Automatic Digital Matric Structural Analysis

M. CHIRICO \dagger, B. KLEIN \dagger, and A. OWENS \dagger

List of Symbols

$A=$ cross-sectional area of bar.
$A_{\text {max }}=$ maximum cross-sectional area of bar.
$A_{\mathrm{min}}=$ minimum cross-sectional area of bar.
$A_{p}=$ area of panel.
$B_{\max }=$ length of longer parallel edge of tapered panel.
$B_{\mathrm{min}}=$ length of shorter parallel edge of tapered panel.
$D_{x}(i)=x$ component of displacement at the joint i in the coordinate system $(X, Y, Z) . D_{y}(i)$ and $D_{z}(i)$ are defined similarly.
$E=$ Young's modulus.
$F_{x}(i)=x$ component of the external force applied at the joint $i . F_{y}(i)$ and $F_{z}(i)$ are defined similarly.
$G=$ shear modulus.
$L_{i j}=$ length of the bar with end joints i and j.
$P_{i j}=$ load at the joint i on the bar $B_{i j}$.
$q=$ shear flow.
$\vec{q}=$ average shear flow.
$\delta_{i j}=$ the displacement of the joint i in the direction of the bar $B_{i j}$.
$\Delta x_{i j}=x_{i}-x_{j} . \Delta y_{i j}$ and $\Delta z_{i j}$ are defined similarly.
$t_{D}=$ thickness of panel at intersection of its diagonals.
$i, j, k, m, n=$ subscripts.

Introduction

T\checkmark HE accelerated pace of computer development has made possible the rapid solution of complex problems. The time necessary to set up problems has begun to surpass greatly machine solution time. Consequently, more emphasis is needed on means of making use of digital machines and allied equipment in setting up problems automatically.

Heretofore, the preparation of certain matric equations appearing in structural analysis has been a tedious task. The procedures have required a large amount of judgment and tiresome hand computation. The chances for errors have been prevalent.

The present paper presents a method whereby the above factors can be minimized or negated. Input data are reduced to a minimum. All logical decisions are carried out completely automatically so as to arrange the matrix automatically. Machine time is found to be very small relative to the time previously needed to set up problems. Therefore, this coded program should prove very useful to structures and allied engineers.
\dagger Convair Astronautics, San Diego, Calif.

Some familiarization with Klein ${ }^{1,2}$ is helpful but not necessary for the understanding of the development in this paper. The basic concepts are the ones of joint, bar, and panel. The joints connect the bars and the bars border the panels.

Machine Simulation of Elements

The code is built around the basic elements: joints, bars, and panels. The information below noted by asterisk $\left(^{*}\right)$ is computed.

1) Joints

A group of words is assigned to each joint containing the following information:
a) Its position coordinates x, y, and z
b) Whether it is fixed
*) All the bars attached to the joint.
2) Bars

A group of words is assigned to each bar with the following data:
a) Its two end joints
b) Whether it is tapered
c) Its cross-sectional area (both maximum and minimum, if tapered)
*d) The direction cosines x, y, and z
*e) The length of the bar $L_{i j}$.
3) Panels

A group of words is assigned to each panel with information on:
a) The four corner joints
*b) The area
c) The thickness
*d) All of the bordering bars
*e) $B_{\max }$ and $B_{\min }$ (lengths of the parallel sides)
f) Whether it is tapered.

The number of cells in a group must be multiples of eight to allow the use of multiple index registers. A joint, bar, and panel, grouped together in 40 cells to economize on space, are not necessarily related.

The Code

A) Input

The information without asterisks, described in the previous section, is read into the proper location. The numbers of the joints appearing in the bars and panels are converted into the two's complement of that joint's address. The joint then can be referred to with an index register.

