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of programs are slightly over 3000 orders in length. The 
program requires about 40 seconds to generate the 
canonical expansion for each output line of a 12 input-
line by 14 output-line problem and from eight to ten 
minutes to minimize and print the final expression. 
About 25,000 registers are required to store partial re
sults during the processing. As a result, drum storage is 
used during the minimization procedure. The procedure 
is now being programmed for an IBM 709 located at 
the laboratory, making possible the solution of larger 
problems and somewhat shortening the programs' run
ning time due to the large core storage of the 709. 

The design procedure described here appears very 
flexible. I t can be used to perform automatically the 
logical design of circuitry which will perform any func
tion which has a unique value of the dependent variable 
for each value of the independent variable. 

I. INTRODUCTION 

A L O N G with the increasing availability of high-
f—\ speed, large-storage digital computers, there has 

been growing interest in their utilization for real
time control purposes. A typical problem in this connec
tion and one of long-standing interest is the optimal 
static and dynamic operation of chemical reactors.1,2 To 
our knowledge, no digital computer is being used for 
this purpose, chiefly because of the many difficulties en
countered in utilizing real-time machine computation in 
reactor control. These difficulties range from the un
availability or inadequacy of hardware (i.e., transducers, 
measuring instruments, low-level analog-to-digital con
verters, etc.) to the lack of a well-established body of 
fundamental theoretical principles. Although a great 
deal is known about the basic concepts governing con
trol systems,3,4 present methods cannot be readily ap
plied to designing a program for a real-time digital con-
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To date, networks which yield sine, arc sine, and 
the square root of the input value have been con
structed. The concept of programmed logic as an aid 
to computer design appears quite attractive for the 
design of future machines. 
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trol computer. This is because the existing design meth
ods are applicable primarily to fairly small-scale sys
tems, whereas the use of a digital computer (in fact the 
very attractiveness of computer control) arises pri
marily in connection with large-scale problems. 

The role of the digital computer in real-time control 
consists essentially of "digesting" large amounts of in
formation obtained from the primary measuring instru
ments and then calculating, as rapidly as possible, the 
control action to be taken on the basis of these measure
ments. 

One purpose of this report is to provide a broad out
line of a new approach to designing control systems for 
chemical processes which are to be built around a fast, 
general-purpose digital computer operating in real time. 
The specific engineering details of the computer will not 
be of any interest here; rather, we have concentrated on 
studying the types of computations the computer is to 
perform. To lend concreteness to the discussion, the 
chemical process under consideration will be a con
tinuous-flow, stirred reactor. After the fundamental con
cepts have been established, the detailed analytic equa
tions (in the linear case) leading to the dynamically 
optimal (and thus also statically optimal) design of the 
reaction control system are given in Section III . The 
equations of Section III represent a special case of the 
new design theory of linear control systems formulated 
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by the authors.5,6 The performance of the dynamically 
optimized control system is illustrated with the aid of 
a numerical example. 

In Section IV the limitations of the linearity assump
tion or, rather, the additional steps necessary to attack 
realistic practical problems, are briefly discussed. It is 
impossible to give more than a rough sketch of these 
new methods in a short report; however, specific details, 
mathematical proofs, and discussion of engineering 
problems may be found in the literature.5-12 

One of the mathematical tools used in the new ap
proach has been called dynamic programming by its de
veloper, Bellman.13 This is a new method for the solu
tion of problems in the calculus of variations where 
dynamic constraints play the central role. I t turns out 
that our new approach to the description of control-
system dynamics leads to concepts which are also the 
"natural setting" for solving the optimization problem 
by dynamic programming. A second purpose of this re
port is to provide a better appreciation of the advan
tages as well as the limitations of dynamic programming, 
thereby promoting its use in the solution of engineering 
problems. 

Perhaps the most outstanding advantage of the use of 
dynamic programming in our problem is that it reveals 
the intimate connection between the static and the dy
namic optimization of the process. In other words, the 
problem of selecting the operating conditions of the 
process to obtain optimum yield or optimum product 
quality cannot be realistically divorced from the prob
lem of providing effective regulation to maintain the 
process at these conditions. Although these matters are 
well known to workers skilled in the control art, they 
are often not clearly understood by others. 

In addition to providing some practical means for the 
solution of reactor control problems, it is hoped that this 
report will help clarify a number of basic questions. 
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II. FUNDAMENTAL CONCEPTS 

A. Description of Chemical Reactor 

The continuous-flow, stirred-tank type of chemical re
actor with which we shall be concerned here is shown in 
Fig. 1. The principal inputs to the reactor consist of 
liquid streams carrying the various raw materials. The 
volume-flow rates of the input streams in Fig. 1 are de
noted by Mi, M2, Ms. Each stream carries one or more 
compounds, whose concentrations (measured in terms of 
moles/unit volume in Fig. 1) are denoted by Uti • • • , 
U5. Other inputs to the reactor may include a catalyst 
stream (with flow rate M4 in Fig. 1) and provisions for 
cooling or heating (with heat-flow rate M5 in Fig. 1). 
The numbers Xi, • • • , Xn denote the concentrations of 
the various compounds inside the reactor (some of which 
come from the input streams and some of which are 
formed chemically inside the reactor); one of the Xi will 
denote the temperature of the material inside the re
actor. Due to agitation, the concentrations of the vari
ous compounds as well as the temperature are assumed 
to be approximately the same at every point inside the 
reactor and in the output stream. In most cases, it is 
desirable to keep the amount of material in the reactor 
constant. This is achieved by means of a level controller 
which keeps the output stream (F0 in Fig. 1) at all times 
approximately equal to Mi + • • • + M4. 

