
70 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 

Computing Educated Guesses 
E . S. S P I E G E L T H A L f 

TO DISTINGUISH himself from the poor be
nighted man-in-the-street, the computer sophisti
cate is apt to refer to the beasts as "so-called giant 

brains" or as "lightning-fast idiots." He knows, as do 
we, the great gulf which separates the human brain from 
the general-purpose digital computer. Still, the exact 
dimensions of that gulf are quite unknown, and the 
desire to show that the hiatus between man and ma
chine is smaller than many suspect impels both the ad
venturesome and the iconoclastic. The attempt, the 
successful attempt, to automate one area hitherto con
sidered an exclusively human domain constitutes my 
topic today. 

We are all familiar, if only by hearsay, with the 
troubles that can beset the best of computer programs 
if the input to the program is not thoroughly debugged. 
For a program designed to test the putative behavior of, 
say, a proposed steam turbine, where the input consists 
of a scant dozen or so parameters, input debugging is 
hardly a problem. The situation is quite different for a 
data-processing operation, particularly when the in
put is massive, as it usually is. Three alternatives, all un
pleasant, present themselves to the supervisor of such 
a large-scale data-processing operation. He can build a 
wide variety of error-detecting features into his pro
gram, flagging all input errors for subsequent human 
correction, he can employ a host of human pre-editors to 
clean up the input, or he can hope that input errors are 
rare, and let it go at that. 

Unhappily, there are many applications where errors 
are not rare, where the do-nothing solution is obviously 
frivolous and where, consequently, a sizeable group of 
humans is necessary, either as pre-editors or as on-line 
trouble-shooters. Nor is it always the case that the 
necessary human beings can be clerical types. Certain 
input debugging calls for sophisticated and knowledge
able practitioners. We are all hopeful—almost all, any
way—that keypunch machines and operators will sooner 
or later be superseded by character-reading devices and 
the like. There is no philosophical difficulty in conceiv
ing of typed, printed, or handwritten characters being 
translated directly into computer language without any 
human intervention, provided, of course, that those 
characters were correctly typed, printed, or written to 
begin with. Suppose, hpwever, that the source char
acters are incorrect. Consider the ingenuity expended in 
the Post Office just in recognizing all the variations of 
"Albuquerque." Our Russian colleagues are supposed to 
be far advanced in the domains of automatic translation 
and character-reading, but present their machines with 

t General Electric Co., Bethesda, Md. 

a first edition of "Cybernetics," with all its typograph
ical errors, and horrible difficulties would ensue. Our 
choice, then, is clear. Either we admit that many im
portant data-processing applications are impossible to 
automate completely, or we find a way to mechanize the 
human capacity for making educated guesses. We be
lieve that, for some applications at least, we have found 
a way. 

While the techniques we have developed were con
ceived with one particular application in mind, I shall 
describe them without reference to that application, 
successful as it was. The principal reason for taking this 
tack is to be able to present the basic, quite general, 
features of our method without being tripped up by the 
special form-fitting required by the actual problem. So, 
let us be general, and consider any language with which 
humans attempt to communicate with one another. 
These may be natural languages, like English or Ger
man, or artificial languages like Esperanto or certain 
telegraphic codes. There are all sorts of personal rea
sons for communication being difficult—ignorance, 
dogmatism, poor sentence structure, etc.; however, 
even if these factors did not exist, all sorts of nonhu-
man noise would beset would-be communicators. In
formation theory makes much of "redundancy" as an 
aid in error-detecting and error-correcting when a noisy 
channel is being used. Indeed, even humans who have 
never heard of information theory make continual, and 
skillful, use of redundancy in unscrambling all sorts of 
garbled communications, whether the trouble be cross
talk in a telephone conversation or missing letters in a 
crossword puzzle. Without attempting to build a model 
of the brain, replete with neural nets and such, let us see 
if we can single out the functions performed by human 
redundancy-exploiters. If these functions turn out to be 
performable without recourse to extrasensory percep
tion or to the psychokinetic effect, our automation 
problem is essentially solved. There remain only the 
minor problems of collecting all the necessary data, 
carrying out a rather gruesome programming task and 
finding a computer fast enough and capacious enough to 
make our solution practicable. I shall return later to 
this question of practicability. At the moment, allow 
me to sketch the functions which, when suitably pro
grammed, allow a general-purpose computer to simulate 
a redundancy-exploiting, error-detecting, and error-
correcting human being. 

