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This survey gives an overview of formal results on the XML query language XPath. We identify
several important fragments of XPath, focusing on subsets of XPath 1.0. We then give results on
the expressiveness of XPath and its fragments compared to other formalisms for querying trees,
algorithms and complexity bounds for evaluation of XPath queries, and static analysis of XPath
queries.

Categories and Subject Descriptors: H.2.3 [Languages|: Query languages

1. INTRODUCTION

XPath [World Wide Web Consortium 1999a] is a language for matching paths and,
more generally, patterns in tree-structured data and XML documents. These pat-
terns may use either just purely the tree structure of an XML document or data
values occurring in the document as well.

XPath is used as a component in XML query languages (in particular, XQuery
[World Wide Web Consortium 2002] and XSLT [World Wide Web Consortium
1999h)), specifications (e.g., XML Schema [World Wide Web Consortium 2001]),
update languages (e.g., [Sur et al. 2004]), subscription systems (e.g., [Altinel and
Franklin 2000; Chan et al. 2000]) and XML access control (e.g., [Fan et al. 2004]).
Because XPath is ubiquitous in programming tools for manipulating XML docu-
ments, and XPath processing is a key component of these tools, hundreds if not
thousands of papers have appeared over the years dealing with the evaluation and
analysis of XPath. Indeed the popularity of XPath as a formalism may be a factor
in the explosive growth of XML, as well as an effect.

The XPath standard has its rough edges, but there is an essential navigational
core that is an elegant modal language. In this core of XPath there is no explicit
notion of variable, and modal step expressions allow for navigation relative to a
context node and thus can only “see” one element of the document at a time.

An important property of XPath (which follows from its syntactic restrictions
that make it a modal language) is that fragments correspond to certain bounded-
variable logics. From these logics, XPath inherits nice graph-theoretic properties
on the “dependency graphs” of its queries. In particular, the queries have bounded
tree-width and bounded hypertree-width. These properties render them amenable
to efficient evaluation [Gottlob et al. 2005]. XPath is quite unique in the sense that
(1) it is a widely used practical language that naturally obeys syntactic restrictions
that lead to bounded (hyper)tree-width and (2) bounded (hyper)tree-width is of
immediate practical relevance to efficient evaluation. (1) is true for modal languages
used in verification, but (2) is not, as the query evaluation techniques used in the
context of those languages are quite different [Burch et al. 1990; Clarke et al. 2000].

In this survey, we present the main fundamental results regarding XPath that
have been developed since its introduction. These results can be grouped into the
categories expressiveness, complexity, and static analysis of XPath.

We give a detailed account of the known expressiveness results for XPath, but also



give a number of new results. In particular, we review the connections between
XPath and first-order logic. The main results are that there are first-order queries
not expressible in navigational XPath, but that navigational XPath expresses
precisely the two-variable first-order queries over the navigational structure of
XML documents. We show that the navigational XPath fragment extended by
the aggregation features of XPath does express all first-order queries. We also
survey characterizations of fragments of XPath in terms of tree-pattern queries,
and characterize XPath in terms of automata.

—We present, an in-depth study of XPath complexity and efficient evaluation that

revolves around graph-theoretic properties of XPath queries. Large portions of
the XPath language can be processed by algorithms that can work in parallel or
in streaming fashion. These issues have been studied extensively in the literature,
but we present an overview here as well.
We also survey static analysis problems for XPath, in particular the satisfiability
and the containment problem. These have diverse applications such as in the
context of XML query optimization, maintaining integrity, and answering queries
using views.

The structure of this article is as follows. In Section 2, we present the data
model and XPath fragments considered in this article, and give their semantics.
Section 3 studies the expressive power of our XPath fragments, relating them to
various logics, and the cost (and blow-up) of translating between such languages.
Section 4 discusses the main results on the complexity of XPath and of efficient
query evaluation, addressing efficient algorithms both in a classical and a stream
processing framework, as well as lower bounds. Finally, Section 5 surveys the state
of the art of research on static analysis problems for XPath.

For the central results in this survey, proofs are given. In some cases, we give
proofs that are simplifications of those in the literature, while in other cases we give
new proofs.

2. FRAMEWORK

Any fundamental research study of XPath has to decide what XPath really is that
is, to distinguish which language features of many to focus on. XPath officially refers
to the World Wide Web Consortium’s (W3C) standard language. This is a moving
target, and indeed while virtually all research on XPath has focussed on the XPath
1.0 standard [World Wide Web Consortium 1999a], there is an extension, XPath 2.0
[World Wide Web Consortium 2007], which has recently reached Recommendation
status.

Thus the first task for a formal study is to isolate a particular subset of the lan-
guage with attractive properties, and to distinguish essential language features from
provisional design decisions. In this survey we focus exclusively on XPath 1.0, and
take the modal and step primitives that characterize XPath 1.0 as the definitive
features of the language. Furthermore, since XPath 1.0 is still a large language,
we concentrate on a sublanguage that exhibits the basic navigation and data ma-
nipulation features. The principal aspects that we ignore are string-manipulation,
type conversions, and construction of string values from document fragments. For
the most part the operations available at the value level do not affect our basic re-

largest language we consider, denoted OrdXPath, allows for the selection of nodes
based on navigation within the tree structure, data value comparisons, aggrega-
tion, and node position arithmetic. Within OrdXPath, we will delineate a hierarchy
of sublanguages of XPath 1.0 to which more precise expressiveness or complexity
bounds apply. We will refer to these sublanguages as XPath fragments. Of par-
ticular interest will be Navigational XPath (NavXPath), which deals only with the

2



underlying tree structure of the document. All the fragments considered in this
survey are formally introduced in Section 2.2.

The languages of this survey can thus be thought of as subsets of XPath 1.0 cap-
turing the more important features of the language. In our definition of NavXPath,
we make some small superficial departures from the concrete syntax of XPath 1.0.
We do this because clean syntax in some cases allows for more readable proofs. We
discuss these deviations from standard syntax in the text.

2.1 Data Model

A signature (or vocabulary) is a set of relation and function names. A relational
signature is one consisting only of relation names (i.e., a relational schema). A
o-structure is a structure (or database) of signature o. As a convention, given a
structure A, we use A (the name of the structure set in roman font) to denote
its domain and |A| to denote the size of the structure in a reasonable machine-
representation (cf. e.g. [Immerman 1999; Libkin 2004]).

Let ¥ be a finite alphabet of labels. An unranked ordered tree is a tree in which
nodes may have a variable number of children, with an order among them. An
XML-tree is a relational structure T of signature

Onav = ((Labr)Lex, Renid, Ruext-sibling)»

representing an unranked, ordered tree whose nodes are labeled using the symbols
from X: each Laby, for L € ¥, is a unary relation representing the set of nodes
labeled L, Rcpig is the binary parent-child relation among nodes, and Rnext-sibling 1S
the binary immediate right-sibling relation. That is, Repiid(z,y) means that y is a
child of z and Rnext_sib“ng(L y) means that y is the immediate right-sibling of z. We
say that an XML-tree 7 of signature 0,4, represents the navigational structure of
an XML document.

An XML document is a structure of signature 04, = 0pay U{@A;,..., @A, } over
a two-sorted domain of nodes and values, where the relations from o,,,, over nodes
are as above and the @A;,...,@QA, are a fixed finite set of associated attribute
functions, which map nodes to values. For simplicity we assume the attribute
functions to be total and to take values in the integers. Partial functions can be
modeled in this way, by (for example) adding a special “null” value. We use Node(D)
to mean the nodes of XML document D; since D is usually clear from the context,
we will generally write simply Node. Similarly, we write NodeSet(D) for the set of
all sets of nodes of document D, omitting the argument D when it is clear.

Navigational Primitives. In XPath, the primitives employed for navigation along
the tree structure of a document are called azes. We will consider the axes self,
child, parent, descendant, descendant-or-self, ancestor, ancestor-or-self, next-sibling,
following-sibling, previous-sibling, preceding-sibling, following, and finally preceding.
The meaning of axis «a is best given by a binary azis relations R, where Rcpiqg
and Rnext-sibing were introduced above, Rsif = {(n,n) : n € Node}, Rgescendant 18
the transitive closure of Repild, Rdescendant-or-self 18 the reflexive and transitive closure
of Rechild, Rfollowing—sibling is the transitive closure of Rnext—sibling- By the inverse of a
binary relation R, we refer to the relation {(n',n) : R(n,n')}. The relations Rparent,
Rincestors Rancestor-or-self Rpreceding—sibling7 and Rprevious—sibling are the inverses of the
relations Renig, Rdescendant; Fldescendant-or-self Rnext—sibling: Rfollowing—sibling: respectively.
Finally, Rfollowing is the composition Rancestor-or-self © Rfollowing—sibling 0 Rygescendant-or-self
while Rpreceding 1S the inverse of Reoliowing. We say that an axis a is the inverse of an
axis 3 iff R, is the inverse of Rg.

Orders among Nodes. We consider two well-known total orders on finite ordered
3



trees. The pre-order <. and the post-order <,os can be defined by

T <pre Y & Rdescendant(xzy)VRfoIIowing(CU;y)
T <post Y & Rdescendant(yam)VRfoIIowing(m:y)-

Intuitively, the pre- and postorder correspond to the order in which the opening
resp. closing tag of each node of a tree is seen when reading the corresponding
XML document from left to right. In XML jargon, <;.. is also known as document
order [World Wide Web Consortium 1999a].

2.2 XPath Fragments Considered in this Survey

Many results on XPath apply to the fragment that deals only with the navigational
structure of an XML document. We will look at two fragments that look only at
the navigational structure.

Navigational XPath and Core XPath. We define here a clean language for
navigating the tag structure which we denote NavXPath. It consists of expressions
whose input is a node and whose output is either a set of nodes (an element of
NodeSet) or a Boolean. The latter are also referred to as qualifiers or filters. We
will generally use p, p’ ... to vary over general XPath expressions, of any type, while
q,q" ... will be used to denote qualifiers. Expressions are built up from the grammar

p == step |p/p|pUp
step = azis | step|q]
g:= pllab)=L | gAq ]| qVqg | g,

where axis stands for the axes named above, L. denotes the labels in ¥, and A, V, =
stand for and (conjunction), or (disjunction) and not (negation), respectively.

An expression p in NavXPath over a o,,4,-structure D is interpreted as a function
[P]Nodeser from a node to a set of nodes, while a qualifier ¢ is interpreted as a unary
predicate [q]Bootean : Node — {true, false}. In both cases, we refer to the input
node of these functions as the context node. The semantic functions are defined
inductively on the structure of p,q. For NodeSet expressions p we have

(P1) [azis]|Nodeset(n) :={n': Razis(n,n')}.

(E%) Ste/p[qﬂ]]NodeSeE(";) ::{{n’ar n’ee[[[[step]]wodeset)(v/l\) Ae[[q[[]] B]t])olean(n’() T}Erue}-
P1/P2|NodeSet\Tl) = U - JW P1|NodeSet\TN v P2 | NodeSet\W) 5.

E g p1 Up?]]NdOFZSEt(n) = IIpl]]NodeSet(]]n) 5 EPQﬁNgdeSet(n). aes

For qualifiers ¢ we have

(Ql) Iab() = LyBoolean(n) = LabL(n)

(Q2) p]]Boolean n) = IIp]]NodeSet(n) 7é @

Q3 q1 A qZHBoolean n)=|qn Booleangn; A HqZHBooleanEn;
Q4 q1 NV q2|Boolean () *= [|q1 | Bootean (1) V G2 n
Q5 _'q]]Boolean(n) = _'[[q]]Boolean n

Boolean

In the above, we have departed from standard XPath syntax in several ways: i)
we have a label test as a filter, while in XPath one has testing a label as part of
a step, ii) union is allowed nested arbitrarily within expressions, while in XPath
it is allowed only at top-level, and iii) the set of axes includes the next-sibling and
previous-sibling axes. As we will see, this gives us a fragment with nicer theoretical
properties.

CoreXPath is a faithful (i.e., strictly syntactical) fragment of XPath capturing
navigational properties. It is defined by making the following changes to NavXPath:

—We eliminate the filter lab() = L and replace the production step ::= azis | step|q]
by step ::= awxis::L[q] | axis::*[q], where L is a label. awzis::L[q] has the same
semantics as azis[lab() = L][¢] in NavXPath, while azis::*[q] is the same as axis[q]
in NavXPath.



—We disallow nested union, replacing the first production by the following two:
p'u=pUp|p, p:=step|p/p. p' is now the root nonterminal of the grammar.
We remove the axes next-sibling and previous-sibling.

—We add absolute paths, ap ::=”/”p, and allow them in filters, i.e. adding a pro-
duction ¢ ::= ap. A filter ¢ = /p has semantics [¢] Bootean (1) = [P] Bootean (M0),
where ng is the root of the document.

CoreXPath is thus properly a syntactic subset of XPath 1.0.
First-Order XPath (FOXPath). We extend CoreXPath above to allow queries
that can look at the data value structure of an input document of signature 4o, -
FOXPath adds path expressions of the form

id(p/@A)
and qualifiers of the forms
i RelOp i p/@QA RelOp i p/@A RelOp p'/QB

to the syntax of NavXPath, where p and p’ are path expressions, @A and @B are
attributes, RelOp € {=, <, <,>, >, #}, and i is a nonterminal denoting the constant
integers.

FOXPath operates on o4,,,-structures with an attribute function @ID. The id(p/@A)
expressions model the id() function of XPath, and to be fully faithful we could as-
sume that the attribute function @QID is injective.

The semantic functions [-]noedeset : Node — NodeSet and [-]Bootean : Node —
Boolean of NavXPath are extended as follows to handle the additional constructs:

(P5) [id(p/@A) ] Nodeset (1) := {n' : In" € [p]nodese(n) @ID(n') = @A(n")},

(QG) [[7 Relop il]]Boolean(n) = [[7]]1711‘(77) Re|OP |I7I]]Im‘('n),

(Q7) [[p/@A Re|OP Z.]]Boolean(n) = dn' € IIp]]NodeSet(n) @A(n’) Re|OP Hi]]lnt(n)7
and

(Q8) [[p/@A Relop p’/@B]]Boolean(n) = Eln’ € [[p]]NmieSet(n) Eln” € [[p’]]NodeSet(n)
@A(n") RelOp B(n"),

where [¢]1nt(n) = ¢ for constant c.

Aggregate XPath (AggXPath). Next, we add on expressions to FOXPath that
manipulate integers and compute aggregates.

The syntax of AggXPath is obtained from FOXPath by extending number-typed
expressions ¢ (from exclusively integer constants in FOXPath) to

i = | i4+1i | ixi | count(p) | sum(p/QA)

where p ranges over path expressions and @A is an attribute function. We call “+”
and “x” arithmetic operators and “count” and “sum” aggregate operators.

The semantic function [i] 7, : Node — Int for numerical expressions of FOXPath
is extended to

(11) [efrnt(n) :=c

(12) [t o] rme(n) == [i]rne(n) o [i']rne(n) (o € {+,%})
(I3) [eount(p)]rnt(n) := [[PINodeset ()]

(I4) [sum(p/@QA)]rnt(n) :== E{@A(n")|n" € [P]Nodeset(n)}

Aggregate XPath with position arithmetic (OrdXPath). Finally, we add the
numerical operations “position()” and “last()” to AggXPath; these are called posi-
tional operators.

If we look at the semantic functions [-] Nodeset, [-]int, and [-] Bootean of AggXPath,
we say that they map from a context node (e.g., the root node of the document
tree) to either a node set, a Boolean, or an integer value. In OrdXPath, qualifiers
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and numerical expressions are defined with respect to a more extensive “context”
consisting of a node and two additional integers, which can be accessed by the
positional operators.

(1) ['1~odeset : Node — NodeSet is as in AggXPath except for

(P2")  [steplallNodeset(n) := {n; | [step]Nodeset(n) = {n1,...,ng}A
Ny <ng < - <Ny Al S 7 S kA [[q]]Boolean(nj:jak)}n

where < denotes either the document order, i.e. the total order
n<n' & Rdescendant(n7 nl) \ Rfollowing (n; nl)§

if step begins with a forward axis (child, descendant, following, . ..) or the inverse
of the document order if step begins with any of the other axes (parent, ancestor,
preceding-sibling, ...).

(2) [1Booctean : Node x Int x Int — Boolean is defined analogously to [-] Bootean Of
AggXPath, however taking a context consisting of a triple (n,j, k) and pass-
ing it on to all qualifier and numerical subexpressions (for instance, [q1 A
q2]]Brmlean (n;j; k) = IIql]]Boolean(n;j; k) A IIqQ]]Boolean(n;j; k)), and

(3) []rnt : Node x Int x Int — Int is defined analogously to [-]r.+ of AggXPath,
however passing on the full context triple (n,j, k) to its numerical subexpres-
sions (for instance, [i + i']1nt(n, 4, k) = [i]int(n, j, k) + [']1ne(n, 4, k,)). For
the new operators of OrdXPath, we have:

(I5) [position()]rnt(n, j, k) :=j
(16) Nast()]rnt(n,j, k) ==k
By positive FOXPath, denoted PFOXPath, (resp., NavXPath, denoted PNavXPath),

we will refer to FOXPath (resp., NavXPath) without negation and inequalities (i.e.,

expressions p RelOpp’ with RelOp different from “="). We say that a FOXPath

query (resp., NavXPath query) is conjunctive (and connected) if it does not use
disjunction, union, negation, or inequalities.

REMARK 2.1. The XPath fragments just presented — just like XPath 1.0 — al-
low for multiple qualifier brackets as part of a step expression. In all our XPath
languages except for OrdXPath, this ability is redundant, since steps containing
multiple qualifier brackets axis[-]...[]] can be simplified to azis[- A--- A-]. In
the proofs of our survey, we will sometimes assume the simplified syntax without
multiple qualifiers for convenience.