Fig. 1. 

The object of the reactor is to produce a certain con
centration of chemicals in the output streams. To ac
complish this with the given types and concentrations 
of raw materials in the input streams, one can vary the 
flow rates Mi, • • • , M5. Since reactions take place more 
rapidly as the temperature increases, control can be 
exerted by changing the temperature in the reactor 
which, in turn, is achieved (subject to the dynamic lags 
of heat transfer to the reactor) by changing the heat-
input flow-rate M5. The amount of catalyst present in 
the reactor also affects the reactions; the amount is con-
controlled by changing MA (subject to a time constant = 
reactor volume/Fo if the amount of catalyst is not af
fected by the reaction). Similarly, some measure of con-
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trol can be exerted by changing the flow rates M\, M%, 
Ms; the effect of these changes is complicated and 
depends on the reaction dynamics. 

B. Statement of the Control Problem 

The principal objectives in designing a reactor control 
system may be stated as follows: 

Problem: Given the desired values Xid, • • • , Xn
d of the 

concentrations in the output stream at time to, manipulate 
the control variables in such a manner as to bring rapidly 
the actual concentrations existing in the reactor at time to 
as close as possible to the desired concentrations and then 
keep the actual concentrations constant at all times despite 
changes in the concentrations of the input streams, ambient 
temperature, etc. If, at time h>to, the desired values of the 
concentrations are changed, the above process is repeated. 

We now examine this problem in more detail. In doing 
so, we shall specify precisely what is to be meant by "as 
close as possible" and "rapidly." 

C. Reaction Dynamics 

Let us assume that p molecules of compound A and a 
molecules of compound B combine chemically to form a 
new compound C. If the concentrations XA, X B , X C , of 
the various compounds are small, the rate of increase of 
the concentration of compound C is given by the well-
known Arrhenius equation.1-2 

dXc/dt = kABWXjXB*. (1) 

In (1), the reaction rate coefficient is given by 

kAB(T) = aAB exp (-EAB/RT), (2) 

where OLAB is a constant, EAB the activation energy of the 
reaction, T the absolute temperature, and R the gas 
constant. Moreover, the rate of decrease of the concen
tration of compounds A and B resulting from the reac
tion is equal to p resp. a times the right-hand side of (1). 

In qualitative physical terms, the Arrhenius equation 
has the following interpretation. Consider a small vol
ume with diameter equal to the effective range of inter-
molecular forces. If p molecules of A and a molecules of 
B have entered this small volume, a reaction takes place, 
but not otherwise. In a dilute solution, the probability 
of a molecule of some compound entering the small 
volume as a result of thermal agitation is proportional 
to the thermodynamic factor exp (—E'AB/RT) and the 
concentration of the compound, but independent of the 
concentration of the other compounds. The probabilities 
of independent events multiply, hence (1). 

In general, the assumptions which lead to the par
ticular form of (1) are not true, but the reaction rate is 
still a function of the temperature and concentrations. 
Thus, in general, one would replace (1) by 

, dXc/dt = IIAB(XA, XB, XC, T), (3) 

where IZAB is some scalar function of the four variables 
indicated. 
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It follows that the reaction shown in Fig. 1 can be 
described by the set of differential equations 

dXi/dt = MXh • • • , Xn; M!,..-, Mz; U1} • • • , 17*) (4) 

(i = 1, • • • , n\ k, I, n = integers). 

This is a good place, conceptually and in order to 
simplify the symbolism, to introduce vector-matrix 
notation. Thus, let X be a vector (wXl matrix) with 
components Xi, • • • , Xn. Similarly, M and U are de
fined as a (IX1) and (kXi) matrix, respectively;/ is a 
vector function of k-\-l-\-n arguments with components 
fu ' ' ' jfn-

In terms of the new notation, (4) becomes 

dX/dt = f(X, M, U). (5) 

The vector X is called the state of the reactor and the 
components of X are known as the state variables. The 
reason for this terminology is that if the reactor inputs 
M(t) and U(t) are specified for all time t>to, then the 
knowledge of X(t0) supplies the initial conditions from 
which the solutions of the differential equation (5) can 
be uniquely determined (subject to some mild mathe
matical restrictions) for all future values of time. 
Thus, the state is a fundamental mathematical concept 
for describing the reactor dynamics; it is also a physical 
concept. The temperature and various concentrations 
can be physically measured (at least in principle); thus 
the state at time t0 may be regarded as the information 
necessary to determine the properties of the material 
inside the reactor at time to-