[^0]B) Bar Cross Referencing

1) The following is computed for each bar $B_{i j}$:
a) $\Delta x=x_{i}-x_{j}$,
b) $\Delta y=y_{2}-y_{j}$,
c) $\Delta z=z_{i}-z_{j}$.
2) The bar address complement is stored in the groups of the joints i and j.
3) Every panel is examined. If both the joints i and j are in it, the bar $B_{i j}$ borders it. In this case the two's complement of the bar address is placed in the panel group and the two's complement of the panel address is placed in the bar group.
C) Joint Equations
4) For each joint i the following force equilibrium equations are entered in the matrix

$$
\begin{align*}
& \text { a) } \sum_{j} P_{i j}\left(\frac{\Delta x}{L}\right){ }_{i j}=F_{z}(i), \tag{4}\\
& \text { b) } \sum_{j} P_{i j}\left(\frac{\Delta y}{L}\right)=F_{y}(i) \tag{5}\\
& \text { c) } \sum_{j} P_{\imath j}\left(\frac{\Delta z}{L}\right)=F_{z}(i) \tag{6}
\end{align*}
$$

D) Panel Area

1) The two parallel bars for each panel are found by comparing the direction cosines. The bars are rearranged so that the longest parallel side is first and the other parallel bar is second.
2) Twice the area A_{p} is computed by the following (see Fig. 1).

$$
\begin{align*}
& \quad 2 A_{p}=h\left(B_{\min }+B_{\max }\right) \tag{7}\\
& \text { where }
\end{align*}
$$

$$
\begin{align*}
h= & L_{i j} \sin \theta_{1} \tag{8}\\
\sin \theta_{1}= & \sqrt{1-\cos ^{2} \theta_{1}} \tag{9}\\
\cos \theta_{1}= & \left(\frac{\Delta x}{L}\right)_{i j}\left(\frac{\Delta x}{L}\right)_{j m}+\left(\frac{\Delta y}{L}\right)_{i j}\left(\frac{\Delta y}{L}\right)_{j m} \\
& +\left(\frac{\Delta z}{L}\right)_{i j}\left(\frac{\Delta z}{L}\right)_{j m} \tag{10}
\end{align*}
$$

The cosine above is equal to the dot product only if both sides are directed away from or toward the joint. If the sides are directed in opposite ways, the dot product must be multiplied by minus one.
E) Panel Equation

1) The shear panel displacement equation for the panel in Fig. 1 is

$$
\begin{align*}
& -\left(2 A_{p} / G t_{D}\right) \bar{q}_{j m k i}-B_{\max }\left(\delta_{i j}+\delta_{j m}\right)+B_{\min }\left(\delta_{k i}+\delta_{i k}\right) \\
& -L_{i j}\left(\delta_{i j}+\delta_{j i}\right)+L_{k m}\left(\delta_{k m}+\delta_{m k}\right)=0 . \tag{11}
\end{align*}
$$

Fig. 1--Shear panel.
2) The arrows inside the panel indicate the direction of shear flow. The arrows outside the panel indicate the direction of displacements.
3) The corresponding panel and bar numbering for Fig. 1 is
panel: $P_{j m k i}$
bars: $\quad B_{m j}, B_{k i}, B_{i j}$, and $B_{k m}$.
4) The panel numbering determines the positive direction of the shear flows, which are directed toward the joints designated by the first and third subscripts of the panel. (See Fig. 1.) The bar numbering determines the direction of positive displacement of the joint which is toward the joint determined by the first subscript of the bar.
5) The signs of the terms in the equation are:
a) Shear term. This sign is minus.
b) Displacement term. If the direction of positive displacement is the same as the direction of positive shear flow along a side, this sign is plus; if they are opposite, the sign is minus.
6) The code determines the signs by examining the joint numbers. If the first bar subscript is equal to the first or third panel subscript, the sign is plus; otherwise, it is minus.
7) The length of the side is the factor outside the parenthesis in the displacement term. Note that the length of the opposite side is used in the case of the parallel sides.
F) Bar Equations

