
Cascaded Variable Cycle Control as

Applied to the 220 Computer

E. L. GLASER
NONMEMBER AIEE

THE subject of this paper is basically
micro-programming as a design tool,

the program of the meeting notwith­
standing. This subject of micropro­
gramming has received a great deal of
attention in the last several years, pri­
marily as a possible method of making
the so-called general purpose computers
more flexible. It has been propounded
by some that microprogramming offers
a technique whereby the user would be
free to define, in some degree, the machine
organization. However, microprogram­
ming has other rather intriguing pos­
sibilities. Some of these have been
realized recently at the Electro Data
Division of the Burroughs Corporation.

Several years ago work was begun on
new control techniques. One of these

techniques that showed promise is the
one under discussion. This method of
control was first applied to the Datatron
220. This control principle was employed
on this project primarily to facilitate
detail design and thus to shorten the
production lead time. The method was
not selected for economic reasons al­
though it now appears that some economy
of componentry has been achieved
because of it.

The logical requirements for the micro-
control are similar to those of an interpre­
tive program. A command must be
fetched from the memory if necessary
command arithmetic takes place, and
the command is analyzed and executed.
In the 220, the model for discussion,
all data is handled serial by digit, parallel

by bit, except in the case of access to
the parallel-parallel core memory and
two broadside address transfer pads.

Fig. 1 represents the flow of data within
the central processor and between this
processor and the high-speed memory.
The broadside shifts between the address
buffer and the address register and pro­
gram counter can be seen. The various
microcommands available to the designer
are those dealing with this configuration.
The different data pads can be closed
by means of gates. Any register may
be shifted right, \ certain decades may be
counted, and in the case of the adder -
subtractor, either addition or subtraction
can be ordered.

Since all data manipulation takes
place a digit at a;time, the same operation
will often be applied to several digits
which comprise the word or subword.
Two types of pulses are used to accomplish
this necessary repetition and nonrepeti-
tion of function. A digit pulse is used

E. L. GLASER is with Burroughs Corporation, Pasa­
dena, Calif.

Acknowledgment is given to Lloyd Cali who was
invaluable in the design of the 220 and for his.
original thinking in this basic principle of control.

s si
in

* T s 4 5 4> 7 8 9 h o

| 1

¥ Y

- » • GENERAL OUTPUT

I I I « . CARDATlW**

I 1 ere.
A D D E R X t Y = E

I | 2 | 5 | 4 | S - | < b | 7 | 8 | 9 I O

IB

COMPUTER
MEMORY

PftRMXEL ACCESS TO
AND FROM CORE MEMORY
FROM AND TO 1 8

IOOO TO \OOOO

woect

r~~i
B

COMMAHD RE&\STUR

nf i I 2 | 3 |4-

V

• n i J i i i I?iei3iA

MEMORY ADDRESS CONTROL

Fig. 1 . Flow chart of the 220 computer

Glaser—Cascaded Variable Cycle Control 63

file:///OOOO
http://crossmark.crossref.org/dialog/?doi=10.1145%2F1457769.1457789&domain=pdf&date_stamp=1958-05-06

Q

sc =
SP

sc
SP

01

= 02

SC = 00
DC = 20

SC+ I

CL AB, 13. ABT

MRP

SC+ I

SET DC = 09

MSP

M l DP)

DC+ I

IBSG=3>IBI0

I B I 0 - > I B S G . DSG,

D S G ^ D I O

Z - * R S G

Rl =& RIO

RSG-»RI

TRANSFER THE INFORMATION
FROM IB THROUGH THE ADDER TO R

OC CLEAR

Z-»RSG

RSG-**RI

R I = * R I O

Fig. 2. Flow chart of the load R command

to apply the same operator to a number
of digits. The distribution to the several
digits is by means of shifting the con­
tents of a register. Groups of these
digit pulses; are separated by sequence
pulses. The sequence pulses may be
thought of as the decision-making pulses.
Any number of digit pulses may be in a
group, as a consequence, the concept of
word time has no meaning even though
the 220 is a fixed word-length machine.

A digit counter is used to count the
number of digit pulses in a group. This
counter is designed to seek a terminal
value which is, in the 220, equal to the
number 20. When this counter is set
to some value less than 20 it will immedi­
ately start counting in a positive sense
until the value of 20 is reached. A
terminal value of zero could have been
used in conjunction with a decreasing

count; however, the present method
was picked because of easier training.
This counter can, in any event, be used
to define both sequence and digit pulses.
Digit pulses occur, by definition, when
the digit counter is less than 20. These
pulses are used to increase the counter in
order to meter the digit pulses. Sequence
pulses occur when the counter is equal
to 20, the terminal or rest state.

A second counter is employed in the
micro-control for the purpose of defining
the subcycles in any operation. This
sequence counter in the 220 is a 4-stage,
binary counter taking on all values from
0 through 15. This counter is set and
counted by sequence pulses only. Thus,
any sequence pulse is defined by the
setting of the sequence counter and in
turn, defines the next setting of the
sequence counter. A digit pulse is de­

fined by the setting of the sequence
counter. The setting of the digit counter
is not cited here since its purpose is to
meter the number of digit pulses. Its ini­
tial setting for each group of digit pulses
is the only value of interest and this set­
ting is made and defined by a sequence
pulse. As a result, the same pulse that
sets the sequence counter sets the digit
counter.

