Modeling the Performance of Algorithms on Flash
Memory Devices

Kenneth A. Ross
IBM T. J. Watson Research Center and Columbia University
rossak@us.ibm.com, kar@cs.columbia.edu

ABSTRACT

NAND flash memory is fast becoming popular as a com-
ponent of large scale storage devices. For workloads re-
quiring many random I/Os, flash devices can provide
two orders of magnitude increased performance relative
to magnetic disks. Flash memory has some unusual
characteristics. In particular, general updates require
a page write, while updates of 1 bits to 0 bits can be
done in-place. In order to measure how well algorithms
perform on such a device, we propose the “EWOM”
model for analyzing algorithms on flash memory devices.
We introduce flash-aware algorithms for counting, list-
management, and B-trees, and analyze them using the
EWOM model. This analysis shows that one can use
the incremental 1-to-0 update properties of flash mem-
ory in interesting ways to reduce the required number
of page-write operations.

1. INTRODUCTION

Solid state disks and other devices based on NAND
flash memory allow many more random I/Os per second
(up to two orders of magnitude more) than conventional
magnetic disks. Thus they can, in principle, support
workloads involving random I/Os much more effectively.

However, flash memory cannot support general in-
place updates. Instead, a whole data page must be writ-
ten to a new area of the device, and the old page must
be invalidated. Groups of contiguous pages form erase
units, and an invalidated page becomes writable again
only after the whole erase unit has been cleared. Erase
times are relatively high (several milliseconds). Flash-
based memory does, however, allow in-place changes of
1-bits to 0-bits without an erase cycle [5]. Thus it is pos-
sible to reserve a region of flash memory initialized to
all 1s, and incrementally use it in a write-once fashion.

Traditional measures of algorithm complexity do not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Proceedings of the Fourth International Workshop on Data Management on

New Hardware (DaMoN 2008), June 13, 2008, Vancouver, Canada.
Copyright 2008 ACM 978-1-60558-184-2 ...$5.00.

model flash I/O behavior well, because the high cost
of a general update (relative to a 1-to-0 update) is not
accounted for. Previous models for write-once memory
(“WOM”) have been proposed to model devices like pa-
per tape and optical disks in which the write process is
destructive, so that once a bit is set it cannot be un-
set [10]. Maier proposes using write-once storage for a
“Read-Mostly Store” (RMS) where the memory is grad-
ually consumed as updates occur [8]. However, these
models are too restrictive for devices like flash memory
where a bulk erase allows memory to be reused.

1.1 The EWOM Model

We propose a new model for evaluating an algorithm
on a flash-like device. We call it the “Erasable Write
Once Memory” model, or the “EWOM” model. In addi-
tion to counting traditional algorithmic steps, we count
a page-write step whenever a write causes a 0 bit to
change to a 1 bit. If an algorithm performs a group of
local writes to a single page as one transactional step,
we count the group as a single page-write step. Even
if only a few bytes are updated, a whole page must be
written.

The true cost of a page-write step has several compo-
nents. There is an immediate cost incurred because a
full page must be copied to a new location, with the bits
in question updated. If there are multiple updates to a
single page from different transactional operations, they
can be combined in RAM and applied to the flash mem-
ory once, although one must be careful in such a scheme
to guarantee data persistence if that is an application
requirement.

There is also a deferred cost incurred because the flash
device must eventually erase the erase unit containing
the old page. It is a deferred cost because the write itself
does not have to wait for the erase to finish; the erase
can be performed asynchronously. Nevertheless, erase
times are high, and a device burdened by many erase
operations may not be able to sustain good read/write
performance. Further, in an I/O intensive workload a
steady state can be reached in which erasure cannot
keep up, and writes end up waiting for erased pages to
become available.

There is an additional longer-term cost of page erases
in terms of device longevity. On current flash devices
an erase unit has a lifetime of about 10 erases. Thus, if
special-purpose algorithms reduce the number of erases

needed by a factor of f, the expected lifetime of the
device can in principle be multiplied by f.

