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THE subject of this paper is basically 
micro-programming as a design tool, 

the program of the meeting notwith­
standing. This subject of micropro­
gramming has received a great deal of 
attention in the last several years, pri­
marily as a possible method of making 
the so-called general purpose computers 
more flexible. It has been propounded 
by some that microprogramming offers 
a technique whereby the user would be 
free to define, in some degree, the machine 
organization. However, microprogram­
ming has other rather intriguing pos­
sibilities. Some of these have been 
realized recently at the Electro Data 
Division of the Burroughs Corporation. 

Several years ago work was begun on 
new control techniques. One of these 

techniques that showed promise is the 
one under discussion. This method of 
control was first applied to the Datatron 
220. This control principle was employed 
on this project primarily to facilitate 
detail design and thus to shorten the 
production lead time. The method was 
not selected for economic reasons al­
though it now appears that some economy 
of componentry has been achieved 
because of it. 

The logical requirements for the micro-
control are similar to those of an interpre­
tive program. A command must be 
fetched from the memory if necessary 
command arithmetic takes place, and 
the command is analyzed and executed. 
In the 220, the model for discussion, 
all data is handled serial by digit, parallel 

by bit, except in the case of access to 
the parallel-parallel core memory and 
two broadside address transfer pads. 

Fig. 1 represents the flow of data within 
the central processor and between this 
processor and the high-speed memory. 
The broadside shifts between the address 
buffer and the address register and pro­
gram counter can be seen. The various 
microcommands available to the designer 
are those dealing with this configuration. 
The different data pads can be closed 
by means of gates. Any register may 
be shifted right, \ certain decades may be 
counted, and in the case of the adder -
subtractor, either addition or subtraction 
can be ordered. 

Since all data manipulation takes 
place a digit at a;time, the same operation 
will often be applied to several digits 
which comprise the word or subword. 
Two types of pulses are used to accomplish 
this necessary repetition and nonrepeti-
tion of function. A digit pulse is used 
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Fig. 1 . Flow chart of the 220 computer 
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Fig. 2. Flow chart of the load R command 

to apply the same operator to a number 
of digits. The distribution to the several 
digits is by means of shifting the con­
tents of a register. Groups of these 
digit pulses; are separated by sequence 
pulses. The sequence pulses may be 
thought of as the decision-making pulses. 
Any number of digit pulses may be in a 
group, as a consequence, the concept of 
word time has no meaning even though 
the 220 is a fixed word-length machine. 

A digit counter is used to count the 
number of digit pulses in a group. This 
counter is designed to seek a terminal 
value which is, in the 220, equal to the 
number 20. When this counter is set 
to some value less than 20 it will immedi­
ately start counting in a positive sense 
until the value of 20 is reached. A 
terminal value of zero could have been 
used in conjunction with a decreasing 

count; however, the present method 
was picked because of easier training. 
This counter can, in any event, be used 
to define both sequence and digit pulses. 
Digit pulses occur, by definition, when 
the digit counter is less than 20. These 
pulses are used to increase the counter in 
order to meter the digit pulses. Sequence 
pulses occur when the counter is equal 
to 20, the terminal or rest state. 

A second counter is employed in the 
micro-control for the purpose of defining 
the subcycles in any operation. This 
sequence counter in the 220 is a 4-stage, 
binary counter taking on all values from 
0 through 15. This counter is set and 
counted by sequence pulses only. Thus, 
any sequence pulse is defined by the 
setting of the sequence counter and in 
turn, defines the next setting of the 
sequence counter. A digit pulse is de­

fined by the setting of the sequence 
counter. The setting of the digit counter 
is not cited here since its purpose is to 
meter the number of digit pulses. Its ini­
tial setting for each group of digit pulses 
is the only value of interest and this set­
ting is made and defined by a sequence 
pulse. As a result, the same pulse that 
sets the sequence counter sets the digit 
counter. 

