
1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 173 

Some Experiments in Machine Learning 
H O W A R D C A M P A I G N E j 

E VER since the development of automatic se
quence computers it has been possible for the 
machine to modify its own instructions, and this 

ability is the greatest single faculty in the complex that 
tempts the term "giant brain." Friedberg1 demonstrated 
a new technique in the modification of instructions; he 
allowed the machine to make alterations at "random," 
and lent direction to the maneuver by monitoring the 
result. This technique is far from being a feasible way to 
program a computer, for it took several hundred thou
sand errors before the first successful trial, and this was 
for one of the simplest tasks he could imagine. A simple 
principle of probabilities shows that a task compounded 
of two tasks of this same complexity would take several 
hundred thousand times as long, perhaps a million com
puter hours. It is the object of this study to examine 
techniques for abbreviating this process. 

The work reported here is not complete, nor is it 
likely to be for several years. The field is immense, the 
search proceeds slowly, and there are few clues as to 
where to look. This paper is, therefore, in the nature of 
a preliminary report. 

The memory of a computer can be pictured as a piece 
of scratch paper, ruled into numbered cells, on which 
notes can be written or overwritten. I set aside a portion 
of this memory in which the computer is supposed, 
somehow, to write a program. Some of this dedicated 
space is for data and some for instructions. I programmed 
a generator of random numbers, and instructed the com
puter to use these numbers to write a program (and 
later to modify a program already written). The 
method of using the random numbers is such that all 
addresses generated refer to the data, and all instruc
tions generated are from an approved list. After a little 
thought one sees that by putting sufficient limitations 
on what the computer is allowed to write the result will 
be a foregone conclusion. The object is to design an ex
periment which leaves the computer relatively free from 
limitations but which will still lead to a meaningful re
sult. Friedberg did this. 

One way for the machine to write the instructions is 
to have it write random bits into a form word, the form 
and the dedicated spaces being selected to be coherent. 

Now a simple task is envisioned and a monitor rou
tine written to test whether the randomly generated pro
gram (which Friedberg christened HERMAN) has ac
complished the task. If it has it is tried again until the 
probability is high that the task is being done correctly. 

t American University, Washington, D. C. 
1 R. M. Friedberg, "A learning machine," pt. I, IBM J. Res. and 

Deo., vol. 2, p. 2; January, 1958. 

If at any step the task is not done then a change is made 
before another trial. I t is clear that once a routine which 
can do the task has been arrived at no further changes 
will be made. The procedure can be pictured as a ran
dom walk. The number of possible programs is finite; in 
one of my experiments it was 296. The rule for going from 
one trial to another can be chosen in various ways, but 
in the same experiment there were just 64 alternatives 
at each step. The number of routines which satisfy the 
test must be, judging from my results, on the order of 
296/212 = 284. For some tasks and for some repertories of 
instructions it can be estimated directly. 

AN EXAMPLE OF A MACHINE WRITTEN PROGRAM 

Operation 
QJP 
COQ 
LDQ 
STQ 
COQ 
QJP 
LDQ 
QJP 
STQ 
LDQ 
STQ 
QJP 
COQ 
STQ 
COQ 
LDQ 

27 
24 
22 
23 
24 
27 
22 
27 
23 
22 
23 
27 
24 
23 
24 
22 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

Operand 
0447 
0443 
0453 
0457 
0452 
0452 
0445 
0457 
0444 
0444 
0450 
0454 
0445 
0442 
0447 
0451 

Address 
0440 
0441 
0442 
0443 
0444 
0445 
0446 
0447 
0450 
0451 
0452 
0453 
0454 
0455 
0456 
0457 

Data 
13351604 
77777777 

0 
57312317 

0 
77777777 
77777777 
77777777 

0 
0 
0 

77777777 
54040476 
77777777 
77777777 

0 

In designing these experiments one has a tremendous 
number of choices. There is the repertory of instructions 
from which the machine chooses to make up its routine. 
The instructions of this repertory need not be selected 
with equal probability; some can be used more often 
than others. There is the size of the area of the memory 
dedicated to the random routine. There is the task to be 
performed. There is the time allowed the routine to 
make its trial. And there are a multitude of other varia
tions, some of which will be mentioned later. 

I first used the simplest repertory to be found capable 
of performing the Sheffer "stroke" function. It is: 

LOAD from y into the accumulator, 
STORE at y from the accumulator, 
COMPLEMENT the accumulator, 
J U M P to y if the accumulator is positive. 

