two distin
t o

urren
esof existential quanti�
ation over the same variable, the nodes of parse tree T thathave x as a free variable plus the node 9x if x is not free in the query indu
e a
onne
ted subtree of T .Let us now
onsider the sizes j�(�)j for all nodes � of T . The most interesting
aseis � = 1(x; y) ^ 2(y; z). Observe that in this
ase 2 is either a step expressionor a leaf, and thus j�(2)j = 1, so j�(�)j = 2. It
an be shown by a straightforwardindu
tion that for all nodes �, j�(�)j � 2, so our query has hypertree-width � 2. 2This result by
onstru
tion of
ourse holds for nodeset queries and thus also forBoolean queries.Example 4.11. For the query of Example 4.9,FO(des
endant::A=
hild::B[
hild::C=�D =
hild::E=�F ℄)2(v; x)evaluates to the �rst-order formula9w (Rdes
endant(v; w) ^A(w)) ^ �R
hild(w; x) ^ �B(x)^9z (9x1 (R
hild(x; x1) ^ C(x1) ^�D(x1; z)))^(9y1 (R
hild(x; y1) ^ E(y1) ^�F (y1; z)))��the parse tree of whi
h is shown in Figure 4. The leaf nodes in the �gure have beenlabeled l1; l2; l3; : : : from left to right and the interior nodes � of the parse tree ofthe formula have been annotated with �(�). Again, �(�) = vars(�(�)). This yieldsthe hypertree de
omposition
onstru
ted in the proof. 2The transformation of the previous proof
an be implemented so as to
omputeboth �rst-order query and hypertree de
omposition in linear time. By the latter ob-servation and Theorem 4.8 we thus see that Conjun
tive FOXPath
an be evaluatedin time O((jQj+ jDj)2).We give a dire
t proof of the following (
lose but in
omparable) bound.Proposition 4.12. Conjun
tive FOXPath NodeSet queries
an be evaluated on�0dom-stru
tures D in time O(jQj � jDj2).Proof. Let us now
onsider relational algebra queries ALG(p) and ALG(q)
orre-sponding to the �rst-order (
al
ulus) queries FO(p)2 and FO(q)1 of the previous25

9w fl1; l3g^ fl1; l3g^ fl1gl1Rdes
endant(v; w) l2A(w) ^ fl3gl3R
hild(w; x) ^ fl4gl4B(x) 9z fl5; l7g^ fl5; l7g9x1 fl5; l7g^ fl5; l7g^ fl5gl5R
hild(x; x1) l6C(x1) l7�D(x1; z) 9y1 fl8; l10g^ fl8; l10g^ fl8gl8R
hild(x; y1) l9E(y1) l10�F (y1; z)Fig. 4. Hypertree de
omposition of the query of Example 4.9 as
onstru
ted in the proof ofTheorem 4.10.proof. The translation is standard [Abiteboul et al. 1995℄ and just requires rewritingexistential quanti�
ation by proje
tion and
onjun
tion by join.As with the subformulas of � in FO(p)2, ea
h subexpression of ALG(p) de�nesa relation that is a subset of the produ
t of at most two base relations �(�), and isthus of size at most O(jDj2).Query evaluation requires no more than jQj relational algebra operations (pro-je
tions or joins). The proje
tions � ~AR are obviously operations that run in timelinear in jRj. Joins guarded by one of the input relations (
orresponding to formulae 1(x; y) ^ 2(x; y), 1(x; y) ^ 2(y), and 1(y) ^ 2(y))
an be evaluated in timelinear in the sum of the sizes of the two relations joined by �rst building a bit�eldfor testing whether tuples are true in 2 and then using it to �lter the tuples of 1.The most interesting
ase is a join
orresponding to formula 1(x; y) ^ 2(y; z).Let [[�℄℄ be the relation de�ned by �rst-order formula �. We �rst
ompute the rela-tions Ry1 = fx j 1(x; y)g, for ea
h y su
h that 9z 2(y; z), in total time O(j[[1℄℄j+j[[2℄℄j). Then we
ompute our join as the union of the sets f(x; y; z) j Ry1(x)g, forea
h tuple 2(y; z). As mentioned in the previous proof, 2 always de�nes a subsetof an input relation, so this union
an be formed in time O(jDj � j[[2℄℄j) = O(jDj2).2Conjun
tive NavXPath queries are a
y
li
 (see [Gottlob et al. 2005℄) and
antherefore be evaluated using Yannakakis' algorithm (or by pre
isely the te
hniquesfrom the previous two proofs) both in linear time in the data and eÆ
iently in thesize of the query.Proposition 4.13. Conjun
tive NavXPath NodeSet queries
an be evaluated intime O(jDj � jQj) on (�nav ; Rdes
endant; Rfollowing-sibling)-stru
tures D.26

4.4 Beyond Conjun
tive QueriesThe
onjun
tive query pro
essing te
hniques based on hypertree de
ompositions ofthe previous se
tion leave three features of FOXPath unaddressed:(1) Conjun
tive FOXPath ex
ludes disjun
tion, union, negation, inequalities, anddis
onne
ted queries (via the root / in
onditions).(2) We assumed that the data tree is given by �+val-stru
tures, whi
h in
lude bi-nary relations for transitive axes su
h as des
endant. If we assume transitiveaxis relations present in the stru
ture D representing a tree with domain Aand therefore jDj = O(jAj2), our upper bound on time of O(jDj2 � jQj) fromProposition 4.12 deteriorates to time O(jDj4 � jQj) when the input stru
ture Dis now in �dom.(3) Finally, we did not deal with inequalities RelOp 2 f6=; <;�g in expressionseRelOp e0.The following result deals with all these issues.Theorem 4.14. A FOXPath NodeSet query Q
an be evaluated on �dom-stru
tureswith domain A in time O(jAj2 � jQj).Proof.(1) We
omplete the mapping ALG of the previous proof by the operations ofFOXPath missing from
onjun
tive FOXPath:|ALG(p j p0) := ALG(p) [ALG(p0)|ALG(q _ q0) := ALG(q) [ALG(q0)|ALG(:q) := A�ALG(q)(2) Next we would like to eliminate transitive axis relations su
h as des
endant fromthe signature.[Gottlob et al. 2005℄ gives algorithms for
omputing, given a set S of tree nodesand any XPath axis �, the set of nodes�(S) = fy j x 2 S ^R�(x; y)gin time O(jNode j). Consider the unary operations./�[q℄: R 7! f(x; z) j 9y R(x; y) ^R�(y; z) ^ [[q℄℄Boolean(z)g;whi
h
an be evaluated in quadrati
 time by �rst partitioning R into sets Sx =fy j R(x; y)g, for ea
h x, and then
omputing the union over x of the setsf(x; y) j y 2 �(Sx) ^ [[q℄℄Boolean(y)g.Now we
an evaluate [[p=�[q1℄ : : : [qn℄℄℄ as �[q1 ^ � � � ^ qn℄([[p℄℄) in quadrati
 time,for any axis �, even if our stru
ture is just of signature �dom.(3) Let ��1 denote the inverse of axis � (i.e., R��1 is the inverse of R�). To
ompute a query plan for an inequality�1[q1℄=�2[q2℄= � � � =�n[qn℄=�A RelOp �1[q01℄=�2[q02℄= � � � =�n[q0n℄=�Bwith RelOp 6= \=", we �rst
ompute the binary relation RelOp�A;�B (see thede�nition of �+val in Se
tion 3.3) in time O(jAj2). Using the fa
t that the joinsabove
an be
omputed in quadrati
 time, we see that we
an
ompute thefollowing relation S in quadrati
 time jAj2 times the size of S:S := ./��11 (./��12 [q01℄ (./��13 [q02℄ (� � � ./��1n [q0n�1℄ (./self[q0n℄ (RelOp�A;�B)) � � �)))Finally,�./��11 (./��12 [q1℄ (./��13 [q2℄ (� � � ./��1n [qn�1℄ (./self[qn℄ (S�1)) � � �)))��1is the desired inequality relation above. Using this algorithm indu
tively, The-orem 4.14 follows. 227

Applying the �rst two parts of the previous proof to NavXPath yields:Proposition 4.15 [Gottlob et al. 2005℄. A NavXPath NodeSet query Q
anbe evaluated on �nav-stru
tures D in time O(jDj � jQj) and spa
e O(jDj).Note that this improves the linear data
omplexity bound of Corollary 4.4.Beyond FOXPath, we are fa
ed with queries
ontaining possibly nested numeri
expressions involving the arithmeti
 operations + and � (whose graphs are in�nite)and aggregations. For that reason, it is helpful to digress from the framework usedabove (i.e., relations � A2 or � A) and view every expression e of type t (eitherNodeSet , Boolean, or Int) as de�ning a table f(n; [[e℄℄t(n)) j n 2 Ag: Ea
h node ndenotes a
ontext in whi
h expression e evaluates to value [[e℄℄t(n). Thus su
h tableswere
alled
ontext-value tables in [Gottlob et al. 2005℄. The
ontext-value table ofan expression e
an be eÆ
iently
omputed from the
ontext-value table of the dire
tsubexpressions of e. For FOXPath, the method for doing so was given in the previousproof, up to the notational subtleties that now for NodeSet-typed expressions, thevalue
olumn may hold sets (nodes grouped by their
ontext) while in the proofthe relations de�ned were
at, and that
ontext-value tables for Boolean-valuedexpressions are binary, with either \true" or \false" in the value
olumn.This method
an be adapted to AggXPath without a runtime penalty, sin
e ona binary relation [[p℄℄ over the domain of nodes { and thus of quadrati
 size { therelations f(n; i) j [[
ount(p)℄℄Int(n) = ig and f(n; i) j [[sum(p=�A)℄℄Int(n) = ig
anbe
omputed in quadrati
 time without diÆ
ulty. For the arithmeti
 operation �(multipli
ation), numbers
an grow linearly with the query, thus a binary relationrepresenting the result of a numeri
 relation may be of size O(jAj � jQj). Thus,Proposition 4.16. The AggXPath NodeSet queries Q
an be evaluated on �dom-stru
tures with domain A in time O�jAj�(jAj+jQj)�jQj� and spa
e O�jAj�(jAj+jQj)�.So far we have been moving only moderately beyond queries obtained from hy-pertree de
ompositions. However, XPath (and OrdXPath) supports position arith-meti
s whi
h require more sophisti
ated
ontexts than AggXPath, where
ontextsare simply nodes. For OrdXPath, a single
ontext node is not suÆ
ient; for instan
e,the expression \position() = last()" relies on the position of a node within a set andthe
ardinality of that set as
ontexts (see (P2') in Se
tion 2).We extend
ontext-value tables to be sets of tuples (n; j; k; v), where n is a
ontextnode, j and k are integers denoting a position j in and the size k of a set of nodes,v is a value, and the
ontexts n; i; k identify their tuples.Values (in
luding strings and numbers) were shown in [Gottlob et al. 2005℄ toremain small in XPath. The algorithm of [Gottlob et al. 2005℄ indu
tively
omputes
ontext-value tables f(n; j; k; v) j [[e℄℄Type(e)(n; j; k) = vg for ea
h subexpression eof a query bottom-up. Taking into
ontext all the built-in fun
tions of XPath, thisyields the following upper bound.Theorem 4.17 [Gottlob et al. 2005℄. Full XPath 1.0 is in time O(jAj5 �jQj2).We state this result without a proof and refer to [Gottlob et al. 2005℄ for theformal de�nition of full XPath 1.0 and the proof, whi
h are beyond our s
ope andyield little further insight. Improvements yielding somewhat better bounds
an befound in [Gottlob et al. 2005℄.Example 4.18. Consider the numeri
al expression position() � 2 < last(). We28

