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More Accurate Linear Least Squares 
RICHARD E. VON HOLDTf 

E 
T H E LINEAR LEAST-SQUARES PROBLEM 

ET A be a given matrix of m rows and n columns, 
(m>n), so that AW=0 implies W=Q (i.e., the 
column vectors of A constitute a linearly inde­

pendent set), and let F b e a given ra-dimensional vector. 
We seek an ^-dimensional vector X, so that | R(X) |2 is 
the minimum value of | R(X) j 2 where 

R(X) = AX - Y. (1) 

A GEOMETRIC DERIVATION OF THE CLASSICAL 

SOLUTION TO THE LINEAR LEAST-SQUARES 

PROBLEM 

Let S be that subspace of m-dimensional Euclidean 
space which is spanned by the column vectors of A. 
Then for arbitrary X, AX is a vector in S, and R(X) is a 
vector with initial point at the terminal point of Y and 
terminal point in S. 

Let AX be the orthogonal projection of Y onto S. 
Then 

R(X) = AX - Y, (2) 

is orthogonal to S, or 

ATR{X) = 0. (3) 

For arbitrary X, we have 

R(X) = [R(X) - R(X)] + R(X) 

= A(X - X) + R{X). (4) 

From (3) and (4), for arbitrary X, we have 

| R(X) |2 = | A(X - X) j 2 + | R(X) |2 > | R(X) |2. 

Thus I R(X) 12 is the minimum value of | R(X) |2 for arbi­
trary X. Substituting (2) into (3), X must satisfy the 
relation: 

ATAX = ATY. 

From the hypothesis on A, we have 

ATAW = 0^WTATAW = \AW\2 

(5) 

0 -> PF = 0. (6) 

Hence ^4r^4 is a nonsingular nXn matrix and (5) has a 
unique solution. 

T H E SOLUTION OF (5) BY DIAGONAL PIVOTS 

Let Mk, (k = l, 2, • • • , n), be the matrix obtained 
from A by deleting all but the first k columns of A. Then 
the columns of Mk form a linearly independent set and 
by the argument of (6), MkTMk is a nonsingular matrix, 
(k = l, 2, • • • , n). 

t Lawrence Rad. Lab., University of California, Livermore, 
Calif. 

Let Pi be the determinant of M\TMi and P& be the 
determinant of MkTMk divided by the determinant of 
Mk--L

TMk-i, (k = 2, 3, • • • , n). Then 

P» ?* 0, {k = 1, 2, • • • , n). (7) 

Using the diagonal elements, in increasing order, as 
pivots, and combining proper multiples of each row into 
all following rows to produce zeros below the pivot ele­
ments in the column containing the pivots in (5) does 
not change the value of any of the minors of ATA 
formed by deleting all but the first k rows and all but 
the first k columns of ATA. Thus this process of replac­
ing (5) by an equivalent upper-triangular system of 
equations yields the successive nonzero pivots: 

PuPi p (8) 

The above described process is equivalent to premul-
tiplying both sides of (5) by a lower-triangular matrix 
L, with unit diagonal elements, yielding 

LATAX = LATY (9) 

and this upper-triangular system is solved by back sub­
stitution. 

T H E SOLUTION OF (5) BY ORTHOGONALIZATION 

Using the columns of A, in increasing order, as pivot 
columns, and combining proper multiples of each pivot 
column into all following columns so that the resulting 
columns are orthogonal to the pivot column, replaces the 
columns of A by an orthogonal basis for S. Let the 
matrix which results be denoted by B. Then 

B = AU (10) 

where U is an upper-triangular matrix with unit-diag­
onal elements, and furthermore 

BTB = D, (ID 

where D is a diagonal matrix. 
Premultiplying (5) by £/ rand replacing X b y UU~l3£t 

we have 

and from this, 

DV-^X = BTY 

X = UD-1BTY. 