The behavior of the reactor through time may be 
visualized as a succession of changes in state. This gives 
rise to the concept of the state-transition function. In 
fact, the function / in the differential equation (5) may 
be regarded as specifying the incremental state transi
tions taking place during the interval (/, t-\-dt). For 
present purposes, it is more convenient to deal with 
finite-interval state transitions which are obtained by 
solving the differential equations. Anticipating the later 
discussion, let us note that for control purposes it is 
sufficient to sample the state of the process; i.e., observe 
the state only at discrete instants in time, called sam
pling instants. Usually, the sampling instants are sepa
rated by equal intervals r of time (r is called the sam
pling period), i.e., the sampling instants occur at times 

to, ô + T, to + 2T, • • • . 

Now suppose that r is chosen to be so small that in the 
interval (to, to+r) the functions M(t), U(t) in (5) may 
be adequately approximated by the constants M(to), 
U(to). Then (5) can be readily integrated (if necessary, 
by numerical methods) and we get 

X{h + r) = <f>(r; X(t0), M(t0), U(h)), \ (6) 

where 0 is a vector function with n components and 
k-\-l-\-n arguments. 



110 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 

D. Static Optimization 

Precisely what is meant by.the phrase, "as close as 
possible to the desired concentrations" in the statement 
of the basic problem in Section II-B? 

The states of the reactor may be represented as 
points in w-dimensional Euclidean space (the state 
variables being coordinates of the point) called the state 
space. Suppose we specify r components of the state vec
tor as desired values, with the remaining n — r com
ponents being arbitrary. This step may be regarded as 
essentially a management decision, relating to the ques
tion of how one should try to operate the reaction proc
ess. The set of states for which the operation of the reac
tor meets the management requirements is clearly an 
{n — r)-dimensional hyperplane. If the state of the re
actor at any instant of time does not lie in the hyper
plane, we can measure the "badness" of that state by 
the distance of the state from the hyperplane of desired 
states (see Fig. 2). The definition of the distance func
tion (technically, a pseudo-metric) is arbitrary and de
pends on a management estimate as to what types of 
deviations from the desired values are more harmful 
than others. One possible definition of the distance func
tion is 

1/2 

p(X* -X) = £ ( X / - X,)2 
( r < » ) . (?) 

More generally, if Q is any positive semidefinite matrix, 
we can define p by the quadratic form 

p(Xd -X) = (X* - X)'Q(Xd - X), (8) 

where the prime denotes the transpose of the matrix. 
By static optimization of the process we mean select

ing a set of constant values M° of the control variables 
(subject to some magnitude constraints), so that at 
equilibrium the actual state lies as close as possible to 
the hyperplane of desired states. By definition, the 
equilibrium states X* of the reactor are given by: 

dX/dt = f(X*, M, U) = 0, (9) 

M, U being constant vectors. Thus the statically op
timal control vector M° and equilibrium state X*° are 
determined by solving the minimization problem 

Mmp(Xd- X*), 
M 

0 < Mi < fjn (10) 

To find the optimal control vector M° from (10), X* has 
to be expressed as an explicit function of M from (9). 
This and the amplitude constraints on the control vari
ables lead to great analytic difficulties when / is a non
linear function. But even in cases where the static op
timization problem can be solved, it does not provide a 
complete answer to the basic problem. This is because: 

1) Static optimization does not provide a guide as to 
how the control variables should be manipulated to 
bring an arbitrary state as close as possible (in terms of 
the arbitrarily adopted distance function) to the desired 
state (dynamic optimization). 

/>(X-Xd) 

Hyperplane of 

Desired States 

- * - E ' 

Fig. 2. 

2) The equilibrium state closest to the hyperplane of 
desired states may not be stable. 

3) The values of the control variables computed by 
static optimization will not remain optimal when some 
of the process parameters (concentrations in the input 
flows, ambient temperature, etc.) change. In other 
words, static optimization does not incorporate the im
portant principle of feedback. 

In the following it is shown that it is possible to com
bine both dynamic and static optimization in such a way 
that the principle of feedback is retained. 

E. Dynamic Optimization 

In our basic problem statement in Section II-B, the 
last remaining word to be defined precisely is "rapidly." 

A performance index for the reaction under dynamic 
conditions may be defined as 

/

> 0 0 

p[Xd - X(t)] exp [a(t - t0)]dt, (11) 
to 

where a is a real constant. We now agree that the phrase, 
" . . . to bring rapidly the actual concentration as close 
as possible to the desired concentrations . . . " in the 
problem statement means that the control variables 
M{t) are to be chosen, as functions of time, in such a 
way as to minimize the performance index (11) for any 
initial state X(to). This is called dynamic optimization. 
Of course, the definition of (P, in particular the value of a 
in (11), is arbitrary and depends on management esti
mates just as the definitions of Xd and p. 