In OrdXPath this simplification is not applicable in general, and hence for this
fragment the ability to use multiple qualifiers does add expressiveness.

ExaMPLE 2.2. On a context node n with three children ny,ns,ns, of which the
first is labeled B and the second and third are labeled A,

[child[lab() = A][position() = 1]]Nodeset(n) = {n2},

since ns is the first child of n in document order that is labeled A. One can show
that this query cannot be phrased with a single qualifier bracket in each step. For
instance,

[child[lab() = A A position() = 1] Nodeset(n) =
{n; |1 <j <3A[lab() = A A position() = 1] Bootean(n;j, 4,3)} = 0,
while
[child[lab() = A]/self[position()=1]|]nodeset(n) =
({[selfposition()=1]]nodeset (ni) | n; € [child[lab() = Al]nodeser(n)} =
[self[position()=1]] Nodeset (n2) U [self[position()=1]]Nodeset (n3) = {n2,ns}.
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The example above also shows that filters do not commute in OrdXPath.

2.3 Query Equivalence

By a query, we mean any expression from one of the XPath fragments introduced
above. Two queries p and p' with domain Node are fully equivalent (or simply
equivalent when it is clear from the context), denoted by p = p/, iff for any XML
document D and all nodes n € D, [p]nodeset(n) = [P'INodeser (n), and similarly for
OrdXPath queries with context Node x Int x Int.

Let true be a shortcut for the qualifier (lab() = A) v —(lab() = A). We say
two queries are equivalent over ¥, (denoted by =y,,) where ¥ is a fixed finite
label alphabet, if the above holds for any document D whose labels are in ¥q. For
example, true is equivalent to lab() = A Vv lab() = B over the alphabet {A, B}, but
not in general. We will usually work with the stronger notion of general equivalence
=, and specify when results also hold for restricted equivalence — equivalence w.r.t.
some finite alphabet Y.

For queries with domain Node (which include all NavXPath expressions), a weaker
equivalence relation is defined as follows: p and p’ are called root equivalent, denoted
by p =, p', iff for any XML document D, [p] Nodeset (1) = [P | Nodeset (1), where rt
is the root of D. For NavXPath queries defined using upward axes, root equivalence
can be weaker than general equivalence: for example self[parent] =, self[—true],
since the root node has no parent, but clearly these two expressions are not fully
equivalent.

2.4 Historical and Bibliographic Remarks

XPath was initially developed by James Clark and formalized and promulgated as
an independent standard by the W3C starting in 1999, as XPath 1.0 [World Wide
Web Consortium 1999a]. The standard defines the syntax of the language, along
with use cases, but gives the semantics only informally. An early attempt to give a
formal semantics is found in [Wadler 2000; 1999]. A complete and yet very concise
formal semantics of XPath 1.0 can be found in [Gottlob et al. 2002].

In the process of the development of XQuery, a significant extension of XPath 1.0
was developed, released as XPath 2.0 [World Wide Web Consortium 2007]. XPath
2.0 is the result of the integration of XPath and XQuery into a common syntax and
semantics definition, and its semantics is presented as part of the XQuery 1.0 Formal
Semantics [World Wide Web Consortium 2002]. XPath 2.0 is a radically different
language from XPath 1.0, including variables and explicit quantification. From a
theoretical perspective, no polynomial time bounds can be given on basic problems
like XPath 2.0 evaluation (while this is possible for XPath 1.0, see Section 4).
From a practical point of view the breadth of XPath 2.0 and XQuery would require
discussion to subsume nearly every aspect of general-purpose program optimization
and analysis.

The extensions of XPath 2.0 over XPath 1.0 are mostly by programming language
constructs that do not preserve the theoretical properties of XPath pointed out
in the introduction. The largest language studied in this article, OrdXPath is a
subset of XPath 1.0 (and hence, of XPath 2.0) which subsumes most of the XPath
fragments for which fundamental results have been presented in the literature.

3. EXPRESSIVENESS

We now investigate where XPath “fits” in terms of other formalisms for querying
trees and tree-structured data. One natural benchmark is first-order logic (FO), but
we will also consider Monadic Second Order logic (M SO), the existential fragment
of FO (FFO0), the positive existential fragment of FO (3T FO) and the fragment
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FOF of FO formulas that use at most k distinct variables. The semantics of these
languages is standard [Libkin 2004]. For a logical language £, we will use L[o] to
denote the formulas of £ over vocabulary o. We discuss our choice of predicate
logics as a benchmark, and mention alternatives, at the end of this section.

3.1 Expressiveness of NavXPath and CoreXPath

We start by investigating how NavXPath and CoreXPath compare to first-order logic
over the navigational structure of XML documents, and to each other. Note that
a formula of first-order logic with two free variables can be thought of as defining
a mapping from Node to NodeSet, while a formula with one free variable defines a
mapping from Node to Boolean. We say that a Boolean query ¢ in one of our XPath
fragments is fully equivalent to a first-order formula ¢(z) if for any XML document
D and all nodes n € D, [p]Bootean(n) > D |= ¢(n). We say that a nodeset query p
in one of our XPath fragments is fully equivalent to a first-order formula ¢(z, y) if for
any XML document D and all nodes m,n € D, n € [p]Nodeset(m) <> D = ¢p(m,n).

The semantics of NavXPath presented in Section 2.2 already gives a translation
into these first-order languages.

Recall that 0¢rqnsnav i the vocabulary extending 0,4, With Fgescendant and Ffolowing-sibling -
Then,

PROPOSITION 3.1. For every NavXPath expression e one can find (in linear time)
a corresponding formula ¢ in FO[0transnav] fully equivalent to e. Furthermore,

—¢ € FO[(Laby,) e, Reniid] if e uses only child and parent azes,
¢ € FO[(Laby,)res, Raescendant] if € uses only upward and downward azes, and
¢ € FO[onas] if € uses only child, parent, next-sibling, previous-sibling.

CoreXPath can be translated into NavXPath in linear time, just by expanding out
the definitions. Hence this proposition holds for CoreXPath as well. Note also that
this proposition holds both for path expressions returning nodesets (in this case ¢
has two free variables) and for those returning Boolean expressions (here ¢ has one
free variable).

However, this is not an ezact characterization of the expressiveness of NavXPath.
It is easy to find first-order queries over trees that are not expressible in NavXPath:
for example, the query that asks whether the tree has two nodes labeled C' that are
in an ancestor relationship, and such that all nodes between them are labeled B.
We now show that NavXPath does have an exact characterization, corresponding
precisely to two-variable logic.

We first work on characterizing NavXPath nodeset queries. To do this we in-
troduce a normal form for queries with two free variables that are built from FO?
formulas in one free variable. over vocabulary o¢ransnav- XPNF is the set of queries
that are disjunctions of 6¢,ansnas formulas (21, 2,,) of the form:

Jzo ... 3z p1(21) A xa(z1,22) Apa(22) Ao A Xn—1(2n—1,2n) A pn(2n)

where the z; here are distinct variables, the p; are FO? formulae, and the x;(z;, zi11)
are disjunctions of binary atomic formulas over predicates from o;,ansnav-

THEOREM 3.2 [MARX AND DE RIJKE 2004]. NavXPath corresponds to FO? in
expressiveness, in the following sense.

For every NavXPath expression returning a Boolean there is a corresponding fully
equivalent expression in FO? over the signature ¢ ansnav, and for every FO?
expression there is a corresponding fully equivalent NavXPath expression.

For every NavXPath expression returning a NodeSet, there is a corresponding
expression in XPNF and vice versa.



Proof (Sketch). We first show the direction from NavXPath NodeSet expressions
to XPNF and from NavXPath Boolean expressions to FO?. We will restrict to
unnested NavXPath expressions, that is, NavXPath expressions that have union only
at top-level. These have the same expressiveness as general NavXPath expressions.
Since the target classes FO? and XPNF are closed under disjunction, it suffices to
translate expressions that have no occurrence of the union operator. So it suffices
to show that all NavXPath NodeSet expressions that do not use the union operator
translate to XPNF' expressions without top-level disjunction, and every NavXPath
Boolean expression that does not use the union operator translates to an FO?
expression. We show this pair of statements by simultaneous induction. The base
case for lab() = A is simple, as is the case for Boolean operations in Boolean
expressions (since FFO? is closed under Boolean operators). The case step[q] can be
translated into XPNF formula x(z,y) A ¢(y), where yx is a XPNF formula without
top-level disjunction formed inductively for step, and ¢ is an FO? formula formed
for ¢. We now do the inductive proof for p = p;/p2. By induction, we assume
we have XPNF formulas (without top-level disjunction) v, equivalent to p; and 7
equivalent to py. If we have

m—1
=3z Fzma (N Piz) A xi(zis2i41)) A i (2m)
i=1

and
n—1
Yo = F2Zpm ... 21 ( /\ pi (zi) A Xi(zz‘7zi+1)) A Pn(2n)
i=m
then we can write 7, /72 as
n—1
322...327,,,1( /\ pi(zi)/\xi(z,;,zi+1)) A pn(zn) (1)
i=1

where p;(z;) is pi(z;) for i < m, pi(z;) A p(z;) for i = m, and p} (z;) for i > m.

The other interesting inductive case is that of qualifiers of the form p. By induc-
tion we have a XPNF formula ~ representing p. We will assume (21, z,,) to be as
shown in equation (1).

We need to show that the formula 3z,7v(z1, z,,) is in FO%. Suppose that n is
odd (the case where n is even is similar). Let var(i) = z; for i odd and z, for ¢
even. Let ¢([z — y]) denote the formula obtained by substituting all occurrences
of variable z by y in ¢. Define ¢, = p,([zn — var(n)]) and ¥;—1 = pi—1([zi—1 —
var(i —1)]) A Jvar (i) xi(var(i —1),var(i)) A;. Then 1; is an FO? sentence with
var(i) free. We can verify that ¢ is equivalent to 3z,v(21, 2n).

The converse direction is to show by induction that formulas in XPNF can be
translated to NavXPath NodeSet expressions, while FO? formulas with one free vari-
able can be translated to NavXPath Boolean expressions. Since the first statement
follows easily from the second, we focus on the proof of the second. The transla-
tion function 7T is formed by induction on the structure of an FO? formula. The
atomic cases are straightforward, as are the Boolean operations. The interesting
case is dy B(z,y), where 3 is in FO?. Formula 8 can be assumed to be a Boolean
combination of atomic binary formulas and FO? formulas in one free variable of
lower quantifier rank. Let 3’ be a formula equivalent to 3 obtained by turning
B into a Disjunctive Normal Form (DNF) over formulas of the two forms above,
and then replacing each disjunct ¢(z,y) that does not contain a binary atom by
(d(z,y) Nz =y)V (Pp(x,y) Ax #y). This replacement preserves the DNF.

The atomic binary predicates in 8 are either equality, inequality, or axis relations;
however, equality x = y can be replaced by self(z,y), and an inequality = # y can
be replaced by a disjunction of four axis relations (y is either and ancestor or
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descendant of z or follows or precedes z). Let " be obtained by applying these
substitutions to ' and again turning the formula into DNF.

Since two axis predicates are either inconsistent with one another (i.e., the axis
relations have an empty intersection) or subsume each other, we can assume 3" (z, y)
to be of the form

\/¢z ) A Ry, (z,y) ANbily),

that is, each disjunct contains precisely one binary atom.
We can easily translate ﬂ”(m, y) into NavXPath as

USElf (@)l /xi[T ()]

O

We note that the argument from NavXPath to FO? shows that there is a poly-
nomial time translation from unnested NavXPath to FO?; for general NavXPath
expressions the best translation we know of is in exponential time. This mapping
introduces atomic predicates in the output corresponding only to axes mentioned
in the input; hence NavXPath filters without the next-sibling or previous-sibling axes
map to FO? formulas that do not use (atomic relations for) these axes.

In the direction from FO? to NavXPath, the translation also yields an output
that is exponential in the input in the worst case, and this has been shown to be
unavoidable. See [Marx and de Rijke 2004] for discussion and proof of this; we will
give a further argument that there is no polynomial translation in Section 5." This
direction does introduce new axes. The sibling axes may appear in the output even
when the original formula mentions only the child axis; the XPNF formula x # y
cannot be translated into NavXPath unless the sibling axis is present. Similarly,
transitive axes are introduced in the translation.

On the other hand, next-sibling and previous-sibling are not introduced in this
translation unless the corresponding atomic predicates occur in the input. Since
next-sibling and previous-sibling are not introduced in either direction, we have that
NavXPath filters without these axes correspond exactly to FO? formulas that do
not have atomic relations for these axes. Since CoreXPath expressions are, up to
syntactic sugar, exactly those NavXPath expressions that do not include the non-
transitive sibling axes, we have:

THEOREM 3.3. CoreXPath corresponds in expressiveness to two-variable logic
over the vocubulary formed by removing the relation Rnext-sibling fTOM Ttransnav-

From these two results and prior known results about FO?, we obtain:

PROPOSITION 3.4. There are queries expressible in NavXPath (and hence in FO?)
that are not expressible in CoreXPath.

Proor. If we restrict to trees of depth 2, all axes collapse to sibling axes, and
hence CoreXPath corresponds to FO? with only the transitive sibling axes while
NavXPath corresponds to all sibling axes. Taking the natural correspondence be-
tween trees of depth 2 correspond and words, CoreXPath maps to FO? with only
the linear order relation, while NavXPath corresponds to FO? with successor and
linear order. But it is known that a successor relation of a linear order cannot be
expressed in FO? over the signature whose only binary predicate is for the linear
order (see e.g. Section 7 of [Thérien and Wilke 1998]). O

We now turn to the consequences of this characterization for closure properties
of NavXPath and CoreXPath. Tt is clear that NavXPath qualifiers are closed under

LAlthough the argument there is relative to a complexity-theoretic assumption.
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Boolean operations, since we have explicit operators for these; it can also be seen to
follow from Theorem 3.2, since FO? is obviously Boolean closed. What about the
closure properties of NavXPath expressions? In [Marx 2005], the following is shown:

THEOREM 3.5 [MARX 2005]. NavXPath and CoreXPath ezpressions returning
nodesets are closed under intersection and union, but not under complement.

Closure under union is obvious, since NavXPath has a built-in union operator.
Closure under intersection follows from the fact that the conjunction of XPNF
queries can be rewritten as a conjunction of atomic o¢yansnaey formulas and a single
FO? formula. Every conjunctive query on trees can be transformed into an equiva-
lent union of acyclic conjunctive queries [Benedikt et al. 2003; Gottlob et al. 2004]
(cf. Theorem 3.9 below), and unions of acyclic conjunctive queries can be easily
translated into NavXPath. The same argument holds for CoreXPath.

The lack of closure under complementation may seem surprising. In fact, [Marx
2005] shows a stronger result: any extension of NavXPath closed under complemen-
tation can express all first-order properties. The proof is by showing that an “until”
operator can be defined by complementing NavXPath expressions. The following ex-
ample is taken from page 7 of [Marx 2005]: Let ¢(z,y) hold iff y is an A-labeled
descendant of x and every descendant of z that is an ancestor of y is labeled B.
Then ¢ is expressible in NavXPath extended with a complement operator ()¢ as:

descendant[lab() = A)] N (descendant[lab() # B]/descendant)®

Above, we use also the intersection operator N, but this can easily be defined using
complementation and union.

The translation of unnested NavXPath to FO? can be extended as follows: let
NavXPath™ be the extension of NavXPath with the intersection operator N, and let
unnested NavXPath” be the same but with union allowed only at top-level. By
Theorem 3.5 above, we have NavXPath” has the same expressiveness as NavXPath
(for both expressions and qualifiers). Hence NavXPath” qualifiers have the same
expressiveness as F'O? formulas. Using the argument of [Olteanu et al. 2002], one
can show that even unnested NavXPath” formulas can be exponentially more suc-
cinct than NavXPath formulas. However, unnested NavXPath” formulas can still be
translated into FO? efficiently:

PROPOSITION 3.6. There is a polynomial time function taking an unnested NavXPath"
filter and producing a FO?* formula ¢(z) fully equivalent to it.

Proof. We extend the dual translations from the proof of Theorem 3.2 to go
from NavXPath” NodeSet expressions without union to XPNF queries and from
NavXPath Boolean expressions without union to F'O? queries. We use exactly the
same construction of a translation function, let us call it f, as for NavXPath, but
for the inductive step for f(E; N Ey) we translate into f(E1) A f(E»). O

We now provide an example of a navigational FO query that we prove not to
be expressible in NavXPath. Our example, a new immediately-following axis, has a
practical motivation. Computational linguists have proposed the addition of such an
axis to XPath to ask practical queries on linguistic trees [Bird et al. 2005]. We can
give a semantics to this axis using a corresponding binary relation Rimmediately-following »

which holds of (z,y) iff

Rioliowing (2, y) A =32 (Rioliowing (T, 2) A Rioliowing (2, ¥))-

In [Bird et al. 2005] an extension of XPath with immediately-following is proposed.
We show here the following:

ProrositioN 3.7. There is no NavXPath expression E fully equivalent as a
nodeset query to immediately-following.
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Proof. Consider documents that include a chain of A elements starting from the
root to a leaf, with one of the following holding for each element z in the chain:

(1) 2 has a single A child (the next element of the chain), and no other children,
(2) 2 has no children (i.e. it is the lowest element of the chain),

(3) x has a single A child and a single B child, or

(4) z has a single A child and a single C' child.

It is easy to construct a NavXPath qualifier () that holds of the root of a document
iff the document is of the above form. Consider the qualifier Q)4

lab() = A A immediately-following[lab() = B]

in NavXPath extended with immediately-following.

