
1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 127

The RCA 501 Assembly System
H. BROMBERGf, T. M. HUREWITZf, AND K. KOZARSKYf

CURRENT techniques in automatic coding at­
tempt to shift the user's tasks away from the
computer and closer to his application. Sacrific­

ing coding details in this way, it is believed that monu­
mental savings will result both in computer accepta­
bility and utilization since everyone is now able to de­
scribe his own programs. Universal acceptance of prob­
lem oriented languages has, for several reasons, not yet
followed. One influence is that the generated object
programs reflect the adroitness of the executive routine
and the remoteness of the input language.

In a recent count, there appears to be well over one
hundred automatic coding systems produced for twenty
or more different computers. This reflects the recogni­
tion of the disparity that exists between the methods of
problem preparation and actual problem solution.

By most methods of classification, these hundred-odd
automatic codes range more or less continuously be­
tween extremes. They vary considerably in complexity,
extent of problem area of useful application, and in
range of intended user.

One categorization used to differentiate these auto­
matic codes is by the sophistication of the input lan­
guage—particularly whether this language is "problem
oriented" or "machine oriented." However, it must be
admitted that if a ranking of these automatic codes is
made according to efficiency of the object program, the
list would tend to be in nearly inverse order to that ob­
tained by ordering on the level of the input language.
I t should also be noted that evaluations of the academic
aspects of these automatic codes are often greatly at
variance with the judgments of the occasionally unfor­
tunate users of these routines.

This is not to say that object program efficiency is
the only value criterion of an automatic system. Fre­
quently for short programs or where the capacity of the
data-processing equipment greatly exceeds the required
performance, it is almost irrelevant. But, in instances
where object program efficiency is significant, alterna­
tive coding procedures are desirable.

I t is conceded that the Problem Oriented Language
deservedly has greater prestige than the Machine Ori­
ented Language and greater theoretical interest (at least
from a philosophic or linguistic point of view). Never­
theless, the current mechanization of these languages
and the distribution of computer expenses dictate de­
mands for both types. I t is recognized that direct, facile
communication between the layman and his computer
as well as the advantage of interhuman communication
of the problem definition are obtainable from a Problem

t RCA, Camden, N. J.

Oriented Language. However, there are also needs for
programs handling tasks near the limits of the equip­
ments' capabilities as well as for infrequently changing,
very highly repetitive, data-processing routines.

One of the often expressed goals in automatic coding
is the development of complete problem oriented lan­
guages entirely independent of any computer. To pro­
duce any "most efficient" coding in this circumstance
means that, among other things, psychological infer­
ences as to the intentions of the writer are to be made
by the automatic code. Furthermore, the apparent
trend in machine design toward many simultaneous
asynchronous operations, multiprogramming and the
like, increase the problems associated with producing
efficient machine programs from a problem oriented lan­
guage. It is hardly unreasonable for a user of the new
potentially powerful systems to request a coding scheme
capable of using these complex, expensive features.

I t appears likely then, in the near future at least,
that some problem oriented languages will be aug­
mented by some prosaic statements, directly or indirect­
ly computer-related, which will permit attainment of a
more "most efficient" machine code. Similarly, machine
oriented languages may also yield to this trend and in­
corporate some features, within their inherent limita­
tions, which tend to be associated with problem lan­
guage codes.

All this may justifiably be construed as motivation for
the automatic routines offered with the RCA 501. The
first of these, a machine oriented automatic code, the
RCA 501 Automatic Assembly System, is described in
this paper.

The Assembly System provides for: relative address­
ing of instructions and data; symbolic references for
constants and data; macro-instructions and subrou­
tines; variable addresses; and descriptor verbs.

SOME MACHINE CHARACTERISTICS

It is appropriate, as background for what follows, to
describe briefly some of those features of the 501 Com­
puter (Fig. 1) which have influenced the design of the
Automatic Assembly System. (Incidentally, this com­
puter has been in operation in Camden since April,
1958.)

The 501 Computer has a magnetic core storage with
a capacity of 16,000 characters, which is increasable in
steps of the same to a maximum of 262,000 characters.
Each character, consisting of six information bits and
one parity bit, is addressable, although four characters
are retrieved in a single memory access. Binary address­
ing of the memory is provided, requiring 18 bits or three
characters per address.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1457838.1457860&domain=pdf&date_stamp=1959-03-03

128 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE

Fig. 1—The 501 computer.

