
Haibt: A Program to Draw Multilevel Flow Charts 131 

mer. No restrictions exist as to number or size of these 
parameters. If a macro-instruction is to be generative, it 
contains one other part aside from the main body of 
stored coding. This part decides, from an interrogation 
of call-line parameters, which particular set of macro-
instruction coding is to be included in the main routine. 

SUBROUTINES 

The assembly system provides for an expandable li­
brary of subroutines to be available to the programmer. 
These subroutines generate assembly language pseudo­
code and as such may use all the assembly features such 
as macro-instructions, descriptor verbs, and so forth. 
Subroutines may be open or closed and generative or 
fixed. 

Parameters for subroutines are specified at the pseu­
docode calling line. For open subroutines, parameters 
are incorporated during the operation of the assembler. 
These parameters may merely be substituted in the 
subroutine as in the case of a fixed routine or may be 
subject to considerable testing and manipulation as oc­
curs with a generative subroutine. 

Closed subroutines may either incorporate param­
eters during assembly or use parameters generated by 
the running machine program. In this case the parame­
ters are located relative to the subroutine call-line. 

The design of the system is open to the extent that 
any useful number of macro-instructions and subrou­
tines may be added. 

PROVISIONS FOR PROGRAM MODIFICATION 

The Assembly System offers two main listings for 
program up-dating. First, listings are given of the object 
machine code and the Assembly language pseudocode. 
Second, is a list of all symbolic addresses and those in-

INTRODUCTION 

THE preparation of a program for a digital com­
puter is not complete when a list of instructions 
has been written. I t still must be determined that 

the instructions do the required job, and if necessary the 
instructions must be changed until they do. Also a de­
scription of the program should be written for others 
who may want to understand the program. A useful tool 
for the last purpose is a graphical outline of the pro­
gram—a flow chart. 

t IBM Res. Center, Yorktown Heights, N. Y. 

structions referring to them. In addition, the Assembly 
System generates an information block preceding each 
object program. This block, which contains all program 
stops, breakpoint switches, and tape addresses is avail­
able for input to a service routine which will modify any 
corresponding entries within the object program. 

There are two types of error indicators used by the 
Assembler. One causes the Assembly System to print 
the source of trouble and stop immediately. The other 
and major class consists of on-line printed statements in­
dicating the type and location of errors. In this case the 
Assembly System continues its functions ignoring the 
"guilty" statements until all such indicators have been 
found. This permits the user to specify corrective meas­
ures for all errors at one time. 

In summary then, the 501 Assembly System lies in 
an intermediate category. On the one hand, it is defi­
nitely machine oriented, amplifying the 501 instruction 
complement and requiring a knowledge of the 501. 
However, it also provides for a flexibility of order state­
ments, not confined to the 2 address machine order 
code. A variable number of machine instructions are 
generated dependent upon the number and types of 
entries made on each pseudocode line. Both macro-
instructions and subroutines may be of the generative 
type and since the library is open-ended, may be aug­
mented whenever necessary. 

In short, the RCA 501 Assembly System is a pro­
grammer's aide, enabling him to make maximum use 
of machine capabilities with a minimum of clerical effort. 

ACKNOWLEDGMENT 

The authors acknowledge the extensive contributions 
of M. J. Sendrow, who participated in the planning 
and creation of the RCA 501 Assembly System. 

Flow charts serve two important purposes: making a 
program clear to someone who wishes to know about it, 
and aiding the programmer himself to check that the 
program as written does the required job. A flow chart 
drawn by the programmer would serve for the first pur­
pose, but drawing one is often a tedious job which may 
or may not be done well. For the second purpose, it is 
important to have the flow charts show accurately what 
the program does rather than what the programmer 
might expect it to do. Consequently, it was decided to 
write a program, the Flowcharter, for the IBM 704 
to produce flow charts automatically from a list of in-

A Program to Draw Multilevel Flow Charts 
LOIS M . H A I B T f 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1457838.1457861&domain=pdf&date_stamp=1959-03-03


132 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE ' 

structions. Another reason for the project was to get 
further insight into the characteristics of computer pro­
grams. 

Since programs in many programming languages and 
even for different machines differ mainly in superficial 
aspects such as names and numbers for various opera­
tions, names and types of registers, it was decided to 
have the Flowcharter do the main part of its work on a 
common, machine-independent language and to have a 
set of preprocessors, each of which would translate one 
programming language into this common internal 
language. 