Static optimization is evidently a special case of 
dynamic optimization, as may be seen by setting 
X(to) =X*° in (11). In fact, it may happen that the dy
namic optimization leads to the result that, instead of 
trying to maintain the control variables at constant, 
(equilibrium) values, it is better to vary the control 
variables continuously, say, in a periodic fashion. In 
such a case, dynamic optimization will lead to a smaller 
value of (P(X*°) than static optimization. 

In order to perform dynamic optimization, we must 
find a particular vector function M°(t), defined for all 
t>t0, among the set of all such functions (subject to 
amplitude constraints) for which the integral (11) 
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assumes its minimum or least upper bound. This is 
generally a very difficult problem in the calculus of vari
ations and, for all practical purposes, cannot be solved 
by conventional analytic methods when the number of 
state variables is large. 

So as not to be bothered by certain mathematical 
niceties, we shall assume from here on that the control 
variables have constant values over the sampling inter
vals T (cf. Section II-C). 

Thus instead of minimizing (P with respect to all pos
sible functions M(t), the minimization is to be performed 
with respect to all possible sequences of constant vectors 

M(to), M(t0 + T), M(h + 2r), • • • (0 < Mt(t) < m). (12) 

Moreover, again for simplicity, the integral in (11) may 
be replaced by a sum: 

00 

<P[*('o)] = E p[Xd - X(t0 + kr)]\\ (13) 

where X = exp ax. 
From (6) we see that there is a large number of pos

sible state transformations X(to) —->X(to-\-r), depending 
on the choice of M(to) (assuming that U = const). 
Similarly, the state transformation X(t0-\-T) —>X(t0-\-2r) 
depends on the choice of M(to-\-r) (see Fig. 3). Thus the 
minimization of (P may be regarded as an infinite-step 
decision procedure. The optimal choice of M(£0+&f) at 
the &th step in general depends both on the preceding 
and succeeding steps. Therefore, at first sight, it would 
appear that to obtain the optimal sequence of control 
vectors, 

X ( t 0 + 2 T ) 

M0(t0), M°(tQ + T), M°(t0 + 2T), (14) 

we must simultaneously minimize (13) with respect to 
all the terms of the sequence (12), which is an impossible 
job. 

Fortunately, at this point we can achieve a decisive 
simplification by making use of the following intuitively 
obvious, but powerful, observation due to Bellman.13 

Principle of Optimality: An optimal sequence of control 
variables (14) has the property that, whatever the initial 
state X(t0) and the initial choice M°(to) of control vector are, 
the remaining terms M°(t0-{-T), M°(to-{-2T), • • • of (14) 
must constitute an optimal sequence with regard to the state 
X(t0-\-T) resulting from the choice of M°(t0). 

Using the principle of optimality, we can obtain vari
ous expressions for the theoretical study and practical 
determination of the optimal control sequence (14). 
(Methods derived from the principle of optimality are 
known by the generic name of dynamic programming.) 

We first observe that (13) can be written in the forme 

(P[X(t0)) = \p[Xd - X(t0 + r)] 

00 

= \{p[Xd - X(t0 + r)j + (P[X(i0 + T)}}. (15) 

< * * 

Fig. 3. 

Now let (P°(X(£o)) be the value of the performance in
dex when the optimal sequence (14) is used. Substitut
ing (15) and invoking the principle of optimality, we ob
tain a functional equation (13) for (P°; i.e., 

(P°[X(to)] = Min (P[X(/0)] 
M(to),M(to+r),---

= Min \{P[Xd - X(t0 + T)] + (P°[X(t0 + T ) ] } . (16) 
M(io) 

Note carefully that the right-hand side of (16) is a func
tion of M(t0) and X(t$) through (6). The solution of the 
functional equation (16) determines M°(to) as some 
function of X(to) which may be denoted by 

if°(/o) = h(X(k)). (17) 

Now at time to~\~r we are confronted by the same deci
sion problem as at time t0. This shows that iP° [X(to+r) ] 
also satisfies the functional equation (16), and therefore 
M°(<O+T) is the same function of the state at time £o+r 
as M°(to) was at time t0. Thus we have arrived at the 
following result. 

If the performance of a dynamic system governed by (6) 
is optimal in the sense that the performance index (13) is 
a minimum, then the sequence of optimal control variables 
is obtained by observing the state of the system at times 

to, to + r, to + 2T, • • • 

and computing the optimal control variables at each sam
pling instant by means of the formula 

M°(h + kr) = h(X(t0 + kr)), (18) 

h being determined by solving (16). 
Eq. (18) shows that the feedback principle can be in

cluded in the framework of dynamic optimization. This 
means that the entire future evolution of the dynamic 
system, including the values of the optimal control 
variables at each sampling instant, could be predicted in 
principle by means of (6) and (18). However, because of 
the inaccurate knowledge of the state-transition func
tion, unknown disturbances acting on the process, and 
random effects such as turbulence, etc., the prediction 
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based on (6) will be less and less correct as t he predic
t ion in terva l increases. By re-measuring t he s t a t e of t he 
sys tem a t t he sampl ing ins tan ts [assuming t h a t r has 
been chosen small enough so t h a t t he one-s tep predic
t ion based on (6) is sufficiently accu ra t e ] , t he predict ion 
errors are corrected so t h a t the control var iables assume 
ve ry near ly their op t imal values a t all t imes. Th i s is the 
convent ional use of feedback. As is well known, feed
b a c k will also t end to minimize t he sensi t iv i ty of h to 
var ia t ions in <j>. 

