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A High-Accuracy, Real-Time Digital Computer 
for Use in Continuous Control Systems* 

W. J. MILAN-KAMSKIf 

IT HAS become evident during the last few years that 
the accuracy requirements of analog computers 
have become too difficult to be easily satisfied. The 

rising pressure to achieve better computational ac­
curacy has led to significant improvements in the com­
putational techniques used in analog computers. These 
new improvements have made it possible to achieve a 
high degree of precision so that a 0.1 per cent accuracy 
has gradually become a realistic figure in many analog 
machines. 

However, present-day analog computer technology is 
completely helpless if accuracy requirements approach 
the magnitude of 1 part per million, or 0.0001 per cent. 
The only available computers which can achieve this 
degree of accuracy are obviously digitial computers. 

Many attempts have been made to design digital 
computers so that they might be used as direct replace­
ments for analog computers. However, a rather unex­
pected difficulty has arisen. Digital computers, which 
have received a great deal of publicity as being the 
fastest computational tools, are extremely slow when 
compared to analog computers. Since the comparison is 
made between digital and analog computers, the opera­
tion of the digital computer must be such as to satisfy 
the bandwidth requirements of the analog computer. 
By this equivalence, the bandwidth of a digital com­
puter can be defined as the bandwidth of an equivalent 
analog computer. 

There are three distinct approaches in solving the 
problem of designing high-accuracy, real-time digital 
computers. All three of these approaches are directed 
toward building high-accuracy digital computers which 
can replace analog computers in applications where ac­
curacy requirements exceed present capabilities of these 
machines. 

At least one approach has come from engineers whose 
experience and background have been chiefly in the 
field of analog computers. Their basic approach was to 
replace various analog computer elements by equivalent 
digital operational blocks. For example, an integrator 
which consists of a motor with appropriate velocity con­
trol can be replaced by a reversible counter; a potentio-
metric multiplier can be replaced by a digital element 
which is called a rate multiplier, and so on. 
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Since the operation of a computer of this type is in­
cremental, its design approach led to the development 
of a family of computers called incremental digital com­
puters. 

The second approach was to translate the problem 
into a differential equation and then to solve the differ­
ential equations by integration. Since the solution of 
differential equations is done using finite increments, 
the family of digital differential analyzers is closely re­
lated to the family of incremental computers. The out­
put function of incremental computers and of the digital 
differential analyzers is determined by the increment of 
the input function and by the internal state of the ma­
chine. These computers, therefore, can be regarded as 
deterministic transducers with infinite memory. 

The third family of real-time digital computers is rep­
resented by machines which go through a complete com­
putational cycle every time a new input sample is taken. 
These computers normally adopt computational tech­
niques which have been developed in programming 
general-purpose digital computers. 

These machines normally have short memories or, in 
many cases, no memory at all. Their output is always 
uniquely determined by the input. 

The latter group of computers is particularly suited to 
applications in which a number of problems must be 
solved simultaneously and concurrently. I t is achieved 
usually by interleaving several programs. 

The computational speed of digital computers is 
usually defined as the number of additions or multiplica­
tions which the computer can perform within a certain 
period of time. This computational speed is extremely 
high when compared to the computational speed of a 
desk calculator. In real-time computation, however, the 
speed of operation is defined as the ability of the com­
puter to generate output functions, which vary rapidly 
with time. Not only must the output function contain 
large values of higher order derivatives, but also must 
not be delayed by the finite computational time of the 
computer. The transfer function of real-time computers 
is often complicated and usually contains trigonometric 
functions. If a high degree of accuracy is desired, the 
word length required may be as large as 30 binary digits 
or more. 

1 I t is possible to show that a high-accuracy machine 
has a limited ability to generate output functions which 
contain large values of output function derivatives. The 
computational time increases very rapidly as the word 
length increases. 
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The design of a real-time digital computer is usually 
based on an input-output accuracy specification and on 
the bandwidth requirements. For a digital computer, the 
bandwidth requirement can usually be expressed in 
terms of the amplitudes of output function derivatives. 
Maximum possible values of the derivatives can nor­
mally be determined by analyzing the geometry and the 
dynamic character of the output function. 