We also felt it was desirable not to attempt to show 
the whole program as one chart, which for a moderate 
size program would either present a confusion of detail 
or be too general to serve the purpose. In order to pro­
vide both a good general picture of the program or of 
any part of it, and a more detailed description of a 
smaller piece of program, the Flowcharter produces a 
series of flow charts on a number of levels of detail; each 
part of a chart is shown in more detail on a succeeding 
chart. How to determine the makeup of the charts was 
one of the most difficult problems encountered in plan­
ning the Flowcharter. 

Another feature of a flow chart is a description of 
the procedure represented by each box. The Flow­
charter provides a summary of the machine input-out­
put done in the box and a summary of the computation 
done in the box, listing the quantities computed and 
those used in the computation of each of them. 

DESCRIPTION OF THE FLOWCHARTER 

The Flowcharter is composed of four main parts: the 
preprocessors, the flow analysis, the computation sum­
mary, and the output program. 

The preprocessors each do a simple translation from 
the external instructions to the internal language. For 
most machines, an instruction may represent several dif­
ferent processes done in the machine, such as fetching 
from memory, storing the memory, and instruction se­
quencing. These operations are each described sepa­
rately in the internal language. One external instruction 
is translated by the preprocessor into a suitable list of 
these operations. 

Many of the problems which arose in designing a 
Flowcharter were in the section which determines what 
is to be shown on each chart. It is very easy for the pro­
grammer to mark off his program into logical parts, but 
to determine these from the program itself is quite dif­
ficult in most programming languages. We have worked 
out a set of techniques which we feel will do quite well 
for most programs and will be acceptable in other cases. 
We have also provided facilities for the programmer to 
specify how he would like the breakdown done on vari­
ous levels if he does not like the choices made by the 
Flowcharter. The techniques used depend mainly on 
analysis of the flow properties of the program but provi­
sion is also made in the Flowcharter for using the data 
to help in the analysis. The Flowcharter is written in 

such a way that various techniques and combinations of 
techniques can be tested to see what results they give. 

This flow analysis is done by iteratively forming re­
gions from groups of subregions. The smallest sub-
regions are individual instructions. In general, each 
region will be represented by one flow chart and each 
box drawn on the chart will represent a subregion of 
that region. However, when it is reasonable, two or 
more regions, each consisting of only two or three sub-
regions, will be shown on one flow chart. This is done 
to keep the output moderately compact. Also, those 
regions which are formed directly from instructions are 
not shown as flow charts but are given as a list of the 
instructions in the region, with a reference to the page 
on which this region is shown in context. (The Appendix 
shows an example of this.) 

The techniques used for region formation are of two 
kinds, combination and division. A combination tech­
nique is one which starts with individual instructions 
and, by repeated applications, combines them into 
larger and larger regions. A division technique is one 
which starts with the whole program and divides it into 
smaller parts. Each of these parts is in turn divided 
until each part consists of not more than six or seven of 
the regions formed by the techniques of the first type. 
Each technique is represented by a subroutine. 

Each combination subroutine searches for a particular 
configuration of flow in the program. Three such sub­
routines are: STRING, DIAMND, and TEST, which 
look for "strings," "diamonds," and "test sets." 

A "string" (see Fig. 1) is an ordered set of regions 
satisfying the condition that every region, except the 
first, has an entry only from the preceding region and 
each, except the last, has an exit only to the next one. 

A "diamond" (see Fig. 2) is a set of regions containing 
a first region F, a last region L, and some intermediate 
blocks. Each intermediate block must not have any 
predecessor other than F nor any successor other than 
L. All successors of F and predecessors of L must be in 
the "diamond." 

A "test set" is a set of regions which together make up 
a compound test. A set of regions forms a "test set" 
if each region ends with a test of the same special 
register. Also, every region except the first may have 
only one predecessor which must also be in the set. 
Finally, only the special register tested may be changed 
by the instructions in any of the regions except, pos­
sibly, the first one. For example, consider the 704 SAP 
instructions: 

CLA 
TZE 
SUB 
TZE 
SUB 
TZE 
SUB 
TZE 

ALPHA 
ISZERO 
ONE 
ISONE 
ONE 
ISTWO 
ONE 
ISTHRE 



Haibt: A Program to Draw Multilevel Flow Charts 133 

(a) (b) (c) 

Fig. 1—In each case the dotted lines enclose a "string." (Circles 
represent regions formed earlier and solid lines represent paths 
of flow in the direction of the arrow.) 