Our model can distinguish between situations where
the I/O device is saturated, and where the device is
lightly loaded. Algorithms might include a low-priority
background process that asynchronously traverses data
structure elements and reorganizes them to improve per-
formance. The extra I/O workload will not be notice-
able in a lightly-loaded setting, and most data structure
elements will end up in the optimized state. In a sat-
urated or near-saturated scenario, however, the back-
ground process will rarely run, and the data structure
elements will remain in the unoptimized state.

We choose not to model “seek” time for flash memory.
While there is a small overhead involved in moving from
one memory location to another, this overhead is small
relative to the erase costs. Further, this cost is orders of
magnitude smaller than seek times for magnetic disks,
whose performance models often distinguish between se-
quential and random 1/0.

Traditional I/O devices have a fixed block transfer
size, and it is customary to count the number of blocks
transferred when measuring I/O complexity. RAM al-
lows fine-grained data access, and so it is customary
to simply count the number of computational steps to
perform a given operation as the complexity measure.
Flash memory occupies a middle-ground between tradi-
tional I/O devices and RAM. Some flash devices require
transfers to happen in block-sized units, where a single
device may support multiple block sizes, while others al-
low fine-grained access. For the purposes of the present
work, we will adopt the convention that the flash mem-
ory is a fine-grained access device for reads and 1-to-0
writes, and we measure complexity by counting the to-
tal number of computational steps. For general updates,
we also count a page write.!

1.2 Pages and Erase Units

Erase units are typically large, around 128KB. Copy-
ing a full erase unit on every update would not be effi-
cient. It is therefore common for data copying to happen
in page-sized units, where the page size P depends on
how the device is configured. A typical value of P might
be 2KB, meaning 64 pages in a 128KB erase unit.

We assume that there is a memory mapping layer that
maps logical page addresses to physical page addresses.
Such mapping is commonly implemented in hardware
within page-granularity devices: when an update hap-
pens, the physical address changes, but the logical ad-
dress remains the same so that updates do not need
to be propagated to data structures that refer to the
data page. When the device itself does not provide
such a layer, it is common to implement such a layer
in software. The mapping layer also ensures that wear
on the device is shared among physical pages, because
flash pages have a limited lifetime of approximately 10°
erase cycles. The mapping layer can also hide faulty or
worn-out pages from the operating system. The EWOM
model assumes that a logical-to-physcial mapping layer

If we fill a page using simple 1-to-0 writes, there are
no page write operations counted.

is present.

If updates are performed on pages, then at any point
in time, an erase unit may contain some valid pages and
some invalid pages that need to be erased. If an erase
unit contains valid pages, then those valid pages must
be written to alternate locations before the erase unit
can be erased. We assume that the same hardware or
software that monitors the logical-to-physical mapping
of pages also monitors the validity of pages for the pur-
poses of managing erase units for garbage collection.

In a lightly loaded device, such extra copying might
not be noticeable. However, in a heavily loaded system,
with high demand for new erase units, this overhead will
be noticeable.

A “best-case” workload for erase-unit recycling would
occur when all pages in an erase unit are invalid at erase
time. This kind of workload might happen if the data
access pattern is highly clustered, such as when a file is
sequentially updated, page by page. In that case, each
page write contributes to approximately P/E erases,
where F is the size of an erase unit.

A “worst-case” workload would occur when all erase
units available for recycling hold just one invalid page.
This kind of workload might happen on a device that
is almost full, and for which the data access pattern is
scattered over the various erase units. In this case, each
page write causes an erase.

There are obviously many intermediates between the
best and worst cases, and the range is wide. Thus it is
not always possible to predict the erase frequency given
just the page update frequency. More information about
workload characteristics is usually needed.