The instruction complement consists of 49 two-ad­
dress instructions (see Fig. 2). Each instruction con­
sists of:

One character for the operation symbol
Three characters for the A address
One character for the selection of address modifiers
Three characters for the B address,

for a total of eight characters or sixteen octal digits.
There are several control registers, each of which

stores 3 characters, or one address (see Fig. 3). The
A and B registers are used to store the A and B ad­
dresses of operands during their execution. The P or
program register stores the memory address of the next
instruction in sequence. The T register stores a memory
address which is made use of by certain instructions
which require three addresses during their execution. All
of these registers are addressable and therefore directly
accessible to the program.

Seven address modifiers are available. Four of these
are standard memory locations and three are the A, T,
and P registers. Use of the P register as an address
modifier permits the writing of self-relative machine
coding which may be operated, without modification,
in any part of the memory.

The RCA 501 exploits certain control symbols (Fig. 4)
in the data. The Start and End Message control sym­
bols define a message on tape, and in the memory also
act as control symbols for certain instructions. The Item
Separator control symbol is not used as such on tape,
but is used in the memory to control certain operations.
These control symbols permit variable item lengths
and variable message lengths both on tape and in the
memory. The entire message may be variable, depend­
ent upon the number and size of the individual items.
The instruction complement includes both symbol con­
trolled and address controlled operations.

The 501 includes provision for simultaneous read-
write, read-compute and write-compute. This is ac­
complished by designating magnetic tape instructions
as "potentially simultaneous" and establishing a pro­
gram controlled gate between the normal and simul­
taneous modes of operation. Thus, the programmer can

Operation
Code A Address

AAA

Address
Modifier

N

B Address

BBB

Fig. 2—A description of one instruction.

P A&B

Stores
Address
of Next

Instruction

Store Address
of Operands

During
Execution

Third
Memory
Address

Fig. 3—Control registers.

Start Message and End Message Item Separator

j _ () (_> L _ (,)

Define Message on Tape Controls
and Control Operations Operations

in Memory in Memory

Typical Message (-12564-John-Doe-8934-7)

Fig. 4—Control symbols.

permit completely automatic switching of tape instruc­
tions to the simultaneous mode or he may optionally
bracket off portions of the program where such switch­
ing is inconvenient.

As for the 501 Assembly System, there are two pro­
grammer-prepared inputs. To guide the Assembly Sys­
tem in generating a running program from the pseudo­
code, the user provides the system with a description of
the data files which the program is designed to process.
A portion of a data sheet is illustrated in Fig. 5.

Certain auxiliary computations are performed on
these data sheets and the results printed out for the
programmer's information—such as average message
lengths, approximate tape passage time, and weighted
average.

DATA ADDRESSING

Completely variable length data, on the one hand,
yields economies in tape storage and effective file pas­
sage time; on the other hand, it presents certain prob­
lems with respect to symbolically addressing data items
in the memory. These problems are handled in several
different ways:

1) Those items whose lengths are fixed relative to the
beginning of the message may, of course, be direct­
ly addressed by the data name designated in the
data sheets.

2) The variable length items of a message may be
transferred to a working storage area of memory
where space is allocated for the maximum possible
size of each variable length item. A single pseudo-
instruction performs this function. From this
point on, the variable length item may be directly

Bromberg, Hurewitz, and Kozarsky: The RCA 501 Assembly System 129

Item No.

1

Sub Item

A

B

C

Abbreviation

Date

Month

Day

Year

Description

File Label

FAA

X

JY

R

Sign
No. Char.

Max.

6

2

2

2

Avg.

6

2

2

2

% U s e

100

Wtd. Avg.

Fig. 5—The automatic code data sheet.

Instr. No. Comments OP A
Address

B
Address

T
Address IF G O T O I F GOTO I F GO TO

Fig. 6—The automatic code program sheet.

Instr. No.

PRO 1

PRO 20

Comments

(Macro-Instruction)

"Extra Beneficiary"

OP

LRF

TEST

SC

D E F K

DA

ADV

A
Adress

POLCY

POLCY

DATE

KBEN

RATE

B
Address

DATE

TAX

+ V 4

T
Address

"122558"

WRATE

C
S
G

IF

EF

+

G O T O

PRO40 + 1

P R 0 2 3 + 5

IF

E D

-

G O T O

PDQ8 + 10

PHI 15

IF

0

GO TO

N

Fig. 7—Assembly pseudocode entries.

addressed by the data name preceded with a W
(representing working storage).

3) It is possible to locate the address of any item in a
message by using an instruction which scans a
message searching for and counting the control
symbols denning items. This instruction leaves
the address of the item in an address modifier.

The second input, whose format is shown in Fig. 6, is
the pseudocode written on the program sheets.