Rather than jump into a completely general and ab
stract formulation, let me use a concrete illustration. 
Fig. 1 shows two familiar sights, a correctly prepared 
mailing envelope and, below it, a somewhat sloppier ver
sion of the same thing. We shall assume at first that a 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1457838.1457850&domain=pdf&date_stamp=1959-03-03


Spiegelthal: Computing Educated Guesses 71 

John I. Zilch 
40 Blueberry Lane 
Boston 3, Mass 

A t t . : M r . P. B. M.Smi th 

JohnlZilch 
40 Blueberry Line 
Bost.Massachuesets 

Attention Smith 

Computers Ltd. 
12345 E. 152nd St. 
Phoenix, Ariz. 

(a) 

Computers Lid. 
112345 E 152 
Pheonlx.A. 

(b) 

Fig. 1—Envelopes, (a) good, (b) bad. 

"perfect" character-reading device has "read" the per
fect envelope, and consider the functions which must be 
performed by a machine to "understand" the envelope, 
i.e., to route it to the correct addressee by the desired 
means, e.g., air mail or first class. We shall then consider 
a fallible character-reading device reading the lower, 
garbled, envelope, and see what can be done there. It 
should be emphasized that, in this application, we are 
not concerned with the essentially straightforward task 
of actually routing the envelope to its destination. Our 
job here is just to ascertain the information needed by 
the routing program. 

Our machine must perform two separate functions on 
each "word" read from the envelope. A word here is any 
group of contiguous characters on one horizontal line, 
not containing any embedded blanks or commas. Given 
any such word, the machine must first ascertain the 
class of words represented by this word. In our example, 
the machine must determine that "Phoenix" is the 
addressee's city, and that "I ." is an initial of the sender. 
This first function is called the "identification" of the 
word. The second function is that of "recognition." 
Having established the class to which a word belongs, it 
is next necessary to determine which one of the class 
members the given word represents. In our first example, 
the recognition process is simple, almost trivial. 
"Phoenix" is matched against every element in a master 
list of cities and, lo and behold, it is found that "Phoe
nix" is "Phoenix." A glance at the lower envelope on 
Fig. 1 will reassure you that the recognition problem is 
not always a trivial one. 

The identification process is fairly easy for a Gestalt-
perceiving, pattern-recognizing human who is himself 
accustomed to writing envelopes according to the stand
ard format. The machine needs a little help in this direc
tion. Fortunately, we can provide this help. On the one 
-hand, we can program our machine to elicit the same 
data that our pattern-recognizing facility allows us to 
obtain. Clearly, our character-reader will be able to 
note, for each word, its relative position with respect to 
all other words on the envelope, and its position with 
respect to the envelope itself. For each word, then, we 

start off with the knowledge of the line it is on, its posi
tion on the line (left end, right end, interior) and the 
words which flank it on either side. With a little extra 
programming effort we can determine the length, i.e., 
the number of characters of each word, its character 
pattern (is it all alphabetic, all numeric, some sort of 
hybrid?) and, perhaps, the presence in the word of some 
salient feature, e.g., the colon following "ATT.:". In
deed, we can usually determine quite easily much more 
information than we need for the identification of our 
words. Much more, that is to say, when we are dealing 
with a noiseless channel, and/or a communication for
mat as simple and relatively invariable as the front of 
an envelope. 

Of course, whether this information is adequate, 
overly complete, or inadequate depends on how we use 
it. At this point in the identification process, the machine 
must turn to its accumulated store of factual knowledge, 
a store which is compiled by a subsidiary program in 
advance of production running. This store consists of 
lists and tables of probabilities, and provides the data 
which, in conjunction with the specific information for 
each envelope, allow each word to be identified with a 
high probability of correctness. Our basic technique 
here is the use of Bayes Factors as instruments for 
weighing evidence. Fig. 2 gives the essentials of this 
technique. 

For each class of words that can occur in the specific 
type of communication in question—mail envelopes, in 
our example—an a priori probability is given for the 
occurrence of a representative (or two, or n) of that 
class. This probability, like all the others we use in this 
process, is derived from frequency counts on sufficiently 
large samples of the data to be processed. Also for each 
class, we provide the probabilities that, for example, a 
specific representative of that class will have length 
3, or 4, or 5, or that the class representative will be 
found at the beginning, or the end, of a line. In brief, 
for every piece of information we scan each envelope 
for, we have a corresponding set of probability distribu
tions, one set for each class of expected words. 