ompute the
ontext-value tables of its subexpressions bottom-up asCV Tposition() := f(n; j; k; j) j (n; j; k) a
ontextgCV Tposition()�2 := f(n; j; k; 2 � v) j (n; j; k; v) 2 CV Tposition()gCV Tlast() := f(n; j; k; k) j (n; j; k) a
ontextgCV Tposition()�2<last() := f(n; j; k; (v1 < v2)) j (n; j; k; v1) 2 CV Tposition()�2;(n; j; k; v2) 2 CV Tlast()gIn summary, there is a
lose
onne
tion between the
ontext-value table-baseddynami
 programming algorithm of [Gottlob et al. 2005℄ and the hypertree-widthbased te
hniques presented before. However, beyond the diÆ
ulties dealt with inthe proof of Theorem 4.14, XPath supports built-in fun
tions (e.g. arithmeti
 andstring fun
tions) whose graphs are in�nite, as well as aggregations, so non-trivialextensions of hypertree de
omposition te
hniques are needed to obtain the PTime
ombined
omplexity of XPath.We summarize the time
omplexity bounds in the following table; below the inputis assumed to be a �dom stru
ture D with domain A:Fragment ComplexityNavXPath jDj � jQj (Proposition 4.15)FOXPath jAj2 � jQj (Theorem 4.14)AggXPath jAj � (jAj+ jQj) � jQj (Proposition 4.16)XPath 1.0 jAj5 � jQj2 (Theorem 4.17)4.5 Parallel ComplexityNow that the
ombined
omplexity of XPath is known to be polynomial, one mayask whether XPath is also PTime-hard, or alternatively, whether it is in the
om-plexity
lass NC and thus e�e
tively parallelizable. Apart from theoreti
al interest,a pre
ise
hara
terization of XPath evaluation in terms of parallel
omplexity
lassesmay lead to a better understanding of what
omputational resour
es are ne
essarilyrequired for query evaluation. For example, it is strongly
onje
tured that all algo-rithms for solving PTime-hard problems a
tually require a polynomial amount ofworking memory. However, performing XPath query evaluation with limited mem-ory resour
es is important in pra
ti
e, for instan
e in the
ontext of data streampro
essing.For an upper bound for
onjun
tive FOXPath, we
an use the following resultabout
onjun
tive queries of bounded hypertree-width together with our Theo-rem 4.10.Theorem 4.19 [Gottlob et al. 2001℄. The
onjun
tive queries of boundedhypertree-width over arbitrary relational stru
tures are in LogCFL with respe
tto
ombined
omplexity.Corollary 4.20. Conjun
tive FOXPath is in LogCFL (
ombined
omplexity).In [Gottlob et al. 2005℄, LogCFL membership is proven for a mu
h larger frag-ment of XPath without negation whi
h even supports arithmeti
s and aggregations.Here we give a dire
t proof for positive FOXPath.Proposition 4.21 [Gottlob et al. 2005℄. Positive FOXPath is in LogCFLwith respe
t to
ombined
omplexity.Proof Idea. By an en
oding as a NAuxPDA that runs in polynomial time using aLogSpa
e worktape. We will a
tually show how to use a NAuxPDA to
omputethe set of nodes to whi
h an XPath query evaluates, even though the
omplexity
lass LogCFL is de�ned in terms of de
ision problems and for the above-mentioned29

lower bound only a de
ision problem (e.g. that of
he
king whether a given node issele
ted by an XPath query) makes sense.We will use the symbol & for
reating referen
es and � to dereferen
e them. Wewill asso
iate ea
h query with its (binary) parse tree obtained in the usual fashion,using grammar rules p ::= axis :: A[q℄=p j axis :: A[q℄ to parse paths (i.e., produ
inga right-deep tree for a path). An example of su
h a parse tree is shown in Figure 5.We identify nodes of the query tree with the expressions their subtrees represent.For a path expression p, we use sel(vQ) to denote the rightmost leaf in the subtreeof the query tree
orresponding to p; thus sel(vQ) denotes the \right tip" of thepath whi
h sele
ts nodes.We use four log-spa
e registers that will be kept on the worktape, sel (to iterateover the nodes of the data tree and
he
k whi
h are to be sele
ted by the query), vt(to hold a node from the data tree), rval (for a pointer to a data value in the datatree, represented by an integer indi
ating the starting position of the data value'srepresentation inside the representation of the data tree), and vQ (for a
urrentnode from the parse tree of the query) on the worktape.The evaluation of the query pro
eeds by iterating over all the nodes of the datatree (using register sel), and for ea
h node does a single depth-�rst left-to righttraversal of its parse tree, starting with vQ the root node of the query tree, vt theroot of the input tree, and rval = ?.By default, query tree nodes vQ with two
hildren are pro
essed as follows. Firstwe put (vQ; vt; rval) onto the sta
k. Then we pro
ess the �rst
hild of vQ. Onreturning we take (vQ; vt; rval) o� the sta
k (and set the registers). Finally pro
essthe se
ond
hild of vQ.There are a few ex
eptions. When vQ = �::A[q℄=p and vt = n, we �rst put n onthe sta
k, nondeterministi
ally guess a node n0 su
h that �(n; n0) and A(n0), setvt to n0, and only then we pro
ess the two
hildren as just des
ribed. Expressionsp=�A=deref() are handled similarly.For p=�A = p0=�B, rval is not put on the sta
k before and taken o� the sta
kafter pro
essing the �rst
hild. When arriving at sel(p), we set rval to �A(vt).When arriving at sel(p0), we verify that rval = �B(vt).If vQ = q _ q0, we nondeterministi
ally
hoose either q or q0 and verify that itholds relative to the
urrent position vt.At sel(p), where p is the query, we
he
k whether vt = sel. If so, we output nodesel as a result.It is not diÆ
ult to verify that this nondeterministi
 algorithm runs on an NAux-PDA in polynomial time, using only logarithmi
 spa
e on the worktape. 2Example 4.22. The FOXPath query .//A[.//B/�C = D[E/�F = G/�H℄/�I℄
an be evaluated using a NAuxPDA given by the following pseudo
ode: (1) Guessw su
h that [[:==A℄℄(vt; w); vt := w; (2) push vt; (3) guess w su
h that [[:==B℄℄(vt; w);vt := w; (4) rval := & vt:�C; (5) vt :=pop; (6) guess w su
h that [[:=D℄℄(vt; w);vt := w; push rval; push vt; (7) push vt; (8) guess w su
h that [[:=E℄℄(vt; w); vt := w;(9) rval := & vt:�F ; (10) vt :=pop; (11) guess w su
h that [[:=G℄℄(vt; w); vt := w; (12)
he
k that � rval = vt:�H ; (13) vt :=pop; rval :=pop; (14)
he
k that � rval = vt:�I ;(15) a

ept.Note that this program is faithful to the
onstru
tion mentioned above ex
eptthat we do not push or pop the vQ register (the query has been
ompiled into theprogram).The fa
t that the run of this NAuxPDA is intuitively a depth-�rst traversal ofthe parse tree of the query is illustrated in Figure 5. 2It was shown in [Gottlob et al. 2005℄ by a redu
tion from the SAC1
ir
uitvalue problem that the LogCFL upper bound of Theorem 4.21 is tight: positiveNavXPath is LogCFL-
omplete with respe
t to
ombined
omplexity.30

b

b

.//A
b

[=℄
b

.//B
b

./�C b

./D
b

[=℄
b

./E
b

./�F b

./G
b

./�H
b

./�I
==

1.2.3.
4. 5. 6. 7.8.9. 10.11. 12. 13.14.

15.

Fig. 5. NAuxPDA run for query .//a[.//b/�
 = d[e/�f = g/�h℄/�i℄.
(b1)^ G3 G4(b0)(a0)^ ^_G8 G7G6G5G2G1(a1)Fig. 6. A 2-bit full adder
arry-bit
ir
uit.Unfortunately, the positive result on the parallel
omplexity of positive XPathdoes not extend to full XPath, or even NavXPath.Theorem 4.23 [Gottlob et al. 2005℄. NavXPath is PTime-hard (
ombined
omplexity).Proof. The proof is by redu
tion from themonotone Boolean
ir
uit value problem,whi
h is PTime-
omplete. Note that the
lassi
al redu
tion from PTime-boundedTuring ma
hines to (monotone) Boolean
ir
uits proving this (see e.g. the proof ofTheorem 8.1 in [Papadimitriou 1994℄) only produ
es layered
ir
uits.4Given an instan
e of this problem, a monotone Boolean
ir
uit and a mapping �that assigns either 0 or 1 to ea
h of the input gates, let M denote the number of4A
ir
uit is
alled layered is there is a mapping l that assigns to ea
h gate an integer su
h thatif there is an edge from gate Gi to Gj , then l(Gj) = l(Gi) + 1.31

�1 = des
endant::O1[parent5::*[1℄℄ 1 = not(
hild5::I1[not(�1)℄)�1 = an
estor::*[�0℄�0 = self::1 u5u6u7u8v1 : �(G1)w1;5 : I1w1;6 : I1w1;7w1;8
v2 : �(G2)w2;5 : I1w2;6w2;7 : I1w2;8

v3 : �(G3)w3;5w3;6 : I1w3;7 : I1w3;8
v4 : �(G4)w4;5w4;6 : I1w4;7 : I1w4;8

v5 : Gw5;5 : O1w5;6w5;7w5;8 : I2
v6 : Gw6;5w6;6 : O1w6;7w6;8 : I2

v7 : Gw7;5w7;6w7;7 : O1w7;8 : I2
v8 : Gw8;5w8;6w8;7w8;8 : O2Fig. 7. Do
ument tree
orresponding to the
arry-bit
ir
uit. The �gure also illustrates that[[�1℄℄Boolean(v6), �(G1) = 1 ^ �(G3) = 1 ^ �(G4) = 1.input gates and let N � 1 denote the number of all other gates in the
ir
uit (theinternal gates). Let K be the number of layers in the
ir
uit, that is, the height ofthe
ir
uit. Let the gates be named G1 : : :GM+N . Without loss of generality5, wemay assume that the gates G1 : : : GM+N are numbered in some order su
h that nogate Gi depends on the output of another gate Gj with j > i. In parti
ular, theinput gates are named G1 : : : GM and the output gate is GM+N . We may assumethat there is pre
isely one gate at the topmost layer K, the output gate.Figure 6 shows an example of a
ir
uit with appropriately numbered gates. This
ir
uit
omputes the
arry-bit of a two-bit full-adder, that is, it tells whether addingthe two-bit numbers a1a0 and b1b0 leads to an over
ow. The
arry-bit
1 is
om-puted as (a1 ^ b1) _ (a1 ^
0) _ (b1 ^
0) where
0 = a0 ^ b0 is the
arry-bit of thelower digit (a0 and b0).For a given instan
e of the monotone Boolean
ir
uit value problem, we
omputea pair
onsisting of a do
ument tree and a NavXPath query as follows.The do
ument tree
onsists of nodes uj , vi, and wi;j for all 1 � i � M +N ,M + 1 � j �M +N . The root node is uM+1, and there are edges|from uj to uj+1 for M + 1 � j < M +N ,|from uM+N to vi and from vi to wi;M+1 for all 1 � i �M +N , and|from wi;j to wi;j+1 for all 1 � i �M +N , M + 1 � j < M +N .Node labels are taken from the alphabet � = f0; 1; G; I1; : : : ; IK ; O1; : : : ; OKgand ea
h tree node is assigned at most one su
h label. (We allow for \unlabeled"nodes, whi
h
an be
onsidered to simply
arry a label not from �.) This is done asfollows. Ea
h node out of vi for 1 � i �M is assigned �(Gi) as a label (either 0 or1). The nodes vM+1 : : : vM+N are ea
h assigned the label G. We assign label Ik tonode wi;j i� internal gate Gj is in layer 1 � k � K and takes input from gate Gi.We assign label Ok to node wj;j i� internal gate Gj is in layer k. For our
arry-bitexample of Figure 6 with M = 4 and N = 4, the data tree is as shown in Figure 7,5The gates
an be \sorted" to adhere to su
h an ordering in logarithmi
 spa
e. This is trivial ifthe
ir
uit is layered, whi
h we may assume by the observation made above.32