2. COUNTING

We begin our analysis with a simple task: maintain
a counter in EWOM storage. The counter is initialized
to zero, and may be incremented. A naive, in-place so-
lution would rewrite the counter, stored in conventional
binary form, on every update. Since an increment al-
ways changes some 0 to a 1, every update requires a
page write. Reads have cost proportional to the word
size W of the counter in binary.?

An alternative solution represents the counter in unary
form, with the number of zero bits indicating the count.
An increment operation can be handled by changing a
bit from 1 to 0 without a page-write operation. Unary
counters are severely limited in their counting capacity
since they have space complexity linear in the current
value of the counter. Reads and writes can be handled
in logarithmic time using an exponential expansion fol-
lowed by a binary search to find the first 0 in the bit
array.

A hybrid scheme stores a binary base counter, to-
gether with a unary increment counter of fixed length
L, where L < P—W so that the counter fits in a page [2].
The counter is computed by adding the base counter to
the offset of the first zero in the unary array, which can
be found using binary search. A page-write is needed

2Depending on one’s memory model, W is either con-
stant or O(logn), where n is the value of the counter.

12

Method Space (bits) | Read time Write time Page-Writes
Naive w w 2w 1
Unary n O(logn) O(logn) =
Hybrid (lightly loaded) | W + L W+1 2 0
Hybrid (saturated) W+ L W +O(ogL) | O(log L) + 22X | 1

Figure 1: Amortized complexity for counting

every L steps, at which time the base counter is recom-
puted, and the unary counter is reset.

A low-priority asynchronous operation may look through

pages containing counters, and also perform this recom-
pute/reset operation. We assume that in the lightly
loaded case, the asynchronous background updates hap-
pen at least as often as writes, and promptly after those
writes. This assumption means that the state of the
counter on the flash device will usually have a zero unary
increment value, with the binary part of the counter
containing the current count. Reads become simpler
(because they don’t have to traverse the unary incre-
ment value), and writes become simpler (because there
is always space for unary increments — no page-writes
are necessary).

The complexity of these alternatives is summarized in
Figure 1, where n is the number of increment operations,
and P is the size of a page in bits. Read time is mea-
sured in terms of the number of bit operations needed.
For the write step, we assume that the writer does not
know the previous value of the counter, only that the
counter needs to be incremented. As Figure 1 shows,
the hybrid counting method amortizes page-writes al-
most as well as the unary method, while keeping read
and write performance close to the naive method.

2.1 Arbitrary Increments

One can generalize the hybrid method if increments
(or decrements) by arbitrary amounts are possible. A
single base counter is maintained in binary form. A
unary counter is kept for recording increments by multi-
ples of 2°, 21, 22 etc. An increment is broken down into
its binary form, and the corresponding unary counters
are updated. A separate set of counters is maintained
for decrements. Read operations need to scan through
the various counters to compute the net change to the
binary stored value.

In the event that one of the unary counters is full,
it may still be possible to process an addition without
a page write by decomposing the addition into a larger
number of smaller increments. For example, if the unary
counter corresponding to 2° is full, we could add the
value 2° by appending two bits to the unary counter
corresponding to 2%.

Other configurations are also possible. For example,
instead of recording increments using a unary counter
for each power of 2, one could use unary counters for
powers of an arbitrary value k. The number of bits to
set for each counter would be determined by the corre-
sponding digit of the value to be added when written in
base-k notation.

3. LINKED LISTS

A linked list is a commonly used data structure. In an
EWOM context, standard list operations would require
a page write. A page write would be needed to keep
track of the tail of the list, to implement list element
deletion, to insert an element into the list, and to update
nodes within the linked list.

Suppose that we interpret the all-1 bit pattern as a
NULL pointer. Then one can append to the list using
only 1-to-0 updates by updating the NULL pointer in
the last element of the list to point to a new element.
The new element itself would be written in an area of
the page initialized to all-1s. Unlike traditional append
operations to a list, this variant would need to first tra-
verse the entire list. On the other hand, a page-write is
avoided.