1) The axial element equilibrium equation for each bar is

$$
\begin{equation*}
P_{i j}-P_{j i}+\sum_{n} b_{n}\left(\pm \bar{q}_{n}\right)=0 \tag{12}
\end{equation*}
$$

2) When the bar $B_{i j}$ is one of the parallel bars bordering a panel, b_{n} of (12) is the length of the other parallel bar; otherwise, it is the length of the bar $B_{i j}$.
3) The sign of a shear term is positive if the positive direction of the shear along an edge of the
panel and the positive direction of the displacement in the bar bordering that edge are opposite; otherwise, the sign of the shear term is negative.
4) The axial force displacement equation for a tapered bar is

$$
\begin{array}{r}
P_{i j}+L_{i j} \sum_{n}\left(\pm \bar{q}_{n}\right) f\left(B_{\min } / B_{\max }, A_{\max } / A_{\min }\right) \\
+\left(E \bar{A} / L_{i j}\right)\left(\delta_{j i}-\delta_{i j}\right)=0 \tag{13}
\end{array}
$$

where $P_{i j}$ is the force at the narrow end of the bar. The sign of the shear term is plus if the shear and displacement directions oppose, and

$$
\begin{align*}
& f\left(B_{\min } / B_{\max }, A_{\max } / A_{\min }\right) \\
& =\frac{\left(A_{\min } / A_{\max }\right)^{0.175}}{1+\left(B_{\min } / B_{\max }\right)^{0.7}} \tag{14}\\
& A=A_{\min }+\left(\frac{A_{\mathrm{mim}} / A_{\max }}{2}\right)^{0.175}\left(A_{\operatorname{mux}}-A_{\min }\right) \tag{15}
\end{align*}
$$

if the taper is linear.
5) For a nontapered bar the equation is

$$
\begin{equation*}
P_{i j}+P_{j i}+\left(2 E A / L_{i j}\right)\left(\delta_{j i}-\delta_{i j}\right)=0 \tag{16}
\end{equation*}
$$

G) The Flow Chart follows.

Fig. 2-Example problem.

Example Problem

The structure in Fig. 2 is analyzed by the code. The complete input data describing the structure appears in the next section, which is followed by the matrix generated and the solution with the matrix column numbers. The elements without matrix column numbers are obtained by a simple calculation from matrix computed elements; e.g., Delta 1-7 equals Delta 1-3.

Total computing time, i.e., the time for both matric setup and solution, is about 0.01 hour.

Problems of a much more formidable nature have been arranged and solved by the program, and work is in progress for improving the code. For example, use of instantaneous coordinates may create many more zero elements in the matrix.

FORCES	INPUT				
	JOINT	X	Y	Z	
	3	0.0	1000.0	0.0	
	9	0.0	1000.0	0.0	
JOINTS					
	NUMBER	X	Y	Z	FIXED
	1	-2.5	16.0	0.1	NO
	2	- 3.75	8.0	0.1	NO
	3	- 7.5	16.0	0.1	NO
	4	-11.25	8.0	0.1	NO
	5	- 5.0	0.0	0.1	YES
	6	-15.0	0.0	0.1	YES
	7	2.5	16.0	0.1	NO
	8	3.75	8.0	0.1	NO
	9	7.5	16.0	0.1	NO
	10	11.25	8.0	0.1	NO
	11	5.0	0.0	0.1	YES
	12	15.0	0.0	0.1	YES
BARS					
JOINT	T 1 JOINT 2	TAPERED	$\mathrm{A}_{\text {max }}$	$\mathrm{A}_{\text {min }}$	E
3	4	YES	1.0	0.66667	71.0
4	6	YES	1.3333	1.0	1.0
9	10	YES	1.0	0.66667	71.0
10	12	YES	1.3333	1.0	1.0
1	2	YES	1.0	0.66667	71.0
2	5	YES	1.3333	1.0	1.0
7	8	YES	1.0	0.66667	$7 \quad 1.0$
8	11	YES	1.3333	1.0	1.0
3	1	NO	0.66667	0.66667	1.0
4	2	NO	1.0	1.0	1.0
9	7	NO	0.66667	0.66667	$7 \quad 1.0$
10	8	NO	1.0	1.0	1.0
1	7	NO	0.66667	0.66667	$7 \quad 1.0$
2	8	NO	1.0	1.0	1.0