where �(G1); : : : ; �(G4) 2 f0; 1g are the truth values a1; b1; a0, and b0, respe
tively,at the input gates.In the following, we will abbreviate the n-times repeated appli
ation of an axis�, (�::*/)n�1�::*, as �n::*. By �n::
, we denote (�::*/)n�1�::
.The query evaluating the
ir
uit is/des
endant::G[�K ℄with the
ondition expressions�k := des
endant::Ok [parentN+1::*[k℄℄ k := (
hildN+1::Ik [�k℄ : : : layer k
onsists of _-gatesnot(
hildN+1::Ik[not(�k)℄) : : : layer k
onsists of ^-gates�k := � an
estor::G[�k�1℄ : : : k > 1an
estor::*[�k�1℄ : : : k = 1for 1 � k � K and �0 := self::1.It uses the intuition of pro
essing the
ir
uit one layer at a time.We will
he
k whether our query on our do
ument in
ludes the parti
ular nodevM+N . Indeed, by our
onstru
tion, the query will sele
t node vM+N i� the
ir
uitevaluates to true, and no other node will be sele
ted.It is easy to see that the redu
tion
an be e�e
ted in LogSpa
e. We next arguethat it is also
orre
t.The �k, k, and �k are
ondition expressions (quali�ers), and we have alreadygiven a formal meaning [[�k ℄℄Boolean(w) to the notion \�k mat
hes node w" or equiva-lently \node w satis�es �k" (and analogously to [[k℄℄Boolean(w) and [[�k ℄℄Boolean(w)).Claim. Let 0 � k � K. Then, for all gates Gi in layer k,[[�k ℄℄Boolean(vi), gate Gi evaluates to true:This
an be shown by an easy indu
tion.Indu
tion start (k = 0). The gates of layer 0 are the input gates. By de�nition,an input gate Gi is true i� node vi is labeled 1. but on pre
isely these nodes�0 = self::1 is true. Thus our
laim holds for k = 0.Indu
tion step. Now assume that our
laim holds for �k�1. We show that italso holds for �k.To start, it is easy to see that for all i, j,[[�k ℄℄Boolean(wi;j) , [[�k�1℄℄Boolean(vi):Now observe that by our
onstru
tion of the data tree, the nodes w1;j ; : : : ; wj;j�1en
ode the
onne
tions of gate Gj with its inputs. Gate Gi is an input to gate Gjif and only if node wi;j is labeled Ik , for k the layer of gate Gj . The node wj;j islabeled Ok. Observe also that the node uj is pre
isely N +1 levels above the nodesw1;j ; : : : ; wM+N;j in the data tree.For _-gate Gj in layer k,[[k℄℄Boolean(uj) , 9i Ik(wi;j) ^ [[�k ℄℄Boolean(wi;j), gate Gi is an input to Gj and Gi is truefor ^-gate Gj in layer k,[[k ℄℄Boolean(uj) , 8i Ik(wi;j)! [[�k ℄℄Boolean(wi;j), all inputs to Gj are trueFinally, sin
e [[�k℄℄Boolean(vj), [[k℄℄Boolean(uj);33

our
laim is shown for �k, 0 � k � K.Figure 7 illustrates the
omputation of the truth value of gate G6 of our
ir
uitexample.The overall query /des
endant::G[�K ℄ has a nonempty result (
onsisting of pre-
isely the node vM+N) exa
tly if the output gate GM+N of the
ir
uit evaluates totrue, be
ause GM+N is the only gate in layer K, vM+N is the only node labeled Gthat has an OK des
endant, and [[�K ℄℄Boolean(vM+N) if and only if GM+N evaluatesto true.In summary, we have provided a LogSpa
e redu
tion that maps any monotoneBoolean
ir
uit to a NavXPath query and a do
ument tree su
h that the queryevaluated on the tree returns node vM+N pre
isely if the
ir
uit evaluates to true.As the monotone Boolean
ir
uit value problem is PTime-
omplete, our theoremis proven. 2Note that the above proof of the PTime lower bound does not employ axis stepswith multiple quali�er bra
kets axis[�℄ : : : [�℄; indeed, as observed before, even forAggXPath, axis[q1℄ : : : [qn℄ is equivalent to axis[q1 ^ � � �^ qn℄, but this is not true forOrdXPath. And indeed, the intera
tion of multiple quali�er bra
kets and positionarithmeti
s has an impa
t on the
omplexity of XPath:Theorem 4.24 [Gottlob et al. 2005℄. Positive OrdXPath is PTime-hard withrespe
t to
ombined
omplexity.The PTime-hardness result a
tually only uses a fragment of OrdXPath with last()and steps with multiple quali�er bra
kets, but without position() or aggregationoperations.We give a brief overview over the remaining
omplexity results known for XPath.First, the PTime-hardness result of Theorem 4.23 essentially depends on the pres-en
e of both single-step axes and transitive axes: NavXPath using only the
hild andparent axes is in LogSpa
e with respe
t to
ombined
omplexity [Gottlob et al.2005℄. Tree patterns (
onjun
tive NavXPath) using only the des
endant axis are inLogSpa
e as well [G�otz et al. 2007℄.The data
omplexity of XPath depends on en
odings. XPath 1.0 on DOM trees(pointer stru
tures) is LogSpa
e-
omplete if the
on
atenation operation on stringsand multipli
ation are ex
luded from the language.So far, we have always assumed that the input is basi
ally given as a pointerstru
ture (using signature �dom). But XML do
uments
an also be
onsidered intheir natural textual (string) representation. The distin
tion is only relevant forthe very small
omplexity
lass inside LogSpa
e, for whi
h
ompleteness is usuallyde�ned in terms of redu
tions not strong enough to map between DOM trees andstrings. On string representations, NavXPath was shown to be in TC0 [Gottlob et al.2005℄, a
omplexity
lass inside LogSpa
e. Of
ourse, on a relational en
oding ofthe tree with all binary axis relations part of the en
oding, FOXPath is �rst-orderand inherits its AC0 upper bound (yet inside TC0) on the data
omplexity.The query
omplexity of XPath 1.0 is in LogSpa
e [Gottlob et al. 2005℄. Thisis a slightly
urious fa
t. While for virtually all known traditional query languages,the query
omplexity is greater than the data
omplexity by at least an exponentialfa
tor (
f. e.g. [Abiteboul et al. 1995℄), this is not the
ase of XPath.4.6 Stream Pro
essingBe
ause of the role of XML as a data ex
hange format, the problem of evaluatingXPath on streaming XML data has attra
ted quite some resear
h work.A streaming algorithm s
ans its input data on
e { and only on
e { from leftto right. Sin
e data streams for pra
ti
al purposes
an be assumed to be in�nitelylong, one usually assumes that main memory is a limited resour
e. We
an formalizestreaming
omputation using a deterministi
 Turing ma
hine with34

|a read-only input tape on whi
h the read head
annot move to the left,|a write-only output tape on whi
h the write head
annot move to the left, and|a read/write work tape.The resour
e of the greatest interest in this formal model is the spa
e used on thework tape. Of
ourse, the running time of the Turing ma
hine is important as well.However, pro
essing XPath is not an intrinsi
ally hard problem: as explained in thiswork, it
an be solved in main-memory in polynomial
ombined
omplexity, hen
ein parti
ular in polynomial time in the data. The time upper bounds in terms ofthe data does not
hange when we move to the more restri
tive streaming model.To our knowledge, no te
hnique in the streaming XML literature requires runningtime greater than polynomial in the input (stream). Ideally, streaming algorithmsshould
ope with a �xed amount of memory, independent of the input, but as wewill see below,
onstant memory is not suÆ
ient for evaluating even the simplestXPath queries.To begin with we will fo
us our attention on the XPath �ltering problem, forwhi
h better guarantees
an be made. The �ltering problem is the problem oftesting whether a given XPath query relative to the root node has any mat
hes(i.e., the problem of testing whether [[p℄℄Boolean(root) is true for query p). Theusual s
enario is that of a stream of XML do
uments and a set of XPath queriesdes
ribing subs
riptions to do
uments on the stream mat
hing the XPath queries,and has been referred to by Sele
tive Dissemination of Information. This problemhas been
onsidered in [Altinel and Franklin 2000; Chan et al. 2000; Green et al.2003; Diao et al. 2002℄ with the additional diÆ
ulty that algorithms have to s
aleto very large numbers { even millions { of queries to be mat
hed in parallel.Starting with [Bar-Yossef et al. 2007℄, te
hniques from
ommuni
ation
omplexityhave been used for studying memory lower bounds of streaming XPath evaluationalgorithms [Bar-Yossef et al. 2007; 2005; Grohe et al. 2007℄. We only give one su
hlower bound result whi
h uses the standard notion of
omplexity for XPath queries.We denote the depth of a tree T by depth(T). It has been observed thatProposition 4.25 [Grohe et al. 2007℄. There
an be no streaming algorithmwith memory
onsumption o(depth(T)), where T is the data tree, for the CoreXPath�ltering problem.Of
ourse, there are trees whose depth is linear in their size, so one
an read thisresult in the sense that there
an be no streaming algorithm for NavXPath thattakes spa
e less than linear in the size of the XML stream, so memory-eÆ
ient {and thus s
alable { streaming XPath �ltering is, from a
ertain point of view, inthe worst
ase impossible.Fortunately, XML trees tend to be shallow in pra
ti
e, so showing this lowerbound to be tight would be
onsidered a positive result. As dis
ussed early in thisse
tion, bottom-up tree automata allow to
he
k MSO senten
es in a single traversalof the tree. Using automata-based te
hniques,
he
king MSO queries in streamingfashion, and thus solving the XPath �ltering problem, is feasible using only memoryof size bounded by the depth of the tree (whi
h in pra
ti
e, for XML, is small).Theorem 4.26 (impli
it in [Neumann and Seidl 1998; Segoufin and Vianu 2002℄).Let T be a tree-language. If T is de�nable by an MSO-senten
e over vo
abulary�nav, then T
an be re
ognized by a streaming algorithm using memory O(depth(T)),where T is the data tree.Corollary 4.27. There is a streaming algorithm for the CoreXPath �lteringproblem with memory
onsumption O(depth(T)).Of
ourse, it remains to ask whether these algorithms use memory that is smallin the size of the XPath expression being �ltered. Automata are a natural target35

of
ompilation for stream pro
essing. They
an be exe
uted very eÆ
iently on thestream, and for most forms of automata one
an analyze the runtime memory usageeasily.Translating XPath queries into deterministi
 pushdown automata has been stud-ied in several works [Green et al. 2003; Gupta and Su
iu 2003℄ (and slightly lessobviously in [Altinel and Franklin 2000; Chan et al. 2000; Diao et al. 2002℄). De-terministi
 pushdown automata also give depth-bounded spa
e usage. The blow-uprequired to
ompute su
h automata is exponential in the �lter, and the sour
es ofthis exponentiality were explored in [Green et al. 2003℄. In that work the automataare modularized by separation into two
omponents. There is a deterministi
 �niteautomaton (DFA, de�ned on words, not on trees) for the path expression whi
hruns on the path from the root node of the data tree to the
urrent data tree node.There is also a pushdown automaton, independent of the path expression, that a
tsas a
ontroller for the DFA, managing the sta
k and advan
ing the DFA every timea new node in the stream is en
ountered.The �rst work to present a streaming algorithm for the XPath �ltering problemthat takes only memory linear in the depth of the tree and runs in time and spa
epolynomial in the size of (the data and) the query was [Olteanu et al. 2003; Olteanu2007℄. They provide an algorithm that gives good bounds for any PNavXPath �lterwith only \forward" axes { i.e.
hild; next-sibling; des
endant; following.There, the exponential size of automata is avoided by not
ompiling automatafor managing and re
ognizing the subexpressions of an XPath query into a single\
at" automaton. These automata are instead kept apart, as a transdu
er network .A similar transdu
er-network based approa
h to streaming XPath pro
essing wasdeveloped in [Peng and Chawathe 2003℄. A di�erent algorithm for polynomial-timestreaming XPath pro
essing was presented in [Josifovski and Fontoura 2005℄.A transdu
er network
onsists of a set of syn
hronously running transdu
ers (here,deterministi
 pushdown transdu
ers,
f. [Hop
roft and Ullman 1979℄) where ea
htransdu
er runs, possibly in parallel with some other transdu
ers, either on theinput XML stream, or on the output of another transdu
er (in whi
h
ase the inputis the original stream where some nodes may have been annotated using labels).Two transdu
ers may also be \joined", produ
ing output whose annotations arepairs
onsisting of the annotations produ
ed by the two input transdu
ers.We next formalize this and exhibit some of the transdu
ers that form part of atransdu
er network.XPath queries are �rst rewritten into nested �lters with paths of length one;for instan
e, query
hild::A=des
endant::B is �rst rewritten into
hild[lab() = A ^des
endant[lab() = B℄℄. To emphasize that we do not aim to
ompute nodes mat
hedby a path but to
he
k whether the query
an be su