The first trial in the determination of the maximum 
permissible computational time can be accomplished by 
first calculating the greatest possible velocity of the out­
put function, and then by selecting a computational 
time such that the change of the output function with­
in the computational time will not be greater than a 
maximum permissible error. 

Errors due to quantization, truncation, round-off, 
function approximation, etc., must be considered sepa­
rately as additional system errors. In certain problems, 
the computational time calculated from the investiga­
tion of the maximum output velocity may be extremely 
short. Extremely short computational times can be 
realized with incremental computers. However, internal 
rates of several megacycles are necessary in order to 
construct incremental machines which have equivalent 
bandwidths equal to the bandwidth of analog computers 
and accuracy of 1 part in 10,000. 

In many applications, long computer memory is un­
desirable as, for example, in all real-time control and 
stabilization computers. Computer response to step in­
puts in target tracking applications must be excellent. 
Errors must be self-correcting, and the accuracy of the 
computer must be independent of the accuracy of pre­
vious computations. 

These requirements cannot be readily satisfied by 
purely incremental computers. The selection of a cer­
tain type of real-time computer should be based on the 
specific requirements of each problem. 

The best results can be achieved if the design of real­
time computers is specially tailored to each problem. 
The specification for a real-time computer is usually 
determined by accuracy requirements and the character­
istics of the time function to be controlled. 

There are usually several other factors which are nor­
mally well specified; for example, the weight and size 
of the computer and the type of hardware to be used. 
These requirements, combined with the environmental 
specification, usually determine the maximum practical 
internal rate of the machine. 

Several design parameters must be considered to de­
termine the optimum combination of computer ac­
curacy, internal speed of operation, approximations 
used, sampling rate, and the time of computation. 

The maximum permissible computational time can 
be determined by analyzing the nature of the output 
function. The output function can always be expressed 
in terms of a Taylor series. The actual mathematical 
manipulation can be quite involved. It may also be 
difficult to determine the maximum possible values of 

all the derivatives of the output function. However, if 
the motion of a physical object is considered, it is usually 
sufficient to analyze only the first two or three deriva­
tives in order to describe adequately the output func­
tion. Rapid changes in acceleration are very rare, and, 
therefore, higher order terms of the expansion can be 
disregarded. 

The Taylor expansion can be regarded as a polynomial 
in t. I t is possible then to substitute a polynomial for 
the output function. The period of time in which the 
polynomial substitution is valid can be determined by 
calculating the difference between the polynomial ap­
proximation and the output function. The difference 
must be less than the maximum permissible error. The 
higher the order of the polynomial used, the longer the 
period of time over which the substitution is valid. The 
computational time can then be determined by the time 
it takes the output function to diverge by a certain pre­
determined amount from the polynomial approxima­
tion. 

The minimum sampling rate and the maximum 
computation time can then be determined for each order 
of the polynomial used as the output approximation. 
Computation times are progressively greater as the or­
der of the polynomial increases. 

The determination of the coefficients of the poly­
nomial require the determination of the appropriate de­
rivatives of the output function. The polynomial co­
efficients can be calculated on the basis of several sam­
ples computed at given time intervals. Using Newton's 
backward interpolation formula, it is possible to deter­
mine the coefficients of the polynomial by simply cal­
culating the differences on the basis of several samples 
of the output function. (See Fig. 1.) 
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Fig. 1—Computer block diagram. Output function is compensated 
for the computational delay by means of a polynomial substi­
tution. 

The computation of function differences involves sub­
traction. Since random errors are not correlated, they 
are not subject to cancellation. In systems in which 
random and bias errors are of the same magnitude, a 
second order polynomial is probably the highest order 
which can be practically used. The computation of the 
terms of the polynomial makes it necessary to memorize 
the results of several computations. In other words, it is 
impossible to construct a computer which uses poly­
nomial approximation and has no memory. However, 
the memory is relatively short. If a second order poly­
nomial is used, the computer memory is equal to only 
three computation cycles. 
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The use of a polynomial approximation to the output 
function offers an added advantage which may be im­
portant in certain applications. The output function 
can be generated in steps which are smaller than the 
maximum permissible errors. The need for this form of 
output may arise if a high performance servo is con­
trolled by the output of the computer. I t can be seen 
from Fig. 2 that the actual output of the computer con­
sists of a sequence of polynomial segments and that 
there is a discontinuous jump from a polynomial to the 
polynomial whose terms have just been calculated. This 
discontinuity can be made as small as desired. The re­
duction of the output function steps, however, can be 
achieved only at the expense of the computational time. 
It is possible, then, to trade computation speed for 
accuracy and vice versa. 