T o solve the functional equat ion (16), it is often con
ven ien t to use an i te ra t ive procedure. T o der ive the 
i tera t ion scheme, we replace the performance index (13) 
by 

(?N[X(t0)} = E p[Xd - X(t0 + kr)]\K (19) 

In o the r words , t he original infinite-step decision process 
is conver ted in to a finite-step decision process. Proceed
ing exact ly as in the der ivat ion of (16), we find t h a t the 
successive op t imal performance indexes flV0 a re con
nected by the recurrence re la t ions: 

In each s tage of t he i tera t ion (20), t he opt imal control 
signal M°(to) is de te rmined as some function hN of 
X(to). As N—+ <x>, i t can be shown under var ious restric
tions6 '13 t h a t (PN° converges to (P°, and hN converges to h. 

I I I . D Y N A M I C P R O G R A M M I N G IN T H E L I N E A R C A S E 

T h e ease or difficulty of carrying o u t i te ra t ions (20) 
is de te rmined largely b y the complexi ty of the dynamics 
of t he react ion and by the limits imposed on the control 
var iables . T o i l lus t ra te these computa t ions concretely, 
we consider now t h e ve ry special (bu t pract ical ly im
por t an t ) l inear case where 

1) T h e react ion dynamics are governed by an ord inary 
linear differential equa t ion with cons tan t coefficients 

2) T h e r e are no ampl i tude const ra in ts on the control 
var iables . 

Linear differential equat ions arise when t he dynamic 
equa t ions (6) are linearized a b o u t some equil ibrium 
s t a t e X * and the corresponding values of t he control 
var iables M*. If we let 

X = X* + x, M = M* + m, and Xd = X* + xd, (21) 

and , if t he devia t ions x, m from the equil ibr ium values 
are sufficiently small, (6) leads to the linear differential 
equa t ion wi th cons t an t coefficients 

dx/dt = Fx + Dm, (22) 

where F is a c o n s t a n t nXn ma t r ix and D is a cons t an t 
nXl mat r ix . T h e elements of these matr ices are de

termined from (6) by means of t he formulas (assuming 
U = const) 

Fa = dfi/dXj\x-Jc', M=M* ,,. (i, j = 1, • • • , n) 

Da — dfi/dMj \x=x*. M=*M* 

(i = 1, • •. • _ , » ; / = 1, • • - , / ) • (23) 

As is well known,1 4 the solution of the differential equa
t ion (22) has t he form: 

x(t) = $ ( / - t0) x (to) + f $ ( / - T)Dm{j)dT (24) 

for a n y t, t0. T h e ma t r ix $ ( r ) is called t he transition 
matrix of the sys tem (22) and is given b y 

00 

$ ( T ) = exp FT = X) Fkrk/k\ (25) 

T h e Tay lo r series is a convenient w a y of calculat ing 
numerical values of $ ( r ) when there a re a large number 
of s t a t e var iables and when a digital compu te r is avail
able. The re a re also analyt ic ways of compu t ing $(r) . 5- 7 

When m(t) is cons t an t dur ing the intervals between 
sampl ing ins tan ts , (24) takes the simpler form 

x(h + r) = $( r ) x (to) + A(0*»(/0), (26) 

where 

A(T) = \ $(T - a)Dda. (27) 
J o 

Eq . (26) is t he explicit form of (6) in t h e linear case. 
W e now give a formal der ivat ion of t he explicit equa

t ions for accomplishing the i terat ions indicated by (20). 
-The yar ious formal s teps of the der ivat ion can be just i 
fied under mild ma themat i ca l restrict ions.6 

If p is given by (8) and (P by (13), i t can be shown by 
induct ion t h a t the opt imal performance index m a y be 
wr i t t en in t he form 

<?N°[x(to)] = x'(t0)PNx(to) - 2x'(t0)RNxd 

+ xd'SNxd (N > 0) (28) 

PN, RN, SN being nXn, nXl, and 1X1 matr ices , respec
tively, and 

Po = Ro = So = 0. 

For simplicity, we now drop the a r g u m e n t s of ^ ( r ) 
and A(T). Using (20) and (26), we calculate the deriva-

14 E. A. Coddington and N. Levinson, "Theory of Ordinary Dif
ferential Equations," McGraw-Hill Book Co., Inc., New York, 
N. Y., ch. 3; 1955. 