essfully mat
hed, we willwrite axis �lters as 9
hild[�℄ and 9des
endant[�℄. The rewritten queries will now betranslated into transdu
er networks indu
tively.A deterministi
 pushdown transdu
er T is a tuple (�;�;
; Q; q0; F; Æ) with inputalphabet �, sta
k alphabet �, output alphabet
, set of states Q, start state q0, setof �nal states F , and transition fun
tion Æ : Q � � � (� [�) ! Q � �� �
. Fordeterminism we require that for no q 2 Q; s 2 �;
 2 �, both Æ(q; s; �) and Æ(q; s;
)are de�ned. Here � denotes the empty word. All our transdu
ers will have Q = F ;that is, all states are �nal states, so all valid runs will be a

epting. If the transdu
erT is in state q and has uv on the sta
k, and if Æ(q; s; v) = (q0; w; s0), then T makes atransition to state q0 and sta
k uw (u; v; w 2 ��) on input s, and produ
es outputo, denoted (q; uv) s=o! (q0; uw): A run on input s1 : : : sn is a sequen
e of transitions(q0; �) s1=o1! � � � sn=on! (q; u) that produ
es output o1 : : : on.A transdu
er T [9des
endant[�℄℄ running on the output stream of transdu
er T [�℄is a deterministi
 pushdown transdu
er with � =
 = fhi; t; fg, � = ft; fg, Q =36

BBBA AAB T [�4 := �2 ^ �3℄T [h�2; �3i℄T [�2 := 9des
endant[�1℄℄T [�1 := (lab() = B)℄ T [�3 := (lab() = A)℄
time �!input stream hBi hBi hBi hAi h=Ai h=Bi h=Bi hAi hAi hAi h=Bi h=Ai h=Ai h=Bitransdu
er syn
hronous outputT [�1 := (lab() = B)℄ hi hi hi hi f t t hi hi hi t f f tT [�2 := 9des
endant[�1℄℄ hi hi hi hi f f t hi hi hi f t t tT [�3 := (lab() = A)℄ hi hi hi hi t f f hi hi hi f t t fT [h�2; �3i℄ hi hi hi hi (f; t) (f; f) (t; f) hi hi hi (f; f) (t; t) (t; t) (t; f)T [�4 := �2 ^ �3℄ hi hi hi hi f f f hi hi hi f t t fFig. 8. Do
ument tree (top left), transdu
er network (top right), and run of the transdu
er network(bottom).F = fqf ; qtg, q0 = qf , and transition fun
tionÆ : � (qx; hi; �) 7! (qf ; x; hi)(qx; y 2 ft; fg; z) 7! (qx_y_z; �; x):On seeing an opening tag of a node, this transdu
er memorizes on the sta
k whether� was mat
hed in the subtrees of the previously seen siblings of that node. Onreturning (i.e., seeing a
losing tag), the transdu
er labels the node (by its proxythe
losing tag) with t or f (true or false) depending on whether � was mat
hed inthe node's subtree, whi
h is en
oded in the state.Example 4.28. On input hihihihiftthihihitfft, T [9des
endant[�℄℄ has the run(qf ; �) hi=hi! (qf ; f) hi=hi! (qf ; ff) hi=hi! (qf ; fff) hi=hi! (qf ; ffff) f=f! (qf ; fff) t=f!(qt; ff) t=t! (qt; f) hi=hi! (qf ; ft) hi=hi! (qf ; ftf) hi=hi! (qf ; ftff) t=f! (qt; ftf) f=t!(qt; ft) f=t! (qt; f) t=t! (qt; �)and produ
es output hihihihiffthihihifttt (see Figure 8). 2A transdu
er T [9
hild[�℄℄
an be de�ned similarly.The transdu
ers for testing labels and
omputing
onjun
tions of �lters do notneed a sta
k. The transdu
er T [lab() = A℄ has the opening and
losing tagsof the XML do
ument as input alphabet �,
 = fhi; t; fg, Q = F = fq0g,and Æ = f(q0; h�i; �) 7! (q0; �; hi); (q0; h=Ai; �) 7! (q0; �; t); (q0; h=Bi; �) 7! (q0; �; f)g(where B stands for all node labels other than A). The transdu
er T [� ^ ℄has � = fhig [ft; fg2,
 = fhi; t; fg, Q = F = fq0g and Æ = f(q0; hi; �) 7!(q0; �; hi); (q0; (x; y); �) 7! (q0; �; x ^ y)g.The overall exe
ution of a transdu
er network is exempli�ed in Figure 8, wherethe �lter that mat
hes the XPath expression self::A=des
endant::B, rewritten into(9des
endant[lab() = B℄) ^ lab() = A is evaluated using a transdu
er network.The transdu
ers for the di�erent subexpressions run syn
hronously; ea
h symbol(opening or
losing tag) from the input stream is �rst transformed by T [�1℄ andT [�3℄; the output of T [�1℄ is piped into T [�2℄ and the output of both T [�2℄ and37

T [�3℄, as a pair of symbols, is piped into T [�4℄. Only then do we pro
eed to thenext symbol of the input stream, whi
h is handled in the same way, and so on. Inthe example of Figure 8, the �nal transdu
er labels exa
tly those nodes t on whi
hthe �lter is true. Che
king whether the �lter
an be mat
hed on the root node,whi
h is not the
ase in this example,
an be done using an additional pushdownautomaton { not exhibited here but simple to de�ne.We now
omment on the problem of sele
ting nodes mat
hed by XPath queries.We �rst note that any streaming algorithm will have to bu�er most of the XMLdo
ument in the worst
ase. Consider the following two trees.AB B B B C AB B B B DhAihB=i : : : hB=ihC=ih=Ai hAihB=i : : : hB=ihD=ih=AiConsider the query =
hild::A[
hild::C℄=
hild::B. Any implementation of this querymust sele
t the B-nodes of the left tree but not those of the right tree. Hen
e su
han implementation will have to bu�er all B-
hildren of the A-node before a C-nodeis seen (or not seen) on the stream. In the worst
ase this may amount to bu�eringalmost all the nodes of the do
ument.The problem of sele
ting nodes using XPath on XML streams using polynomialtime
ombined
omplexity and small spa
e was studied in several works, in
luding[Olteanu 2007; Peng and Chawathe 2003; Bar-Yossef et al. 2007; 2005; Ramanan2005; Gou and Chirkova 2007℄. The results in these papers are usually spa
e boundsdepending linearly on the depth of the data tree, a fun
tion of
ertain properties ofthe query (su
h as, e.g., query frontier size [Bar-Yossef et al. 2007℄), and the numberof
andidate output nodes from the data tree: as we have seen immediately above,we
an not hope to do better than this. The known bounds are for fragments ofPCoreXPath with only forward axes.4.7 Pro
essing XPath in DatabasesThere has been mu
h work on pro
essing XPath (as a fragment on XQuery) andtree pattern queries on XML do
uments stored in databases , that is, in se
ondarystorage, both in the
ontext of native XML databases and even more so on relationalrepresentations of XML databases.A topi
 related to XPath pro
essing that has been addressed in many papers isstoring XML data in a way that allows for eÆ
ient query pro
essing and updates[Shanmugasundaram et al. 1999; Fiebig and Moerkotte 2000; Tatarinov et al. 2002;Grust et al. 2004; 2003; O'Neil et al. 2004; Weigel et al. 2005; May et al. 2006℄.Clearly, on
e the data is to be stored in a database in a way other than a singlemonolithi
 do
ument (i.e., text �le) to allow for the addressing and indexing of data,the smaller data
hunks (usually do
ument tree nodes) require identi�ers of someform. Mu
h work has been done on �nding appropriate s
hemes for storing XMLdata relationally (e.g. [Shanmugasundaram et al. 1999; Tatarinov et al. 2002℄), butnumbering s
hemes for XML nodes that assign unique identi�ers to tree nodes thatimpli
itly
ontain navigation information are also relevant in native XML databasesystems. It is impli
it in [Tatarinov et al. 2002℄ that, when designing a node number-ing s
heme for XML data, a tradeo� is ne
essary between the s
heme's support foreÆ
ient navigation (tree pattern queries) and the eÆ
ien
y of pro
essing updates.Numbering s
hemes in whi
h the node identi�ers
ontain mu
h position informationallow for more eÆ
ient query pro
essing than do s
hemes whi
h assign only lo
alinformation that is relative to parent and an
estor nodes { but updates to the dataare more likely to require a relabeling of many nodes with numbers.38

Currently two numbering s
hemes have be
ome prominent in most major re-sear
h and
ommer
ial implementations. The �rst is the Dewey numbering s
heme[Tatarinov et al. 2002; May et al. 2006℄ in whi
h a node that is the j-th
hild ofa node with identi�er i is assigned the identi�er i:j; thus the Dewey numberings
heme is the familiar s
heme used to label hierar
hies of se
tions and subse
tionsin most books. Given a Dewey numbering s
heme, the an
estors of a given nodeare
ompletely determined and
he
king whether another node satis�es one of theaxes is easily de
ided. The se
ond [Fiebig and Moerkotte 2000; Grust et al. 2004;2003℄ is a form of global numbering s
heme (
f. [Tatarinov et al. 2002℄). It assigns apreorder (<pre) and a postorder (<post) traversal index. In addition, the <pre-indexof the parent is stored with ea
h node. Here all axes
an be
omputed using simple�-joins. Thus the transitive axis relations, whi
h would take spa
e quadrati
 in thesize of the tree if they had to be expli
itly stored in the database,
an be
omputedon demand using plain relational algebra, with no need for re
ursion.As shown in Se
tion 2.1, <pre and <post
an be de�ned from Rdes
endant andRfollowing . The
onverse is also possible:Rdes
endant(x; y) :, x <pre y ^ y <post xRfollowing(x; y) :, x <pre y ^ x <post yFrom these axis relations, all others
an be de�ned in �rst-order logi
. Thus, anode-labeled tree
an be
ompletely represented by one triple (i; j; a),
onsisting ofa <pre-index i, a <post-index j, and a label a, for ea
h node of the tree. (Theseindexes are
hosen in a way that if two nodes u and v have, say, <pre-indexes i andi0, then i < i0 i� u <pre v.)This s
heme does not require nodes to be labeled
onse
utively. Reasonableupdate performan
e
an be a
hieved by not requiring <pre- and <post-indexes to be
onse
utive and initially leaving some indexes unused. Nodes
an then be insertedby
hoosing a suitable pre- and postorder index from the unassigned indexes. Aslight modi�
ation of this idea uses
oating point numbers for the indexes; insertionis done by assigning <pre- and <post-numbers halfway between those of the nodesbetween whi
h the new node is to be pla
ed.XML pro
essing within databases fo
uses heavily on the
ase of
onjun
tiveXPath and its extensions to XQuery. For queries on XML, one
an distinguishbetween joins over data values and so-
alled stru
tural joins . The latter are usedto
ompute tuples of do
ument nodes that are in a stru
tural relationship to ea
hother whi
h
an be des
ribed by a CoreXPath path expression, for instan
e pairsof nodes and their \A"-labeled des
endents. While data value joins o