The contents of the sequence counter
is not in itself sufficient to define the set
of micro-operations to be carried out by
the associated digit and sequence pulses.
It is therefore necessary to have some
method by which the coded machine
order can be related to the micropro­
gramming cycles, or subroutines. This
need is satisfied by the mechanism of a
standard-order decoding matrix affixed
to the order portion of the command
register. During command execution,
the output of this matrix defines the order
and is gated by the output of the sequence
counter to define the suborder. The
three functions of digit counter, sequence
counter, and order matrix could have been
combined; however, the attending logical
complexity was too fearsome to con­
template for long. The maximum values
for the contents for both control counters
was picked as minimal for the 220 system.

Fig. 2 is a flow chart of the load R
command. This command loads the
R register from memory. The first
pulse SP 0 is common to all commands
and merely clears the debris from the
previous fetch. The second pulse sets
up the address in the address buffer and
the third pulse orders a memory read.
All of these pulses are sequence pulses and
each defines the next settings of the con­
trol counters. So far the digit pulse
groups have been of length zero. SP 2
also sets the digit counter to 09 which is
20 minus 11. Since 11 pulses are needed
to shift the word to the T register, this
setting is the correct one. The final
SP is used to shift the R register into
proper position and at the same time all
control imaginable is cleared, or other­
wise disposed of.

I t can be deduced from this explanation,
hopefully, that some sort of timing flip-
flop is still needed to differentiate between
the two basic states of a classic stored pro­
gram computer. When this flip-flop is in
the fetch state, the output of the order
matrix is blithely ignored and the sequence
counter and the timing flip-flop alone
control the fetch cycle. During execu­
tion this flip-flop is in the opposite state.
This state is changed at the end of each
half cycle of the computer. The fetch
state is also used during the control of

64 Glaser—Cascaded Variable Cycle Control

IHITIAL SIGH
MAMIPULATIOH
DASED OH SION
OF A AHD (ONHAHO.

>

IOIO-»-OSG
OSG-»D10

1810-.- I8SC-
I 0 S 5 - M 0 I 0
I B I C —~- 1

Z -»-ASG
ASG-»-AI

A I - » A I O

AIO - * • X

>

SOT—ASO-I
GST-»-DS«-l
OST-—I BSC-- I

>

(») DETERHIHE *R ITHHE1IC

OVERFLOW.

(3) OETERNIHE IF
DECONPLENEKT CYCLE
IS HECESSARY

SET OFT ~ I ~]

>

RESTORE SIGHS

CAD - CLEAR. ADD

CSV . CLEAI, SUITIACT
AD • ADO
SU - SUITRACT

Fig. 3. Flow chart

cycles from the console. Micro-opera­
tions are not, and should not be, depend­
ent on the contents of the order register.

A number of extraneous flip-flops are
still needed in the control section to store
binary decisions. Several are there be­
cause of the command list. These in­
clude the overflow and compare indi­
cators. Some are there because of the
nature of the universe. The carry flip-
flop is a good example. One or two
are used to make life easier for the de­
signer. An example of this class is the
subtract flip-flop. This controls the
adder-subtractor. In all cases, com­
binational logic could replace this flip-
flop; however, the presence of this flip-
flop makes possible the use of sequential
rather than combinational logic at a
reasonable saving in complexity. Since
the data for controlling this flip-flop are
available only in a sequential fashion,
it follows that no loss of performance
is encountered.

A second example of command control
is the fixed point add group. Two types

of decisions must be made in this group.
The entire group of fixed point add com­
mands are compressed into one cycle so
that the exact micro-order to be followed
is the usual function of the sequence
counter and the order matrix. The
sign control also enters into the choice of
micro-order. A second class of decision
is that which is necessary after a com­
plement addition. If the result of the
addition is in complementary form, a
decomplement cycle is ordered. In all
other cases this cycle is skipped. This
decision is made by conditional setting of
both the digit and sequence counter.
(See Fig. 3.) In the case in point, only
the digit counter is involved. However,
the conditional setting of the sequence
counter is prevalent.

An analogy may be drawn between this
type of microprogramming and normal
coding. The machine order to be de­
signed is the subroutine name. The
setting of the sequence counter is equiva­
lent to the step number. The micro-
orders are equivalent to the normal

commands in programming. The digit
counter is similar in operation to a repeat
command as used in some machines.
The use of this format for command
decision has already proved its worth in
making it possible to employ young,
relatively untrained engineers in the
detail stages of design. This also serves
as a good basic training ground for these
young engineers and gets them into
design that much faster.

The translation from, the flow chart to
a print is not as formidable as one might
think. The use of data processing on
the flow charted information can group
inputs to circuits and produce loadings on
outputs. A set of circuit and wiring
lists can be produced and from these
to a print is straight forward although
tedious.

This method of design is far from a
panacea. Its main disadvantage is that
it does not facilitate optimization of
circuitry. Its prime value is in the speed
that can be realized in the early detailing
of a large system;

Glaser—Cascaded Variable Cycle Control 65