(12) 

(13) 

COMPARISON OF METHODS 

Since both LATA and LT are upper-triangular ma­
trices, their product, LATALT, is also upper triangular, 
besides being symmetric, and is therefore a diagonal 
matrix. Thus ALT is a matrix of mutually orthogonal 
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columns and since LT is upper-triangular with unit-
diagonal elements, 

LT = U. (14) 

Again, since LT is upper-triangular with unit-diag­
onal elements, the diagonal elements of LATA and D 
= UTATA U = LATALT are identical, or 

\Bk\* = Pk, (k = 1, 2, • • • , »). (15) 

Let Ak and Bk be the &th columns of A and B, respec­
tively, and let ek be a scala, defined by 

| 5*1 = ek\ Ak\, (k = 1, 2, • • • , n). (16) 

Since Bk is a projection of Ak, we have 

0 < «* < 1, (jfe = 1, 2, • • • , »), (17) 

and €fc is a measure of the figure loss encountered in con­
structing Bk from Ak by orthogonalization, and there is 
no further figure loss by cancellation in computing, 

Pk= \Bk\\ (* = 1, 2, • • • , » ) . (18) 

In the method of diagonal pivots, \Bk\
2 is formed 

from I Ak\
2 by repeated subtractions, and since 

| £ * | 2 = e*2| Ak\\ (19) 

our measure of the figure loss in this method is e&2. Thus 
the method of orthogonalization has half the figure loss 
of the method of diagonal pivots. 

R(X) AS A BY-PRODUCT OF ORTHOGONALIZATION 

Let Zk, (&=1, 2, • • • , » + l) be defined by 

Zx = Y (20) 

and 

h 

Zk+i = Y - E BABfZMBfBj) (Jfe = 1, 2, • • •, n). (21) 

Then 

5*+!^*+! = Bk+1
TY, (k = 1, 2, • • • , n - 1), (22) 

since the columns of J5 are mutually orthogonal. Setting 
k = n in (21) and using (22), we have 

Zn+x = F - £ Bj{Bj
TY)/{Bj

TB]). (23) 
y=i 

Thus Zn+\ is the component of Y orthogonal of S, or 

Zn+1 = - R(X). (24) 

T H E INVERSE OF ATA AFTER THE APPLICATION OF 

THE METHOD OF ORTHOGONALIZATION 

From (10), (11), and (14), we have 

LATALT = D. (25) 

Since L and LT are nonsingular, 

ATA = L^DiL7)-1 (26) 

and 

(ATA)-1 = LTD~^L. (27) 

Since the calculation of D by the method of orthogo­
nalization has half the figure loss of the method of diag­
onal pivots, the former method using (27) yields a com­
putationally more accurate inverse. The elements of 
this inverse matrix are useful to statisticians in the 
Theory of Error Analysis. 

DETAILS OF THE METHOD OF ORTHOGONALIZATION 

The matrix U = LT need not be formed explicitly ex­
cept in the evaluation of (ATA)~1 by (27). 

Let Uk be the matrix which is the » X » identity except 
for the elements in the &th row to the right of the diag­
onal. These elements are the multiples of the £th column 
of B which are added to the corresponding following 
columns to yield new following columns, which are 
orthogonal to the &th column. Then 

U = U1U2 • • • Un-i. (28) 

When: 1) the nonidentity elements of Uk have been 
formed and used to orthogonalize the following columns 
and Zk to Bk\ 2) Bk

TY = Bk
TZk has been formed; and 3) 

I Bk\
2 has been formed, then B»is no longer needed and 

the storage cells used for Bi are now available for storing 
the nonidentity elements of Uk and the scalar Bk

TY 
= {BTY)k. Repeating this process until k = n, X is 
evaluated by 

X = U1U2 • • • Un-1D~1(BTZ) (29) 

where we take advantage of all the known zero elements 
of the matrices involved in performing the indicated 
matrix premultiplications. 

For calculation of (^4T^4)_1, we have from (27) and (14) 

(ATA)~l 

= (Ln-1^-2 • • • L2L1)
TD~1(Ln-lLn-2 • • • L%LX). (30) 

The nonidentity elements of the product 

Lk\Lk—\Lk~i • • • L\) 

may be stored in the locations occupied by the non-
identity elements of the two factors, (k = 21 • • • , n — l ) . 
Having formed L, the diagonal and subdiagonal ele­
ments of (ATA)~1 can be formed and stored in the loca­
tions occupied by D and L. 

CONCLUSION 

Although the number of operations involved is greater 
in the method of orthogonalization than in the method 
of diagonal pivots, the increased accuracy is well worth 
the time and effort. It is to be noted that the method 
of orthogonalization for weighted polynomial fitting is 
equivalent to forming a set of weighted orthogonal 
polynomials, fitting the data to these polynomials, and 
reducing the combination of these polynomials to a 
single polynomial in the manner of Tchebycheff. 