That is, ()1 holds of an A node iff it has an immediately-following node that is a
B. For a node n in a tree whose root satisfies (g, ) holds at n iff the first ancestor
of n which has a non-A child has a B child. We claim that there is no NavXPath
qualifier equivalent to ()1 A QQg. From this, the proposition follows. From Theorem
3.2, it suffices to show that no two-variable logic formula can express Q1 A Q.

We will reduce expressibility of Q1 A Q¢ over trees to a statement about express-
ibility of a certain property in two-variable logic over strings. Let F'O~ be the logic
built up using quantification only over A nodes, where the vocabulary includes the
binary predicates Rgescendant and Rehiq and unary predicates Py, P>, P3, Py, where
P; holds of z iff case i holds above.

Cramv 3.8. For every FO[0transnav] Sentence ¢(x) there is an FO~ sentence
¢~ (x) with the same number of variables as ¢ which is equivalent to ¢ over all
A-nodes within all documents whose root satisfies Qq.

Informally, ¢~ is obtained inductively by replacing variables over B, C nodes by
variables over their A parents. A sentence ¢ = 3z B(x) would map to ¢~ = Jz €
A P3(z). Formally, we proceed as follows. Let SecChild(D, z) be the partial function
on nodes of D that maps a node labeled A to its second child, if such a child exists,
and Self(D, z) be the identity function on nodes labeled A. We create a function
T(4,b) for ¢ € FO[0transnav], b a function from the free variables of ¢ to either
SecChild or Self, returning a formula ¢’ € FO~ with the same free variables as ¢,
and such that: for all documents D, T'(¢(x,y),b) holds of A nodes m,n iff ¢(x,y)
holds when applied to b(D,m),b(D,n), and similarly for ¢(z), ¢(y).

The main atomic cases for T are:

—T'(Rnext-siviing (,9), 0) is (P3(y) V Py(y)) A Renia(y, ) if b(z) = Self and b(y) =

SecChild, and is false otherwise.

—T(Rechiid(z,y),b) is Renia(z,y) if b(x) = Self and b(y) = Self, is (Ps(z) V Py(z)) A

x =y if b(xz) = Self and b(y) = SecChild, and is false otherwise.
—T'(Rgescendant(Z,Y), b) 18 Rdescendant (%, y) if b(z) = Self and b(y) = Self, is Ps(y) V

Py (y) if b(z) = Self and b(y) = SecChild, and is false otherwise.
—T(B(x),b) is Ps(x) if b(z) = SecChild, and is false otherwise.
—T(C(z),b) is Py(zx) if b(z) = SecChild and is false otherwise.
T(A(z),b) is true if b(x) = Self, and is false otherwise.

b
b

The other atomic cases are similar. The inductive cases are:

T(3zp(x,y),b) = Vi g3 30 € A T(p(2,y), V')
T(Vap(z,y),b) = Ny (g5 3¢ € A T(p(z,y),b)
T(¢1 A ds,b) = T(1,0) AT(¢2.b)
T(¢1V ¢2,b) = T(¢1,b) VT (2,b)
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—T(=¢,b) = =T(¢,b)

Finally, for a sentence we let ¢~ (z) be \/, T(¢(x),b), where in the disjunction b
ranges over all the bindings for . One can verify inductively that T', and hence ¢~
has the required properties.

From this construction, we see that if ¢(z) € NavXPath expresses Qo A @1, then
¢~ (z) must hold of an A-node n iff the first ancestor of n which satisfies P; V Py
satisfies P;. Let Sy be the set of strings from alphabet ¥ = {P;, P», P3, Py}, ending
with the symbol P;. There is an obvious bijection F' from documents whose root
satisfies Qo to strings in Sp. Using this function, we can see that ¢~ (x), considered
as a predicate on strings in Sg, holds at node n iff the first ancestor of n which
satisfies P53 V P, satisfies P3. But then by flipping the variables in every predicate
Rgescendant OF Renilg in ¢~ we obtain a two-variable formula ¢~ (z) that holds at
node n of string s iff the first descendant of n satisfying Ps V Py satisfies P;. From
this we easily get a contradiction of prior results about the inexpressibility of the
Until operator in two variable logic (for strings, those of [Etessami and Wilke 2000;
Etessami et al. 2002], or for trees those of [Marx 2004b]). Consider the query @) that
holds of a string s iff s has a substring that contains two nodes satisfying P but
none satisfying Py. If ¢~ (x) were expressible in two-variable logic, then () would
be expressible over strings in two-variable logic over the vocabulary consisting of
the labels, the descendant predicates, and the child predicate. But in [Etessami
and Wilke 2000] it is shown that @ (denoted there by FAIR») is not expressible in
Unary Temporal Logic, and by [Etessami et al. 2002] Unary Temporal Logic is the
same as two-variable logic over strings. Hence (Q is not expressible in two-variable
logic, and we have a contradiction. O

Note that the problem of deciding whether a given FO sentence over trees is in
NavXPath (i.e. is a two-variable sentence in o¢,ansnav) i still open, as is the mem-
bership problem for CoreXPath. The analogous problem for strings (membership in
F0?) is known to be decidable [Beauquier and Pin 1989].

3.2  Expressiveness of Fragments of NavXPath

NavXPath is still a large language, and many applications make use only of the
positive fragment.

Following [Benedikt et al. 2003], we characterize NavXPath both using logic and
a visual query formalism, tree patterns.

A tree pattern (over label alphabet X) is a node and edge-labeled tree. Edges are
labeled with a forward axis (child, descendant, following-sibling). In a Boolean tree
pattern node labels have one component that is either a label from ¥ or wildcard
and another component that identifies whether a node is the distinguished context
node or not. In a wnary tree pattern the additional component identifies a node
as either the context node, the selected node, or neither. Figure 1 shows a unary
tree pattern. Following the standard convention for drawing patterns, double lines
are used for a descendant edge and single lines for a child edge. A star is used
to denote the selected node, and the context node is implicitly the root node. A
Boolean pattern corresponds to a Boolean query, returning true at context node
n in a document iff there is a homomorphism from the pattern to the document
mapping the context to n. A unary tree pattern corresponds to a NodeSet query,
which returns node n’ on input n iff there is a homomorphism from the pattern to
the document which maps a node labeled context to n and the selected node to n'.
The pattern in the figure is equivalent to the XPath expression

self:: A[child:: B][descendant::D]/child::C

A finite set of tree patterns can be considered as a query, returning the union
of the results of the individual patterns in the case of unary tree patterns, and
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Fig. 1. Tree pattern

returning the disjunction of the results in the case of Boolean tree patterns.
THEOREM 3.9. The following have equal expressiveness (up to full equivalence)

—PNavXPath NodeSet queries,
AT FO formulas ¢(x,y) in the signature oironsnay, and

sets of unary tree patterns.

A similar result holds for negation-free CoreXPath, but where the formulas do not
include Rpext-sibing- Note that this result is incomparable to Theorem 3.2. Theorem
3.2 applies to arbitrary NavXPath, and says that they are fully equivalent to acyclic
conjunctive queries over atoms that include arbitrary FO? formulas, possibly with
negation. This result applies only to PNavXPath queries, but states that that they
can be written as conjunctions of only atomic formulas, where the the conjunction
must constrain the variables to be “tree-like”.

We give a sketch of why the above holds: further details (for the case where
there are only upward or downward axes, but no sideways axes such as following or
following-sibling) can be found in [Benedikt et al. 2003]; the general case is proved in
[Gottlob et al. 2004]. For every PNavXPath NodeSet query, and unary tree patterns,
the corresponding equivalent 3* F'O formula can be found in linear time, simply by
translating the semantics of PNavXPath or of tree patterns into logic. Translating
from unary tree pattern queries to PNavXPath queries is likewise straightforward:
path steps are used to traverse the path from the context node upward to the
least common ancestor of the context and selected node, then downwards from this
ancestor to the selected node. The existence of subtrees sprouting off from this path
is asserted using filters. Translation of 3+ F'O formulas into tree patterns is done by
first translating them into acyclic positive queries, which immediately correspond
to forests of tree patterns:

LEMMA 3.10 [OLTEANU ET AL. 2002; BENEDIKT ET AL. 2003; GOTTLOB ET AL. 2004].
For every conjunctive query over trees there is an equivalent acyclic positive query.
This query can be computed in exponential time.

Proof. For notational simplicity, we will assume that the input query 3z -- -z Q
(k > 0), with Q a conjunction of atomic formulas that uses variables z1,. .., zy,
is Boolean. The proof, however, immediately generalizes to conjunctive queries of
arbitrary arity. W.l.o.g., we assume that () contains no Ryjiowing-atoms. (Each atom
Rioliowing (Z,w) can be rewritten using R}, and Rntxt_sib“ng atoms as R, (z,y) A
Rntxt_sib“ng(y, z) A RY.q(2,w), where y and z are new variables.)

Consider the conjunctive normal form formula

¢ = /\ (:Ul =x;Vr; <pre T; VT; <pre ZEZ)
1<i<j<k
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) + L
R\ S Reniig Rchild Rnext*Slblmg Rnext—sibling
Rehilg unsat unsat sat sat
R sat sat sat sat
child
Rnext—sibling unsat unsat unsat unsat
Rt Cehl unsat unsat sat sat
next-sibling

Table 1. Satisfiability of R(z,2) A S(y,2) Az <pre y for pairs of axes R, S.

k
Let ¥ be the set consisting of the 3() disjuncts of the disjunctive normal form of
¢. For ¢ € ¥ let )y be the conjunction of atomic formulas obtained from @ A 1
by the following steps, in the indicated order.

(1) We remove all occurrences of equality atoms 2z = y in arbitrary order and
replace, for each such atom, all occurrences of y by x.

(2) For R € {Rchiid, Rnext-sibling }, We remove all atoms R*(z, z) from @, and replace
all occurrences of R*(z,y) (where x and y are different variables) by R¥(z,y).
The latter is an equivalent rewriting since (), contains either atom z <p.e y
ory <pre ,thus z and y must map to different nodes.

(3) For R € {Rchiig; Rnext-sibling }» if Q@ contains atoms R(z,y), R* (z,y) then RT (z,y)
is removed from Q).

Observe that the binary atoms or @y use only Rcpid, R;“d, Rpext-sibling R:ext_sib”ng,

and <pre as predicates. We can verify that 37 () is true if and only if 32 Q A 9.
Let Q ={37 Qy | ¢ € ¥}. Then

Q=3EQre = \/{3EQAY [peT} = \/Q
In the following, we will call the binary relation E with
zEy & there is an atomic formula R(z,y) in Qy

(with R a binary predicate either an axis or <) the graph of Q. Note that E
is either cyclic or defines a total order on the variables in (), because there is an
edge between any two variables of ().

Now, for each @)y of Q, we repeat the following steps until we terminate:

If the graph of @y is cyclic, @y is unsatisfiable and is removed from Q. Termi-
nation. Otherwise, the graph of @)y is acyclic and thus constitutes a total order
of the variables in Q.

If )y contains atoms R(z,y), S(x,y) where R € {Rechiq, th”d} and S € {Rnext-sibling s
R:’ext_sib“ng}, @y is unsatisfiable and is removed from Q. Termination.

If there are no two atoms R(z, z), S(y, z) in @y with = and y distinct variables
and R, S different from <y then @y is acyclic. Termination.

We choose the pairs of atoms R(z,z),S(y,z) (z and y distinct variables and
R, S different from <pe) such that z is maximal with respect to the total order
given by the graph of ),;. From among these, we choose a pair such that z is
minimal with respect to the total order. By our choice, £ <pre ¥ is in Q. If
R(x,z) NS(y,z) Nz <pre vy is unsatisfiable (the unsatisfiable cases can be found

in Table I), remove (), from Q and terminate. Otherwise, replace atom R(z, z)
by R(z,y).

The above algorithm terminates because there are no more than (’2“) non-<pre-
atoms and whenever we replace an atom R(zx,z) by an atom R(z,y), y is smaller
than z with respect to the total order. Once we have processed a pair of atoms
R(x,2), S(y, z), we never have to process pairs of atoms R'(z,z), S'(y', z) for the
same x and z again. Thus processing a single @), takes polynomial time and the
complete rewriting of () takes exponential time.
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It can be verified that replacing R(x, z) in the satisfiable cases of R(z, z)AS(y, z) A
x <pre Y by R(z,y) is an equivalent rewriting:

R = R:}md, S € {Rchnd,R:;”d}: if  and y are ancestors of z, then =z <pre ¥
implies that z is an ancestor of y.

_ pt . + :
R =R isibling: S € {Bnext-siviings Friey-gibiing }: analogous.
Re {Rchnd,R;“d}, S € {Rnext-sibling s R:‘ext_sib“ng}: Since z is a parent/ancestor of

z and y is a left sibling of z, z is also a parent/ancestor of y.

Each conjunctive query @y in the set Q obtained as described above is acyclic
if all the <;;c-atoms are removed. Doing just that is an equivalent rewriting: Let
Qip be the conjunction of atoms of (), excluding the <;..-atoms of ();. Then

37 Qu CIT Q) CIFQ; thus, FQ=\VQC V{37 Q) | QueQ} CIFQ. O

The translations from PNavXPath into FO? and from tree pattern queries into
both PNavXPath and (hence) FO? are linear, but every other translation in the
above theorem is exponential in the worst case; from 37 FO to PNavXPath and
from 3T FO to tree patterns, this is shown in [Gottlob et al. 2004]. For the trans-
lation from PNavXPath to tree patterns, note that PNavXPath can encode a Con-
junctive Normal Form of a propositional formula (e.g. proposition p; encoded by
[Renitg/[lab() = A4;]). A set of tree patterns would correspond to a Disjunctive Nor-
mal Form representation of the same formula. Since it is known that there is an
exponential blow-up in going from CNF to DNF, the exponential blow-up of this
translation follows.

A similar argument gives:

THEOREM 3.11. The following have equal expressiveness (up to full equivalence)

—Boolean PNavXPath queries,

—3TFO formulas ¢(z) in the signature oiransnav,

—3TFO formulas ¢(z) in the signature oiransnae with at most two variables, and
—sets of Boolean tree patterns.

It is easy to show that 3T FO[0ransnav] is closed under intersection and union,
but not complement. From this and the theorem above, one has:

COROLLARY 3.12. Boolean PNavXPath queries are closed under intersection and
union, but not under complementation.

Another consequence of the above is:

COROLLARY 3.13 [OLTEANU ET AL. 2002]. For every PNavXPath query p, there
is a query p' that contains none of the azes preceding-sibling, previous-sibling, and
is equivalent to p. In addition there is a query p' containing none of the “backward
azes” (parent, ancestor, ancestor-or-self, preceding-sibling, previous-sibling) such that
p=rp.

To see this, consider the translation of a tree pattern into PNavXPath. This
translation can be done in such a way as to never introduce preceding-sibling or
previous-sibling. The upward axes parent and ancestor are introduced only when the
context node in the pattern is not the root. But under root equivalence, a tree
pattern can always be taken to have the context node to the root (since otherwise
the pattern is root equivalent to true).

[Olteanu et al. 2002] gives a rewrite system that removes the backward axes
(parent, ancestor, ancestor-or-self, preceding-sibling), assuming root equivalence.

It is known that upward axes and backward axes cannot be removed in the
presence of negation or data values: for negation, one can consider the query p =
descendant[lab() = B A —ancestor[lab() = A]]. One can show by an analysis of

16



NavXPath queries without upward axes that this cannot be expressed without the
use of ancestor.

3.3 Expressiveness of FOXPath

Much less is known about the expressiveness of FOXPath and AggXPath than for
NavXPath. Tt is easy to see that FOXPath expressions can be translated into first-
order logic over the signature

ol = 0nay U {RelOpa4, a4, | i,7 € {1,...,n},RelOp € {=,#,<,<,>,>}}

val —

U { Reescendant, Rfollowing-sibling }

where RelOpq 4, a4, (z,y) holds of nodes x and y iff z.4; RelOp y.A;. An important
observation is the following, analogous to one direction of Theorem 3.2:

PrOPOSITION 3.14. Every FOXPath expression p can be translated (in linear
time) to a fully equivalent formula ¢, over vocabulary U:'al such that ¢, uses at
most three variables. In case p is a Boolean expression, p will have one free vari-
able, and in case p is a NodeSet expression it will have two free variables.

Proof. The translation is inductive; the only new case over NavXPath is the case of
a qualifier F' = E RelOp E'. Letting ¢g(z,y), dr (x,y) be the translations formed
inductively from E, E' respectively. Then we can set

¢or =3Iy Iy ¢z, y) A ¢ (z,y") ARelOp(y,y'),
and note that ¢ has at most 3 variables. O

However, it is clear that the converse does not hold: there are first-order logic
formulas using only three variables that have no equivalent in FOXPath. This is
because FOXPath gives no added expressiveness on the navigational structure of
a document. Formally, we say that a Boolean query ) over XML documents is
navigational if ) cannot distinguish two documents that are isomorphic as unranked
ordered trees (that is, the two documents have isomorphic interpretations for g,4,).
Then we have

PROPOSITION 3.15. Any navigational Boolean query expressible in FOXPath is
expressible in NavXPath, and hence is expressible in FO?*. In particular (by [Etes-
sami et al. 2002]), there are FO[0 4y, Rdescendant] queries not expressible in FOXPath.

Proof Sketch. We say that a set of XML documents R is a representative family
iff for each XML-tree ¢ there is an XML document d such that d is an expansion of
t and d € R (i.e. the reduct-map is surjective).

Let ¢ be an arbitrary FOXPath query that is navigational.