COMPUTATION TIME DELAY 

Fig. 2—Computer output function. Output function is 
approximated by polynomial substitution. 

In between the computational times, the output func­
tion is not directly controlled by the input functions. 
However, the nature of the ouput function is such that 
it cannot possibly diverge from the approximated value 
by more than a certain predetermined value. This maxi­
mum deviation can be calculated by taking the terms 
of the Taylor expansion of the output function which 
do not appear in the polynomial approximation. 

Once the sampling rate and the order of the polyno­
mial approximation of the output function is deter­
mined, it is possible to determine the bandwidth of the 
computer. The bandwidth can be calculated by evaluat­
ing the accuracy of the computer as a function of the 
output function frequencies. 

The frequency of the output function is postulated, 
and the rms value of the errors due to the polynomial 
approximation is calculated. For every frequency, a 
certain value of the rms error can be determined. The 
bandwith of the computer can then be defined as the 
maximum frequency at which the rms error is still with­
in the permissible limits. 

In all real-time control and stabilization computers, 
it is always necessary to compute some trigonometric 
functions. There are many ingenious schemes of com­
puting these functions by using the incremental, tech­
niques. All these techniques, however, suffer from the 
limitation of having infinite or very long memories. In 
the Epsco STARDAC Computer, the trigonometric 
functions are calculated using the Tchebycheff polyno­
mials. Sine and cosine functions are usually needed 
simultaneously. In the Epsco STARDAC Computer 
they are calculated concurrently by using the powers of 
the argument and the multiplying the result by ap­
propriate Tchebycheff coefficients. A very high degree 
of accuracy can be realized if the Tchebycheff polyno­
mial is used within an interval of 0° to 90°. Simple logic 
is used to accommodate arguments outside of this range. 

In this high-accuracy, real-time system, error analysis 
is probably the most important phase of the system 
design. All possible sources of accuracy-limiting factors 
must be carefully analyzed. 

In the applications in which the computational time 
cannot be disregarded, a polynomial substitution for 
the output function is used to offset errors due to the 
computation time. The polynomial substitution can be 
only approximate and consequently an error^ is intro­
duced. Truncation and round-off errors can be deter­
mined by analyzing the number of significant digits lost 
in the computations. Errors introduced by the sub­
stitution of Tchebycheff polynomials for the trigono­
metric functions can be determined. 

Output errors due to the errors present in the input 
functions must be carefully analyzed since these errors 
determine the maximum realizable accuracy of the sys­
tem. 

The accuracy of the input function has a profound 
effect on the decisions which must be made in the design 
of the computer. If the computer is designed correctly, 
the errors it introduces are normally smaller than the 
output errors caused by the errors in the input func­
tions. However, the propagation of the input errors 
through the computer must be carefully analyzed since 
some of them can be amplified in the computer more 
than others. The input function errors can be divided 
into two categories, bias and random. 

Bias errors can be defined as those whose magnitude 
is consistent. In other words, the magnitude of an error 
can be predicted with a certain accuracy on the basis 
of the errors present in several previous measurements. 
On the other hand, random errors can be defined as un­
predictable. The random error in any sample has a 
probability which is independent of the errors present 
in the previous samples. 

The propagation of these errors through the com­
puter can be traced easily by using appropriate partial 
derivatives. This error analysis is well known to those 
who have designed fire control computers. However, the 
relative magnitude of bias and random errors in real­
time digital computers is normally different from the 
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Fig. 3—Computer with covers in place. 

Fig. 4—Computer with covers removed, showing access for servicing. 

relative magnitude of bias and random errors in, for 
example, radar returns. 

In real-time control computers, input random errors 
are usually small and they are very often introduced 
only by the input quantization. The quantization ran­
dom error has a rectangular probability distribution 

Fig. 5—Digital computer module, assembled. 