<?i°[X(h)] = Min Xp[Xd - X(t0 + T)J 
M{u) 

(PN+1°[X(to)] = Min \{p[Xd - X(t0 + r ) ] + (?N°[X(to + r)]} 
0 < Mt(to) < m (20) 



Kalman and Koepcke: Digital Computers in the Optimization of Chemical Reactions 113 

tive of the scalar (PJV+I [x(to) ] with respect to the vector 
m(to). This is a vector (with components d(?N+i/dnii(to)), 
which is given by: 

d(?N+l/dm(f0) = - 2[A'(RN + Q)xd - A'(PN + Q)($x(t0) 

+ Am(to))] (N>0). (29) 

Now (PAT+I[X(^O) ] is evidently a quadratic function of 
each of the incremental control variables mi(t0). I t fol
lows that (?N+I has a single extremal value [which may 
be a minimum or a maximum, depending on the value of 
x(t0) ] at that value of m(t0) which makes the right-hand 
side of (29) zero. It can be shown6 that the extremal 
value is a minimum for every x(to). Hence, m(to) is 
found by setting (29) equal to zero, which yields the fol
lowing expressions for m°(to) and the matrices denning 
(3V+i: 

where 

m°(t0) = — ANx(t0) + BNxd, 

AN = [A'(PN + Q)A]-\PN + Q)* 

BN = [A'(PN + Q)A]-*(RN + Q) 

(30) 

(31) 

With some further calculations, using (30) and (31) we 
find that : 

PN+1 = X(* - AAN)'(PN + 0 $ ; (32a) 

RN+l = X(* - AAN)'{RN + Q); (32b) 

and 

SN+I = \(SN + Q- BN'A'(RN + Q)). (32c) 

The iterations indicated by (32) can be readily per
formed on a digital computer. Note that SJV need not be. 
computed if only the optimal control vectors are of in
terest. In the limit N^ oo, all quantities in (32), except 
SN+I, may be shown to converge under certain restric
tions on F, D, and X.6 

We get by inspection of (30) the important result: In 
the linear case, the optimal control variables are linear func
tions of the actual and desired states of the reactor. 

Since the control variables are linear functions of the 
state variables, it follows that under closed-loop control 
the reactor is a linear dynamic system. It can be shown6 

that the only possible type of limiting behavior in such 
systems as t-^ <*> is for the state X(t) to converge to an 
equilibrium state X*. Since dynamic optimization in
cludes static optimization, it follows at once that : In the 
linear case, the states of a dynamically optimized system 
tend asymptotically to the same equilibrium state X*° 
which is obtained under static optimization. 

Example: As a numerical illustration of the results 
obtained by the use of dynamic programming in the 
linear case, let us consider the following hypothetical 
reactions: 

(i) A + B ——U C 

k,(T) 
(ii) 2B + C——^2D. 

The objective is to convert raw materials A and B by 
means of reaction (i) into C obtaining as much quantity 
of C as possible. The optimization of the process , is 
complicated by the undesired side reaction (ii) which 
produces the contamination product D. Under steady-
state conditions, the resulting concentrations in the out
flow as a function of the "hold-up" time (reactor volume 
/outflow rate) will have the qualitative shape shown in 
Fig. 4. 
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Fig. 4. 

We now derive the analytical form of the dynamic 
equations of the reactor using the assumption that the 
Arrhenius equation (1) holds. Denoting the concentra
tions of A, • • • , D by Xi, • • • , Xi, and the flow rates 
of A and B by Mi, M2 we find, using conservation of 
mass, that : 

dXx/dt = - kiWXiXz + {M1/V)Ul 

- [{Mx + Af2)/F]X i ; 

dX2/dt = - k1(T)XlX2 - 2k2{T)X2
iXz + (M2/V)U2 

- [{Mx + M2)/V]X2; 

dX3/dt = k1(T)X1X2 - k2(T)X2*X3 

- [(My + M2)/V]X3; (33) 

and 

dXi/dt = 2k1(T)X2
2X3 - ([Mi + M2)/V]Xi. 

Let T\ and T2 denote the temperatures of the input flows 
Mi, M2; let Tc be the average cooling water temperature 
inside the cooling coils of the reactor; and let h be the 
corresponding average heat transfer coefficient per unit 
cooling water flow. Furthermore, let Hi be the heat 
generated per molecule of the first reaction; H2 the heat 
generated per molecule of the second reaction; p the 
average density of the material in the reactor; and c 
the average heat capacity of the material. Denoting the 
temperature in the reactor by X5 and the cooling-water 
flow rate by M&, conservation of energy yields 

dXh/dt = ki(T)XiX2Hi + k2(T)X2
2X3H2 

+ (Mi/Vpc)(Ti - X5) + (M2/Vpc)(T2 - X5) 

+ (h/VPc)Mb(Tc - X5). (34) 
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At equilibrium, the variables entering (33) and (34) 
are assumed to have the values shown in Table I. Note 
that the first reaction is assumed to be exothermic, and 
the second is assumed to be endothermic. 