This is seen to be an expansion of the machine code
format which normally includes the operation field and
the two addresses A and B. This is augmented on this
sheet by the T or third address which for several ma­
chine instructions requires presetting. Furthermore,
there are provisions for 3 "IF-GO TO" statements pro­
viding for conditional or unconditional transfers of con­
trol. ^

The inclusion of these IF-GO TO statements as an

optional part of every pseudoinstruction line has two
primary motivations. First, it accommodates as a single
pseudocode statement the function "Compare and
Jump" which has a relatively high frequency in data-
processing problems. Second, about | of the 501 instruc­
tions automatically set a register to 1 of 3 states depend­
ing on conditions encountered during the operation of
the instructions. Branching instructions may then be
used to select different paths depending on the setting
of the 3 state register and are easily designated in the
IF-GO TO columns.

A single character entry in the CSG column generates
an instruction to open or close the simultaneous gate,
controlling the phasing of simultaneous tape operations.

VARIABLE INSTRUCTION GENERATION

An interesting feature of the Assembler is the han­
dling of the normal complement of 501 machine instruc-

130 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE

tions. Each of these instructions, when used in the ex­
panded pseudocode format, assumes the identity of a
macro-instruction. Up to five, two address machine in­
structions may be generated by employing a single
machine operation code with appropriate entries along
the pseudocode line. As an example, the 501 instruc­
tion, Decimal Substract, may accomplish not only a
three address subtraction, but also a simultaneous gate
operation, and transfers of control dependent upon the
sign of the difference.

SYMBOLIC AND RELATIVE ADDRESSING

Included in the automatic system are such features as
mnemonic operation codes, symbolic and relative ad­
dressing including the use of both alphanumeric and
octal literals for constants, and acceptability of machine
code should it be desired. Fig. 7 shows examples of pseu­
docode entries.

The Instruction number is composed of characters
designating the page and line number of the instruc­
tion.

When addressing an instruction, reference is made to
that instruction whose elements appear in the Opera­
tion, A, and B fields of the program sheet. Since, how­
ever, one single pseudoinstruction may account for as
many as five machine instructions, it is desirable to
address those. Therefore, a stipulated suffix to an in­
struction number will allow a reference to any gener­
ated instruction and to any field or desired character
within one of these instructions.

Relative addressing of these symbolics enables the
programmer to refer to the iVth pseudoinstruction fol­
lowing or preceding a given symbolic. The program will
be ordered by page number in alphabetic sequence and
within pages by line number before any processing is
undertaken. Accordingly, to accomplish an insertion,
one need only assign appropriately sequential labels to
the desired instructions and the program will place
them in the proper positions.

I t is not necessary, however, to label every instruc­
tion. Relative addressing allows reference to be made
to unlabeled instructions in the program. One might
usually expect to be labeled the first of a sequence of in­
structions performing a logical function and those to
which frequent reference is made by other instructions,
but this is left solely to the discretion of the program­
mer.

DESCRIPTOR VERBS

Descriptor verbs constitute an important part of the
automatic code. These verbs contribute, in general, only
to the description of the program and do not become a
directly converted active part of the machine code.

These special verbs perform a variety of functions
such as the definition of program segments, overlaying
memory regions, reserving areas of memory, extracting
the machine address corresponding to any symbolic
name, defining constants and variables and providing
for insertions, deletions, and corrections in pseudocode.

These verbs are executed during assembly and are
deleted from the final program.

VARIABLE ADDRESSING

Another programming aid incorporated within the
system is the variable address feature. A variable ad­
dress allows the specification of addresses or constants
to be symbolically named and to be defined later in the
program. A variable may be substituted for any other
machine or symbolic address in any instruction. This
feature, for example, permits tagging, as a variable, the
address of an instruction not yet written. I t is only
necessary then, at a subsequently convenient moment,
to employ the Descriptor Verb, "Define V," to supply
the actual address of this variable for every place it was
used.

It is also possible to use variable addresses in addi­
tion to any machine or symbolic address. This is ac­
complished by placing the variable address in the same
column as the one to which the variable is to be applied
and in the directly succeeding line. A plus or minus pre­
fix will then specify addition or subtraction of the vari­
able address. A variable to be added or subtracted will
not be applied until the variable is converted to an ac­
tual machine address. The use of variable addresses,
then, allows for symbolically designated modification of
the program at the actual or machine code level.

LITERALS

Literals, or constants whose address and name are
identical, are used in the assembler. Two types of liter­
als are provided, alphanumeric literals for operations
with data, and octal literals for operation with instruc­
tions which, it has been noted, are binary coded.