^ 1 J 
Fig. 6—Digital computer module, disassembled. 

with a maximum possible error equal to one half of the 
least significant digit. 

Various methods can be used in order to minimize the 
effect of random errors on the output function. Input 
random errors are particularly harmful if differences are 
employed in the computation of the polynomial which 
is used as the approximation to the output function. 
For example, if a second order polynomial is used, the 
third difference is calculated and is used to smooth out 
the output function. This compensation is valid only if 
the noise level is such that the third difference of the 
output function is much smaller than the measured 
third difference due to random input errors. This meth­
od, however, leads to relatively complicated equations. 
I t is often possible to obtain a significant improvement 
by simply reducing the quantization errors. This is ob­
vious since bias errors are not amplified as much in the 
computation of differences as are random errors. 

Accuracy analysis would not be complete without a 
description of the selection of the control equations. In 
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real-time, digital, control computers, accuracy can be 
greatly limited if a large number of mathematical opera­
tions must be carried out in order to compute the out­
put function. Long computations are undesirable for 
two reasons. Large numbers of computations are time-
consuming; and also, in each arithmetic addition as 
much as one half of the least significant digit may be 
lost. It is then necessary to know exactly what is the 
largest possible number of operations which might be 
necessary under the worst possible combination of in­
put variables. The number of computations, sometimes, 
is very difficult to predict. This is particularly true if 
the computer function involves division and if the de­
nominator, under certain conditions, approaches zero. 

Unfortunately, this condition arises often in all prob­
lems in which spherical geometry is involved; this hap­
pens, for example, if it is necessary to compute an angle 
whose tangent is determined by a ratio of two expres­
sions which, in turn, are determined by some other 
trigonometric functions. The angle itself is uniquely de­
termined for the whole interval from 0° to 360°; how­
ever, the tangent is discontinuous at 90° and 270°. 

In the STARDAC Computer, this problem was solved 
by the use of an iterative routine, which made it possible 
to compute the argument even if the tangent of the 
angle approached infinity. 

As mentioned before, the STARDAC Computer has a 
built-in sine-cosine function generator. First a number is 
substituted for the value of the argument and the com­
puter calculates the sine and the cosine. Then the sine 
of the argument is multiplied by the denominator and 
the cosine of the argument is multiplied by the numera­
tor. In the second step of the computation, a comparison 
is made between the two products. The difference is 
then added directly to the number which was sub­
stituted for the argument. Then the cycle is repeated. 

Mathematical justification for this operation is almost 
self-evident if the numerator of the fraction is repres­
ented as sin A and the denominator as cos A. The term 
which is added to the argument can be expressed as 

A = sin OK cos A — cos 6K sin A, 

but 6 was selected at random and was not equal to A. 
So the equation can be rewritten as: 

A = sin (A + Ad)K cos A — cos(A + AB)K sin A 

or 

A = K sin A0. 

For small Ad, the value of A is equal to KA6. The func­
tion converges rapidly if the value of the coefficient K 
is close to unity, and in a few iterations the error be­
comes negligible even for systems which require ex­
tremely high accuracy. The program is simple. No 
ambiguities arise and the arithmetic operations contain 
only multiplications, additions, and complementing. All 
these operations are particularly easy if performed in 
straight binary code. 

The packaging techniques used in the construction of 
the STARDAC Computer can best be presented by 
referring to Figs. 3-6. Fig. 3 illustrates the computer 
complete with power supplies and input-output equip­
ment. Fig. 4 shows the computer with covers removed 
and the frames pulled out for servicing. Figs. 5 and 6 
show typical modules used in the computer. 

I t is felt at Epsco that a family of real-time computers 
such as described in this paper will find broad applica­
tion in the field of high-accuracy real-time control sys­
tems such as stabilization computers, fire control com­
puters, navigation computers, autopilots, etc. 

A computer whose design is based on the approach 
outlined in this paper can offer an ideal solution to the 
problem of maintaining extremely high internal ac­
curacy. I t is believed that the need for these computers 
will grow together with the need for miniaturized, gen­
eral-purpose computers. I t is felt that this new type of 
computer will soon establish itself as a member of the 
family of computers together with the stored program, 
general-purpose machines and analog computers. 