ur morefrequently in XQuery, both kinds of joins
an appear even in XPath. For example,the query of Example 4.9
ontains four stru
tural joins {
orresponding to the fouraxis steps of the query { and one value join, whi
h
ompares
ertain �D attributevalues with �F attribute values. Many queries
ontain several stru
tural joins that
an be des
ribed by tree patterns (also
alled twigs in this
ontext) and
an bemat
hed together.As do
umented in the present se
tion, pairs of nodes de�ned by CoreXPath ex-pressions have spe
ial properties that give eÆ
ient stru
tural join algorithms. Themethods des
ribed in this survey have fo
used on a straightforward en
oding of atree as a relational stru
ture. But eÆ
ient methods have also been dis
overed thateither work for individual stru
tural joins [Al-Khalifa et al. 2002; Grust et al. 2003℄or holisti
ally
ompute the mat
hes of entire tree patterns [Bruno et al. 2002℄, forXML stored using the more sophisti
ated en
odings dis
ussed above. Note that inthese en
odings there is no need for a separate edge relation.For XPath 1.0 the fo
us is on semi-joins. A key advantage of the twig querypro
essing approa
h is that it extends the low
omplexity bounds of XPath to39

more general queries whi
h return all query nodes in a mat
h of a pattern, notjust a single sele
ted node. Su
h queries are important within the more general
ontext of XQuery pro
essing. The use of large-grained twig join operators andtheir integration into optimizers for XQuery is dis
ussed in [Al-Khalifa and Jagadish2002℄.4.8 Further Bibliographi
 RemarksThe dynami
 programming algorithm for full XPath 1 of [Gottlob et al. 2005℄demonstrates in a rather straightforward way that XPath 1
an be evaluated inpolynomial time. When introdu
ed, this algorithm was the �rst of its kind, and itwas observed that all XPath engines available at the time where taking exponentialtime in the worst
ase for evaluating XPath 1. However, the dynami
 programmingalgorithm
omputes many useless intermediate results and
onsumes mu
h memory.To �x this, a more eÆ
ient top-down algorithm is given in [Gottlob et al. 2005℄ aswell. This algorithm still runs in polynomial time, with better worst-
ase upperbounds on running time and memory
onsumption. Further work on polynomial-time algorithms for full XPath 1 whi
h elaborates on the results of [Gottlob et al.2005℄ and integrates them into a native XML database management system
an befound in [Brantner et al. 2005℄. This work also shows how to integrate XQuery andeÆ
ient XPath pro
essing using a single native algebra.5. STATIC ANALYSIS5.1 Satis�abilityAnalysis of XPath originally fo
used on fragments of PNavXPath with only down-ward axes { basi
ally, tree patterns (see Theorem 3.9). Su
h queries are always sat-is�able, so analysis
on
entrated on the
ontainment problem. However, as pointedout in [Benedikt et al. 2005℄, satis�ability be
omes more diÆ
ult as soon as one haseither negation or upward axes, or if one restri
ts trees to satisfy a s
hema, givenfor example, by a Do
ument Type De�nition (DTD). Simplifying for the purposesof this dis
ussion, a DTD D
an be thought of as a triple (Ele; P; r), where (1)Ele is a �nite set of labels, ranged over by A;B; : : :; (2) r is a distinguished labelin Ele,
alled the root type; (3) P is a fun
tion that de�nes the labels of
hildrenfor a given label A: for ea
h A in Ele, P (A) is a regular expression over Ele.An XML-tree T satis�es (or
onforms to) a DTD D = (Ele; P; r), denoted byT j= D, if (1) the root of T is labeled with r; (2) ea
h node n in T is labeled with alabel in Ele, (3) for ea
h node n of label A 2 ELE, the list of labels of the
hildrenof n, listed from leftmost to rightmost, is in the regular language de�ned by P (A).To
onsider the impa
t of a DTD, �x n propositions P1 : : : Pn, and
onsidertrees that are
onstrained to
onsist of 3 levels: a root element labeled with r,whi
h has n
hildren labeled P1 : : : Pn, with ea
h Pi in turn having one
hild, whi
hmust be labeled with T or F . The DTD with root element r and produ
tionsr ! P1 : : : Pn; P1 ! T jF : : : Pn ! T jF; T ! �; F ! �
onstrains a do
ument to beof this form. Do
uments of this form
ode in an obvious way to valuations for thepropositions P1 : : : Pn. If we take any CNF propositional formula � = ViWj �i;jover P1 : : : Pn, we
an write a
orresponding negation-free CoreXPath quali�er thatholds at the root of a tree i� the tree
odes a model of �. For example, (P1_:P2)^(:P1_P2) translates to [(
hild::P1=
hild::T_
hild::P2=
hild::F)^(
hild::P1=
hild::F _
hild::P2=
hild::T)℄. This argument shows:Proposition 5.1. [Benedikt et al. 2005℄ It is NP-hard to
he
k whether a PNavXPathexpression with only the
hild axis is satis�able with respe
t to a DTD.Satis�ability with respe
t to a DTD for PNavXPath turns out to be NP-
omplete:roughly speaking, one
an guess a polynomial size satisfying tree using non-determinism40

and then verify that it is a satis�er by evaluating the XPath expression on it, whi
hwe know from the prior se
tions
an be done in polynomial time. The line betweentra
tability and intra
tability within PNavXPath is studied extensively in [Benediktet al. 2005℄.When general negation is added, as in NavXPath and CoreXPath, it is not im-mediately obvious that satis�ability is even de
idable. One argument to establishde
idability is via Proposition 3.1, and the fa
t that �rst-order logi
 over �niteordered labeled trees is known to be de
idable [That
her and Wright 1968℄. Thestandard proof of de
idability for �rst-order logi
 is via an indu
tive translationinto a tree automaton. Be
ause
omplementation of an automaton requires an ex-ponential blow-up in size at every negation step, the
omplexity of satis�ability for�rst-order logi
 over trees is known to be non-elementary [That
her and Wright1968℄. However, in the previous se
tion we have shown that NavXPath Booleanqueries translate into two-variable �rst-order logi
. The satis�ability problem forFO2 over arbitrary �nite stru
tures is known to be in NExpTime [Gr�adel et al.1997℄. In addition, [Gr�adel et al. 1997℄ shows that satis�able FO2 senten
es havemodels of size exponential in the size of the senten
e. However, this does not implythat the satis�ability problem for FO2 is in NExpTime, sin
e for this problemwe have the
onstraint that the models must be trees (a
onstraint whi
h is notexpressible by an FO2 senten
e).In [Etessami et al. 2002℄ it is shown that the satis�ability of FO2 senten
es overwords is in NExpTime. We modify this below to show the satis�ability problemfor trees is in NExpTime. Sin
e the translation of NavXPath into FO2 given inSe
tion 3 is polynomial, we get a NExpTime bound for NavXPath.Theorem 5.2. There is an NExpTime algorithm de
iding for a given senten
e� 2 FO2 whether or not it is satis�able by some ordered tree.Re
all that Proposition 3.6 shows that unnested NavXPath\, the extension ofNavXPath with an interse
tion operator but where union may only o

ur on the toplevel,
an be translated in polynomial time into FO2. From this and Theorem 5.2,it follows that:Corollary 5.3. The satis�ability problem for unnested NavXPath\ (and hen
efor unnested NavXPath and CoreXPath) is in NExpTime.We will see that this bound is not tight for NavXPath. We do not know the
omplexity of satis�ability for full NavXPath\. A related language is PDL with aninterse
tion operator, where the satis�ability problem has re
ently been shown tobe 2-ExpTime hard even on one-letter trees [Lange and Lutz 2005℄. However, thislanguage is more expressive than NavXPath\.Sin
e we know of no proof of Theorem 5.2 in the literature, we sket
h one, follow-ing
losely the approa
h of [Etessami et al. 2002℄. First, we translate the problemof satis�ability on unranked trees to one on binary trees, using the standard en-
oding of an unranked tree as a binary tree. Let FO2[�nav;bin℄ be FO2 over theunary signature � unioned with FChild, SChild (the �rst- and se
ond-
hild rela-tions of the binary tree representation), SChild�, Rdes
endant. We
onsider a formulaof FO2[�nav;bin℄ to be interpreted over binary
odes of unranked trees, stru
turesT = (V; : : :) in whi
h i) (V;FChild [SChild) is a tree of outdegree at most two,ii) ea
h node is related to at most one node via FChild and at most one variableSChild, with these nodes being distin
t, and iii) Rdes
endant is the transitive
losureof FChild [SChild, and SChild� is the transitive
losure of SChild. The following issimple to show:Proposition 5.4. Satis�ability of FO2 senten
es over unranked trees is redu
iblein polynomial time to satis�ability of FO2[�nav;bin℄ senten
es over binary
odes ofunranked trees. 41

For an integer k, a k-type is a maximal
onsistent set of FO2[�nav;bin℄ formulas(in some �xed set of variables) where the maximal number of nested quanti�ers (i.e.quanti�er rank) is at most k. We will deal with k-types in 1 free variable, with su
ha type typi
ally denoted �(x). A binary
ode stru
ture (V; : : :) is k-
ompa
t if:|We do not have nodes v1; v2 2 V with the same k-type, and with v2 a des
endantof v1.|Any two nodes with the same k-type have identi
al subtrees.The next result shows that we
an redu
e satis�ability to a sear
h for
ompa
tstru
tures:Lemma 5.5. An FO2[�nav;bin℄ senten
e of quanti�er rank k > 1 is satis�able atthe root of some binary
ode i� it is satis�able at the root of a k-
ompa
t binary
ode.Proof. Let � be an FO2[�nav;bin℄ senten
e of quanti�er rank k, and suppose �is satis�able in B = (V; : : :), and B is the stru
ture of minimal size satisfying �.Suppose there are nodes v1; v2 2 V with the same k-type , with v2 a des
endantof v1. Let S1 be all nodes that are des
endants of v1 but are not des
endants ofv2 (in
luding v2). Let B0 be the
ode formed by removing all nodes in S1 andatta
hing the subtrees of v2 to v1 (i.e. the �rst
hild of v2 be
omes the �rst
hildof v1, et
.). Let f be the mapping from B0 to B that maps a node beneath v1 inB0 to the
orresponding node beneath v2, and is the identity elsewhere on B0. Wenow show by indu
tion on i that for ea
h i � k, the i-type of a node v 2 B0 is thesame as the i-type of f(v) 2 B.For i = 0 this is
lear, sin
e the only atomi
 formulas in one variable are those thatassert the label of a node, and the mapping f preserves labels. For the indu
tivestep i + 1, note that a two-variable formula �(x) of rank i + 1
an be taken toassert the existen
e or non-existen
e of a y with a
ertain axis relation to x andwith a �xed i-type. All formulas asserting the non-existen
e of su
h a y are
learlypreserved from x to f(x), by indu
tion. Suppose that for x 2 B0 there is a y inB with i-type � and with a given axis relationship to f(x). If y = f(w) for somew in B0, then we
an
hoose w as a witness to � in B0, sin
e w will satisfy thesame axis relation to x as y does to f(x) (by de�nition of f), and will satisfy thesame i-type as y by indu
tion. Otherwise, it must be that y lies below v1 but isin
omparable to v2. Sin
e y lies below v1 and v2 has the same k-type in B (hen
ethe same i+1-type) as v1, there is y0 below v1 satisfying the same axes with respe
tto v1 as y has to v2, and su
h that the i-type of y0 in B is the same as the i-type ofy in B. Sin
e y0 is below v1, y0 = f(w) for some w 2 B0, and now we are done byindu
tion.The result of the
onstru
tion above is a smaller tree in whi
h the k-type of theroot has the same type as in the original tree, thus violating minimality.To get the se
ond part of
ompa
tness, let � be the set of k-types �(x) su
h thatthe se
ond part is violated in B0: that is, there are two nodes with type � withdistin
t subtrees. We pro
eed by downward indu
tion on n = j�j. If n > 0,
hoosea node v 2 B0 satisfying a type in � that has maximal depth in the tree. Let �be the k-type of v and Sv be the forest
onsisting of all des
endants of v in B0.All nodes in Sv must satisfy a type outside of �. For every other node v0 in B0satisfying � , we repla
e the forest below v0 with Sv (making the subtree below the�rst
hild of v into the subtree below the �rst
hild of v0, et
.). Noti
e that the �rst
ondition of
ompa
tness (already holding of B0) ensures that v0 is not
omparableto v. One
an
on�rm by indu
tion that the k-type of the root is un
hanged by thissubstitution, by an argument identi
al to that used in the �rst part of this lemma.In this pro
ess, n is de
reased by one, and hen
e the pro
ess terminates with ak-
ompa
t tree. 242