In the identification phase of our program, we con
sider one actual word at a time, testing that word 
against the hypotheses that it is a representative of ex
pected class A, B, etc. Eq. (1) in Fig. 2 gives the skeleton 
of such a test. Here we are testing the hypothesis that 
the word "Smith" is a representative of the "zone-
number" class. Our frequency counting is supposed to 
have informed us that the a priori probability that any 
word on our envelope is in the zone-number class is 
0.017. We first test our hypothesis by using the empiri
cally-determined fact that "Smith" has length 5. This 
gives us our second term on the right side of (1), i.e., the 
Bayes Factor for the "length event." The product of the 
Bayes Factor and the a priori probability is the a 
posteriori probability that "Smith" is a zone-number. 
Not very surprisingly, this is a small number. We now 
compare this number with two thresholds. If the a 



72 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 

P(H/Ei) = P ( H ) - P ( f ^ g ) = P{H) 
P(EX/H) 

P{Ei) 

= (0.017) (0.0001) =0.0000017 

PCEx/tf )P(27) + P{EX/H)P(H) 

> 0.000001 = Rejection Threshold 

< 0.9 = Acceptance Threshold 

(1) 

x P(Ei/H)P(E2/H-Ei) , s P{Er/H) P(E2/H) 
P(H EvEd = P(H)- K ' ' v ' -~P(ff)- • / W K P(EVE2) P(E1) P(E2) 

= (0.0000017) (0.00001) < 0.000001 = Rejection Threshold 

where 

i7=hypothesis that "Smith" is a "zone-number" 
Ei = the event tha t the length of "Smith" is " 5 " 

x E2 = the event that the pattern of "Smith" is "all alphabetic" 

(2) 

Fig. 2—Hypothesis testing. 

posteriori probability exceeds the acceptance threshold, 
we accept the hypothesized identification and turn our 
attention to the next actual word; if the probability 
falls below the rejection threshold, we reject the hy
pothesis, and test the actual word against the next ex
pected word class. Finally, if our probability falls be
tween the two thresholds, we test the same hypothesis 
against the next event, using our a posteriori probability 
as the new a priori probability. In our example in Fig. 
2 we have been generously low with our rejection 
threshold, so that it is necessary to go to (2) where we 
test the hypothesis, "Smith = zone-number," against the 
character pattern, and allow the low probability of a 
zone-number consisting exclusively of letters, to push 
our hypothesis into limbo. If we were scanning French 
addresses, with zone-numbers given in Roman numerals, 
the Bayes Factor in (2) would be very different. 

After scrutinizing all the actual words on the envelope 
in this manner, we may find that certain words are still 
unidentified. In this case, we iterate through our process 
once again. However, certain features of the process will 
have changed. Suppose that we have identified two 
different zone-numbers in the first pass. Since we expect 
to find no further zone-numbers, we no longer test any 
of our undecided actual words against the hypothesis 
that they are zone-numbers. This not only reduces our 
processing time—it also changes the a priori probabil
ities of the remaining word classes, and affects the num
bers entering into all the Bayes Factors. Another change 
in the second pass is that new evidence can be used to 
give rise to Bayes Factors. A word identified as a zone-
number in the first pass provides strong evidence that 
the word to its left is a city name. Clearly, the topolog
ical relationships subsisting between words cannot be 
utilized until some words have been identified. 

If successive identification passes still leave a resid
uum of unidentified actual words, as might happen if, 
for example, two or more words were run together, thus 
appearing to the machine as one word, there are sub
sidiary tricks that can be played. Due to time limita
tions, I shall have to leave these tricks to your imagina
tion, and move on to the recognition phase. 

In the simplest case, all actual words will have been 
correctly identified and, if the words are all correctly 
spelled and correctly ingested by our character-reader, 
recognition will consist of little more than finding the 
exact match in the proper list, a list determined by the 
identification of the word. I t is possible to make even 
this simple process simpler or, at least, faster. To search 
a list of all the cities in the United States can be time-
consuming, particularly if the list must be transferred 
from tape to core memory. However, if the correspond
ing state has previously been recognized, then a much 
reduced list of cities can be inputted and searched. Sup
pose further that the corresponding zone-number has 
been recognized as "25." Then we need consider only 
those cities in the given state which have at least 25 
zones. 

If we are bound to get a direct match whether we 
scan a big list or a little list, this process of list reduction 
is of secondary value only. I t is when a direct match is 
not forthcoming that this technique assumes greater 
importance. In the absence of a direct match, we are 
constrained to use brute force techniques of a more or 
less sophisticated nature. If we are fortunate enough to 
reduce a list down to one entry, then we can avoid brute 
force completely. Failing this, we can expect two ad
vantages to accrue to the use of a reduced list, in general. 
First, for the same elapsed time, we can employ more 
brute force techniques per list entry; second, we can at 
least hope that, by reducing our initial list, we will ex
punge spurious candidates to which our brute force 
techniques might give scores equal to, or even greater 
than, the score of the correct candidate. For example, 
Fig. 3 gives one horrible example, often quoted in this 
connection. Recognizing (a) as being either "New 
York" or "Newark" is an awful job. A non-brute-force 
technique, such as list reduction, which removes the 
false entry from cqnsideration is a welcome way of 
cutting this Gordian knot. 