PANELS

NUM-	JOINT	JOINT	JOINT	JOINT	G-	THICK-		
BER				2	1	0.4		NESS
:---:								

THE MATRIX

ROW	COL	VALUE	ROW	COL	VALUE
1	1	0.42443388	20	19	-7.5
1	2	-0.42443388	20	37	-5.0
1	3	1.0	20	43	-5.0
2	1	-0.90545894	21	38	5.0
2	2	0.90545894	21	35	-1.0
3	4	-1.0	21	10	-1.0
3	5	0.90545894	21	23	1.0
3	6	-0.42443388	22	30	-0.26666667
4	7	0.15437688	22	37	-0.26666667
4	8	-0.15437688	22	10	1.0
4	9	-1.0	22	23	1.0
4	10	1.0	23	38	-7.5
5	7	-0.98801203	23	13	-1.0
5	8	0.98801203	23	26	1.0
6	11	-0.15437688	24	34	-0.26666667
6	12	-1.0	24	40	-0.26666667
6	13	1.0	24	13	1.0
7	11	0.98801203	24	26	1.0
8	14	-0.42443388	25	32	-5.0
8	15	0.42443388	25	27	10.0
8	16	-1.0	25	9	-1.0
9	14	-0.90545894	25	3	1.0
9	15	0.90545894	26	30	0.26666667
10	17	-1.0	26	31	-0.26666667
10	18	0.90545894	26	9	1.0
10	19	0.42443388	26	3	1.0
11	20	-0.15437688	27	32	7.5
11	21	0.15437688	27	12	-1.0
11	22	1.0	28	34	0.26666667
11	23	-1.0	28	6	-0.26666667
12	20	-0.98801203	28	12	1.0
12	21	0.98801203	29	44	5.0
13	24	0.15437688	29	41	-10.0
13	25	1.0	29	22	-1.0
13	26	-1.0	29	16	1.0
14	24	0.98801203	30	37	0.26666667
15	27	-3499.9999	30	43	-0.26666667
15	28	-8.8352984	30	22	1.0
15	29	8.0970674	30	16	1.0
15	30	-10.0	31	44	-7.5
15	31	-10.0	31	25	-1.0
16	32	-3571.4285	32	40	0.26666667
16	28	-8.8352984	32	19	0.26666667
16	4	-8.8352984	32	25	1.0
16	29	8.0970674	33	35	8.0970674
16	33	-8.0970674	33	27	-8.0970674
16	34	-7.5	33	45	-1.0
16	6	-7.5	33	8	1.0
16	30	5.0	34	35	4.2360996
16	31	5.0	34	27	-4.2360996
17	35	-3499.9999	34	29	-0.1430726
17	36	8.0970674	34	8	1.0
17	29	-8.0970674	35	38	8.0970674
17	30	-1.0	35	32	-8.0970674
17	37	1.0	35	7	-1.0
18	38	-3571.4285	35	11	1.0
18	36	8.0970674	36	38	4.3028433
18	39	8.0970674	36	32	-4.3028433
18	29	-8.0970674	36	33	-0.10150823
18	33	-8.0970674	36	29	0.10150823
18	34	-7.5	36	11	1.0
18	40	7.5	37	41	8.0970674
18	30	5.0	37	35	-8.0970674
18	37	-5.0	37	46	-1.0
19	41	-3499.9999	37	21	1.0
19	42	8.8352984	38	41	4.2360996
19	36	-8.0970674	38	35	-4.2360996
19	37	10.0	38	36	-0.14307260
19	43	10.0	38	21	1.0
20	44	-3571.4285	39	44	8.0970674
20	42	8.8352984	39	38	-8.0970674
20	17	8.8352984	39	20	-1.0
20	36	-8.0970674	39	24	1.0
20	39	-8.0970674	40	44	4.3028433
20	40	7.5	40	38	-4.3028433