The contents of the sequence counter 
is not in itself sufficient to define the set 
of micro-operations to be carried out by 
the associated digit and sequence pulses. 
It is therefore necessary to have some 
method by which the coded machine 
order can be related to the micropro­
gramming cycles, or subroutines. This 
need is satisfied by the mechanism of a 
standard-order decoding matrix affixed 
to the order portion of the command 
register. During command execution, 
the output of this matrix defines the order 
and is gated by the output of the sequence 
counter to define the suborder. The 
three functions of digit counter, sequence 
counter, and order matrix could have been 
combined; however, the attending logical 
complexity was too fearsome to con­
template for long. The maximum values 
for the contents for both control counters 
was picked as minimal for the 220 system. 

Fig. 2 is a flow chart of the load R 
command. This command loads the 
R register from memory. The first 
pulse SP 0 is common to all commands 
and merely clears the debris from the 
previous fetch. The second pulse sets 
up the address in the address buffer and 
the third pulse orders a memory read. 
All of these pulses are sequence pulses and 
each defines the next settings of the con­
trol counters. So far the digit pulse 
groups have been of length zero. SP 2 
also sets the digit counter to 09 which is 
20 minus 11. Since 11 pulses are needed 
to shift the word to the T register, this 
setting is the correct one. The final 
SP is used to shift the R register into 
proper position and at the same time all 
control imaginable is cleared, or other­
wise disposed of. 

I t can be deduced from this explanation, 
hopefully, that some sort of timing flip-
flop is still needed to differentiate between 
the two basic states of a classic stored pro­
gram computer. When this flip-flop is in 
the fetch state, the output of the order 
matrix is blithely ignored and the sequence 
counter and the timing flip-flop alone 
control the fetch cycle. During execu­
tion this flip-flop is in the opposite state. 
This state is changed at the end of each 
half cycle of the computer. The fetch 
state is also used during the control of 
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Fig. 3. Flow chart 

cycles from the console. Micro-opera­
tions are not, and should not be, depend­
ent on the contents of the order register. 

A number of extraneous flip-flops are 
still needed in the control section to store 
binary decisions. Several are there be­
cause of the command list. These in­
clude the overflow and compare indi­
cators. Some are there because of the 
nature of the universe. The carry flip-
flop is a good example. One or two 
are used to make life easier for the de­
signer. An example of this class is the 
subtract flip-flop. This controls the 
adder-subtractor. In all cases, com­
binational logic could replace this flip-
flop; however, the presence of this flip-
flop makes possible the use of sequential 
rather than combinational logic at a 
reasonable saving in complexity. Since 
the data for controlling this flip-flop are 
available only in a sequential fashion, 
it follows that no loss of performance 
is encountered. 

A second example of command control 
is the fixed point add group. Two types 

of decisions must be made in this group. 
The entire group of fixed point add com­
mands are compressed into one cycle so 
that the exact micro-order to be followed 
is the usual function of the sequence 
counter and the order matrix. The 
sign control also enters into the choice of 
micro-order. A second class of decision 
is that which is necessary after a com­
plement addition. If the result of the 
addition is in complementary form, a 
decomplement cycle is ordered. In all 
other cases this cycle is skipped. This 
decision is made by conditional setting of 
both the digit and sequence counter. 
(See Fig. 3.) In the case in point, only 
the digit counter is involved. However, 
the conditional setting of the sequence 
counter is prevalent. 

An analogy may be drawn between this 
type of microprogramming and normal 
coding. The machine order to be de­
signed is the subroutine name. The 
setting of the sequence counter is equiva­
lent to the step number. The micro-
orders are equivalent to the normal 

commands in programming. The digit 
counter is similar in operation to a repeat 
command as used in some machines. 
The use of this format for command 
decision has already proved its worth in 
making it possible to employ young, 
relatively untrained engineers in the 
detail stages of design. This also serves 
as a good basic training ground for these 
young engineers and gets them into 
design that much faster. 

The translation from, the flow chart to 
a print is not as formidable as one might 
think. The use of data processing on 
the flow charted information can group 
inputs to circuits and produce loadings on 
outputs. A set of circuit and wiring 
lists can be produced and from these 
to a print is straight forward although 
tedious. 

This method of design is far from a 
panacea. Its main disadvantage is that 
it does not facilitate optimization of 
circuitry. Its prime value is in the speed 
that can be realized in the early detailing 
of a large system; 
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