From Lemma 5.5, Theorem 5.2 follows. The depth of a k-
ompa
t tree is at mostthe number of k-types, whi
h is bounded by an exponential in �. Furthermore, ak-
ompa
t tree
an be represented via a DAG whose nodes are the k-types realizedin the tree. Su
h a DAG represents the tree formed by dupli
ating shared subtrees.It is easy to see that one
an
he
k whether a given senten
e is satis�ed on a DAGrepresentation of a tree in polynomial time. Our NExpTime algorithm just guessesa DAG stru
ture on the k-types, and then
on�rms that the
orresponding treesatis�es the senten
e �.It is known that FO2 is NExpTime-hard [Etessami et al. 2002℄. The exampleshowing NExpTime hardness from [Etessami et al. 2002℄
an be
oded easily inunnested NavXPath\, hen
e we have that:Theorem 5.6. The satis�ability problem for unnested NavXPath\ is
ompletefor NExpTime.From this proof, we get further information:Corollary 5.7 to the proof of Theorem 5.2. Let � be an FO2 senten
e.If � is satis�able in some �nite tree, then it is satis�able in some tree of depthexponential in j�j and size doubly exponential in j�j. The same holds for E anexpression in unnested NavXPath extended with the interse
tion operator.Is this NExpTime-bound tight for NavXPath or CoreXPath? First note that thefa
t that FO2 is NExpTime-hard does not imply the same for NavXPath, sin
ethe translation from FO2 to NavXPath is exponential. [Marx 2004b℄ shows thatsatis�ability of NavXPath expressions
an be de
ided in deterministi
 exponentialtime.Theorem 5.8 [Marx 2004b℄. NavXPath satis�ability is de
idable in ExpTime.Furthermore, sin
e equivalen
e for NavXPath expressions
an be redu
ed to satis�-ability of a single expression, the equivalen
e problem
an be de
ided in ExpTime.Sin
e CoreXPath expressions
an be mapped into NavXPath in linear time, theseresults hold for CoreXPath as well.[Marx 2004b℄ a
tually shows this for an extension of NavXPath that allows regularexpressions on axes. Sin
e the treatment in Marx's papers [Marx 2004b; 2004a;Afanasiev et al. 2005℄ is quite detailed, we give here only some
omments on theproof. The proof is by redu
tion to the satis�ability problem for Deterministi
Propositional Dynami
 Logi
 (PDL) with Converse. PDL is similar to XPath, inthat it is a modal language that allows the de�nition of binary relations (in dynami
logi
 \programs") as well as unary relations (\formulas"). As with XPath, thegrammars for binary relations and unary relations are mutually re
ursive. Dynami
logi
s have a di�erent data model than XPath, being de�ned over node and edge-labeled graphs. However, sin
e formulas in the language
an see only a part of thegraph at a time, the behavior of the logi
 on general stru
tures is
losely relatedto its behavior on trees. Deterministi
 PDL with
onverse is formed over a set ofatomi
 programs (analogous to axes in XPath) ea
h of whi
h is a fun
tion mapsnodes in a graph to at most one other node. For ea
h atomi
 program there is a\
onverse program" representing the inverse of the binary relation. In a binary treethe \�rst
hild" and \se
ond
hild" relations are fun
tional; hene we
an interpretDeterministi
 PDL with Converse with two atomi
 program over binary trees, withthe two programs
hosen to be �rst and se
ond
hild. Using the standard en
odingof ordered unranked trees as binary trees, deterministi
 PDL with Converse overtwo programs
an be interpreted on ordered trees. Be
ause PDL allows new binaryrelations to be built up from old using regular expressions, the re
ursive axes, and infa
t all of NavXPath (and more [Marx 2004b℄),
an be de�ned within it. Hen
e thesatis�ability of XPath is redu
ed to the satis�ability problem fo Deterministi
 PDL43

with Converse senten
es over binary trees. In [Vardi and Wolper 1986℄ it is shownthat deterministi
 PDL with
onverse is de
idable over all stru
tures is in ExpTime.The proof relies on translating PDL programs into alternating automata on trees.[Marx 2004b℄ shows that the proof in [Vardi and Wolper 1986℄
an be modi�ed togive the same bound over the
lass of
odings of �nite ordered trees. In [Afanasievet al. 2005℄, a variant of PDL de�ned dire
tly on ordered trees is given, whi
h yieldsan alternate route (also going through [Vardi and Wolper 1986℄) to the ExpTimebound.[Neven and S
hwenti
k 2003℄ shows that
ontainment of NavXPath expressions isExpTime-hard. An inspe
tion of the proof shows that only CoreXPath expressionsare needed for the hardness proof. Sin
e
ontainment of two (unnested) NavXPathexpressions
an be redu
ed to satis�ability of a single (unnested) expression, itfollows that unnested NavXPath satis�ability is ExpTime-hard. Hen
e we see thatthe ExpTime bound is tight:Corollary 5.9
ombining [Neven and S
hwenti
k 2003℄ and [Marx 2004b℄.The satis�ability problems for CoreXPath, NavXPath, and unnested NavXPath areall ExpTime-
omplete.5.2 Satis�ability for other XPath fragmentsNow that we know that NavXPath and CoreXPath have ExpTime satis�ability, we
an look at what happens as features are added or subtra
ted.Better bounds
an be obtained for sublanguages of NavXPath: Satis�ability ofNavXPath with only
hild and parent is shown to be PSpa
e-
omplete in [Benediktet al. 2005℄. Satis�ability for PNavXPath is easily seen to be in NP (see [Hidders2003℄), and this is extended to PFOXPath in [Benedikt et al. 2005℄. It is also shownin [Benedikt et al. 2005℄ that very simple fragments of PNavXPath have an NP-
omplete satis�ability problem { in the presen
e of both downward and upwardaxes, the problem is NP-
omplete, as well as in the presen
e of both left and rightsibling axes. For PNavXPath with only downward axes, all expressions are
learlysatis�able; however, the satis�ability problem with respe
t to a given DTD
an beNP-hard [Benedikt et al. 2005℄.We now
onsider satis�ability as we move up in expressiveness from NavXPath.It is shown in [Benedikt et al. 2005℄ that the satis�ability of a FOXPath expressionwith respe
t to a DTD is unde
idable. By using sibling axes instead of a DTD, one
an see the following:Theorem 5.10 [Geerts and Fan 2005℄. The satis�ability problem for FOXPathis unde
idable.The proof uses a redu
tion from the halting problem for two-register ma
hineswhi
h is known to be unde
idable (see, e.g., [B�orger et al. 1997℄). Although fullFOXPath is unde
idable, the exa
t borderline of de
idability is not well understood.Question 5.11. Is FOXPath without the sibling axes de
idable?In fa
t, de
idability is open even in the
ase of FOXPath with only
hild andparent.One
an also look at de
idability on restri
ted
lasses of do
uments:Question 5.12. Is FOXPath de
idable on do
uments with no bran
hing (i.e.those where every element has at most one
hild)?5.3 ContainmentThe
ontainment problem takes as input XPath expressions E and E0, askingwhether the output of E is
ontained in the output of E0 on any sour
e do
umentat any node. Variations of the problem are
ontainment with respe
t to a DTD,44

whi
h takes a DTD as an additional argument, asking whether the above holds forE and E0 over any sour
e do
ument satisfying the DTD. A spe
ial
ase of this isthe
ontainment problem for a �nite alphabet, whi
h takes a label alphabet � asadditional parameter, asking whether
ontainment holds for all sour
e do
umentswith labels in �.The
ontainment problem has been investigated extensively in the relational
asefor
onjun
tive queries, where it has
lose
onne
tions both to issues in data integra-tion and query optimization, as well as to
onstraint satisfa
tion [Kolaitis and Vardi2000; Gottlob et al. 2001℄. The general
onjun
tive query
ontainment problem isknown to be NP-
omplete; however, many spe
ial
ases are known to be in PTime,in
luding those in whi
h the dependen
y graphs of the queries have bounded tree-width [Chekuri and Rajaraman 1997℄ or the queries have bounded hypertree-width[Gottlob et al. 1999℄. In the
ase of
onjun
tive queries,
ontainment of Q1 in Q2redu
es to determining whether Q1 is satis�able on an instan
e formed from Q2,hen
e the
omplexity of
ontainment is bounded by the
ombined
omplexity ofevaluation. In the XPath setting there is no obvious
orresponden
e between aquery and a \
anoni
al instan
e", and indeed the
omplexity of
ontainment andevaluation turn out to be quite di�erent.Starting with the relational
ase as motivation, [Amer-Yahia et al. 2001; Miklauand Su
iu 2002; Wood 2001℄ initiated the study of
ontainment for XPath, beginningwith sub
lasses of NavXPath without either the union operator or disjun
tion within�lters (
onjun
tive NavXPath). The survey arti
le of S
hwenti
k [S
hwenti
k 2004℄gives a overview of the te
hniques used in getting bounds on
ontainment; herewe summarize only some of the results and the open questions. A modi�
ation ofthe minimal model te
hnique for
onjun
tive queries shows that the
ontainmentproblem for
onjun
tive Navigational XPath is in
o-NP { given queries P and Qone
an generate a �nite set of instan
es Ii : i < n of size polynomial in P su
hthat P � Q i� ea
h Ii satis�es Q [Miklau and Su
iu 2002℄. Sin
e satisfa
tion
anbe
he
ked in linear time, a
o-NP algorithm is simply to guess an Ii that fails tosatisfy Q. In [Amer-Yahia et al. 2001℄, it is shown that for
onjun
tive NavXPathwith only des
endant axes the
ontainment problem is in PTime, while in [Wood2001℄ it is noted that the same holds for
onjun
tive NavXPath with only
hild axes(indeed this last observation follows dire
tly from the PTime bounds for a
y
li

onjun
tive queries in [Chekuri and Rajaraman 1997℄). When both des
endant axesand
hild axes are present the problem was shown to be
o-NP-
omplete [Miklauand Su
iu 2002℄. [Neven and S
hwenti
k 2003℄ shows that the
ontainment problemfor
onjun
tive NavXPath with a �nite alphabet is PSpa
e-
omplete, while the
ontainment problem with respe
t to a DTD is ExpTime-
omplete. A �ner analysisof the
omplexity of
ontainment for
onjun
tive NavXPath with respe
t to a DTDand with respe
t to integrity
onstraints is given in [Wood 2003℄.The
omplexity of
ontainment for fragments of XPath larger than
onjun
tiveNavXPath was studied by Neven and S
hwenti
k. For PNavXPath, the general
on-tainment problem remains in
o-NP, while if the alphabet is �xed the problem isagain PSPACE-
omplete [Neven and S
hwenti
k 2003℄. For full NavXPath, the
on-tainment problem, even with respe
t to a DTD, is in ExpTime, sin
e it is redu
ibleto the satisfa
tion problem: this is noted in [Marx 2004b℄. On the other hand, sin
e[Neven and S
hwenti
k 2003℄ shows that
ontainment of NavXPath expressions isExpTime-hard, we have:Theorem 5.13 Combining [Neven and S
hwenti
k 2003℄ and [Marx 2004b℄.The
ontainment problem for NavXPath is ExpTime-
omplete, as is the
ontain-ment problem for �nite alphabet and the
ontainment problem with respe
t to aDTD.When we turn to the XPath fragments with data values, the
omplexity of
on-45