This differs drastically from that used by Friedberg. 
The area of the memory devoted to the random rou

tine must be in two parts, one for data and the other 
for instructions; otherwise the machine would try to 
execute data and come to an intolerable halt. Therefore 
the address y of the J U M P order must be interpreted 
differently from those of the LOAD and STORE orders. 

A problem related to that which leads to the separa
tion of the two dedicated areas is that endless loops are 
highly probable and intolerable. This problem can be 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1457838.1457868&domain=pdf&date_stamp=1959-03-03


174 1959 PROCEEDINGS OF THE 

solved by the routine which interprets the jump ad
dresses. At the occasion of a J U M P a calculation is 
made about the time of running; if the time is excessive 
then the trial is terminated and called a failure. If the 
time is acceptable then the address to which the jump 
is made is interpreted. 

In an earlier experiment I used a clock to time the 
routines and adjusted the jump addresses with a B-box. 
The use of a clock made checking and debugging very 
difficult and eventually forced me to the later method. 

I have used several sizes of dedicated spaces and plan 
to try still more, but most of the trials have been with 
sixteen lines of coding. Friedberg used sixty-four lines. 
Clearly one must allow enough lines to permit coding 
the task. More than enough slows the "learning" proc
ess. To allow just enough prejudices the event and is 
not "fair." A felicitous solution to this quandary would 
be to find a way to expedite the "learning" so that very 
large areas of memory can be dedicated, thus guarantee
ing that the answer has been supplied by the machine. 
I t is the object of this study to find such a solution. 

The time allowed to execute the routine can be varied. 
Its absolute minimum is that for three instructions. The 
maximum could be quite large if the routine were re
traced several times. Oddly enough the time allowed on 
each trial has only a small effect on the number of trials 
before learning. This may be because when the machine 
has extra time it uses that time to destroy what it may 
already have accomplished. If so then two effects tend 
to neutralize each other; the freedom of more time tends 
to lengthen the learning period, and the greater number 
of potential solutions tends to shorten it (Table I). 

TABLE I 

T H E EFFECT OF TIME ON LEARNING 

Time 

14 
10 
7 
4 

Median number of 
trials 

4400 
5800 
6800 

15,500 

Number of 
experiments 

31 
47 
30 
13 

These experiments differed only in the time allowed 
each trial. The time is measured by the number of pro
gram steps possible. Each experiment was run until the 
machine had demonstrated that it succeeded (one 
hundred consecutive successes) and then the number of 
trials was recorded. In this set of experiments about 38 
per cent of the trials appeared by accident to be suc
cesses. Thus the number of different programs tried was 
about 62 per cent of the total number of trials. As the 
time was shortened it became more difficult to find a 
successful routine. 

The median has been quoted here to avoid a bias 
which might affect the average. The range of the num
ber of trials is large, and there might be some prejudice 
against the longest runs, such as stopping them to 
check for faults. 

N JOINT COMPUTER CONFERENCE 

The task selected was to transfer a word from one 
place to another. This was chosen because of its sim
plicity. An easier task was to copy a word at a pre
scribed spot from one of several places (redundant in
put) . A harder task would be to copy a word at several 
places (redundant output). With redundant input (the 
key word written at two accessible places) the median 
number of trials was 2600, compared with 5800 in non-
redundant experiments. 

The procedure for the machine making changes in the 
routine offers many opportunities to be different. In one 
series of trials the routine was rewritten completely 
after each failure. In another only one instruction was 
rewritten, the instructions being taken in turn in succes
sive tests. In another series just one instruction was re
written, this time chosen by an elaborate procedure in
volving "success numbers." The success numbers were 
accounts, one for each instruction of the routine, which 
were increased when a success or what appeared to be a 
success happened, and decreased when a failure oc
curred. This procedure was roughly the same as that of 
Friedberg's, although not quite as elaborate. 

A comparison of the results of these alternative meth
ods were that "learning" occurred most rapidly with the 
first method, about twenty-five hundred errors before a 
success. It was less rapid with the second, about six 
thousand trials, and slowest with the last, over one 
hundred thousand trials. The "learning" is an abrupt 
process, a "flash of insight." The procedure with success 
numbers resembles that used in other experiments with 
self-improving programs, such as those used by Oet-
tinger.2 I t seems to be inappropriate here since a line ol 
coding is not itself a unit. If the program were organized 
into units to which success numbers could be appropri
ately applied then it would begin to appear that the 
answer to our problem was being built into our ap
proach. Success numbers will have an important place 
in the ultimate "learning" machines, but some sort of 
self-improving without them will also be required. 