(a) (b) (c) (d) 

Fig. 2—In each case the dotted lines enclose a "diamond." (Circles 
represent regions formed earlier and solid lines represent paths 
of flow in the direction of the arrow.) 

The pair CLA, TZE, and each pair SUB, TZE make 
up a region found by STRING; then these four regions 
%ill be combined by TEST. 

It should be pointed out that the first two configura­
tions, "strings" and "diamonds," are sufficient to de­
scribe most programs. Iterative loops do not have to be 
taken care of separately; when the program within the 
loop is combined into a region, the return path of the 
loop is also included in the region. For example, in Fig. 
1(a) and Fig. 2(d), the return path, P, although not a 
part of the string or diamond, is a link between the sub-
regions forming the region and is therefore included in 
the flow chart of that region. The example used to show 
the output of the Flowcharter is a program for which 
only STRING and DIAMND are needed. 

The division subroutines attempt to discover par­
ticular configurations "in the large." Two such sub­
routines are UNWRAP and SPLIT which look for loops 
and easily separable parts of the program. The division 
subroutines are not allowed to separate the regions al­
ready built up by the combination routines. 

UNWRAP determines if the program is essentially 
one large loop; that is, it has an entry block E\, which 
has only one successor S, an exit block JE2, which has 
only one predecessor P, and there is a path from P to S. 
In this case, the region representing the program is 
made up of three subregions: Ei, Ez, and the subregion 
including everything else. The last now becomes the 
"program" to be divided further. 

SPLIT looks for the situation where the program is 
composed of several essentially distinct parts, each of 
which has only one entry point and one exit point for 
paths to or from other parts. Each such part is one 
subregion and is divided further if necessary. 

At present, STRING, DIAMND, and TEST are 
used repeatedly until none of them can do any further 
combining. If there are no more than six regions left, 
these are combined to make the region representing the 
entire program. If there are more than six left, UN­
WRAP and SPLIT are used repeatedly until they have 
either divided the entire program into the regions left 
by the combination routines or can not divide it any 
further. In the latter case, at present, arbitrary divisions 
are made until the program is so divided. 

This method should be adequate for most programs; 
however, the Flowcharter is written in such a way that 
routines can be added and other methods tried easily. 

In planning the computation analysis, the major 
problem encountered was that of determining when cells 
or registers were used only as temporary or erasable 
storage. In order to keep the amount of information 
down to a readable size, we wanted to list only the cells 
actively used in the region. We started with the idea of 
labeling a quantity computed but not used as "output," 
and those computed and then used, "tentative out­
puts" to indicate that they might be erasable cells. A 
"tentative output" was carried forward until an exit 
from the program or a use of the same'quantity was en­
countered. If there was such a use, the "tentative out­
put" became a real output—if not, it was considered 
erasable and would not appear further on the flow 
charts for that part of the program. Since a "tentative 
output" had to be carried forward on all possible paths 
but changed to a real output only on those paths on 
which a use was encountered, the bookkeeping necessary 
became unmanageable when the flow of the program 
was complicated. 

If the computation is traced backward rather than 
forward, the procedure becomes much simpler. If a 
quantity is needed at one point of a program, it must 
be available along every possible path backwards from 
that point until some point is encountered where the 
quantity is computed or until an entrance to the pro­
gram is encountered. In the latter case, this quantity 
must be available at that entrance to the program. 
With each region shown on a flow chart, all the quanti­
ties computed in that region are listed except those 
erasable cells which are used only within the region. 
For each quantity computed, there is given a list of 
quantities which are required at the entrances to the 
region and which enter into the computation of this 
item whether directly or indirectly. 

The last part of the Flowcharter arranges and prints 
the results of the other sections. The appearance of the 
final flow charts will be one of the most important fea­
tures to anyone using the Flowcharter and will be as 
much like hand-drawn flow charts as possible. Each page 
will show one region composed of as many as six or seven 



134 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 

smaller regions. Each of the boxes will indicate the 
entry and exit locations of the subregion it represents, 
the number of the page that has a detailed flow chart 
•of the subregion, the location of any exits and entrances 
in the middle of the region and the exit conditions for 
any exit. Each box will be outlined by asterisks and all 
transfer paths will be represented by lines to the appro­
priate points. If the lines go outside the region, the name 
and page number of the instruction at the other end will 
be given at the top or bottom of the page for entrances 
or exits, respectively. The boxes themselves will be ar­
ranged in two dimensions to show the flow in the region 
as clearly as possible, using horizontal as well as vertical 
displacements of the boxes. On the right-hand side of the 
page will be listed further information in three columns: 
the names and numbers of any input-output units used, 
and which memory cells were involved in each case; a 
list of those quantities for which values must be avail­
able at the entrance to the region; and the computation 
summaries mentioned above. Provision is also made for 
reproducing comments, box titles, page titles, and other 
comments given by the programmer. (See the Appendix 
for an example of the output.) 