Perform the following rewriting of ¢. Replace each atomic filter of form 7/Qa =
7' /@b or m/Qa < ©' /@b by m A 7' and each atomic filter of form 7/Qa # 7' /@b or
w/Qa < 7' /@b by false. Call the NavXPath query obtained by this rewriting ¢'. It
is easy to observe that for any labeled tree ¢, it is true for the expansion to the XML
document, d obtained by mapping each node to the same value, say val : x — 1
for all z, that ¢(t) = ¢'(d). Thus the set of these expansions is a representative
family, and for all navigational queries ¢ and all d from that representative family,
o(d) = ¢'(d). The theorem then follows from the following

Cram 3.16. If ¢ and ¢’ are navigational queries and ¢(d) = ¢'(d) for all XML
documents d in a representative family, then ¢(d') = ¢'(d') on all XML documents
d.

Proof of claim: Assume that there exists a representative family R such that
¢(d) = ¢'(d) for all d € R. Given an arbitrary XML documents d, we take its

reduct dg t0 0,,4,. Of course there exists an expansion dr € R of dy. By assumption,
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FO3(c*,q)

NavXPath=
NavXPath"=

Foz(ctransnav) FO(Gtransnav)

=FOB(Gtransnav)

CoreXPath=FO2(c,,sna-NextSib)

Fig. 2. Expressive power of XPath Language fragments versus first-order languages.

d(dr) = ¢'(dg). If ¢ and ¢' are navigational, ¢(dr) = ¢(d) and ¢'(dr) = ¢'(d).
Thus ¢(d) = ¢'(d).

In the case of AggXPath, in contrast, it is known that all navigational first-order
queries are expressible:

PROPOSITION 3.17. Any FO[0transnav) boolean query is expressible in AggXPath.
In particular, the axis immediately-following is expressible in AggXPath.

Proof Sketch. We use a result of [Marx 2004a], which states that it is sufficient to
show closure under the following variant of the modal until operators. For an axis
a € {child, parent, next-sibling, previous-sibling}, we write a™* for the corresponding
transitive axis (child™ = descendant , etc.) and a* for the union of at with the self
axis (child™ = descendant-or-self, etc.). For axis a € {child, parent, next-sibling, previous-sibling}
and queries Q1 (), Q2(x), the query Until,(Q2, Q1) (z) (“property 1 until property
()2”) holds at a node n iff there is n' such that R,+(n,n’) holds, Q2(n') holds, and
for all n' such that R,+(n,n") and R,+(n",n’) we have Q1 (n'"). Marx has shown
(combination of Theorems 6 and 7 of [Marx 2004a]) that any language containing
unary label tests and closed under boolean operations and the until operators above
can express any first-order formula in one free variable. Since AggXPath is closed
under boolean operations, it is thus sufficient to show closure under until. But if E;
and E, are AggXPath expressions returning Booleans, then Until,(E>, E;) can be
expressed as a:x[Ex] A= (count (a T x[—Ei]/at % [Es]) = count(aTx[E])). O
A summary of our expressiveness results is shown in Figure 2.

3.4 Further Bibliographic Remarks

In this section, we have discussed exact characterizations of sublanguages of XPath
via logic and tree patterns. We have focused on the relationship between NavXPath
and logics, because this is where the cleanest characterization can be shown. How-
ever, the relationship between XPath 1.0 and logics with few variables extends
to logics that manipulate data, as shown in our results on FOXPath above. This
relationship will play a role in the complexity results of the next section. The re-
lationship between PNavXPath queries and acyclic first-order queries is explored
further in [Gottlob et al. 2004].

There are other formalisms in which NavXPath and CoreXPath can be embedded
as a strict subset, and we review them below.

[Neven and Schwentick 2002] deals with query automata, an automata model
that defines NodeSet queries. Query automata have the expressiveness of Monadic
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Second Order Logic, hence they are strictly more powerful than NavXPath. [Frick
et al. 2003; Koch 2003] deal with a variant of non-deterministic tree automata that
can define unary rather than Boolean queries. [Carme et al. 2004] define queries
on unranked trees via automata that work on binary encodings. As with query
automata, both these formalisms strictly subsume NavXPath in expressiveness. One
starting point in looking for an automata characterization of XPath is [Schwentick
et al. 2001], which gives a characterization of two-variable logic over strings in terms
of partially-ordered two-way deterministic automata. We do not know of a similar
characterization for two-variable logic on trees. A comprehensive survey of the
relationship of XML queries to automata is given in [Schwentick 2007].

As mentioned in the introduction, there is a natural connection between navi-
gational XPath and modal logics, which was first observed in [Miklau and Suciu
2002] and [Gottlob and Koch 2002] and subsequently revisited in several works
(e.g. [Marx 2004b; 2004a; Afanasiev et al. 2004]). The closest relation is to linear
temporal logic (LTL) and Propositional Dynamic Logic (PDL). LTL formulas give
properties of nodes within a string. They are built up from formulas checking the
label of a node via boolean operators and the operators “at the next place ¢” “even-
tually ¢” and “¢ until ¢)”. The restriction of LTL obtained by removing the until
operator is called Unary Temporal Logic. NavXPath qualifiers can be considered
as an extension of Unary Temporal Logic from strings to trees. In particular, the
expressiveness of NavXPath qualifiers over strings is exactly that of Unary Temporal
Logic. Branching time temporal logics, such as C'T'L*, generalize LTL from strings
to graphs, rather than to trees. The techniques for proving expressiveness results
for NavXPath qualifiers borrow heavily from the prior work on LTL and CTL*
expressiveness.

PDL formulas give formulas mapping nodes to nodesets within an edge-labeled
graph. They are built up from operators that can move forward on any labeled edge.
XPath nodeset expressions can be considered, roughly as PDL formulas where the
edge-labeled graph is obtained from an ordered tree. Many of the static analysis
results (see, for example, Theorem 5.8) follow from modifying prior results for PDL.

We do not pursue the relationship with either automata or modal logics in detail
because the expressiveness of XPath does not ezactly match either PDL or LTL. An
approach to filling this gap would be to define natural extensions of either temporal
logic or PDL to deal with trees. For temporal logics, see [Barcelo and Libkin 2005]
for an extended discussion of this approach, while for PDL see [Afanasiev et al.
2005].

A natural question is what should be added to NavXPath to capture all of first-
order logic. It is known that first-order logic with 3 variables captures FO (estab-
lished in [Marx 2004a] for ordered unranked trees). Marx [Marx 2004a] proposes
two extensions of NavXPath to capture FO3, and thus be first-order complete. One
is by adding a path complementation feature to NavXPath and the other is by in-
troducing conditional axes in the spirit of the until operator of CTL. These results
can be seen as extensions of Kamp’s Theorem [Kamp 1968], which states that linear
temporal logic (with “until”) captures first-order logic over infinite words, to the
setting of unranked trees.

4. COMPLEXITY AND EFFICIENT EVALUATION

This section studies the complexity of XPath queries. XPath is a variable-free
query language in which many queries in particular, all NavXPath queries are
tree-shaped in a natural sense when converted into first-order logic. At the same
time the navigational structure of XML documents is tree-shaped. We first look at
some of the classical results about tree-like queries and queries on tree-like struc-
tures. Then we explore the connections between the powerful notion of hypertree-
width and XPath and show the new result that conjunctive FOXPath queries have
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hypertree-width 2. After that, we generalize from XPath evaluation based on hy-
pertree decompositions and illustrate the dynamic programming technique that has
yielded a polynomial time algorithm for full XPath 1.0. Then we survey the par-
allel complexity of XPath and give a new simplified proof that XPath is hard for
polynomial time. Finally, we study XPath processing on data streams and give an
overview over further work on efficient XPath processing.

4.1 Complexity Background

Throughout this section, we will consider logics and query languages as problem
classes and will simply identify the languages with their evaluation problems. Two
kinds of complexity of query evaluation will be considered, data complexity (where
queries are assumed to be fixed and data variable) and combined complexity (where
both data and query are considered variable) [Vardi 1982].

We briefly discuss the complexity classes and some of their characterizations used
throughout the remainder of this survey. For more thorough surveys of complexity
classes and the related theory see [Johnson 1990; Papadimitriou 1994; Greenlaw
et al. 1995].

By PTive, ExpTiME, NEXPTIME, LOGSPACE, NLOGSPACE, and PSPACE we
denote the well-known complexity classes of problems solvable on Turing machines
in deterministic polynomial time, deterministic exponential time, nondeterminis-
tic exponential time, deterministic logarithmic space, nondeterministic logarithmic
space, and (deterministic) polynomial space, respectively. By NP, we denote the
decision problems solvable in nondeterministic polynomial time and cO-NP denotes
the class of their complements.

It is a widely-held conjecture that problems complete for PTIME are inherently
sequential and cannot profit from parallel computation (cf. e.g. [Greenlaw et al.
1995]). Instead, a problem is called highly parallelizable if it can be solved within
the complexity class NC of all problems solvable in polylogarithmic time on a
polynomial number of processors working in parallel [Greenlaw et al. 1995].

A simple model of parallel computation is that of Boolean circuits. By a monotone
circuit, we denote a circuit in which only the input gates may possibly be negated.
All other gates are either A-gates or V-gates (but no —-gates). A family of circuits
is a sequence Gy, G1,Gs, ..., where the n-th circuit G,, has n inputs. Such a family
is called LoGSPACE-uniform if there exists a LOGSPACE-bounded deterministic
Turing machine which, on the input of n bits 1 (the string 1™), outputs the circuit
Gn. A family of circuits has bounded fan-in if all of the gates in these circuits
have fan-in bounded by some constant. On the other hand, a family of monotone
circuits is called semi-unbounded if all A-gates are of bounded fan-in (without loss of
generality, we may restrict the fan-in to two) but the V-gates may have unbounded
fan-in.

NC' denotes the class of languages recognizable using LOGSPACE-uniform Boolean
circuit, families of polynomial size and depth O(log’ n) (in terms of the size n of the
input). SAC! is the class of languages recognizable by LoGSPACE-uniform families
of semi-unbounded circuits of depth O(logn) (SAC! circuits).

A nondeterministic auxiliary pushdown automaton (NAuxPDA) is a nondeter-
ministic Turing machine with a distinguished input tape, a worktape, and a stack
(of which strictly only the topmost element can be accessed at any time).

LoGCFL is usually defined as the complexity class consisting of all problems
LoGSpPACE-reducible to a context-free language. There are two important alterna-
tive characterizations of LOGCFL that we are going to use. They are recalled in
Proposition 4.1 and 4.2, respectively.

PROPOSITION 4.1 [VENKATESWARAN 1991]. LoGCFL = SAC!. SAC! Circuit
Value is LOGCFL-complete.
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PROPOSITION 4.2 [SUDBOROUGH 1977]. LOGCFL is the class of all decision
problems solvable by a NAuxPDA with a logarithmic space-bounded worktape in
polynomial time.

We have LoGSpPAcE C NLoGSprackE C LocCFL C NC2 C NC C PTivME C NP
C PSpACE C ExpTiME C NEXPTIME. All inclusions C are suspected to be strict,
and all these complexity classes are closed under LOGSPACE-reductions.

Unless stated otherwise, we assume the input represented as a og,m-structure
encoded in the usual way.

4.2 Tree-like Data and Tree-like Queries

As a warm-up, we use the well-studied graph-theoretical notion of tree-width to
derive a few results about the complexity of XPath that follow immediately from
the literature.

Let G = (VY E%) be a graph. A tree decomposition of G is a pair (T, x) such that

T is a rooted tree with nodes V7T, y is a function y : VT — 2V that maps each node
of tree T to a subset of V¢, for each edge (u,v) € E¥ there exists a node w € VT
such that u,v € y(w), and for each node u € VY, the set {v € VT | u € x(v)}
induces a connected subtree of T'. The width of tree decomposition (T, x) is defined
as (max{|x(v)| | v € VT}) — 1. The tree-width of a graph G is the smallest width
over all tree decompositions of G. Intuitively, graphs of low tree-width are very
tree-like. As a special case, the connected graphs of tree-width one are precisely the
trees. An example of a graph and a tree decomposition (of width 2) for it is given
in Figures 3 (a) and (b), respectively.

We say that a structure consisting only of unary and binary relations has tree-
width £ if the union of (the symmetric closure of) its binary relations has tree-width
k. We do not give a formal definition of the general case of queries of bounded tree-
width here; however, for conjunctive queries () over a vocabulary of at most binary
relation symbols, the tree-width of () is defined as the tree-width of the graph
G = (V, E) where V consists of the variables of @ and (x,y), (y,z) € E if there is
an atom a(z,y) in Q.

§1: Tree-like data lead to linear-time data complexity. The Boolean MSO queries
on trees labeled with a finite alphabet (e.g. 0y,q,-trees) define precisely the regu-
lar tree languages, which correspond to the deterministic bottom-up tree automata
[Thatcher and Wright 1968; Doner 1970; Briiggemann-Klein et al. 2001]. Each
Boolean MSO query can be mapped to such an automaton, whose acceptance of
a given input tree can be checked in linear time in the size of the tree (traversing
it once bottom-up). Thus, Boolean MSO queries on trees have linear-time data
complexity. A slightly more general version of this fact for bounded tree-width
structures is known as Courcelle’s Theorem [Courcelle 1990], which can be further
generalized to

THEOREM 4.3 [FLUM ET AL. 2002]. Let C be a class of structures of bounded
tree-width. For a fixed MSO formula ¢, there is an algorithm that evaluates ¢ on
each structure A € C in time O(|A| + |6(A)]).

That is, this algorithm runs in time linear in the size of the input and the output,
and in particular in linear time in the size of the input on MSO formulas with at
most one free variable.

It can be verified that unranked ordered trees represented by 0,,,,-structures, that
is, the union of their binary relations Rchig and Rnext-sibling, have tree-width two?

2Note, however, that in the context of MSO, it is more wide-spread [Neven 2002; Gottlob and Koch
2004] to use a signature o?,,, obtained from o4, by replacing Reyg by a relation FirstChild such
that FirstChild(z,y) iff y is the leftmost child of z. Then, MSO on oyqs and o,,,, are equivalent

nav
and all o), ,,-structures have tree-width 1.
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(b)

Fig. 3. A onaeu-tree is a graph of tree-width two.

(see Figure 3, where each node v is labeled with x(v)). Transitive axis relations
such as Rgescendant OF Riollowing-sibling (Cf. Section 2.1) do not have bounded tree-width
in general, but it is not difficult to map NavXPath queries with transitive axes to
MSO over signature o,,,, [Gottlob and Koch 2002]. The construction is similar to
the one of Theorem 3.2 mapping NavXPath to FO?, defining R*(x,y), where R* is
the reflexive and transitive closure of relation R, in MSO as VS (S(z) AVuVv S(u) A
R(u,v) = S(v)) = S(y). From this we can conclude the following bound.

COROLLARY 4.4. NavXPath NodeSet queries (and hence, CoreXPath NodeSet
queries) are in linear time with respect to data complezity.

§2: Tree-like data do not yield low combined complexity. The usual technique for
proving linear-time data complexity of MSQO is by reduction to automata. For unary
MSO formulas, somewhat sophisticated automata with a capability for selecting
nodes are required. It has been observed that such automata with the power of
unary MSO can be designed to traverse the data tree only twice [Neven and Van
den Bussche 2002; Frick et al. 2003]. Reductions from MSO to automata do not yield
good upper bounds on the combined complexity of NavXPath, however. Indeed, they
are necessarily nonelementary [Meyer 1975; Reinhardt 2002] (i.e., their cost cannot
on

be bounded by any tower of exponentials 22" of fixed height). For NavXPath,
a doubly exponential translation to selecting tree automata [Frick et al. 2003] is
implicit in [Koch 2003].

§3: Tree-like queries yield polynomial-time combined complexity. While MSO over
trees is known to be PSPACE-complete with respect to combined complexity, FO*
(even over arbitrary relational structures) is known to be in time O(n* * |Q|): 3

PROPOSITION 4.5 [KOLAITIS AND VARDI 2000]. Conjunctive FO**1 queries have
tree-width < k.

3This can be shown directly without tree-width as well [Vardi 1995], however.
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THEOREM 4.6 [CHEKURI AND RAJARAMAN 1997]. Given a Boolean conjunctive
query @ of tree-width k and a database A with domain size n, () can be evaluated
on the database in time O((n*T' + | A]) % |Q|).

Both results generalize from conjunctive to FO queries [Flum et al. 2002].

Since boolean NavXPath queries can be translated efficiently, in linear time, into
equivalent FO? queries (Theorem 3.2) and FOXPath queries can be translated in
linear time into FO? (Proposition 3.14)

COROLLARY 4.7. Boolean NavXPath and FOXPath can be evaluated in time O(|D|*-
\Q|) and O(|D|? -|Q|), respectively, on a o4om structure D.

As we will see later on in this section, these combined complexity bounds can be
improved upon.

4.3 Hypertree-width and Conjunctive XPath

All results of Sections 4.3 and 4.4 will apply both to nodeset and to Boolean queries
of the respective fragments indicated.

Let @ be a conjunctive query over a relational database, and let vars(Q), free(Q),
and atoms(Q)) denote the set of variables, free variables, and atoms occurring in @,
respectively.

A (complete) hypertree decomposition of @) is a triple (T, x, \) such that T is a
rooted tree with nodes V(T) and root node r, x : V(T) — 2v*"*(?) maps each node
of tree T' to a set of variables from Q, \ : V/(T') — 291°™5(@) maps each node of T
to a set of body atoms of (),

(1) free(Q) € x(r),

(2) for each atom A € atoms(Q), there exists a node v € V(T') such that A € A(v)
and vars(A4) C x(v),

(3) for each variable x € wvars(Q), the set {v € V(T) | x € x(v)} induces a
connected subtree of T', and

(4) for each node v € V(T), x(v) C vars(A(v)) and
vars(A(v)) N U{X(v’) | v =2'" or v’ is a descendant of v in T'} C x(v).