Deletions would need to be handled in an indirect
way, such as by using a “deleted” flag within the node
structure. This would complicate list traversal slightly,
because deleted nodes would remain in the list and need
to have their flags checked.

Like for counting, we could implement a low-priority
background process that “cleans up” lists on a page and
writes a new page. In this new page, the deleted ele-
ments would be omitted. One could also store a short-
cut to the current tail, so that future append operations
do not have to start from the head of the list.

4. BLOOM FILTERS

Some data structures are inherently monotonic in their
update behavior, and map well to the EWOM model
without modification. An example is the Bloom filter
[1]. If we interpret a vector of 1 bits to mean the empty
Bloom filter, then every insertion can be achieved by
setting some 1 bits to 0 bits. In the EWOM model, in-
sert operations do not need to perform any page-writes.

S. B-TREES

Within a database system, one of the places where
random I/O occurs frequently is in accessing B-tree in-

dexes in response to OLTP workloads. Indexes are searched

(to find the record to update), new records are inserted,
and old records are deleted. One way to deal with B-tree
update-heavy workloads is to batch the updates. That
way, the costs associated with restructuring a page can
be amortized over many updates. Batching happens
implicitly when a page resides in the database system’s
buffer pool.? Batching can also happen close to the

3Note that the database system is ensuring persistence
in this case by maintaining a recovery log.

13

physical device in a RAM-based cache. However, if the
locality of reference of the database access is poor, such
as when the table and/or index is much bigger than the
buffer pool and records are being accessed randomly,
there will be little effective batching in practice.

We therefore propose a new way to organize leaf nodes
in a B-tree to avoid the page-write cost most of the time,
while still processing updates one at a time. We focus
on leaf nodes because that is where the large majority
of changes happen.

Suppose that an entry in a leaf node consists of an
8-byte key, and an 8-byte RID referencing the indexed
record. We assume a leaf node can hold L entries, taking
16L bytes. We shall assume that a leaf node has size
that exactly matches the page size of the device.

With the requirement that leaf nodes be at least half
full, a conventional B-tree leaf node will contain between
L/2 and L entries stored in sorted key order. The or-
dering property allows for keys to be searched in loga-
rithmic time using binary search.

A first attempt at a page-write-friendly leaf node would
be to store all entries in an append-only array in the or-
der of insertion [8]. A bitmap would be kept to mark
deleted entries. When the node becomes full, it is split,
and (nondeleted) entries are divided among the two re-
sulting pages. The obvious drawback of this approach
is that search time within the node will be linear rather

than logarithmic, dramatically slowing down both searches

and updates.

5.1 The Proposed Approach

Apart from the initial root node, all leaf nodes are
created as a result of a split. When a split happens,
we sort the (nondeleted) records into key order, and
store them in that order in the append-only array. We
keep track of the endpoint of this array by storing it
explicitly in the leaf node. Subsequent insertions are
then appended to the array as before.

So far, we have improved performance slightly be-
cause one can do a binary search over at least half of the
entries, followed by a linear search of the remaining en-
tries to find a key. However, the asymptotic complexity
is still linear in the size of the array.

To speed up the search of the newly-inserted elements
we store some additional information. Choose positive
integer constants ¢ and k. For every c entries in the new
insertions, we store a c-element index array. Each entry
in this index array stores an offset into the segment of
new insertions, and the index array is stored in key or-
der. (It is not maintained incrementally; it is generated
only when there have been ¢ new insertions.)

To search an array of m new elements (m < L), we
need at most (m/c)log, ¢+ (¢ — 1) comparisons. While
we have reduced the asymptotic search time by a factor
of ¢/log, ¢, it remains linear in m. The trick is to apply
this idea recursively.

Suppose that after kc elements, instead of a c-element
offset array, we store a kc-element offset array covering
the previous kc newly inserted records. Now we need
at most one linear search of at most ¢ — 1 elements,
at most k — 1 binary searches of ¢ elements, and |]
binary searches of kc elements. If we keep scaling the

offset array each time m crosses ¢, ke, k%c, k3c etc., then
the total cost is O(log? m). (There are O(logm) binary
searches, each taking O(logm) time.)