STATUS OF THE PROGRAM 

On February first, the program described here was 
nearly complete and checked out with a preprocessor 
for 704 SAP language. The parts not yet finished were 
UNWRAP, SPLIT, the drawing of the boxes and lines 
in the output program, and provision for some of the 
specifications by the programmer. In each case, much 
or all of the planning has been done. 

As soon as these are complete, it is planned to write 
705 and FORTRAN preprocessors and at least one re­
gion forming subroutine which considers mainly the 
data used by the progVam, and has much less emphasis 
on the flow properties than the routines described here. 
Also planned is some experimentation with various 
methods of region formation. 

ACKNOWLEDGMENT 

The author wishes to acknowledge the contributions 
of Alex Bernstein, who collaborated on the initial phases 
of the project, and of James Lagona, who wrote certain 
of the subroutines. The author also would like to thank 
colleagues in the Programming Research Department 
for helpful discussions and advice. 

APPENDIX 

The source program flow charted here is: 
C A PROGRAM TO MULTIPLY TWO MATRICES AND SUBSTITUTE PLUS ZERO FOR 
C EACH ZERO ELEMENT, PLUS ONE FOR EACH POSITIVE ELEMENT, AND MINUS 
C ONE FOR EACH NEGATIVE ELEMENT. 

10 READ 200 ((M(I, J), 1=1, 3), J = l, 4), ((N(J, K), J = l , 4), K = l, 5) 
20 DO 1401=1,3 
30 DO 130 K = 1,5 
40 L(I, K) = 0 
50 DO60J= l , 4 
60 L(I, K)=L(I, K)+M(I, J) * N(J, K) 
70 IF (L(I, K) 120, 100, 80 
80 L(I, K) = + l 
90 GO TO 130 

100 L(I, K) = 0 ' 
110 GO TO 130 
120 L(I, K) = - l 
130 CONTINUE 
140 CONTINUE 
150 PRINT 200 ((L(I, K), 1= 1, 3), K= 1, 5) 
160 STOP 
200 FORMAT (1514) 

EXPLANATION OF CONTENTS OF BOXES IN THE FLOW CHARTS 

PATHS INTO THIS SUBREGION 

V V V 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* FIRST LAST * 
* LOCATION LOCATION * 
* * 
* WHERE TO FIND MORE * * DETAILS ABOUT THIS * 
* SUBREGION * 
* * 
* * 
* EXIT CONDITIONS * 

READING 
WRITING 

VALUES 
REQUIRED 

COMPUTATION 
DONE 

V V V 
PATHS OUT OF THIS SUBREGION 



Haibt: A Program to Draw Multilevel Flow Charts 

PAGE 1 
A PROGRAM TO MULTIPLY TWO MATRICES AND SUBSTITUTE PLUS ZERO FOR 
EACH ZERO ELEMENT, PLUS ONE FOR EACH POSITIVE ELEMENT, AND MINUS 
ONE FOR EACH NEGATIVE ELEMENT. 

ENTRANCE TO READING VALUES COMPUTATION 
PROGRAM WRITING REQUIRED DONE 

10 
* 
* 
* 
* 
* 
* * * 

V 

P.3 

UNCOND 

* * * * 
20 * 

* 
* 
* 

* * * * 

READ CARDS 
M(I, J) 
N(J, K) 

M(I, J) • • • CARDS 
N(J, K) • • • CARDS 

V 
* * * * 

V 

30 
P.3 

UNCOND 

V V 

* 40 130 * 
* P.2 * 
* * 
* K IS TO 5 * 
* GREATER LESS, = * 

V 

* 140 
* 
* 

140 * 
P.3 * 

* * I IS TO 3 * 
* GREATER LESS, = * 

I 
K 
M(I, J) 
N(J, K) 

K + 1 

K 

L(I, K) 

K 
+ 1 +0 

- 1 
+1 

I 
+ 1 

V 

* 150 
* P.3 

STOP 
fc * * * 

* * * * 
160 * 

* 
* 
* 

* * * * 

PRINT • • 
L(I, K) 

L(I, K) 