A SAMPLE OF EXPERIMENTS ARRANGED IN ORDER 

No. of Trials 
20 
38 
54 
68 
72 
76 
76 
88 
156 
160 

1 162 
234 
222 
276 
294 
330 
338 
352 
386 
521 

Apparently Right 
20 
32 
37 
39 
46 
40 
47 
53 
77 
89 
88 
131 
124 
130 
153 
160 
173 
160 
181 
249 

No. of Trials 
576 
592 
598 
612 
614 
618 
680 
800 
996 
1090 
1100 
1246 
1324 
1412 
1420 
1528 
1616 
2016 
2872 
3198 

Apparently Right 
273 
280 
303 
317 
297 
290 
331 
385 
509 
526 
526 
595 
629 
688 
678 
753 
782 
990 
1366 
1522 

2 A. G. Oettinger, "Programming: a digital computer to learn," 
Phil. Mag., vol. 43, pp. 1243-1263; December, 1952. 



Campaigne: Some Experiments in Machine Learning 175 

TABLE II 

SYNOPSIS OF EXPERIMENTS 

Type of 

All 

X 

X 

X 

X 

X 

X 

X 

change 

One at 
a time 

X 

X 

X 
X 

X 
X 

X 

X 
X 

X 
X 

X 
X 
X 
X 
X 
X 
X 
X 

Length 

2 
14 
14 
16 
16 
8 

16 
16 
8 

16 
16 
16 
16 
16 
16 
16 
16 
16 
8 

16 
8 

16 
16 
16 
16 
16 

Time 

2 
10 
10 
12 
12 
4 

10 
10 
4 

10 
10 
10 
10 
10 
10 
12 
10 
10 
4 
8 
4 

10 
7 

10 
10 
8 

Task 

Transfer 
word 

X 
X 
X 

X 

X 

X 
X 
X 

Choose 
an exit 

X 
X 
X 

X 
X 

X 
X 
X 
X 
X 
X 

X 
X 

. 
X 
X 
X 
X 
X 

Competing twins? 

Yes 

X 
X 

X 
X 

X 

X 

X 

X 

No 

X 
X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 

X 

Median no. 
of trials 
before 

learning 

548 
960 

1530 
1567 
1775 
1902 
2097 
2210 
2280 
2608 
2683 
2998 
3125 
3610 
4200 
4300 
4401 
4406 
4988 
5177 
5280 
6700 
6800 
7273 
8600 
9266 

Notes 

Reversed exit 
Input redundant 

Reversed exit 

Reversed exit 
Input redundant 
Input redundant 

In these experiments the minimum possible space, 
two orders, was allowed for the program. The learning 
was judged complete when 20 successive right answers 
were given. Thus there is a chance of something less 
than one in a million that a given experiment did not 
succeed, despite appearances. Notice the wide range, 
the slowest taking 160 times as long as the fastest 
(Table II) . 

These experiments throw some light on this kind of 
"learning," and particularly on which versions learn 
fastest. The process is analogous to evolution, since a 
routine survives only if it meets the challenge of its en
vironment. This analogy suggests some further experi
ments where each trial is built on two successful trials, 
perhaps by taking lines of coding from each, much as 
genes are taken from chromosomes. I have hopes that 
routines can be built in this manner to meet complex en
vironments and that the number of trials will be only 
the sum of the number for each individual requirement 
rather than the product. 

In the experiments described above once a task has 
been "learned" there is no further improvement. It 
would be desirable for the routine to improve its per

formance even after it had demonstrated acceptable 
skill. This can only be done by some sort of flexible cri
terion of satisfaction, and by some way of keeping prog
ress already made. I have tried to do this by twin learn
ing routines. The twins compete to see which will first 
learn the task. When one of them has learned the other 
continues to try, but now it must complete the task 
more quickly than its sister. In this way some improve
ment takes place. I t is not quicker than the alternative 
of insisting on a high standard ab initio. 

Other techniques need to be tested. One of these is to 
use as components not lines of coding but subroutines. 
In this way the average coherence of the trials should 
be raised. Another is some way of accumulating suc
cesses and then using them cooperatively to meet more 
and more complex environments. This resembles bio
logical history, where evolution has produced increas
ingly complex organisms which become more and more 
effective in dealing with their environment. 

If someone could invent a technique which produced 
programs as effective as organisms in a time which is 
electronic rather than biological it would be a revolu
tion in programming. 