tainment is not
ompletely understood. The results of Deuts
h and Tannen [Deuts
hand Tannen 2001℄ imply that
ontainment for PFOXPath is
o-NP-
omplete, pro-vided that the transitive sibling axes are not permitted and "wild
ard steps" (
hildsteps with no restri
tion on the label) are disallowed. Their te
hnique also yieldsa �P2 bound for full PFOXPath, although neither their terminology nor their frag-ments mat
h PFOXPath exa
tly. They also establish �P2 bounds in the presen
e ofintegrity
onstraints
alled SXICs: these are in
omparable to both �nite alphabetsand DTDs. [Deuts
h and Tannen 2001℄ also provides lower bounds for
ontain-ment in the presen
e of integrity
onstraints. Neven and S
hwenti
k [Neven andS
hwenti
k 2003℄ show that PFOXPath without sibling axes and without wild
ard isin �P2 , and that the
ontainment problem for PFOXPath extended with inequalityis unde
idable.To our knowledge, the de
idability of
ontainment for general
onjun
tive FOXPathqueries with respe
t to a DTD or a �nite alphabet is open. Indeed we do not knowwhether one
an de
ide
ontainment of
onjun
tive queries over signature �0dom 6in the presen
e of DTDs. The unde
idability te
hniques of [Neven and S
hwenti
k2003℄ rely on disjun
tion, while [Deuts
h and Tannen 2001℄ provides unde
idabilityresults with respe
t to integrity
onstraints. The upper bounds of both [Neven andS
hwenti
k 2003; Deuts
h and Tannen 2001℄ rely on the use of an in�nite alphabet.5.4 Further Bibliographi
 RemarksWhile above we have dealt with the satis�ability and
ontainment problems, abroader goal would be an algebrai
 simpli�
ation framework for XPath. [Benediktet al. 2003℄ presents algebrai
 equations for simpli�
ation of XPath expressions. Asystem of equations is presented that is
omplete for equivalen
e of XPath expres-sions for a very small fragment (without �lters and with only
hild axes). [Olteanuet al. 2002℄ gives a rewriting system geared not toward general equivalen
e, but forremoving ba
kward axes. [Amer-Yahia et al. 2001℄ deals not with equivalen
e butwith optimization; it presents an algorithm for minimization of tree patterns in thepresen
e of integrity
onstraints.A natural question not addressed above is the implementation of satis�abilityand
ontainment tests for XPath. [Benedikt et al. 2005℄ implements a satis�abilitytest for a fragment of PNavXPath,in the presen
e of DTDs, based on a
onversionto tree automata. [Lakshmanan et al. 2004℄ implements a satis�ability test fora tree pattern language that in
ludes data value manipulation (in
omparable inexpressiveness with the XPath languages we
onsider here).An additional stati
 analysis problem is re
ognizing whether a query is in a givenXPath fragment. In the
ontext of navigational XPath, the problem of re
ognizingwhether a �rst-order logi
 query is in NavXPath is open. This is
losely-related tothe (likewise open) problem of determining whether a tree automaton is equivalentto an FO2 senten
e . The problem of determining whether a �rst-order queryover �0dom is in FOXPath is unde
idable { this follows from the results of [Benediktet al. 2005℄. The problem of determining whether a
onjun
tive query over �0dom isexpressible in
onjun
tive FOXPath has not been investigated (to our knowledge).Likewise, nothing is known
on
erning the problem of determining whether a �rst-order query (or a NavXPath query) is equivalent to a query in PNavXPath.A
knowledgements: We thank Maarten Marx and Frank Neven for
ommentson this draft.REFERENCESAbiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.6Re
all that this is the relational signature with binary predi
ates for the graph of ea
h attributefun
tion, unary predi
ates for the labels, and binary predi
ates for the major axes.46

Afanasiev, L., Bla
kburn, P., Dimitriou, I., Gaiffe, B., Goris, E., Marx, M., and de Rijke,M. 2005. \PDL for Ordered Trees". Journal of Applied Non-Classi
al Logi
s 15, 115{135.Afanasiev, L., Fran
es
het, M., Marx, M., and de Rijke, M. 2004. \CTL Model Che
kingfor Pro
essing Simple XPath Queries". In Pro
. TIME. 117{124.Al-Khalifa, S. and Jagadish, H. V. 2002. \Multi-level operator
ombination in XML querypro
essing". In Pro
. CIKM. 134{141.Al-Khalifa, S., Jagadish, H. V., Patel, J. M., Wu, Y., Koudas, N., and Srivastava, D.2002. \Stru
tural Joins: A Primitive for EÆ
ient XML Query Pattern Mat
hing". In 18thInternational Conferen
e on Data Engineering (ICDE'02).Altinel, M. and Franklin, M. 2000. \EÆ
ient Filtering of XML Do
uments for Sele
tive Dis-semination of Information". In Pro
eedings of the 26th International Conferen
e on Very LargeData Bases (VLDB'2000). Cairo, Egypt, 53{64.Amer-Yahia, S., Cho, S., Lakshmanan, L. V., and Srivastava, D. 2001. \Minimization ofTree Pattern Queries". In Pro
eedings of the ACM SIGMOD International Conferen
e onManagement of Data (SIGMOD'01). Santa Barbara, California, USA, 497{508.Bar-Yossef, Z., Fontoura, M., and Josifovski, V. 2005. \Bu�ering in Query Evaluation overXML Streams". In Pro
eedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium onPrin
iples of Database Systems (PODS'05).Bar-Yossef, Z., Fontoura, M., and Josifovski, V. 2007. \On the Memory Requirements ofXPath Evaluation over XML Streams". Journal of Computer and System S
ien
es 73, 3,391{441.Bar
elo, P. and Libkin, L. 2005. \Temporal logi
s over unranked trees". In Pro
eedings of the20th IEEE Symposium on Logi
 in Computer S
ien
e (LICS). 31{40.Beauquier, D. and Pin, J.-E. 1989. \Fa
tors of Words". In Pro
. ICALP. 63{79.Benedikt, M., Bonifati, A., Fles
a, S., and Vyas, A. 2005. \Veri�
ation of Tree Updatesfor Optimization". In Pro
eedings of the 17th International Conferen
e on Computer AidedVeri�
ation.Benedikt, M., Fan, W., and Geerts, F. 2005. \XPath Satis�ability in the presen
e of DTDs".In Pro
eedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on Prin
iples ofDatabase Systems (PODS'05).Benedikt, M., Fan, W., and Kuper, G. 2003. \Stru
tural Properties of XPath Fragments". InPro
. of the 9th International Conferen
e on Database Theory (ICDT). Siena, Italy, 79{95.Bird, S., Chen, Y., Davidson, S., Lee, H., and Zheng, Y. 2005. \Extending XPath to SupportLinguisti
 Queries". In PLAN-X.B�orger, E., Gr�adel, E., and Gurevi
h, Y. 1997. The Classi
al De
ision Problem. Springer.Brantner, M., Helmer, S., Kanne, C.-C., and Moerkotte, G. 2005. \Full-
edged Algebrai
XPath Pro
essing in Natix". In Pro
eedings of the 21st IEEE International Conferen
e onData Engineering (ICDE).Br�uggemann-Klein, A., Murata, M., and Wood, D. 2001. \Regular Tree and Regular HedgeLanguages over Non-ranked Alphabets: Version 1, April 3, 2001". Te
h. Rep. HKUST-TCSC-2001-05, Hong Kong University of S
ien
e and Te
hnology, Hong Kong SAR, China.Bruno, N., Srivastava, D., and Koudas, N. 2002. \Holisti
 Twig Joins: Optimal XML PatternMat
hing". In Pro
eedings of the 2002 ACM SIGMOD International Conferen
e on Manage-ment of Data (SIGMOD'02). Madison, Wis
onsin.Bur
h, J., Clarke, E., M
Millan, K., Dill, D., and Hwang, L. 1990. \Symboli
 ModelChe
king: 1020 States and Beyond". In Pro
eedings of the Annual IEEE Symposium on Logi
in Computer S
ien
e (LICS).Carme, J., Niehren, J., and Tommasi, M. 2004. \Querying Unranked Trees with Stepwise TreeAutomata". In Rewriting Te
hniques and Appli
ations.Chan, C. Y., Felber, P.,Garofalakis, M. N., and Rastogi, R. 2000. EÆ
ient Filtering of XMLDo
uments with XPath Expressions. In Pro
eedings of the 18th IEEE International Conferen
eon Data Engineering (ICDE). San Jose, California, USA, February 26-Mar
h 1, 2002.Chekuri, C. and Rajaraman, A. 1997. Conjun
tive Query Containment Revisited". In Pro
. ofthe 6th International Conferen
e on Database Theory (ICDT). Delphi, Gree
e, 56{70.Clarke, E. M., Grumberg, O., and Peled, D. 2000. Model Che
king. MIT Press.Cour
elle, B. 1990. \Graph Rewriting: An Algebrai
 and Logi
 Approa
h". In Handbook ofTheoreti
al Computer S
ien
e, J. van Leeuwen, Ed. Vol. 2. Elsevier S
ien
e Publishers B.V.,Chapter 5, 193{242.Deuts
h, A. and Tannen, V. 2001. Containment and Integrity Constraints for XPath. In Pro
.KRDB 2001. CEUR Workshop Pro
eedings 45.Diao et al., Y. 2002. \YFilter: EÆ
ient and S
alable Filtering of XML Do
uments.". In Pro-
eedings of the 18th IEEE International Conferen
e on Data Engineering (ICDE).47

Doner, J. 1970. \Tree A

eptors and some of their Appli
ations". Journal of Computer andSystem S
ien
es 4, 406{451.Etessami, K., Vardi, M., and Wilke, T. 2002. \First Order Logi
 with Two Variables and UnaryTemporal Logi
". Information and Computation 179.Etessami, K. and Wilke, T. 2000. \An Until Hierar
hy and Other Appli
ations of anEhrenfeu
ht-Fraisse Game for Temporal Logi
". Information and Computation 160, 88{108.Fan, W., Chan, C., and Garofalakis, M. 2004. Se
ure XML querying with se
urity views. InSIGMOD.Fiebig, T. and Moerkotte, G. 2000. \Evaluating Queries on Stru
ture with eXtended A

essSupport Relations". In Pro
. WebDB.Flum, J., Fri
k, M., and Grohe, M. 2002. \Query Evaluation via Tree-De
ompositions". Journalof the ACM 49, 6, 716{752.Fri
k, M., Grohe, M., and Ko
h, C. 2003. \Query Evaluation on Compressed Trees". In Pro-
eedings of the 18th Annual IEEE Symposium on Logi
 in Computer S
ien
e (LICS). Ottawa,Canada.Geerts, F. and Fan, W. 2005. \XPath Satis�ability with Sibling Axes". In Pro
. 10th DBPL.Gottlob, G. and Ko
h, C. 2002. \Monadi
 Queries over Tree-Stru
tured Data". In Pro
eedingsof the 17th Annual IEEE Symposium on Logi
 in Computer S
ien
e (LICS). Copenhagen,Denmark, 189{202.Gottlob, G. and Ko
h, C. 2004. \Monadi
 Datalog and the Expressive Power of Web Informa-tion Extra
tion Languages". Journal of the ACM 51, 1, 74{113.Gottlob, G., Ko
h, C., and Pi
hler, R. 2002. \EÆ
ient Algorithms for Pro
essing XPathQueries". In Pro
eedings of the 28th International Conferen
e on Very Large Data Bases(VLDB). Hong Kong, China, 95{106.Gottlob, G., Ko
h, C., and Pi
hler, R. 2005. \EÆ
ient Algorithms for Pro
essing XPathQueries". ACM Transa
tions on Database Systems 30, 2 (June), 444{491.Gottlob, G., Ko
h, C., Pi
hler, R., and Segoufin, L. 2005. \The Complexity of XPath QueryEvaluation and XML Typing". Journal of the ACM 52, 2 (Mar.), 284{335.Gottlob, G., Ko
h, C., and S
hulz, K. U. 2004. \Conjun
tive Queries over Trees". In Pro-
eedings of the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Prin
iples of DatabaseSystems (PODS'04). Paris, Fran
e, 189{200.Gottlob, G., Leone, N., and S
ar
ello, F. 1999. \Hypertree De
ompositions and Tra
tableQueries". In Pro
eedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Prin
iplesof Database Systems (PODS'99). 21{32.Gottlob, G., Leone, N., and S
ar
ello, F. 2001. \The Complexity of A
y
li
 Conjun
tiveQueries". Journal of the ACM 48, 1, 431{498.Gottlob, G., Leone, N., and S
ar
ello, F. 2002. \Hypertree De
ompositions and Tra
tableQueries". Journal of Computer and System S
ien
es 64, 3, 579{627.G�otz, M., Ko
h, C., and Martens, W. 2007. \EÆ
ient Algorithms for the Tree Homeomor-phism Problem". In Pro
. 11th International Symposium on Database Programming Languages(DBPL). Vienna, Austria.Gou, G. and Chirkova, R. 2007. \EÆ
ient algorithms for evaluating XPath over streams". InPro
. SIGMOD. 269{280.Gr�adel, E., Kolaitis, P., and Vardi, M. 1997. \On the De
ision Problem for Two-variableFirst-order Logi
". Bulletin of Symboli
 Logi
 3, 53{69.Green, T. J., Miklau, G., Onizuka, M., and Su
iu, D. 2003. \Pro
essing XML Streams withDeterministi
 Automata". In Pro
. of the 9th International Conferen
e on Database Theory(ICDT).Greenlaw, R., Hoover, H. J., and Ruzzo, W. L. 1995. Limits to Parallel Computation: P-Completeness Theory. Oxford University Press.Grohe, M., Ko
h, C., and S
hweikardt, N. 2007. \Tight Lower Bounds for Query Pro
essingon Streaming and External Memory Data". Theor. Comput. S
i. 380, 1{2, 199{217.Grust, T., van Keulen, M., and Teubner, J. 2003. \Stair
ase Join: Tea
h a Relational DBMSto Wat
h its (Axis) Steps". In Pro
. VLDB. 524{525.Grust, T., van Keulen, M., and Teubner, J. 2004. \A

elerating XPath evaluation in anyRDBMS". ACM Transa
tions on Database Systems 29, 91{131.Gupta, A. K. and Su
iu, D. 2003. \Stream Pro
essing of XPath Queries with Predi
ates". InPro
eedings of the 2003 ACM SIGMOD International Conferen
e on Management of Data(SIGMOD'03). 419{430.Hidders, J. 2003. \Satis�ability of XPath Expressions". In Pro
. 9th DBPL.48