The width of a hypertree decomposition (T,x,\) is the maximum number of
atoms occurring in any single node of T', i.e. max{|A(v)| | v € V(T')}. The hypertree-
width of a conjunctive query () is the smallest width over all hypertree decomposi-
tions of (). The conjunctive queries of hypertree-width 1 coincide with the so-called
acyclic conjunctive queries (cf. e.g. [Abiteboul et al. 1995]). As shown in [Yan-
nakakis 1981], the acyclic conjunctive queries can be evaluated in time O(n - |Q)]).
Yannakakis’ result was generalized to hypertree-width k, for arbitrary &:

THEOREM 4.8 [GOTTLOB ET AL. 2002]. Let Q) be a conjunctive query and H a
hypertree decomposition of width k of Q. Then Q) can be evaluated on a database A

in time O((|H| + |A|)*¥).

Let ¢/, ,, be the signature obtained from ¢4,,, by replacing each attribute function
@A by its graph (i.e., the binary relation {(n,@A(n)) | n € Node}) and adding the
relations Rgescendant and Rfollowing—sibling-

A considerable fragment of FOXPath can be modeled by conjunctive queries over
a structure of relational signature o), . We say that a FOXPath query (resp.,
NavXPath query) is conjunctive (and connected) if it does not use disjunction,
negation, inequalities (i.e., expressions p RelOpp’ with RelOp # “=”), or the root
slash /. The notions of hypertree decomposition and hypertree-width can be read-
ily applied to conjunctive FOXPath (and thus NavXPath) queries. A conjunctive
FOXPath query maps to a conjunctive query over o), . and we can speak of its
hypertreewidth using this mapping.
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ExamMPLE 4.9. The conjunctive FOXPath query
descendant::A/child:: B[child::C/@QD = child::E/QF]
can be phrased as a conjunctive query over signature o),
Q (v, z) < Rdescendant (v, w), A(w), Renild (w, z), B(x), Renia (v, 1), C(21), @D (21, 2),
Repiia (2, 91), E(y1), QF (y1, 2).

Consider the following hypertree decomposition, H, of ), where the nodes v have
been labeled with A(v) and x(v) = vars(A(v)):

| Rgescendant (U: w): Bchiig (’LU, :13) |

| A(w) [ | B(x) | | Repig (2, 71), @D (21, 2) |
|C(m1)| |Rchild(m;y1);@F(l/1;Z)|
E(y1)

Note that H is of width 2. There exists obviously no hypertree decomposition of
width 1: the atoms {Rcpiia(z,21), @D(z1, 2), Renita (2, y1), @F (y1,2)} of @ induce a
cycle. Thus @ is of hypertree-width 2. O

By Propositions 4.5 and 3.14, conjunctive FOXPath queries have tree-width < 2.
It is known that conjunctive queries of tree-width k& have hypertree-width < k + 1
[Gottlob et al. 2002], so we can obtain the O(n?) data complexity bound observed
in Corollary 4.7 also from Theorem 4.8. However, fortunately,

THEOREM 4.10. The conjunctive FOXPath NodeSet queries have hypertree-width
<2.

Proof. We first compute a first-order query (using just 3 and A) over o/, . for a
given conjunctive FOXPath query and then show that it yields a hypertree decom-
position of width < 2. From the first-order formula an equivalent relational algebra
plan can be obtained immediately by rewriting A by a join and 3 by a projection

We will assume that our query is a path expression p. The proof works analogously
for qualifiers. We translate p into a first-order formula FO(p), as follows:

FO(axis)a(z,y) = Razis(z,y)
(

FO(steplq))2(z,y) = FO(step)a(z,y) A FO(q)1(y)
FO(p/step)a(z,2) = 3y FO(p)2(z,y) A FO(step)a(y, 2)
FO(lab() L)i(z) = L(z)
FO(p)i(z) := 3y FO(p)a(=,y)
FO(qgNq')i(x) == FO(q)i(z) A FO(q'): (x)
FO(p/@A =p'/@B),(z) = 3z (3y1 FO(p)2(z,y1) AN QA(ys1, 2)) A

(3y2 FO(p')2(x,y2) A @B(y2, 2))

Without loss of generality, we will assume that there are no two distinct occur-
rences of existential quantification over the same variable in FO(p)2; thus, any two
occurrences of the same variable name in formula FO(p), indeed refer to the same
variable.

FO(+)2 is only a minor variation of [-] Nodeser and it is easy to verify that FO(p)
defines a binary relation {(n,n') | n' € [p]|Nodeset(n)}.
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We now construct a hypertree decomposition of FFO(p),. Consider the parse tree
T of formula FO(p)2. This parse tree has relation atoms as its leaves and Jz- and
A-labels on its internal nodes. Each node of the tree corresponds to a subformula
¢ of FO(p)2. We will identify each tree node with the subformula ¢ it denotes.

We define a function A that maps each node ¢ of T to a set of leaf nodes (and
thus relational atoms). We do this inductively, bottom-up:

(i) for each leaf node ¢, A(¢) := {¢};

(ii) for each node ¢ of the form 1 () Aho(x), 11 (2, y) Ap2(y), or 1 (z,y) Aba(z,y),
let A(¢) := A(¥);

(iii) for each node ¢ = 91 (x,y) Ab2(y, 2), let A(p) := {¢b'} UA(¢)2), where ¢’ is any
atom over x from A(¢); finally,

(iv) for each node ¢ = Jz ), A(p) := A(¢).

Note, in particular, that each free variable of ¢ occurs in at least one atom of
A(¢). Now let function x map each node ¢ of T' to vars(A(¢)).

To verify that (T, x,A) is indeed a hypertree decomposition of p, we have to
check points (1) to (4) of the definition. (1) and (4) are due to the definition of
X as ¢ — vars(A(¢)). (2) is immediate from (i). The connectedness condition (3)
follows from the fact that in a first-order query without any two distinct occurrences
of existential quantification over the same variable, the nodes of parse tree T' that
have z as a free variable plus the node Jz ¢ if = is not free in the query induce a
connected subtree of T'.

Let us now consider the sizes |A(¢)] for all nodes ¢ of T'. The most interesting case
is ¢ = 1 (z,y) A a(y, z). Observe that in this case 1, is either a step expression
or a leaf, and thus |[A(¢2)] =1, so |A(¢)| = 2. It can be shown by a straightforward
induction that for all nodes ¢, |A\(¢)| < 2, so our query has hypertree-width < 2. O

This result by construction of course holds for nodeset queries and thus also for
Boolean queries.

ExamMPLE 4.11. For the query of Example 4.9,
FO(descendant:: A/child::B[child::C//@QD = child::E/QF])s(v, x)

evaluates to the first-order formula

Jw (Rgescendant (v, w) A A(w)) A (Rch“d (w,z) A (B(a:)/\
Az (Fz1 (Renia (z,21) A C(z1) NQD (21, 2)))A
(31 (Beniia (z,y1) A E(yr) A QF (1, 2)))))

the parse tree of which is shown in Figure 4. The leaf nodes in the figure have been
labeled 1,12,13,... from left to right and the interior nodes ¢ of the parse tree of
the formula have been annotated with A(¢). Again, x(¢) = vars(A(¢)). This yields
the hypertree decomposition constructed in the proof. O

The transformation of the previous proof can be implemented so as to compute
both first-order query and hypertree decomposition in linear time. By the latter ob-
servation and Theorem 4.8 we thus see that Conjunctive FOXPath can be evaluated
in time O((|Q| + |D))?).

We give a direct proof of the following (close but incomparable) bound.

ProOPOSITION 4.12. Conjunctive FOXPath NodeSet queries can be evaluated on
0!om-structures D in time O(|Q| - |D|?).

Proof. Let us now consider relational algebra queries ALG(p) and ALG(q) corre-
sponding to the first-order (calculus) queries FO(p), and FO(q); of the previous
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Fig. 4. Hypertree decomposition of the query of Example 4.9 as constructed in the proof of
Theorem 4.10.

proof. The translation is standard [Abiteboul et al. 1995] and just requires rewriting
existential quantification by projection and conjunction by join.

As with the subformulas of ¢ in FO(p)a, each subexpression of ALG(p) defines
a relation that is a subset of the product of at most two base relations A(¢), and is
thus of size at most O(|D|?).

Query evaluation requires no more than |@Q)| relational algebra operations (pro-
jections or joins). The projections 7 ;R are obviously operations that run in time
linear in |R|. Joins guarded by one of the input relations (corresponding to formulae
1 (z,y) AN be(z,y), 1 (x,y) Aa(y), and 1 (y) A 2(y)) can be evaluated in time
linear in the sum of the sizes of the two relations joined by first building a bitfield
for testing whether tuples are true in 1, and then using it to filter the tuples of ;.

The most interesting case is a join corresponding to formula 1 (z,y) A ¥2(y, 2).
Let [¢] be the relation defined by first-order formula ¢. We first compute the rela-
tions RY = {x | ¢1(z,y)}, for each y such that 3z ¢ (y, 2), in total time O(|[¢1]] +
[[2]]). Then we compute our join as the union of the sets {(x,y,z) | RY(z)}, for
each tuple 12 (y, z). As mentioned in the previous proof, ¥» always defines a subset
of an input relation, so this union can be formed in time O(|D| - [[¢:2]|) = O(|D|?).

O

Conjunctive NavXPath queries are acyclic (see [Gottlob et al. 2005]) and can
therefore be evaluated using Yannakakis’ algorithm (or by precisely the techniques
from the previous two proofs) both in linear time in the data and efficiently in the
size of the query.

ProrositioNn 4.13. Conjunctive NavXPath NodeSet queries can be evaluated in
time O(|D] - |Q|) on (0nav, Rdescendant; Rioliowing-sibling) -Structures D.
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4.4 Beyond Conjunctive Queries

The conjunctive query processing techniques based on hypertree decompositions of
the previous section leave three features of FOXPath unaddressed:

(1) Conjunctive FOXPath excludes disjunction, union, negation, inequalities, and
disconnected queries (via the root / in conditions).

(2) We assumed that the data tree is given by o -structures, which include bi-
nary relations for transitive axes such as descendant. If we assume transitive
axis relations present in the structure D representing a tree with domain A
and therefore |D| = O(]AJ?), our upper bound on time of O(|D|? - |Q|) from
Proposition 4.12 deteriorates to time O(|D|* - |Q|) when the input structure D
1S now in ggom.-

(3) Finally, we did not deal with inequalities RelOp € {#,<,<} in expressions
eRelOpe’.

The following result deals with all these issues.

THEOREM 4.14. A FOXPath NodeSet query @ can be evaluated on o 4o, -structures
with domain A in time O(JA]* x|Q|).

Proof.

(1) We complete the mapping ALG of the previous proof by the operations of
FOXPath missing from conjunctive FOXPath:
—ALG(p|p') := ALG(p) U ALG(p')
ALG(qV ¢'") == ALG(q) U ALG(q")
ALG(~q) == A— ALG(q)
(2) Next we would like to eliminate transitive axis relations such as descendant from
the signature.
[Gottlob et al. 2005] gives algorithms for computing, given a set S of tree nodes
and any XPath axis a, the set of nodes

a(S) ={y |z € SARa(z,9)}
in time O(|Node|). Consider the unary operations

Palq]t R~ {(HZ,Z) ‘ Jy R(z,y) A Ra(y, z) A [[q]]Boolean(z)}=

which can be evaluated in quadratic time by first partitioning R into sets S, =
{y | R(z,y)}, for each z, and then computing the union over z of the sets

{(ﬂ?,y) | yE a(SI) A IIq]]Boolean(y)}'
Now we can evaluate [p/aqi1] ... [g.]] as a[gn A+ A gu]([p]) in quadratic time,
for any axis a, even if our structure is just of signature oo, .

(3) Let a~! denote the inverse of axis a (i.e., R, is the inverse of R,). To
compute a query plan for an inequality

ailq]/es(g]/ - /anlgn] /@A RelOp Bi[q1]/ Balaz]/ - - / Bulan] /@B
with RelOp # “=”, we first compute the binary relation RelOpg 4 op (see the
definition of ¢, in Section 3.3) in time O(|A4|?). Using the fact that the joins

above can be computed in quadratic time, we see that we can compute the
following relation S in quadratic time |A|? times the size of S:

S = Pt ('X‘g;l[qg] ('X‘g;l[qé] (- s g, ([X]self[q’"] (RelOp@A’@B)) )

Finally,
_ —1
([X‘a;l ('X‘a;l[,h] ('X‘a;l[,&] (- ™ n g 1] (Pseiffg,] (S M) )))
is the desired inequality relation above. Using this algorithm inductively, The-
orem 4.14 follows. O
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Applying the first two parts of the previous proof to NavXPath yields:

PRrROPOSITION 4.15 [GOTTLOB ET AL. 2005]. A NavXPath NodeSet query Q) can
be evaluated on 0yqy-structures D in time O(|D| - |Q|) and space O(|D]).

Note that this improves the linear data complexity bound of Corollary 4.4.

Beyond FOXPath, we are faced with queries containing possibly nested numeric
expressions involving the arithmetic operations + and * (whose graphs are infinite)
and aggregations. For that reason, it is helpful to digress from the framework used
above (i.e., relations C A2 or C A) and view every expression e of type t (either
NodeSet, Boolean, or Int) as defining a table {(n,[e]:(n)) | n € A}. Each node n
denotes a context in which expression e evaluates to value [e];(n). Thus such tables
were called contezt-value tables in [Gottlob et al. 2005]. The context-value table of
an expression e can be efficiently computed from the context-value table of the direct
subexpressions of e. For FOXPath, the method for doing so was given in the previous
proof, up to the notational subtleties that now for NodeSet-typed expressions, the
value column may hold sets (nodes grouped by their context) while in the proof
the relations defined were flat, and that context-value tables for Boolean-valued
expressions are binary, with either “true” or “false” in the value column.

This method can be adapted to AggXPath without a runtime penalty, since on
a binary relation [p] over the domain of nodes — and thus of quadratic size — the
relations {(n,i) | [count(p)]in:(n) = i} and {(n,i) | [sum(p/@A)]rnt(n) = i} can
be computed in quadratic time without difficulty. For the arithmetic operation x
(multiplication), numbers can grow linearly with the query, thus a binary relation
representing the result of a numeric relation may be of size O(|A| - |Q]). Thus,

ProrosiTioN 4.16. The AggXPath NodeSet queries () can be evaluated on o gom -
structures with domain A in time O (| A|-(JA|+|Q|)-|Q]) and space O(|A|-(JA|+|Q])).

So far we have been moving only moderately beyond queries obtained from hy-
pertree decompositions. However, XPath (and OrdXPath) supports position arith-
metics which require more sophisticated contexts than AggXPath, where contexts
are simply nodes. For OrdXPath, a single context node is not sufficient; for instance,
the expression “position() = last()” relies on the position of a node within a set and
the cardinality of that set as contexts (see (P2’) in Section 2).

We extend context-value tables to be sets of tuples (n, j, k, v), where n is a context
node, j and k are integers denoting a position j in and the size k of a set of nodes,
v is a value, and the contexts n,i, k identify their tuples.

Values (including strings and numbers) were shown in [Gottlob et al. 2005] to
remain small in XPath. The algorithm of [Gottlob et al. 2005] inductively computes
context-value tables {(n,j,k,v) | [e]rypece) (n, 4, k) = v} for each subexpression e
of a query bottom-up. Taking into context all the built-in functions of XPath, this
yields the following upper bound.

THEOREM 4.17 [GOTTLOB ET AL. 2005]. Full XPath 1.0 is in time O(JA|® -
Q7).

We state this result without a proof and refer to [Gottlob et al. 2005] for the
formal definition of full XPath 1.0 and the proof, which are beyond our scope and
yield little further insight. Improvements yielding somewhat better bounds can be
found in [Gottlob et al. 2005].

ExAMPLE 4.18. Consider the numerical expression position() * 2 < last(). We
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compute the context-value tables of its subexpressions bottom-up as

CVTyosition() = 1(n, 4, k,7) | (n,j,k) a context}
CVTpositinn()*Q = {(n .77k 2 >I<’U) | (mj,k,v) € CVTpnsition()}
CV sty = {(n,4,k, k)| (n,j,k) a context}
CVTPOSitiO"()*2<laSt() = {(’ﬂ -77 (Ul < 7)2)) ‘ (n7j7k7vl) € CVTpOsition()*Z;

(n7 7/ k: 7)2) € Cvﬂast()}

In summary, there is a close connection between the context-value table-based
dynamic programming algorithm of [Gottlob et al. 2005] and the hypertree-width
based techniques presented before. However, beyond the difficulties dealt with in
the proof of Theorem 4.14, XPath supports built-in functions (e.g. arithmetic and
string functions) whose graphs are infinite, as well as aggregations, so non-trivial
extensions of hypertree decomposition techniques are needed to obtain the PTIME
combined complexity of XPath.

We summarize the time complexity bounds in the following table; below the input
is assumed to be a o4, structure D with domain A:

Fragment  Complexity

NavXPath  |D]-|Q| (Proposition 4.15)

FOXPath  |A|?>-|Q| (Theorem 4.14)

AggXPath  |A|- (JA] +1Q]) - |Q| (Proposition 4.16)
XPath 1.0 |A]° - |Q|* (Theorem 4.17)

45 Parallel Complexity

Now that the combined complexity of XPath is known to be polynomial, one may
ask whether XPath is also PTiME-hard, or alternatively, whether it is in the com-
plexity class NC and thus effectively parallelizable. Apart from theoretical interest,
a precise characterization of XPath evaluation in terms of parallel complexity classes
may lead to a better understanding of what computational resources are necessarily
required for query evaluation. For example, it is strongly conjectured that all algo-
rithms for solving PTiME-hard problems actually require a polynomial amount of
working memory. However, performing XPath query evaluation with limited mem-
ory resources is important in practice, for instance in the context of data stream
processing.