Using these values, (23) yields the following numerical 
values for the matrices describing the dynamics of the 
reactor in the vicinity of equilibrium: 

F = 

"-0.325 

-0.225 

0.225 

0 

_ 0.450 

-0.5625 

-0.8125 

0.4875 

0.1500 

0.7500 

0 

-0.014286 

-0.107143 

0.014286 

-0.035714 

0 

0 

0 

- 0 . 1 

0 

-0.200 

-0.368 

0.116 

0.168 

-0.060 

(35) 

Assuming that only the flow rates Mi and Mz can be 
changed to effect control, we get: 

D = 

55 

- 4 

- 2 1 

- 3 

- 2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

35.5 

(36) 

Using a sampling period r = l, the transition matrix 
for the linear system can be obtained using the Taylor 
series (25). 

TABLE I 

VALUES OF REACTOR CONSTANTS 

UI U2 Mi* 
65 59 0.05 

h(Xb*) 
0.05625 

Ti T2 
100 100 

M2* M3* 
0.05 0.1 

h(X&*) 
0.00044643 

Tc H 
49 2 

X,* X2* X3* Xi* X5* 
10 4 21 3 120 

dkiiXtf/dXi h(X6*)/dX6 
0.005 0.00025 

Hi V h/Vpc Pc 
- 5 1 0.5 10 

To improve the operation of the reactor, it is desirable 
to increase the yield of C and cut down the yield of D. 
Therefore, the desired state of the reactor may be de
fined as: 

Xz" 5 .and x±d 1. (41) 

If the reactor starts out at the old equilibrium state 
(xi = X2= • • • =x^ = m\— • • • =W3 = 0) at time /o = 0, 
the behavior of the state and control variables as a 
function of time will be as shown in Fig. 5. It is evident 
from Fig. 5 that it is possible to achieve almost exactly 
the new desired state and that the new equilibrium 
state can be reached rather quickly. It should be noted, 
however, that the results are valid only if the linearized 
approximation of the dynamics is valid. 

* ( T ) = 

A ( T ) = 

0.7407 

0.1793 

0.1566 

0.0151 

0.3004 

48.216 

7.695 

15.744 

3.089 

7.056 

-0 .3581 

0.4095 

0. 

0. 

2895 

1373 

0.3872 

0 

0 

0 

0 

0 

- 2 

- 4 

0 

2 

32 

0.00498 

-0.00448 

0.89510 

0.00946 

-0.03460 

169 " 

682 

9124 

5132 

822 _ 

0 

0 

0 

0.9048 

0 

-0 .0909 

-0 .2197 

0.0264 

0.1288 

0.8172 

(37) 

(38) 

The peformance index is defined as: 

00 

(P = Z [*3d ~ *8(/0 + k)]2 + W ~ *4(/0 + k)]\ 

The optimal control variables for this performance 
index are given by the following functions of the desired 
and actual state of the reactor: 

IV. LIMITATIONS OF THE LINEARITY ASSUMPTION 

There are a large number of problems which must be 
(39) considered before fully automatic dynamic optimization 

of chemical reactions can take place. 
1) If state variables are not physically measurable, 

they must be generated artificially in order to be able 
to compute the optimal values of the control variables. 

•0 0 -0 .0680 0.0217 0_ 

0 0 0 0 0 

0 0 0.0788 0.3932 0. 

xd + 

0.0102 

0 

0.0064 

0.0164 

0 

-0 .0327 

0.0605 

0 

0.0668 

-0 .0197 

0 

-0 .3537 

-0 .0012 

0 

-0 .0504 

(40) 
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This calls for simulating some of the reaction dynamics 
as an integral part of the control system. This, too, can 
be done by means of a digital computer. (Most of the 
analog-type control instruments used at present may be 
thought of as performing essentially this function.) 

2) The dynamic programming equations can be solved, 
practically speaking, only in the linear case. In reality, 
of course, the reaction dynamics are nonlinear. More
over, they may change with time due to uncontrollable 
or unknown effects. There are essentially two possibili
ties of attacking these problems. 

a) The reaction dynamics are linearized over a certain 
region in state space. The reaction is then optimized on a 
linear basis, computing the dynamic programming equa
tions in real time. If, as a result of this optimization, the 
state moves into another region of the state space, an
other set of linearized equations is obtained to describe 
the dynamics in the new region. These equations are 
then used to obtain a new dynamic optimization, etc. 
This method of attack is closely related to the problem 
of designing adaptive or self-optimizing systems15 about 
which little is known at present. The chief difficulty is 

15 R. E. Kalman, "Design of a self-optimizing system*" Trans. 
AS ME, vol. 80, pp. 468-478; 1958. 

the rapid and accurate determination of the linear dy
namics in the presence of measurement noise. 

b) The dynamic optimization is solved directly by 
purely numerical methods. The chief difficulty encoun
tered here is the experimental measurement and rep
resentation of the reaction dynamics in a nonlinear form. 
Very little is known about this problem at present. 

c) The control variables cannot be chosen freely but 
must lie within certain prescribed ranges; in other 
words, the control variables "saturate." The problem of 
designing a control system where the dynamic equations 
of the control object are linear but where the control 
variables saturate has an extensive literature usually 
under the subject heading of "Optimal Relay Servo 
Problem." At present this problem is solved only in the 
case where 1) the dynamic equations are of the second 
order and 2) there is only one control variable.16 Using 
the point of view of this paper, a rigorous method was 
recently obtained (which is not subject to the above re
strictions, 1 and 2)8 for the computation of the opti
mal control variables; however, this method is very in
efficient. When the control object has nonlinear dy
namics, no method of computing the optimal control 
variables is known. 