Again for lack of time, I must give the actual brute-
force techniques a very hasty treatment. Let me men
tion just two techniques of the many available. To 
match a word which has had two letters transposed [as 



Spiegelthal: Computing Educated Guesses 73 

in (b) in Fig. 3], against the original word, we look for 
list entries with the same letter composition as our ac
tual word, i.e., entries with the same number of A's, 
B's, C's, etc. Scanning these for a single transposition is 
relatively easy. 

A second technique is useful when a letter or two (or 
more) has been erroneously dropped from, or added to, 
a word, (c) in Fig. 3 is due to a stuttering typist who re
peated the first letter of the word. Two words run to
gether provide further examples of this kind of noise. 
What we try here is a direct match of our actual word 
with a proper subset of our list entries, and vice versa. 

(a) Newyark 
(b) Pheonix 
(c) Bboston 

Fig. 3—Typical typographical errors. 

If no amount of brute force seems to work, and cer
tain words just cannot be recognized, we can either give 
up gracefully at this juncture or we can admit, even 
more gracefully, that one of our educated gusses might 
have been wrong. If we choose the latter alternative, we 
have the messy job of deciding whether we went hay
wire in the recognition phase, or all the way back in the 
identification phase. In either case, it is still necessary 
to find a likely spot for picking up the dropped stitch 
without causing the entire garment to unravel. Some
times, indeed, we are left with the original ball of wool. 
These, however, are almost always the cases which 
stump human editors. 

This ability to iterate back, and back, and back, can 
of course lead to excessive use of computer time. It does 
have its advantages though. It means that a bad guess 
is not an irrevocable misstep. It also means that various 
parameters, the identification acceptance and rejection 
thresholds, for example, are not nearly as critical as they 
would be in a once-through process. Since these are 
among the hardest parameters to estimate accurately, 
any diminution of their sensitivity is a positive gain. 

At this point, I should like to restate our major tech
niques in somewhat folksier terms than "Bayes Fac
tors" and "list reduction." In our identification phase, 
we attempt to use the constraints imposed by the for
mat, mailing envelopes in our example, plus the con
straints of the language itself, the length and character 
patterns of the expected word classes, to provide a rudi
mentary form of pattern recognition. We then use our a 

priori knowledge of word statistics and interword rela
tionships to find the most probable matching of the 
actual words to the expected word classes. Human be
ings presumably use rank orderings of hypotheses, 
modified by intuition, to perform such matchings. Since 
machines lack intuition and since we have not yet devel
oped a calculus of rank orderings, we use the para
phernalia of Bayes Factors to accomplish the same task. 

Without undue stretching of the terms, we might say 
that, in the identification phase, we exploit the syntactic 
constraints on the language we are processing, whereas 
in the recognition phase, by our use of the list reduction 
technique, we exploit the semantic constraints. We 
might subsume both types of constraint under that 
much-abused word, redundancy. As for a folksy term for 
our brute-force techniques, the most accurate that occurs 
to me is "knowledgeable cynicism." We expect errors to 
be made and, usually, we have some information as to 
the kinds and sources of error, as well as their frequencies 
of occurrence. If we know that typists frequently hit a 
key next to the one they should hit, we store the key
board pattern in our program; if we know that our 
character-reader frequently confuses "o" with "c," that, 
too, goes into our dossier. 

A final word now as to the applicability and practi
cability of our techniques. What with tape searches and 
Bayes Factor computations, processing time may, but 
need not always, be excessive. The preparation of all the 
lists required in the recognition phase is a painful task. 
With a relatively stagnant language, this list-making 
can be a one-shot ordeal; with a volatile language re
quiring frequent updating of the lists, the pain might be 
unbearable. What has been said about lists also applies 
to the preparation of the probability tables for the 
identification phase. A final pause-giving consideration 
is the amount of redundancy in the language to be 
processed, particularly when the processor cannot es
tablish the language, which he sometimes can do. Our 
private feelings are that a language sufficiently low in re
dundancy to be unintelligible to a machine will also be 
unintelligible to a man. I won't press a point which 
trods so heavily on anthropocentric toes. 

In summary, then, we feel our techniques can be use
ful in some massive data-processing applications, in 
automating post offices, in translating natural languages, 
where every second word in the source language has 
several correlates in the target language, and we know 
our techniques have worked at least once. I won't ask 
that you take this on faith, though I'd appreciate it if 
you would. 