For an upper bound for conjunctive FOXPath, we can use the following result
about conjunctive queries of bounded hypertree-width together with our Theo-
rem 4.10.

THEOREM 4.19 [GOTTLOB ET AL. 2001]. The conjunctive queries of bounded
hypertree-width over arbitrary relational structures are in LOGCFL with respect
to combined complexity.

COROLLARY 4.20. Conjunctive FOXPath is in LOGCFL (combined complezity).

In [Gottlob et al. 2005], LOoGCFL membership is proven for a much larger frag-
ment of XPath without negation which even supports arithmetics and aggregations.
Here we give a direct proof for positive FOXPath.

PROPOSITION 4.21 [GOTTLOB ET AL. 2005]. Positive FOXPath is in LOoGCFL
with respect to combined complexity.

Proof Idea. By an encoding as a NAuxPDA that runs in polynomial time using a
LoaSPACE worktape. We will actually show how to use a NAuxPDA to compute
the set of nodes to which an XPath query evaluates, even though the complexity
class LOGCFL is defined in terms of decision problems and for the above-mentioned
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lower bound only a decision problem (e.g. that of checking whether a given node is
selected by an XPath query) makes sense.

We will use the symbol & for creating references and * to dereference them. We
will associate each query with its (binary) parse tree obtained in the usual fashion,
using grammar rules p ::= awis :: A[q]/p | awxis :: Alg] to parse paths (i.e., producing
a right-deep tree for a path). An example of such a parse tree is shown in Figure 5.
We identify nodes of the query tree with the expressions their subtrees represent.
For a path expression p, we use sel(vg) to denote the rightmost leaf in the subtree
of the query tree corresponding to p; thus sel(vg) denotes the “right tip” of the
path which selects nodes.

We use four log-space registers that will be kept on the worktape, sel (to iterate
over the nodes of the data tree and check which are to be selected by the query), v;
(to hold a node from the data tree), r,q; (for a pointer to a data value in the data
tree, represented by an integer indicating the starting position of the data value’s
representation inside the representation of the data tree), and vg (for a current
node from the parse tree of the query) on the worktape.

The evaluation of the query proceeds by iterating over all the nodes of the data
tree (using register sel), and for each node does a single depth-first left-to right
traversal of its parse tree, starting with vg the root node of the query tree, v; the
root, of the input tree, and 7,, = L.

By default, query tree nodes vg with two children are processed as follows. First
we put (vg, vt ryar) onto the stack. Then we process the first child of vg. On
returning we take (v, vt, ryqr) Off the stack (and set the registers). Finally process
the second child of vg.

There are a few exceptions. When vg = a::A[g]/p and vy = n, we first put n on
the stack, nondeterministically guess a node n’ such that a(n,n’) and A(n'), set
v; to n', and only then we process the two children as just described. Expressions
p/@QA/deref() are handled similarly.

For p/@A = p' /@B, r,, is not put on the stack before and taken off the stack
after processing the first child. When arriving at sel(p), we set ryq to Q@A(vy).
When arriving at sel(p'), we verify that r,, = QB(v;).

If vg = qV ¢', we nondeterministically choose either ¢ or ¢' and verify that it
holds relative to the current position v;.

At sel(p), where p is the query, we check whether v; = sel. If so, we output node
sel as a result.

It is not difficult to verify that this nondeterministic algorithm runs on an NAux-
PDA in polynomial time, using only logarithmic space on the worktape. O

ExAMPLE 4.22. The FOXPath query .//A[.//B/@C = D[E/QF = G/@QH]/QI]
can be evaluated using a NAuxPDA given by the following pseudocode: (1) Guess
w such that [.//A] (v, w); vy := w; (2) push vy; (3) guess w such that [.//B] (v, w);
ve = w; (4) rya = &0:.QC; (5) vy :=pop; (6) guess w such that [./D](vs, w);
vy := w; push ryq;; push vy; (7) push vg; (8) guess w such that [./E] (v, w); vr := w;
(9) ryar := & v:.QF; (10) vy :=pop; (11) guess w such that [./G] (v, w); v := w; (12)
check that x 7,4 = v;.QH; (13) v¢ :=pop; Ty :=pop; (14) check that x 7,4 = v;.QT;
(15) accept.

Note that this program is faithful to the construction mentioned above except
that we do not push or pop the vg register (the query has been compiled into the

program).
The fact that the run of this NAuxPDA is intuitively a depth-first traversal of
the parse tree of the query is illustrated in Figure 5. O

It was shown in [Gottlob et al. 2005] by a reduction from the SAC! circuit
value problem that the LOGCFL upper bound of Theorem 4.21 is tight: positive
NavXPath is LoGCFL-complete with respect to combined complexity.
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Fig. 5.  NAuxPDA run for query .//a[.//b/@Qc = d[e/@f = g/@h]/@i].

G, G Gs Gy
(a1) (b1) (ao) (bo)

Fig. 6. A 2-bit full adder carry-bit circuit.

Unfortunately, the positive result on the parallel complexity of positive XPath
does not extend to full XPath, or even NavXPath.

THEOREM 4.23 [GOTTLOB ET AL. 2005]. NavXPath is PTIME-hard (combined
complexity).

Proof. The proofis by reduction from the monotone Boolean circuit value problem,
which is PTIME-complete. Note that the classical reduction from PTiME-bounded
Turing machines to (monotone) Boolean circuits proving this (see e.g. the proof of
Theorem 8.1 in [Papadimitriou 1994]) only produces layered circuits.*

Given an instance of this problem, a monotone Boolean circuit and a mapping 6
that assigns either 0 or 1 to each of the input gates, let M denote the number of

4A circuit is called layered is there is a mapping | that assigns to each gate an integer such that
if there is an edge from gate G; to G, then I(G;) = 1(G;) + 1.

31



us

¢1 = descendant::01[parent®::*[¢)1]]

b1 = not(child®:: 71 [not(71)]) /,,/;,6\
1 = ancestor::*[¢g] - ’9 N
¢ = self::1 - 7y N

wi,7 wa,7 Iy w3z,7 1 wy,7 Iy ws,7 we,7 wr,7 : O1 wg,7

wi,8 w28 w3,8 wa g8 ws.8 ¢ 12 we,g : 12 wr gt I wg,g : O2

Fig. 7. Document tree corresponding to the carry-bit circuit. The figure also illustrates that
[[¢1HBoolea,n(7)6) < 6((;1) =1A 0(03) =1A 6((;4) =1

input gates and let N > 1 denote the number of all other gates in the circuit (the
internal gates). Let K be the number of layers in the circuit, that is, the height of
the circuit. Let the gates be named G ... Gy n. Without loss of generality®, we
may assume that the gates GGy ... G4y are numbered in some order such that no
gate G; depends on the output of another gate G; with j > ¢. In particular, the
input gates are named (7 ...G s and the output gate is Gasyny. We may assume
that there is precisely one gate at the topmost layer K, the output gate.

Figure 6 shows an example of a circuit with appropriately numbered gates. This
circuit computes the carry-bit of a two-bit full-adder, that is, it tells whether adding
the two-bit numbers ajaq and b1bg leads to an overflow. The carry-bit ¢; is com-
puted as (a1 Ab1) V (a1 Aco) V (b1 A cg) where ¢g = ag A by is the carry-bit of the
lower digit (ap and bg).

For a given instance of the monotone Boolean circuit value problem, we compute
a pair consisting of a document tree and a NavXPath query as follows.

The document tree consists of nodes u;, v;, and w;; for all 1 <i < M + N,
M +1<j3 <M+ N. The root node is upr11, and there are edges

from u; to ujpq for M +1<j <M+ N,
—from up 4N to v; and from v; to w; prqq forall 1 <i < M 4+ N, and
—from w; ; tow; j4q1 forall 1 <i < M+ N, M+1<j< M+ N.

Node labels are taken from the alphabet ¥ = {0,1,G,I;,...,Ik,01,...,0k}
and each tree node is assigned at most one such label. (We allow for “unlabeled”
nodes, which can be considered to simply carry a label not from ¥.) This is done as
follows. Each node out of v; for 1 <i < M is assigned 6(G;) as a label (either 0 or
1). The nodes vpry1 ... vp4n are each assigned the label G. We assign label I, to
node w; ; iff internal gate G is in layer 1 < k£ < K and takes input from gate G;.
We assign label Oy, to node wj ; iff internal gate G is in layer k. For our carry-bit

example of Figure 6 with M =4 and N = 4, the data tree is as shown in Figure 7,

5The gates can be “sorted” to adhere to such an ordering in logarithmic space. This is trivial if
the circuit is layered, which we may assume by the observation made above.
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where 0(G4),...,0(G4) € {0,1} are the truth values aq, b1, ag, and by, respectively,
at the input gates.
In the following, we will abbreviate the n-times repeated application of an axis
X, (x:*/)"txs*, as x"o*. By x™:c, we denote (x::*/)" y:c.
The query evaluating the circuit is
/descendant::G[¢k]

with the condition expressions

¢r := descendant::Op[parent™ 1 ¥4 ]]
s childV oI ] ... layer k consists of V-gates
k=
not(childV ™ :: Ty [not(my)]) ... layer k consists of A-gates

T =

ancestor:G[dr—1] ... k>1
ancestor:*[¢pp_1] ... k=1

for 1 <k < K and ¢ := self::1.

It uses the intuition of processing the circuit one layer at a time.

We will check whether our query on our document includes the particular node
vp+N- Indeed, by our construction, the query will select node vs4 n iff the circuit
evaluates to true, and no other node will be selected.

It is easy to see that the reduction can be effected in LOGSPACE. We next argue
that it is also correct.

The ¢y, ¥, and 7, are condition expressions (qualifiers), and we have already
given a formal meaning [¢r.] Bootean (w) to the notion “¢; matches node w” or equiva-
lently “node w satisfies ¢;.” (and analogously to [V« ] Bootean (W) and [7] Bootean (W))-

Claim. Let 0 < k < K. Then, for all gates G; in layer k,
[9k] Bootean (Vi) < gate G; evaluates to true.

This can be shown by an easy induction.

Induction start (k = 0). The gates of layer 0 are the input gates. By definition,
an input gate G; is true iff node v; is labeled 1. but on precisely these nodes
¢o = self::1 is true. Thus our claim holds for £ = 0.

Induction step. Now assume that our claim holds for ¢;_;. We show that it
also holds for ¢y.

To start, it is easy to see that for all 4, 7,

IITrk]]Boolean (wi,j) = |I¢k71]]Boolean (Ui)-

Now observe that by our construction of the data tree, the nodes wy j,...,w; ;1
encode the connections of gate G; with its inputs. Gate G; is an input to gate G
if and only if node w; ; is labeled I, for k the layer of gate G;. The node w; ; is
labeled Oj,. Observe also that the node u; is precisely N + 1 levels above the nodes
w1 ,4,--.,WM+N,j in the data tree.

For v-gate G in layer k,

[Yk] Bootean (uj) & Fi I (w; ;) A [7r]Bootean (Wi, ;)
& gate G; is an input to G; and G is true

for A-gate G in layer k,

[¥k] Bootean(uj) < Vi Iy (wi ;) = [mk]Bootean (Wi ;)
& all inputs to G are true

Finally, since

|[¢k]]Boolean ('Uj) = Hwk]]Boolean (“‘j):
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our claim is shown for ¢, 0 < k < K.

Figure 7 illustrates the computation of the truth value of gate Gg of our circuit
example.

The overall query /descendant::G[¢x] has a nonempty result (consisting of pre-
cisely the node vyr4n) exactly if the output gate G4 n of the circuit evaluates to
true, because G4y is the only gate in layer K, vps4 n is the only node labeled G
that has an Ok descendant, and [¢ k]| Bootean (Va4 n) if and only if Gy n evaluates
to true.

In summary, we have provided a LOGSPACE reduction that maps any monotone
Boolean circuit to a NavXPath query and a document tree such that the query
evaluated on the tree returns node vy;4 n precisely if the circuit evaluates to true.
As the monotone Boolean circuit value problem is PTiME-complete, our theorem
is proven. O

Note that the above proof of the PTIME lower bound does not, employ axis steps
with multiple qualifier brackets axis[-]...[]; indeed, as observed before, even for
AggXPath, azis[q:] . .. [g,] is equivalent to azis[g: A---Ag,], but this is not true for
OrdXPath. And indeed, the interaction of multiple qualifier brackets and position
arithmetics has an impact on the complexity of XPath:

THEOREM 4.24 [GOTTLOB ET AL. 2005]. Positive OrdXPath is PTIME-hard with
respect to combined complexity.

The PT1ME-hardness result actually only uses a fragment of OrdXPath with last()
and steps with multiple qualifier brackets, but without position() or aggregation
operations.

We give a brief overview over the remaining complexity results known for XPath.
First, the PT1ME-hardness result of Theorem 4.23 essentially depends on the pres-
ence of both single-step axes and transitive axes: NavXPath using only the child and
parent axes is in LOGSPACE with respect to combined complexity [Gottlob et al.
2005]. Tree patterns (conjunctive NavXPath) using only the descendant axis are in
LOGSPACE as well [G6tz et al. 2007).

The data complexity of XPath depends on encodings. XPath 1.0 on DOM trees
(pointer structures) is LOGSPACE-complete if the concatenation operation on strings
and multiplication are excluded from the language.

So far, we have always assumed that the input is basically given as a pointer
structure (using signature o4, ). But XML documents can also be considered in
their natural textual (string) representation. The distinction is only relevant for
the very small complexity class inside LOGSPACE, for which completeness is usually
defined in terms of reductions not strong enough to map between DOM trees and
strings. On string representations, NavXPath was shown to be in TC? [Gottlob et al.
2005], a complexity class inside LoGSpACE. Of course, on a relational encoding of
the tree with all binary axis relations part of the encoding, FOXPath is first-order
and inherits its AC? upper bound (yet inside TC®) on the data complexity.

The query complexity of XPath 1.0 is in LOGSPACE [Gottlob et al. 2005]. This
is a slightly curious fact. While for virtually all known traditional query languages,
the query complexity is greater than the data complexity by at least an exponential
factor (cf. e.g. [Abiteboul et al. 1995]), this is not the case of XPath.

4.6 Stream Processing

Because of the role of XML as a data exchange format, the problem of evaluating
XPath on streaming XML data has attracted quite some research work.

A streaming algorithm scans its input data once — and only once — from left
to right. Since data streams for practical purposes can be assumed to be infinitely
long, one usually assumes that main memory is a limited resource. We can formalize
streaming computation using a deterministic Turing machine with
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—a read-only input tape on which the read head cannot move to the left,
a write-only output tape on which the write head cannot move to the left, and
—a read/write work tape.

The resource of the greatest interest in this formal model is the space used on the
work tape. Of course, the running time of the Turing machine is important as well.
However, processing XPath is not an intrinsically hard problem: as explained in this
work, it can be solved in main-memory in polynomial combined complexity, hence
in particular in polynomial time in the data. The time upper bounds in terms of
the data does not change when we move to the more restrictive streaming model.
To our knowledge, no technique in the streaming XML literature requires running
time greater than polynomial in the input (stream). Ideally, streaming algorithms
should cope with a fixed amount of memory, independent of the input, but as we
will see below, constant memory is not sufficient for evaluating even the simplest
XPath queries.

To begin with we will focus our attention on the XPath filtering problem, for
which better guarantees can be made. The filtering problem is the problem of
testing whether a given XPath query relative to the root node has any matches
(i.e., the problem of testing whether [p]Booican(root) is true for query p). The
usual scenario is that of a stream of XML documents and a set of XPath queries
describing subscriptions to documents on the stream matching the XPath queries,
and has been referred to by Selective Dissemination of Information. This problem
has been considered in [Altinel and Franklin 2000; Chan et al. 2000; Green et al.
2003; Diao et al. 2002] with the additional difficulty that algorithms have to scale
to very large numbers even millions of queries to be matched in parallel.

Starting with [Bar-Yossef et al. 2007], techniques from communication complexity
have been used for studying memory lower bounds of streaming XPath evaluation
algorithms [Bar-Yossef et al. 2007; 2005; Grohe et al. 2007]. We only give one such
lower bound result which uses the standard notion of complexity for XPath queries.
We denote the depth of a tree T by depth(T). It has been observed that

PROPOSITION 4.25 [GROHE ET AL. 2007]. There can be no streaming algorithm
with memory consumption o(depth(T)), where T is the data tree, for the CoreXPath
filtering problem.

Of course, there are trees whose depth is linear in their size, so one can read this
result in the sense that there can be no streaming algorithm for NavXPath that
takes space less than linear in the size of the XML stream, so memory-efficient
and thus scalable — streaming XPath filtering is, from a certain point of view, in
the worst case impossible.

Fortunately, XML trees tend to be shallow in practice, so showing this lower
bound to be tight would be considered a positive result. As discussed early in this
section, bottom-up tree automata allow to check MSO sentences in a single traversal
of the tree. Using automata-based techniques, checking MSO queries in streaming
fashion, and thus solving the XPath filtering problem, is feasible using only memory
of size bounded by the depth of the tree (which in practice, for XML, is small).

THEOREM 4.26 (IMPLICIT IN [NEUMANN AND SEIDL 1998; SEGOUFIN AND VIANU 2002]).
Let T be a tree-language. If T is definable by an MSO-sentence over vocabulary
Onav, then T can be recognized by a streaming algorithm using memory O(depth(T)),
where T is the data tree.

COROLLARY 4.27. There is a streaming algorithm for the CoreXPath filtering
problem with memory consumption O(depth(T)).

Of course, it remains to ask whether these algorithms use memory that is small
in the size of the XPath expression being filtered. Automata are a natural target
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of compilation for stream processing. They can be executed very efficiently on the
stream, and for most forms of automata one can analyze the runtime memory usage
easily.