Hop
roft, J. E. and Ullman, J. D. 1979. Introdu
tion to Automata Theory, Languages, andComputation. Addison-Wesley Publishing Company, Reading, MA USA.Immerman, N. 1999. \Des
riptive Complexity". Springer Graduate Texts in Computer S
ien
e.Johnson, D. S. 1990. \A Catalog of Complexity Classes". In Handbook of Theoreti
al ComputerS
ien
e, J. van Leeuwen, Ed. Vol. 1. Elsevier S
ien
e Publishers B.V., Chapter 2, 67{161.Josifovski, V. and Fontoura, M. F. 2005. \Querying XML Streams". VLDB Journal 14, 2(April), 197{210.Kamp, H. 1968. \Tense Logi
 and the Theory of Linear Order". Ph.D. thesis, University ofCalifornia, Los Angeles.Ko
h, C. 2003. \EÆ
ient Pro
essing of Expressive Node-Sele
ting Queries on XML Data inSe
ondary Storage: A Tree Automata-based Approa
h". In Pro
eedings of the 29th InternationalConferen
e on Very Large Data Bases (VLDB). 249{260.Kolaitis, P. and Vardi, M. 2000. \Conjun
tive Query Containment and Constraint Satisfa
tion".Journal of Computer and System S
ien
es 61, 2, 302{332.Lakshmanan, L. V. S., Ramesh, G., Wang, H., and Zhao, Z. 2004. \On Testing Satis�abilityof Tree Pattern Queries". In VLDB. 120{131.Lange, M. and Lutz, C. 2005. "2-ExpTime lower bounds for propositional dynami
 logi
s withinterse
tion". \Journal of Symboli
 Logi
" 70, 4, 1072{1086.Libkin, L. 2004. Elements of Finite Model Theory. Springer.Marx, M. 2004a. \Conditional XPath, the First Order Complete XPath Diale
t". In Pro
eedingsof the 23rd ACM SIGACT-SIGMOD-SIGART Symposium on Prin
iples of Database Systems(PODS'04). 13{22.Marx, M. 2004b. \XPath with Conditional Axis Relations". In Pro
. EDBT. 477{494.Marx, M. 2005. \First order paths in ordered trees". In Pro
. of the 10th International Conferen
eon Database Theory (ICDT).Marx, M. and de Rijke, M. 2004. \Semanti
 Chara
terizations of XPath". In TDM'04 Workshopon XML Databases and Information Retrieval. Twente, The Netherlands.May, N., Brantner, M., B�ohm, A., Kanne, C.-C., and Moerkotte, G. 2006. Index vs. naviga-tion in xpath evaluation. In Pro
. Workshop Fourth International XML Database Symposium,Seoul, Korea. 16{30.Meyer, A. R. 1975. \Weak Monadi
 Se
ond Order Theory of Su

essor is not Elementary-Re
ursive". In Logi
 Colloquium, Le
ture Notes in Mathemati
s 453. Springer-Verlag, N.Y.,132{154.Miklau, G. and Su
iu, D. 2002. \Containment and Equivalen
e for an XPath Fragment". In Pro-
eedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Prin
iples of DatabaseSystems (PODS'02). Madison, Wis
onsin, 65{76.Neumann, A. and Seidl, H. 1998. \Lo
ating Mat
hes of Tree Patterns in Forests". In Pro
. 18thFSTTCS, LNCS 1530. 134{145.Neven, F. 2002. \Automata Theory for XML Resear
hers". SIGMOD Re
ord 31, 3 (Sept.).Neven, F. and S
hwenti
k, T. 2002. \Query Automata on Finite Trees". Theoreti
al ComputerS
ien
e 275, 633{674.Neven, F. and S
hwenti
k, T. 2003. \XPath Containment in the Presen
e of Disjun
tion,DTDs, and Variables". In Pro
. of the 9th International Conferen
e on Database Theory(ICDT). 315{329.Neven, F. and Van den Buss
he, J. 2002. \Expressiveness of Stru
tured Do
ument QueryLanguages Based on Attribute Grammars". Journal of the ACM 49, 1 (Jan.), 56{100.Olteanu, D. 2007. \SPEX: Streamed and Progressive Evaluation of XPath". IEEE Trans.Knowledge and Data Engineering 19, 7 (July).Olteanu, D., Kiesling, T., and Bry, F. 5th - 8th Mar
h 2003. \An Evaluation of RegularPath Expressions with Quali�ers against XML Streams". In Pro
eedings of 19th InternationalConferen
e on Data Engineering (ICDE). Bangalore, India. Full version in Te
hni
al ReportPMS-FB-2002-12, Ludwig-Maximilians-Universit�at M�un
hen, Muni
h, Germany, 2002.Olteanu, D., Meuss, H., Fur
he, T., and Bry, F. 2002. \XPath: Looking Forward". In Pro
.EDBT Workshop on XML Data Management. Vol. LNCS 2490. Springer-Verlag, Prague, Cze
hRepubli
, 109{127.O'Neil, P. E., O'Neil, E. J., Pal, S., Cseri, I., S
haller, G., and Westbury, N. 2004. \OR-DPATHs: Insert-Friendly XML Node Labels". 903{908.Papadimitriou, C. H. 1994. Computational Complexity. Addison-Wesley.Peng, F. and Chawathe, S. 2003. \XPath Queries on Streaming Data". In Pro
eedings of the2003 ACM SIGMOD International Conferen
e on Management of Data (SIGMOD'03).49

Ramanan, P. 2005. \Evaluating an XPath Query on a Streaming XML Do
ument". In Intl.Conf. Management of Data (COMAD). 41{52.Reinhardt, K. 2002. \The Complexity of Translating Logi
 to Finite Automata". In Au-tomata, Logi
s, and In�nite Games { A Guide to Current Resear
h, E. Gr�adel, W. Thomas,and T. Wilke, Eds. Springer-Verlag, LNCS 2500.S
hwenti
k, T. 2004. \XPath Query Containment". SIGMOD Re
ord 33, 1, 101{109.S
hwenti
k, T. 2007. \Automata for XML { A Survey". Journal of Computer and SystemsS
ien
e 73, 289{315.S
hwenti
k, T., The�rien, D., and Vollmer, H. 2001. \Partially-ordered Two-way Automata:A New Chara
terization of DA". In Developments in Language Theory. 239{250.Segoufin, L. and Vianu, V. 2002. \Validating Streaming XML Do
uments". In Pro
eedingsof the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Prin
iples of Database Systems(PODS'02).Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D. J., and Naughton, J. F.1999. \Relational Databases for Querying XML Do
uments: Limitations and Opportunities".In Pro
eedings of the 25th International Conferen
e on Very Large Data Bases (VLDB'99).302{314.Sudborough, I. 1977. \Time and Tape Bounded Auxiliary Pushdown Automata". In Mathemat-i
al Foundations of Computer S
ien
e (MFCS'77). Springer Verlag, LNCS 53, 493{503.Sur, G., Hammer, J., and Simeon, J. 2004. \An XQuery-Based Language for Pro
essing Updatesin XML". In PLAN-X.Tatarinov, I., Viglas, S. D., Beyer, K., Shanmugasundaram, J., Shekita, E., and Zhang,C. 2002. \Storing and querying ordered XML using a relational database system". In Pro
.SIGMOD Conferen
e. 204{215.That
her, J. and Wright, J. 1968. \Generalized Finite Automata Theory with an Appli
ationto a De
ision Problem of Se
ond-order Logi
". Mathemati
al Systems Theory 2, 1, 57{81.Th�erien, D. and Wilke, T. 1998. \Over Two Variables Are as Powerful as One Quanti�erAlternation: FO2 = �2 \ �2". In STOC. 234{240.Vardi, M. Y. 1982. \The Complexity of Relational Query Languages". In Pro
. 14th AnnualACM Symposium on Theory of Computing (STOC'82). San Fran
is
o, CA USA, 137{146.Vardi, M. Y. 1995. \On the Complexity of Bounded-Variable Queries". In Pro
eedings of theACM SIGACT-SIGMOD-SIGART Symposium on Prin
iples of Database Systems (PODS'95).San Jose, CA USA.Vardi, M. Y. and Wolper, P. 1986. \Automata-theoreti
 te
hniques for Modal Logi
s of Pro-grams". Journal of Computer and System S
ien
es 32, 183{221.Venkateswaran, H. 1991. \Properties that Chara
terize LOGCFL". Journal of Computer andSystem S
ien
es 43, 380{404.Wadler, P. 2000. \Two Semanti
s for XPath". Draft paper available athttp://www.resear
h.avayalabs.
om/user/wadler/.Wadler, P. De
ember 1999. \A Formal Semanti
s of Patterns in XSLT". InMarkup Te
hnologies.Philadelphia. Revised version in Markup Languages, MIT Press, June 2001.Weigel, F., S
hulz, K. U., and Meuss, H. 2005. \The BIRD Numbering S
heme for XMLand Tree Databases - De
iding and Re
onstru
ting Tree Relations Using EÆ
ient Arithmeti
Operations". In Pro
. XSym 2005. 49{67.Wood, P. T. 2001. Minimizing Simple XPath Expressions. In Pro
. of Intl. Workshop on theWeb and Databases (WebDB). Santa Barbara, California, USA.Wood, P. T. 2003. \Containment for XPath Fragments under DTD
onstraints ". In Pro
. ofthe 9th International Conferen
e on Database Theory (ICDT). 300{314.World Wide Web Consortium. 1999a. XML Path Language (XPath) Re
ommendation.http://www.w3
.org/TR/xpath/.World Wide Web Consortium. 1999b. XSL Transformations (XSLT). W3C Re
ommendationVersion 1.0.http://www.w3.org/TR/xslt.World Wide Web Consortium. 2001. \XML S
hema Part 0: Primer. W3C Re
ommendation".http://www.w3
.org/XML/S
hema.World Wide Web Consortium. 2002. \XQuery 1.0 and XPath 2.0 Formal Semanti
s. W3CWorking Draft (Aug. 16th 2002). http://www.w3.org/TR/query-algebra/.World Wide Web Consortium. 2007. XML Path Language (XPath) 2.0.Yannakakis, M. 1981. \Algorithms for A
y
li
 Database S
hemes". In Pro
eedings of the 7thInternational Conferen
e on Very Large Data Bases (VLDB'81). Cannes, Fran
e, 82{94.50