A complete search therefore takes O(log(n/L)+log? L)
O(log n+log? L) time, where n is the number of elements
in the tree.

The space overhead of this approach is the total size
of the index arrays. This size is equal to

| Z]c+ |2 (ck —c) + | 2% |(ck® — ck) + ...
~ mlog,(m/c) = O(mlogm).

The overhead for one node is thus O(Llog L), and the
overhead for the entire tree is O(nlog L). This is a clas-
sical computer-science trade-off in which we use more
space to reduce the time overhead. Different choices for
c and k represent alternative points in the space-time
trade-off.

In practice, the space overhead is unlikely to be oner-
ous. For example, suppose that the page size is 16KB.
8KB can be devoted to new entries and the offset ar-
rays. This places an upper bound of 512 new entries. If
c = 32 and k = 3, the largest index array we will build
will have 288 entries. The total space in bytes to store
m new entries is then

16m+32(|m/32])+(96—32)(|m/96])+2(288—96) (| m/288)).

(Here, we’re assuming one byte offsets for up to 255
elements, and two-byte offsets for 256 or more elements.)
Based on these numbers, we could store 446 new entries
in the leaf node before we ran out of space. 1056 bytes
out of 16K bytes (6.4%) is the space overhead, ignoring
the pointer to the start of the new elements and the bits
to record deletions.

Under lightly loaded conditions, where one has spare
cycles to do background leaf optimization, one could
convert a leaf node to sorted format and reset the point-
ers to new entries, writing the resulting node to a new
memory location. For such “fresh” leaf nodes, search
time goes down from O(log?m) time to O(logm) time.
Note that because of the logical-to-physical page map-
ping, parent nodes are unchanged by leaf freshening.

5.2 Analysis

Every c entries, an updating transaction needs to sort
¢ elements costing O(clogc) time. When the system
gets to a k'c-byte boundary, it only needs to sort the
last ¢ elements, then merge k ordered lists of size k'~ !¢,
which can be done in O(clog ¢ + k'clog k) time. Amor-
tizing over all insertions, the cost per insertion has order

lo; m/c i m
Sosoen /O (kiclog k) (| 2%]) /m

~ logkllog,(m/c)| ~ log(m/c)

Similarly, split processing can merge the array segments
rather than fully sorting the array.

One needs to know where the array of new values
ends, in order to decide when to terminate the search,
and where to append new values. The simplest way to
do this is to assume that a pattern of all 1-bits is not
a valid (key,RID) pair. One can then binary search to
find the last valid pair. One could try to explicitly store

14

Method Space (bits) | Read time Write time Page Writes
Standard O(n) O(logn) O(logn) 1
Append-Only O(n) O(logn + L) O(logn) I

Hybrid (lightly loaded) | O(nlog L) O(logn) O(logn) 0

Hybrid (saturated) O(nlog L) O(logn +log? L) | O(logn +1log L) | O(%)

Figure 2: Amortized B-tree complexity for a tree of size n, treating ¢ and k as constants.

Pointer to the endpoint of initial sorted prefix.

Prefix P containing sorted (key,RID) pairs. Calculated during most recent page-write.

Sequence S of (key,RID) pairs in insertion order.

Indexes of first group of ¢ elements of S, in sorted order.

Indexes of second group of ¢ elements of S, in sorted order.

Indexes of k — 150

group of ¢ elements of S, in sorted order.

Indexes of first group of kc elements of S, in sorted order.

Indexes of k + 150 group of ¢ elements of S, in sorted order.

Deletion bits

Log Sequence Number (using generalized counter)

Figure 3: The final structure of a B-tree node of (key,RID) pairs.

the offset using the counters of Section 2, but such a
method would consume more space than necessary.