Translating XPath queries into deterministic pushdown automata has been stud-
ied in several works [Green et al. 2003; Gupta and Suciu 2003] (and slightly less
obviously in [Altinel and Franklin 2000; Chan et al. 2000; Diao et al. 2002]). De-
terministic pushdown automata also give depth-bounded space usage. The blow-up
required to compute such automata is exponential in the filter, and the sources of
this exponentiality were explored in [Green et al. 2003]. In that work the automata
are modularized by separation into two components. There is a deterministic finite
automaton (DFA, defined on words, not on trees) for the path expression which
runs on the path from the root node of the data tree to the current data tree node.
There is also a pushdown automaton, independent of the path expression, that acts
as a controller for the DFA, managing the stack and advancing the DFA every time
a new node in the stream is encountered.

The first work to present a streaming algorithm for the XPath filtering problem
that takes only memory linear in the depth of the tree and runs in time and space
polynomial in the size of (the data and) the query was [Olteanu et al. 2003; Olteanu
2007]. They provide an algorithm that gives good bounds for any PNavXPath filter
with only “forward” axes i.e. child, next-sibling, descendant, following.

There, the exponential size of automata is avoided by not compiling automata
for managing and recognizing the subexpressions of an XPath query into a single
“flat” automaton. These automata are instead kept apart, as a transducer network.
A similar transducer-network based approach to streaming XPath processing was
developed in [Peng and Chawathe 2003]. A different algorithm for polynomial-time
streaming XPath processing was presented in [Josifovski and Fontoura 2005].

A transducer network counsists of a set of synchronously running transducers (here,
deterministic pushdown transducers, cf. [Hopcroft and Ullman 1979]) where each
transducer runs, possibly in parallel with some other transducers, either on the
input XML stream, or on the output of another transducer (in which case the input
is the original stream where some nodes may have been annotated using labels).
Two transducers may also be “joined”, producing output whose annotations are
pairs consisting of the annotations produced by the two input transducers.

We next formalize this and exhibit some of the transducers that form part of a
transducer network.

XPath queries are first rewritten into nested filters with paths of length one;
for instance, query child::A/descendant::B is first rewritten into child[lab() = A A
descendant[lab() = B]]. To emphasize that we do not aim to compute nodes matched
by a path but to check whether the query can be successfully matched, we will
write axis filters as Ichild[¢] and Jdescendant[$]. The rewritten queries will now be
translated into transducer networks inductively.

A deterministic pushdown transducer T' is a tuple (X,T,Q, @, qo, F, 6) with input
alphabet ¥, stack alphabet I, output alphabet 2, set of states (), start state qg, set
of final states F', and transition function § : @ x ¥ x (eUT) = @ x I'* x Q. For
determinism we require that for no g € Q,s € X,v € T, both (g, s,€) and d(q, s,7)
are defined. Here e denotes the empty word. All our transducers will have ) = F;
that is, all states are final states, so all valid runs will be accepting. If the transducer
T is in state ¢ and has uv on the stack, and if §(q, s,v) = (¢',w, s'), then T' makes a
transition to state ¢’ and stack vw (u,v,w € T'*) on input s, and produces output

s/o . . .-
o, denoted (q,uv) = (¢',uw). A run on input s ...s, is a sequence of transitions

s1/01 Sn/0n

(go,e) = -+ =" (q,u) that produces output oy ...o0,.
A transducer T'[ddescendant[¢]] running on the output stream of transducer T'[¢]
is a deterministic pushdown transducer with ¥ = Q = {(),¢,f}, T = {¢, f}, Q =
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(8) Tlg1 = (lab() = B)]
!
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time —
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Fig. 8. Document tree (top left), transducer network (top right), and run of the transducer network
(bottom).

F ={qs,q:}, g0 = gy, and transition function

5 { (q$7<>=€) = (qf7$7<>)

(Qm:y € {t,f},z) = (QmVy\/z:5:m)'

On seeing an opening tag of a node, this transducer memorizes on the stack whether
¢ was matched in the subtrees of the previously seen siblings of that node. On
returning (i.e., seeing a closing tag), the transducer labels the node (by its proxy
the closing tag) with ¢ or f (true or false) depending on whether ¢ was matched in
the node’s subtree, which is encoded in the state.

ExampLe 4.28. On input ()()()()ftt()()()tf ft, T|3descendant[-]] has the run

(@€ B a0 ) S (ar 1) B ap 115 S 110 Y (g, fff)
)

(a6 1) D (@ £) B (ap, 1) B (ap, 1) B (ap 1t£ ) Y (@ 1)
1/t t/t
)

(g, ft) = (at, f) = (ar; €
and produces output () ()(){) fft()()() fttt (see Figure 8). O

A transducer T'[3child[¢]] can be defined similarly.

The transducers for testing labels and computing conjunctions of filters do not
need a stack. The transducer T[lab() = A] has the opening and closing tags
of the XML document as input alphabet ¥, Q = {{),t,f}, @ = F = {q},
and 0 = {(q07<'>=6) = (q076= ())7(q07</A>=6) = (q076=t)7(q0=</B>=6) = (q076=f)}
(where B stands for all node labels other than A). The transducer T[¢p A 9]
has £ = {0} U {6 F1 9 = {061}, Q = F = {a0} and 6 = {(g0, (),€)
(90,¢€. (), (g0, (2, y),€) = (qo, €. 2 A y)}.

The overall execution of a transducer network is exemplified in Figure 8, where
the filter that matches the XPath expression self:: A/descendant:: B, rewritten into
(3descendant[lab() = B]) A lab() = A is evaluated using a transducer network.
The transducers for the different subexpressions run synchronously; each symbol
(opening or closing tag) from the input stream is first transformed by T[¢;] and

T'[¢3]; the output of T'[¢1] is piped into T[¢s] and the output of both T[¢s] and
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T3], as a pair of symbols, is piped into T[¢4]. Only then do we proceed to the
next symbol of the input stream, which is handled in the same way, and so on. In
the example of Figure 8, the final transducer labels exactly those nodes ¢ on which
the filter is true. Checking whether the filter can be matched on the root node,
which is not the case in this example, can be done using an additional pushdown
automaton not exhibited here but simple to define.

We now comment on the problem of selecting nodes matched by XPath queries.
We first note that any streaming algorithm will have to buffer most of the XML
document in the worst case. Consider the following two trees.

A(B/)(C/){]A) AB/) D/ /A

Consider the query /child::A[child::C]/chiId::B. Any implementation of this query
must select the B-nodes of the left tree but not those of the right tree. Hence such
an implementation will have to buffer all B-children of the A-node before a C-node
is seen (or not seen) on the stream. In the worst case this may amount to buffering
almost all the nodes of the document.

The problem of selecting nodes using XPath on XML streams using polynomial
time combined complexity and small space was studied in several works, including
[Olteanu 2007; Peng and Chawathe 2003; Bar-Yossef et al. 2007; 2005; Ramanan
2005; Gou and Chirkova 2007]. The results in these papers are usually space bounds
depending linearly on the depth of the data tree, a function of certain properties of
the query (such as, e.g., query frontier size [Bar-Yossef et al. 2007]), and the number
of candidate output nodes from the data tree: as we have seen immediately above,
we can not hope to do better than this. The known bounds are for fragments of
PCoreXPath with only forward axes.

4.7 Processing XPath in Databases

There has been much work on processing XPath (as a fragment on XQuery) and
tree pattern queries on XML documents stored in databases, that is, in secondary
storage, both in the context of native XML databases and even more so on relational
representations of XML databases.

A topic related to XPath processing that has been addressed in many papers is
storing XML data in a way that allows for efficient query processing and updates
[Shanmugasundaram et al. 1999; Fiebig and Moerkotte 2000; Tatarinov et al. 2002;
Grust et al. 2004; 2003; O’Neil et al. 2004; Weigel et al. 2005; May et al. 2006].
Clearly, once the data is to be stored in a database in a way other than a single
monolithic document (i.e., text file) to allow for the addressing and indexing of data,
the smaller data chunks (usually document tree nodes) require identifiers of some
form. Much work has been done on finding appropriate schemes for storing XML
data relationally (e.g. [Shanmugasundaram et al. 1999; Tatarinov et al. 2002]), but
numbering schemes for XML nodes that assign unique identifiers to tree nodes that
implicitly contain navigation information are also relevant in native XML database
systems. It is implicit in [Tatarinov et al. 2002] that, when designing a node number-
ing scheme for XML data, a tradeoff is necessary between the scheme’s support for
efficient navigation (tree pattern queries) and the efficiency of processing updates.
Numbering schemes in which the node identifiers contain much position information
allow for more efficient query processing than do schemes which assign only local
information that is relative to parent and ancestor nodes but updates to the data
are more likely to require a relabeling of many nodes with numbers.
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Currently two numbering schemes have become prominent in most major re-
search and commercial implementations. The first is the Dewey numbering scheme
[Tatarinov et al. 2002; May et al. 2006] in which a node that is the j-th child of
a node with identifier 7 is assigned the identifier i.j; thus the Dewey numbering
scheme is the familiar scheme used to label hierarchies of sections and subsections
in most books. Given a Dewey numbering scheme, the ancestors of a given node
are completely determined and checking whether another node satisfies one of the
axes is easily decided. The second [Fiebig and Moerkotte 2000; Grust et al. 2004;
2003] is a form of global numbering scheme (cf. [Tatarinov et al. 2002]). It assigns a
preorder (<pre) and a postorder (<post) traversal index. In addition, the <ppe-index
of the parent is stored with each node. Here all axes can be computed using simple
f-joins. Thus the transitive axis relations, which would take space quadratic in the
size of the tree if they had to be explicitly stored in the database, can be computed
on demand using plain relational algebra, with no need for recursion.

As shown in Section 2.1, <pre and <post can be defined from Rgescendant and
Rioliowing- The converse is also possible:

Rdescendant(may) = T <pre YANY <post T
Rfollowing(w7y) S T <pre YNT <post Y

From these axis relations, all others can be defined in first-order logic. Thus, a
node-labeled tree can be completely represented by one triple (i, j, a), consisting of
a <pre-index i, a <pos¢-index j, and a label a, for each node of the tree. (These
indexes are chosen in a way that if two nodes u and v have, say, <,e-indexes ¢ and
i', then i < i’ iff u <ppe v.)

This scheme does not require nodes to be labeled consecutively. Reasonable
update performance can be achieved by not requiring <pre- and <pesi-indexes to be
consecutive and initially leaving some indexes unused. Nodes can then be inserted
by choosing a suitable pre- and postorder index from the unassigned indexes. A
slight modification of this idea uses floating point numbers for the indexes; insertion
is done by assigning <pre- and <pegt-numbers halfway between those of the nodes
between which the new node is to be placed.

XML processing within databases focuses heavily on the case of conjunctive
XPath and its extensions to XQuery. For queries on XML, one can distinguish
between joins over data values and so-called structural joins. The latter are used
to compute tuples of document nodes that are in a structural relationship to each
other which can be described by a CoreXPath path expression, for instance pairs
of nodes and their “A”-labeled descendents. While data value joins occur more
frequently in XQuery, both kinds of joins can appear even in XPath. For example,
the query of Example 4.9 contains four structural joins corresponding to the four
axis steps of the query — and one value join, which compares certain @D attribute
values with @QF attribute values. Many queries contain several structural joins that
can be described by tree patterns (also called twigs in this context) and can be
matched together.

As documented in the present section, pairs of nodes defined by CoreXPath ex-
pressions have special properties that give efficient structural join algorithms. The
methods described in this survey have focused on a straightforward encoding of a
tree as a relational structure. But efficient methods have also been discovered that
either work for individual structural joins [Al-Khalifa et al. 2002; Grust et al. 2003]
or holistically compute the matches of entire tree patterns [Bruno et al. 2002], for
XML stored using the more sophisticated encodings discussed above. Note that in
these encodings there is no need for a separate edge relation.

For XPath 1.0 the focus is on semi-joins. A key advantage of the twig query
processing approach is that it extends the low complexity bounds of XPath to
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more general queries which return all query nodes in a match of a pattern, not
just a single selected node. Such queries are important within the more general
context of XQuery processing. The use of large-grained twig join operators and
their integration into optimizers for XQuery is discussed in [Al-Khalifa and Jagadish
2002].

4.8 Further Bibliographic Remarks

The dynamic programming algorithm for full XPath 1 of [Gottlob et al. 2005]
demonstrates in a rather straightforward way that XPath 1 can be evaluated in
polynomial time. When introduced, this algorithm was the first of its kind, and it
was observed that all XPath engines available at the time where taking exponential
time in the worst case for evaluating XPath 1. However, the dynamic programming
algorithm computes many useless intermediate results and consumes much memory.
To fix this, a more efficient top-down algorithm is given in [Gottlob et al. 2005] as
well. This algorithm still runs in polynomial time, with better worst-case upper
bounds on running time and memory consumption. Further work on polynomial-
time algorithms for full XPath 1 which elaborates on the results of [Gottlob et al.
2005] and integrates them into a native XML database management system can be
found in [Brantner et al. 2005]. This work also shows how to integrate XQuery and
efficient XPath processing using a single native algebra.

5. STATIC ANALYSIS
5.1 Satisfiability

Analysis of XPath originally focused on fragments of PNavXPath with only down-
ward axes basically, tree patterns (see Theorem 3.9). Such queries are always sat-
isfiable, so analysis concentrated on the containment problem. However, as pointed
out in [Benedikt et al. 2005], satisfiability becomes more difficult as soon as one has
either negation or upward axes, or if one restricts trees to satisfy a schema, given
for example, by a Document Type Definition (DTD). Simplifying for the purposes
of this discussion, a DTD D can be thought of as a triple (Ele, P, r), where (1)
Ele is a finite set of labels, ranged over by A, B, ...; (2) r is a distinguished label
in Ele, called the root type; (3) P is a function that defines the labels of children
for a given label A: for each A in Ele, P(A) is a regular expression over Ele.

An XML-tree T satisfies (or conforms to) a DTD D = (Ele, P, r), denoted by
T |= D, if (1) the root of T is labeled with 7; (2) each node n in T is labeled with a
label in Ele, (3) for each node n of label A € ELE, the list of labels of the children
of n, listed from leftmost to rightmost, is in the regular language defined by P(A).

To consider the impact of a DTD, fix n propositions P; ... P,, and consider
trees that are constrained to consist of 3 levels: a root element labeled with r,
which has n children labeled P; ... P,, with each P; in turn having one child, which
must be labeled with T or F'. The DTD with root element r and productions
r—P...P,,P > T|F...P, > T|F,T — ¢, F — ¢ constrains a document to be
of this form. Documents of this form code in an obvious way to valuations for the
propositions P ... P,. If we take any CNF propositional formula ¢ = A; \/j bij
over P; ... P,, we can write a corresponding negation-free CoreXPath qualifier that
holds at the root of a tree iff the tree codes a model of ¢. For example, (P, V—Py) A
(=P V Py) translates to [(child:: Py /child::T'V child:: Py /child:: F') A(child:: Py /child:: F'V
child:: P, /child::T")]. This argument shows:

PROPOSITION 5.1. [Benedikt et al. 2005] It is NP-hard to check whether a PNavXPath
expression with only the child axis is satisfiable with respect to a DTD.

Satisfiability with respect to a DTD for PNavXPath turns out to be NP-complete:
roughly speaking, one can guess a polynomial size satisfying tree using non-determinism
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and then verify that it is a satisfier by evaluating the XPath expression on it, which
we know from the prior sections can be done in polynomial time. The line between
tractability and intractability within PNavXPath is studied extensively in [Benedikt
et al. 2005].

When general negation is added, as in NavXPath and CoreXPath, it is not im-
mediately obvious that satisfiability is even decidable. One argument to establish
decidability is via Proposition 3.1, and the fact that first-order logic over finite
ordered labeled trees is known to be decidable [Thatcher and Wright 1968]. The
standard proof of decidability for first-order logic is via an inductive translation
into a tree automaton. Because complementation of an automaton requires an ex-
ponential blow-up in size at every negation step, the complexity of satisfiability for
first-order logic over trees is known to be non-elementary [Thatcher and Wright
1968]. However, in the previous section we have shown that NavXPath Boolean
queries translate into two-variable first-order logic. The satisfiability problem for
FO? over arbitrary finite structures is known to be in NExpTIME [Gradel et al.
1997]. In addition, [Gridel et al. 1997] shows that satisfiable FO? sentences have
models of size exponential in the size of the sentence. However, this does not imply
that the satisfiability problem for FO? is in NEXPTIME, since for this problem
we have the constraint that the models must be trees (a constraint which is not
expressible by an FO? sentence).

In [Etessami et al. 2002] it is shown that the satisfiability of FO? sentences over
words is in NExpTIME. We modify this below to show the satisfiability problem
for trees is in NEXPTIME. Since the translation of NavXPath into FO? given in
Section 3 is polynomial, we get a NEXPTIME bound for NavXPath.

THEOREM 5.2. There is an NEXPTIME algorithm deciding for a given sentence
¢ € FO? whether or not it is satisfiable by some ordered tree.

Recall that Proposition 3.6 shows that unnested NavXPath”, the extension of
NavXPath with an intersection operator but where union may only occur on the top
level, can be translated in polynomial time into Q2. From this and Theorem 5.2,
it follows that:

COROLLARY 5.3. The satisfiability problem for unnested NavXPath" (and hence
for unnested NavXPath and CoreXPath) is in NEXPTIME.

We will see that this bound is not tight for NavXPath. We do not know the
complexity of satisfiability for full NavXPath"'. A related language is PDL with an
intersection operator, where the satisfiability problem has recently been shown to
be 2-ExpTIME hard even on one-letter trees [Lange and Lutz 2005]. However, this
language is more expressive than NavXPath".