ROW	COL	VALUE	ROW	COL	VALUE
40	39	-0.10150823	46	41	-4.6223159
40	36	0.10150823	46	42	-0.13111821
40	24	1.0	46	15	1.0
41	27	8.8352984	47	44	-8.8352984
41	47	-1.0	47	-14	-0
41	2	1.0	48	44	-4.6951448
42	27	4.6223159	48	47	-0.093026737
42	28	-0.1311821	48	42	0.093026737
42	2	1.0	27	49	-468.75001
43	32	8.8352984	28	49	-468.75001
43	1	-1.0	31	49	-468.75001
44	32	4.695148	42	49	-468.75001
44	4	-0.903026737	43	49	-1104.4123
44	28	-0.093026737	44	49	-1104.4123
45	41	-1.8352984	47	49	-1104.4123
45	48	1.0	48	49	-1104.4123
45	15				

THE SOLUTION

$\begin{aligned} & \text { MATRIX } \\ & \text { COLUMN } \\ & \text { NUMBER } \end{aligned}$	ELEMENT			VALUE	MATRIX COLUMN NUMBER	ELEMENT			VALUE
24	P	1	2	0.0	35	Q	4		0.0
25	P	1	3	1631.4448	32	Q	5		-407.4740
26	P	1	7	1631.4448	27	Q	6		-105.1129
20	P	2	1	3299.3447	39	DELTA	1	2	43445.283
22	P	2	4	986.2406	40	DELTA	1	3	6117.8879
21	P	2	5	3299.3447		DELTA	1	7	6117.8879
23	P	2	8	986.2406	36	DELTA	2	1	26172.822
	P	3	1	418.5939	37	DELTA	2	4	3698.4027
	P	3	4	986.2406		DELTA	2	8	3898.4027
16	P	4	2	0.0		DELTA	2	5	26172.822
14	P	4	3	7443.9683		DELTA	3	1	29813.814
15	P	4	6	7443.9683	17	DELTA		4	151221.70
46	P	5	2	4150.4514	43	DELTA	4	2	7396.8052
48	P	6	4	6515.2640	42	DELTA	4	3	53067.405
13	P	7	1	1631.4448		DELTA	4	6	53067.405
11	P	7	8	0.0		DELTA	7	1	6117.8879
12	P	7	9	1631.4448	33	DELTA	7	8	43445.282
10	P	8	2	986.2406	34	DELTA		9	6117.8875
7	P	8	7	3299.3448		DELTA	8	2	3698.4027
	P	8	10	986.2406	29	DELTA	8	7	26172.822
8	P	8	11	3299.3448	30	DELTA	8	10	3698.4022
	P	9	7	418.5939		DELTA	8	11	26172.822
9	P	9	10	986.2406		DELTA	9	7	-29813.814
3	P	10	8	0.0	4	DELTA	9	10	151221.70
1	P	10	9	7743.9684	31	DELTA	10	8	7396.8045
2	P	10	12	7743.9684	28	DELTA	10	9	53067.405
45	P	11	8	4150.4514		DELTA	10	12	53067.405
47	P	12	10	6515.2640	19	DX	3		-29813.814
44	Q	1		407.4740	18	DY			180986.33
41	Q	2		105.1129	6	DX	9		29813.813
38	Q	3		0.0	5	DY	9		180986.33

[^0]: ${ }^{1}$ B. Klein, "A simple method of matric structures analysis," J. Inst. Aeronaut. Sciences, vol. 24, pp. 40-46; January, 1957.
 ${ }^{2}$ B. Klein, "A simple method of metric structural analysis, part II-effects of taper and a consideration of curvature," J. Inst. Aeronaut. Sciences, vol. 24, pp. 813-820; November, 1957.