A literal is normally carried along with the segment in
which it appears. However, a terminal character of the
literal may be used to specify that the literal be stored in
a common constant pool available to all segments of a
program. A terminal character may also be used to
designate and to differentiate among duplicated copies
of the same literal in the program. Here, too, these
duplicate literals may be associated with the segment
or with the common pool of constants.

Alternatively, of course, constants may be defined by
a "Define Constant" Descriptor Verb and assigned an
arbitrary symbolic address. Terminal characters on
these constants perform the same functions with these
constants as those just described.

MACRO-INSTRUCTIONS

The macro-instructions included with the Assembler
create 2 address symbolic coding which is spliced direct­
ly into the main body of coding in place of the macro-
instruction pseudocode call-line. A single macro-instruc­
tion will generate all of the instructions required to per­
form some task which would normally require the writ­
ing of a sequence of machine instructions.

Parameters, which the macro-instruction uses, are
specified at the pseudocode call-line by the program-

Haibt: A Program to Draw Multilevel Flow Charts 131

mer. No restrictions exist as to number or size of these
parameters. If a macro-instruction is to be generative, it
contains one other part aside from the main body of
stored coding. This part decides, from an interrogation
of call-line parameters, which particular set of macro-
instruction coding is to be included in the main routine.

SUBROUTINES

The assembly system provides for an expandable li­
brary of subroutines to be available to the programmer.
These subroutines generate assembly language pseudo­
code and as such may use all the assembly features such
as macro-instructions, descriptor verbs, and so forth.
Subroutines may be open or closed and generative or
fixed.

Parameters for subroutines are specified at the pseu­
docode calling line. For open subroutines, parameters
are incorporated during the operation of the assembler.
These parameters may merely be substituted in the
subroutine as in the case of a fixed routine or may be
subject to considerable testing and manipulation as oc­
curs with a generative subroutine.

Closed subroutines may either incorporate param­
eters during assembly or use parameters generated by
the running machine program. In this case the parame­
ters are located relative to the subroutine call-line.

The design of the system is open to the extent that
any useful number of macro-instructions and subrou­
tines may be added.

PROVISIONS FOR PROGRAM MODIFICATION

The Assembly System offers two main listings for
program up-dating. First, listings are given of the object
machine code and the Assembly language pseudocode.
Second, is a list of all symbolic addresses and those in-

INTRODUCTION

THE preparation of a program for a digital com­
puter is not complete when a list of instructions
has been written. I t still must be determined that

the instructions do the required job, and if necessary the
instructions must be changed until they do. Also a de­
scription of the program should be written for others
who may want to understand the program. A useful tool
for the last purpose is a graphical outline of the pro­
gram—a flow chart.

t IBM Res. Center, Yorktown Heights, N. Y.

structions referring to them. In addition, the Assembly
System generates an information block preceding each
object program. This block, which contains all program
stops, breakpoint switches, and tape addresses is avail­
able for input to a service routine which will modify any
corresponding entries within the object program.

There are two types of error indicators used by the
Assembler. One causes the Assembly System to print
the source of trouble and stop immediately. The other
and major class consists of on-line printed statements in­
dicating the type and location of errors. In this case the
Assembly System continues its functions ignoring the
"guilty" statements until all such indicators have been
found. This permits the user to specify corrective meas­
ures for all errors at one time.

In summary then, the 501 Assembly System lies in
an intermediate category. On the one hand, it is defi­
nitely machine oriented, amplifying the 501 instruction
complement and requiring a knowledge of the 501.
However, it also provides for a flexibility of order state­
ments, not confined to the 2 address machine order
code. A variable number of machine instructions are
generated dependent upon the number and types of
entries made on each pseudocode line. Both macro-
instructions and subroutines may be of the generative
type and since the library is open-ended, may be aug­
mented whenever necessary.

In short, the RCA 501 Assembly System is a pro­
grammer's aide, enabling him to make maximum use
of machine capabilities with a minimum of clerical effort.

ACKNOWLEDGMENT

The authors acknowledge the extensive contributions
of M. J. Sendrow, who participated in the planning
and creation of the RCA 501 Assembly System.

Flow charts serve two important purposes: making a
program clear to someone who wishes to know about it,
and aiding the programmer himself to check that the
program as written does the required job. A flow chart
drawn by the programmer would serve for the first pur­
pose, but drawing one is often a tedious job which may
or may not be done well. For the second purpose, it is
important to have the flow charts show accurately what
the program does rather than what the programmer
might expect it to do. Consequently, it was decided to
write a program, the Flowcharter, for the IBM 704
to produce flow charts automatically from a list of in-

A Program to Draw Multilevel Flow Charts
LOIS M . H A I B T f