V 
EXIT FROM 
PROGRAM 



136 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 

PAGE 2 

30 
P.l 

READING VALUES COMPUTATION 
WRITING REQUIRED DONE 

V V 

* 40 50 * 
* P.3 * 

* UNCOND * 

V V 

* 60 60 * 
* P.3 * 
* * 
* J IS TO 4 * 
* GREATER LESS, = * 

V 

* 70 70 * 
* P.3 * 
* * 
* L(I, K) IS TO 0 * 
* GREATER = LESS * 

V 

* 80 90 * 
* P.3 * 
* * 
* UNCOND * 

* 100 110 * 
* P.3 * 
* * 
* UNCOND * 

V 

* 120 120 * 
* P.3 * 

* UNCOND * 

V V V 

* 130 130 * 
* P.3 * 
* * 
* K IS TO 5 * 
* GREATER LESS, = * 

I 
K 
L(I, K) 

K 

L(I, K) • • 
J • • • +1 

K 
+1 

+0 

I 
J 
K 
M(I, J) 
N(J, K) 
L(I, K) 

L(I, K) • • 

J - ' - J 
+1 

• L(I, K) 
M(I, J) 
N(J, K) 

L(I, K) • • • + 1 

L(I, K) • • • +0 

I L(I, K) 1 
K 

V 
140 
P.l 



Arnold: A Compiler Capable of Learning 137 

PAGE 3 

INSTRUCTIONS FOR CONTEXT 
SEE PAGE 

C A PROGRAM TO MULTIPLY TWO MATRICES AND SUBSTITUTE PLUS ZERO FOR 
C EACH ZERO ELEMENT, PLUS ONE FOR EACH POSITIVE ELEMENT, AND MINUS 
C ONE FOR EACH NEGATIVE ELEMENT. 

10 READ 200 ((M(I, J), 1 = 1 , 3), J = l , 4), ((N(J, K), J = l , 4), K = l, 5) 
20 DO 140 1 = 1 , 3 

30 DO 130 K = 1,5 

40 L(I, K) = 0 
50 DO 60 J = 1,4 

60 L(I, K) = L(I, K) M(I, J) * N(J, K) 
(END OF DO AT 50) 

70 IF (L(I, K) 12, 10, 80 

80 L(I, K) = + l 
90 GO TO 130 

100 L(I, K) = 0 
110 GO TO 130 

120 L(I, K) = - l 

130 CONTINUE 
(END OF DO AT 30) 

140 CONTINUE 
(END OF DO AT 20) 

150 PRINT 200 (L(I, K), 1= 1, 3), K = 1, 5) 
160 STOP 

A Compiler Capable of Learning 
RICHARD F. ARNOLD f 

W! 
INTRODUCTION 

"E WOULD like to consider a new approach to 
the general problem of programming computers. 
To date, the methods of handling programming 

problems can be roughly classified into two families, 
each of which have certain characteristic advantages 
and disadvantages which seem to complement those of 
the other. 

The first group, developed from the subroutine philos­
ophy, includes all interpretive schemes, as for example 
the "Bell Labs Interpretive System" for the IBM 650. 
The advantages of interpretive routines are that they 
are very versatile in the languages they can interpret 
and are comparatively easy to write. It is a fairly simple 
matter to write an interpretive routine to simulate an­
other computer and thus achieve program compatibil­
ity between different machines. The crippling drawback 
is the excessive time needed to execute routines inter-

f Michigan State University, East Lansing, Mich. This research 
was supported in part by a grant from the Natl. Sci. Found, and 
taken from a thesis written under the direction of G. P. Weeg. 

pretively. Higher order interpretive schemes increase 
executions time exponentially. 

The second group consists of compilers and assembly 
programs. They are characterized by the fact that, un­
like interpretive routines, they produce object programs 
which may be executed in reasonable amounts of time. 
Compilers, however, are difficult to write. "Fortran," 
for example, took twenty-five man years to write. A 
second difficulty of compilers such as "Fortran," is that 
although they are becoming more and more versatile, 
they still fail to express certain types of operations, and 
it has become necessary to make it possible to adapt the 
compiler so that the "Fortran" language may be tem­
porarily left and programming done in a language closer 
to the initial machine language. Of course, this is a 
desirable feature for a compiler to have, but it does not 
solve the initial problem for which it was created, 
namely, to avoid machine languages completely. A fur­
ther disadvantage is that as a compiler system becomes 
adapted for use on more than one computer, many of the 
"coding tricks" will have to be avoided. This may be de­
sirable from the point of view of the compiler writer, but 