Since we know of no proof of Theorem 5.2 in the literature, we sketch one, follow-
ing closely the approach of [Etessami et al. 2002]. First, we translate the problem
of satisfiability on unranked trees to one on binary trees, using the standard en-
coding of an unranked tree as a binary tree. Let FO?*[0,40.5in] be FO? over the
unary signature ¥ unioned with FChild, SChild (the first- and second-child rela-
tions of the binary tree representation), SChild*, Ryescendant- We consider a formula
of FOQ[ammbm] to be interpreted over binary codes of unranked trees, structures
T = (V,...) in which i) (V,FChild U SChild) is a tree of outdegree at most two,
i1) each node is related to at most one node via FChild and at most one variable
SChild, with these nodes being distinct, and #ii) Rgescendant 18 the transitive closure
of FChild U SChild, and SChild* is the transitive closure of SChild. The following is
simple to show:

PROPOSITION 5.4. Satisfiability of FO? sentences over unranked trees is reducible
in polynomial time to satisfiability of FO*[0pay pin] sentences over binary codes of
unranked trees.
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For an integer k, a k-type is a maximal consistent set of FO?[0,4y pin] formulas
(in some fixed set of variables) where the maximal number of nested quantifiers (i.e.
quantifier rank) is at most k. We will deal with k-types in 1 free variable, with such
a type typically denoted 7(z). A binary code structure (V,...) is k-compact if:

We do not have nodes vy, v, € V with the same k-type, and with vy a descendant
of vy.

—Any two nodes with the same k-type have identical subtrees.

The next result shows that we can reduce satisfiability to a search for compact
structures:

LEMMA 5.5. An FO?[0,40.bin] sentence of quantifier rank k > 1 is satisfiable at
the root of some binary code iff it is satisfiable at the root of a k-compact binary
code.

Proof. Let ¢ be an FO?[0,4,.in] sentence of quantifier rank &, and suppose ¢
is satisfiable in B = (V,...), and B is the structure of minimal size satisfying ¢.
Suppose there are nodes vy,vs € V with the same k-type , with v, a descendant
of v1. Let S; be all nodes that are descendants of v, but are not descendants of
vy (including v9). Let B’ be the code formed by removing all nodes in S; and
attaching the subtrees of vo to vy (i.e. the first child of v becomes the first child
of vy, etc.). Let f be the mapping from B’ to B that maps a node beneath v; in
B’ to the corresponding node beneath vy, and is the identity elsewhere on B’. We
now show by induction on 4 that for each i < k, the i-type of a node v € B’ is the
same as the i-type of f(v) € B.

For i = 0 this is clear, since the only atomic formulas in one variable are those that
assert the label of a node, and the mapping f preserves labels. For the inductive
step 7 + 1, note that a two-variable formula ¢(x) of rank i + 1 can be taken to
assert the existence or non-existence of a y with a certain axis relation to z and
with a fixed i-type. All formulas asserting the non-existence of such a y are clearly
preserved from z to f(z), by induction. Suppose that for z € B’ there is a y in
B with i-type 7 and with a given axis relationship to f(z). If y = f(w) for some
w in B’, then we can choose w as a witness to 7 in B’, since w will satisfy the
same axis relation to z as y does to f(z) (by definition of f), and will satisfy the
same i-type as y by induction. Otherwise, it must be that y lies below v; but is
incomparable to vy. Since y lies below v and v9 has the same k-type in B (hence
the same i + 1-type) as vy, there is y' below vy satisfying the same axes with respect
to vy as y has to vs, and such that the i-type of ' in B is the same as the i-type of
y in B. Since y' is below vy, y' = f(w) for some w € B’, and now we are done by
induction.

The result of the construction above is a smaller tree in which the k-type of the
root, has the same type as in the original tree, thus violating minimality.

To get the second part of compactness, let ' be the set of k-types 7(z) such that
the second part is violated in B’: that is, there are two nodes with type 7 with
distinct subtrees. We proceed by downward induction on n = |T'|. If n > 0, choose
a node v € B’ satisfying a type in ' that has maximal depth in the tree. Let 7
be the k-type of v and S, be the forest consisting of all descendants of v in B'.
All nodes in S, must satisfy a type outside of I'. For every other node v’ in B’
satisfying 7, we replace the forest below v' with S, (making the subtree below the
first child of v into the subtree below the first child of v', etc.). Notice that the first
condition of compactness (already holding of B’) ensures that v’ is not comparable
to v. One can confirm by induction that the k-type of the root is unchanged by this
substitution, by an argument identical to that used in the first part of this lemma.
In this process, n is decreased by one, and hence the process terminates with a
k-compact tree. O
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From Lemma 5.5, Theorem 5.2 follows. The depth of a k-compact tree is at most
the number of k-types, which is bounded by an exponential in ¢. Furthermore, a
k-compact tree can be represented via a DAG whose nodes are the k-types realized
in the tree. Such a DAG represents the tree formed by duplicating shared subtrees.
It is easy to see that one can check whether a given sentence is satisfied on a DAG
representation of a tree in polynomial time. Our NExpPTIME algorithm just guesses
a DAG structure on the k-types, and then confirms that the corresponding tree
satisfies the sentence ¢.

It is known that FO? is NExpTiME-hard [Etessami et al. 2002]. The example
showing NEXPTIME hardness from [Etessami et al. 2002] can be coded easily in
unnested NavXPath”, hence we have that:

THEOREM 5.6. The satisfiability problem for unnested NavXPath” is complete
for NEXPTIME.

From this proof, we get further information:

COROLLARY 5.7 TO THE PROOF OF THEOREM 5.2. Let ¢ be an FO? sentence.
If ¢ is satisfiable in some finite tree, then it is satisfiable in some tree of depth
exponential in |p| and size doubly exponential in |¢p|. The same holds for E an
expression in unnested NavXPath extended with the intersection operator.

Is this NExpT1ME-bound tight for NavXPath or CoreXPath? First note that the
fact that FO? is NExpTiME-hard does not imply the same for NavXPath, since
the translation from FO? to NavXPath is exponential. [Marx 2004b] shows that
satisfiability of NavXPath expressions can be decided in deterministic exponential
time.

THEOREM 5.8 [MARX 2004B]. NavXPath satisfiability is decidable in EXPTIME.
Furthermore, since equivalence for NavXPath expressions can be reduced to satisfi-
ability of a single expression, the equivalence problem can be decided in EXPTIME.
Since CoreXPath expressions can be mapped into NavXPath in linear time, these
results hold for CoreXPath as well.

[Marx 2004b] actually shows this for an extension of NavXPath that allows regular
expressions on axes. Since the treatment in Marx’s papers [Marx 2004b; 2004a;
Afanasiev et al. 2005] is quite detailed, we give here only some comments on the
proof. The proof is by reduction to the satisfiability problem for Deterministic
Propositional Dynamic Logic (PDL) with Converse. PDL is similar to XPath, in
that it is a modal language that allows the definition of binary relations (in dynamic
logic “programs”) as well as unary relations (“formulas”). As with XPath, the
grammars for binary relations and unary relations are mutually recursive. Dynamic
logics have a different data model than XPath, being defined over node and edge-
labeled graphs. However, since formulas in the language can see only a part of the
graph at a time, the behavior of the logic on general structures is closely related
to its behavior on trees. Deterministic PDL with converse is formed over a set of
atomic programs (analogous to axes in XPath) each of which is a function maps
nodes in a graph to at most one other node. For each atomic program there is a
“converse program” representing the inverse of the binary relation. In a binary tree
the “first child” and “second child” relations are functional; hene we can interpret
Deterministic PDL with Converse with two atomic program over binary trees, with
the two programs chosen to be first and second child. Using the standard encoding
of ordered unranked trees as binary trees, deterministic PDL with Converse over
two programs can be interpreted on ordered trees. Because PDL allows new binary
relations to be built up from old using regular expressions, the recursive axes, and in
fact all of NavXPath (and more [Marx 2004b]), can be defined within it. Hence the
satisfiability of XPath is reduced to the satisfiability problem fo Deterministic PDL
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with Converse sentences over binary trees. In [Vardi and Wolper 1986] it is shown
that deterministic PDL with converse is decidable over all structures is in EXPTIME.
The proof relies on translating PDL programs into alternating automata on trees.
[Marx 2004b] shows that the proof in [Vardi and Wolper 1986] can be modified to
give the same bound over the class of codings of finite ordered trees. In [Afanasiev
et al. 2005], a variant of PDL defined directly on ordered trees is given, which yields
an alternate route (also going through [Vardi and Wolper 1986]) to the EXPTIME
bound.

[Neven and Schwentick 2003] shows that containment of NavXPath expressions is
ExpTiME-hard. An inspection of the proof shows that only CoreXPath expressions
are needed for the hardness proof. Since containment of two (unnested) NavXPath
expressions can be reduced to satisfiability of a single (unnested) expression, it
follows that unnested NavXPath satisfiability is EXPTIME-hard. Hence we see that
the EXPTIME bound is tight:

COROLLARY 5.9 COMBINING [NEVEN AND SCHWENTICK 2003] AND [MARX 2004B].
The satisfiability problems for CoreXPath, NavXPath, and unnested NavXPath are
all EXPTIME-complete.

5.2 Satisfiability for other XPath fragments

Now that we know that NavXPath and CoreXPath have ExpTIME satisfiability, we
can look at what happens as features are added or subtracted.

Better bounds can be obtained for sublanguages of NavXPath: Satisfiability of
NavXPath with only child and parent is shown to be PSpPACE-complete in [Benedikt
et al. 2005]. Satisfiability for PNavXPath is easily seen to be in NP (see [Hidders
2003]), and this is extended to PFOXPath in [Benedikt et al. 2005]. It is also shown
in [Benedikt et al. 2005] that very simple fragments of PNavXPath have an NP-
complete satisfiability problem in the presence of both downward and upward
axes, the problem is NP-complete, as well as in the presence of both left and right
sibling axes. For PNavXPath with only downward axes, all expressions are clearly
satisfiable; however, the satisfiability problem with respect to a given DTD can be
NP-hard [Benedikt et al. 2005].

We now consider satisfiability as we move up in expressiveness from NavXPath.
It is shown in [Benedikt et al. 2005] that the satisfiability of a FOXPath expression
with respect to a DTD is undecidable. By using sibling axes instead of a DTD, one
can see the following;:

THEOREM 5.10 [GEERTS AND FAN 2005]. The satisfiability problem for FOXPath
is undecidable.

The proof uses a reduction from the halting problem for two-register machines
which is known to be undecidable (see, e.g., [Borger et al. 1997]). Although full
FOXPath is undecidable, the exact borderline of decidability is not well understood.

QUESTION 5.11. Is FOXPath without the sibling azes decidable?

In fact, decidability is open even in the case of FOXPath with only child and
parent.
One can also look at decidability on restricted classes of documents:

QUESTION 5.12. Is FOXPath decidable on documents with no branching (i.e.
those where every element has at most one child)?

5.3 Containment

The containment problem takes as input XPath expressions E and E’, asking
whether the output of E is contained in the output of E’' on any source document
at any node. Variations of the problem are containment with respect to a DTD,
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which takes a DTD as an additional argument, asking whether the above holds for
E and E' over any source document satisfying the DTD. A special case of this is
the containment problem for a finite alphabet, which takes a label alphabet ¥ as
additional parameter, asking whether containment holds for all source documents
with labels in X.

The containment problem has been investigated extensively in the relational case
for conjunctive queries, where it has close connections both to issues in data integra-
tion and query optimization, as well as to constraint satisfaction [Kolaitis and Vardi
2000; Gottlob et al. 2001]. The general conjunctive query containment problem is
known to be NP-complete; however, many special cases are known to be in PTIME,
including those in which the dependency graphs of the queries have bounded tree-
width [Chekuri and Rajaraman 1997] or the queries have bounded hypertree-width
[Gottlob et al. 1999]. In the case of conjunctive queries, containment of ()1 in @
reduces to determining whether ()¢ is satisfiable on an instance formed from s,
hence the complexity of containment is bounded by the combined complexity of
evaluation. In the XPath setting there is no obvious correspondence between a
query and a “canonical instance”, and indeed the complexity of containment and
evaluation turn out to be quite different.

Starting with the relational case as motivation, [Amer-Yahia et al. 2001; Miklau
and Suciu 2002; Wood 2001] initiated the study of containment for XPath, beginning
with subclasses of NavXPath without either the union operator or disjunction within
filters (conjunctive NavXPath). The survey article of Schwentick [Schwentick 2004]
gives a overview of the techniques used in getting bounds on containment; here
we summarize only some of the results and the open questions. A modification of
the minimal model technique for conjunctive queries shows that the containment
problem for conjunctive Navigational XPath is in cO-NP  given queries P and @
one can generate a finite set of instances I; : i < n of size polynomial in P such
that P C @ iff each I; satisfies  [Miklau and Suciu 2002]. Since satisfaction can
be checked in linear time, a CO-NP algorithm is simply to guess an I; that fails to
satisfy (). In [Amer-Yahia et al. 2001], it is shown that for conjunctive NavXPath
with only descendant axes the containment problem is in PTIME, while in [Wood
2001] it is noted that the same holds for conjunctive NavXPath with only child axes
(indeed this last observation follows directly from the PTIME bounds for acyclic
conjunctive queries in [Chekuri and Rajaraman 1997]). When both descendant axes
and child axes are present the problem was shown to be co-NP-complete [Miklau
and Suciu 2002]. [Neven and Schwentick 2003] shows that the containment problem
for conjunctive NavXPath with a finite alphabet is PSpPACE-complete, while the
containment problem with respect to a DTD is EXpTIME-complete. A finer analysis
of the complexity of containment for conjunctive NavXPath with respect to a DTD
and with respect to integrity constraints is given in [Wood 2003].

The complexity of containment for fragments of XPath larger than conjunctive
NavXPath was studied by Neven and Schwentick. For PNavXPath, the general con-
tainment problem remains in CO-NP, while if the alphabet is fixed the problem is
again PSPACE-complete [Neven and Schwentick 2003]. For full NavXPath, the con-
tainment problem, even with respect to a DTD, is in EXPTIME, since it is reducible
to the satisfaction problem: this is noted in [Marx 2004b]. On the other hand, since
[Neven and Schwentick 2003] shows that containment of NavXPath expressions is
ExpTiMme-hard, we have:

THEOREM 5.13 COMBINING [NEVEN AND SCHWENTICK 2003] AND [MARX 2004B].
The containment problem for NavXPath is EXpPTIME-complete, as is the contain-

ment problem for finite alphabet and the containment problem with respect to a
DTD.

When we turn to the XPath fragments with data values, the complexity of con-
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tainment is not completely understood. The results of Deutsch and Tannen [Deutsch
and Tannen 2001] imply that containment for PFOXPath is co-NP-complete, pro-
vided that the transitive sibling axes are not permitted and ”wildcard steps” (child
steps with no restriction on the label) are disallowed. Their technique also yields
a I}’ bound for full PFOXPath, although neither their terminology nor their frag-
ments match PFOXPath exactly. They also establish 115 bounds in the presence of
integrity constraints called SXICs: these are incomparable to both finite alphabets
and DTDs. [Deutsch and Tannen 2001] also provides lower bounds for contain-
ment in the presence of integrity constraints. Neven and Schwentick [Neven and
Schwentick 2003] show that PFOXPath without sibling axes and without wildcard is
in 11}, and that the containment problem for PFOXPath extended with inequality
is undecidable.

To our knowledge, the decidability of containment for general conjunctive FOXPath
queries with respect to a DTD or a finite alphabet is open. Indeed we do not know
whether one can decide containment of conjunctive queries over signature o/,
in the presence of DTDs. The undecidability techniques of [Neven and Schwentick
2003] rely on disjunction, while [Deutsch and Tannen 2001] provides undecidability
results with respect to integrity constraints. The upper bounds of both [Neven and
Schwentick 2003; Deutsch and Tannen 2001] rely on the use of an infinite alphabet.

5.4 Further Bibliographic Remarks

While above we have dealt with the satisfiability and containment problems, a
broader goal would be an algebraic simplification framework for XPath. [Benedikt
et al. 2003] presents algebraic equations for simplification of XPath expressions. A
system of equations is presented that is complete for equivalence of XPath expres-
sions for a very small fragment (without filters and with only child axes). [Olteanu
et al. 2002] gives a rewriting system geared not toward general equivalence, but for
removing backward axes. [Amer-Yahia et al. 2001] deals not with equivalence but
with optimization; it presents an algorithm for minimization of tree patterns in the
presence of integrity constraints.

A natural question not addressed above is the implementation of satisfiability
and containment tests for XPath. [Benedikt et al. 2005] implements a satisfiability
test for a fragment of PNavXPath.in the presence of DTDs, based on a conversion
to tree automata. [Lakshmanan et al. 2004] implements a satisfiability test for
a tree pattern language that includes data value manipulation (incomparable in
expressiveness with the XPath languages we consider here).

An additional static analysis problem is recognizing whether a query is in a given
XPath fragment. In the context of navigational XPath, the problem of recognizing
whether a first-order logic query is in NavXPath is open. This is closely-related to
the (likewise open) problem of determining whether a tree automaton is equivalent
to an FO? sentence . The problem of determining whether a first-order query
over o/, is in FOXPath is undecidable — this follows from the results of [Benedikt
et al. 2005]. The problem of determining whether a conjunctive query over ¢/ is
expressible in conjunctive FOXPath has not been investigated (to our knowledge).
Likewise, nothing is known concerning the problem of determining whether a first-
order query (or a NavXPath query) is equivalent to a query in PNavXPath.

Acknowledgements: We thank Maarten Marx and Frank Neven for comments
on this draft.
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