Figure 2 shows the amortized asymptotic complex-
ity for the proposed B-tree structure. We assume that
writes do not need to check whether the key already
exists in a node before insertion. If such a check is nec-
essary, the entry for the append-only method would be-
come O(logn+ L) and the entry for the hybrid method
with saturated writes would become O(logn + log? L).
Note that even in the saturated setting, the hybrid method
only needs a page-write every O((log L)/L) insertions,
while having better asymptotic read complexity than
the append-only method.

5.3 Refinements

We have assumed that leaf nodes contain (key,RID)
pairs. Sometimes, to save space, B-tree leaf nodes are
designed to associate a key with a list of RIDs. The
proposed structure can be modified so that at the time
of reorganization (i.e., when a page-write occurs), the
initial segment of data is in (key,RID-list) form. An
alternative would be to keep a linked list of RIDs for
each key, using the linked-list techniques described in
Section 3.

In real B-tree implementations, a leaf node contains a
log sequence number (LSN) recording information rele-
vant for node recovery in case of failure. On an EWOM
device, the LSN could be implemented using a gener-
alized counter as described in Section 2.1. Note that
LSNs are monotonically increasing, meaning that only
increments, not decrements, need to be considered.

The final structure of a B-tree node is summarized in
Figure 3. This figure shows a node containing (key,RID)
pairs. If RID-lists were used, a region within the page
would be used as a heap for allocating new RID nodes

to add to RID-lists.

6. RELATED WORK

An interesting technique related to counting was pro-
posed by Rivest and Shamir for the WOM model [10].
They show, for example, that it is possible to overwrite
an arbitrary number from {0,1,2,3} with another ar-
bitrary number from that set (a) using only monotonic
bit changes, and (b) with only 3 bits of storage. Each
possible number has two valid 3-bit encodings, such as

0:000,111; 1:001,110; 2:010,101; 3: 100,011

The first code for a number is used for the initial write.
The second code is used for the subsequent write, unless
the second write has the same value, in which case there
is no change. One could extend techniques like this to
the EWOM model by erasing when necessary, which in
this example would be after two or more updates.

Others have studied B-tree implementations for flash
devices. Wu et al. [11] describe a B-tree method that
uses a combination of RAM-resident buffers and “index
units” representing flash-resident incremental changes to
a B-tree node. The logical view of a B-tree node is re-
constructed using the node together with these index
units. The work of Wu et al. assumes a page-level in-
terface to the flash device, without fine-grained access.

Nath et al., also study B-tree indexes on flash devices,
with the aim of minimizing power and maximizing per-
formance on a low-power mobile device [9]. Their sys-
tem optimizes B-tree parameters in a self-tuning fash-
ion, based on the workload and device characteristics.
They also employ a page-level interface to the flash
memory.

OLTP workloads frequently need to perform small up-
dates in place. Lee and Moon show how to restructure

database pages and modify the logging protocol to min-
imize the required number of page erases [7]. Multiple
versions of a data element are kept on a page in a write-
once log-like structure within the page, and reads must
consult the log to look for changes. Data is written to
the flash storage in sector-sized units (512 bytes in [7]).

7. CURRENT DEVICES

The two basic types of flash memory available to-
day are NOR-flash and NAND-flash. These technolo-
gies have contrasting behaviors that make them suit-
able for different classes of application [4]. For example,
NAND-flash tends to have larger capacity, faster writes
and erases, and page-level data access. NOR-flash tends
to have faster reads, and fine-grained random access to
data. Hybrid NAND/NOR devices exist (e.g., [6]).

The types of flash memory interaction allowed by a
device vary. Some devices implement only a page-level
API such as FTL [5], and updates to pages always cause
a new page to be written. Such a choice allows an SSD
device to resemble a magnetic disk device, and be used
in existing systems that employ disk devices. Other de-
vices (together with a software layer) expose flash as a
“Memory Technology Device” (MTD) via UBI [3], which
allows partial updates to pages. Low level flash inter-
faces have been defined by the ONFI working group®.
In this paper, we assume an interface in which partial
writes to a page are allowed, as long as they only involve
trasitions from a 1 bit to a 0 bit.