Despite these obstacles, much progress can be ex
pected from the utilization of the "state" method of 
describing reaction dynamics combined with dynamic 
optimization as presented in this paper. These new ideas 
will probably be most helpful in attempting to control 
(by means of real-time digital computation) dynamic 
systems which have many state variables. 

LIST OF PRINCIPAL QUANTITIES 

Sections II-A and II-B 

U; Ui = vector denoting concentrations in input 
streams; its components. 

M; Mi = control vector; control variables. 
1 = number of control variables. 

T = temperature. 
X; Xi = state vector; state variables (concentrations 

and temperature inside reactor). 
n = number of state variables. 

/; £o = time; initial time. 

Section II- C 

f;fi — infinitesimal state transition function; its 
components. 

r = sampling period. 
<j>\ cf>i = (finite-interval) state transition function;its 

components. 

16 R. E. Kalman, "Analysis and design principles of second and 
higher-order saturating servomechanisms," App. 2, Trans. AIEE, 
vol. 24, pt. 2, pp. 294-310; 1955. 



116 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 

Section II-D 

p = distance function in state space (pseudo-
metric) . 

' = transpose of the matrix. 
Q = positive semidefinite matrix. 

( )* = equilibrium values. 
( )° = optimal values. 

Section II-E 

(P = performance index. 
h; hi — optimal control function. 

Section III. 

x; Xi = incremental state vector; incremental state 
variables. 

m; nii — incremental control vector; incremental con
trol variables. 

F = infinitesimal transition matrix in linear case. 
D = matrix denoting instantaneous effect of con

trol variables in linear case. 
3>(r) = (finite-interval) transition matrix in linear 

case. 
A (r) = matrix denoting effect of control variables 

in linear case (finite-interval). 
AN, BN, PN, RN, SN constant matrices. 

Simulation of Human Problem-Solving 
W. G. BOURICIUSf AND J. M . K E L L E R f 

IMULATING human problem-solving on a digital 
computer looks deceptively simple. All one must 
do is program computers to solve problems in such 

a manner that the computer employs the identical 
strategies and tactics that humans do. This will prob
ably prove to be as simple in theory and as hard in 
actual practice as was the development of reliable 
digital computers. One of the purposes of this paper is 
to describe a few of the pitfalls that seem to lie in the 
path of anyone trying to program machines to "think." 

The first pitfall lies in the choice of an experimental 
problem. Naturally enough the problem chosen should 
be of the appropriate degree of difficulty, not so difficult 
that it cannot be done, and not so trivial that nothing 
is learned. I t should also involve symbology and manip
ulations capable of being handled by digital computers. 
At this stage of problem consideration, a devious form 
of reasoning begins to operate. Usually the people en
gaged in this type of research will have had a thorough 
grounding in conventional problem-solving on com
puters. Consequently, they are conversant with the full 
range of capabilities of computers and have an apprecia
tion of their great speed, reliability, etc. They also know 
what kinds of manipulations computers do well, and 
conversely, what kinds of things computers do in a 
clumsy fashion. All of this hard-earned knowledge and 
sophistication will tend to lead them astray when the 
time arrives to choose a problem. They will try to make 
use of this knowledge and hence choose a problem that 
will probably involve the simulation of humans solving 
problems with the aid of computers rather than the 

t IBM Res. Center, Yorktown Heights, N. Y. 

simulation of humans solving problems with only paper 
and pencil. Consequently, the characteristics of present-
day computers may confine and constrict the area of 
research much more than is desirable or requisite. What 
is liable to happen, and what did happen to us, is that 
the experimental problem chosen will develop into one 
of large size and scope. If this always happens, then 
those human manipulative abilities that are presently 
clumsy and time-consuming on computers will never 
get programmed, simulated, or investigated. For
tunately for us, the two experimental problems we 
chose were of such a nature that they could be easily 
miniaturized, and this was done as soon as the desira
bility became apparent. 

The second pitfall which must be avoided is the as
sumption that one knows in detail how one thinks. This 
delusion is brought about by the following happen
stance. People customarily think at various levels of 
abstraction, and only rarely descend to the abstraction 
level of computer language. In fact, it seems that a 
large share of thinking is carried on by the equivalent 
of "subroutines" which normally operate on the sub
conscious level. I t requires a good deal of introspection 
over a long period of time in order to dredge up these 
subroutines and simulate them. We believe people as
sume that they know the logical steps they pursue when 
solving problems, primarily because of the fact that 
when two humans communicate, they do not need to 
descend to the lower levels of abstraction in order to ex
plain to each other in a perfectly satisfactory way how 
they themselves solved a particular problem. The fact 
that they are likely to have very similar "subroutines" 
is obvious and also very pertinent. 