Not every flash device may provide an interface that
allows fine-granularity in-place 1-to-0 updates. As men-
tioned above, flash-based solid-state disks currently pro-
vide disk-like APIs, with pages or sectors as the unit of
data transfer. Nevertheless, future devices may provide
finer-grained APIs if there is a potential performance
improvement. The results of this paper are a step in
this direction, showing what is possible with such an
APIL

Some flash devices store error-correcting codes in re-
served portions of the flash memory. Incremental changes
to pages would also require incremental changes to the
error-correcting codes. Even if the data changes are
monotonic 1-to-0 writes, the resulting error-correcting
code changes are unlikely to be monotonic. It may
thus be necessary to reserve space for an array of error-
correcting code values, and to write a new element into
the array after each write.

While our EWOM model is motivated by flash mem-
ory, it is also possible that other technologies such as
PRAM memory may, in the future, have similar block
erase characteristics.

8. CONCLUSIONS

We have described a new model for measuring the
performance of algorithms on write-once devices with
an erase capability. We have adapted several standard
algorithms to take account of the high page-write cost of
arbitrary updates, and have analyzed their performance.

dyww.onfi. org

The results of this paper are unlikely to represent the
final word on how to implement even the few techniques
we have addressed. For example, it may be possible
to trade space for time (or write performance for read
performance) in different ways to get new algorithmic
variants.

Acknowledgements

Thanks to Bishwaranjan Bhattacharjee, Christian Lang,
Bruce Lindsay, Tim Malkemus, George Mihaila, Haixun
Wang, and Mark Wegman for helpful discussions and
suggestions.

9. REFERENCES

[1] Burton H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Commun. ACM,
13(7):422-426, 1970.

[2] Paul England and Marcus Peinado. System and
method for implementing a counter, 2006. US
Patent Number 7,065,607.

[3] T. Gleixner, F. Haverkamp, and A. Bityutskiy.
UBI - Unsorted Block Images, 2006.

[4] Toshiba Inc. NAND vs. NOR flash memory, 2006.
Downloaded May 2008 from
http://www.toshiba.com/taec/components/
Generic/Memory_Resources/ NANDvsNOR.pdf.

[5] Intel Corp. Understanding the Flash Translation
Layer (FTL) Specification, 1998.

[6] T. H. Kuo et al. Design of 90nm 1Gb ORNAND
flash memory with MirrorBit technology. In
Symposium on VLSI Circuits, Digest of Technical
Papers, pages 114-115, 2006.

[7] Sang-Won Lee and Bongki Moon. Design of
flash-based DBMS: an in-page logging approach.
In SIGMOD ’07: Proceedings of the 2007 ACM
SIGMOD international conference on
Management of data, pages 55—66, New York, NY,
USA, 2007. ACM.

[8] David Maier. Using write-once memory for
database storage. In PODS ’82: Proceedings of the
1st ACM SIGACT-SIGMOD symposium on
Principles of database systems, pages 239-246,
New York, NY, USA, 1982. ACM.

[9] Suman Nath and Aman Kansal. Flashdb: dynamic
self-tuning database for nand flash. In IPSN "07:
Proceedings of the 6th international conference on
Information processing in sensor networks, pages
410-419, New York, NY, USA, 2007. ACM.

[10] Ronald L. Rivest and Adi Shamir. How to reuse a
write-once memory (preliminary version). In
STOC ’82: Proceedings of the fourteenth annual
ACM symposium on Theory of computing, pages
105-113, New York, NY, USA, 1982. ACM.

[11] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping Chang.
An efficient B-tree layer implementation for
flash-memory storage systems. Trans. on
Embedded Computing Sys., 6(3):19, 2007.

