
1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE 295

File Searching Using Variable Length Keys
R E N E D E LA BRIANDAISf

M' ANY computer applications require the storage
of large amounts of information within the
computer's memory where it will be readily

available for reference and updating. Quite commonly,
more storage space is required than is available in the
computer's high-speed working memory. It is, therefore,
a common practice to equip computers with magnetic
tapes, disks, or drums, or a combination of these to
provide additional storage. This additional storage is
always slower in operation than the computer's working
memory and therefore care must be taken when using it
to avoid excessive operating time.

This paper discusses techniques for use in locating
records stored within a low-speed memory medium
where they are identifiable by a key word or words of
variable length on a machine not equipped to accomplish
this automatically. The technique is also applicable to the
conversion of variable word length information into
fixed length code words.

When records can be stored in a slower memory medi
um in such a fashion that their exact location may be
determined from the nature of their designation, rea
sonably efficient handling procedures can be established.
However, as is often the case, the records cannot be so
easily located and it becomes necessary to examine each
entry in order to locate a particular record. Sequential
examination of the key words of each record, until the
desired record is located, is not a satisfactory approach
on machines not having automatic buffered searching
facilities, and may not be satisfactory on machines so
equipped, if, for instance, reels are searched which need
not be because it is not known in advance that they are
not needed. Because the average search time for the
desired records is proportional to the number of records
stored in this slower memory, the total operating time
of a program is proportional to the product of the num
ber of records stored and the number of records for which
search is instigated. This product may approach the
square of the number of records involved. This relation
ship between operating time and the number of records
stored places a definite limitation on the number of
records which may reasonably be stored by any par
ticular program. Fortunately, if the records can be
stored with the key words in some ordered arrangement,
an educated guess can then be made as to the location
of a particular record, and a better system will result.
However, records cannot always be arranged in such a
fashion.

When records are large compared to the key word or
words, a useful technique is to form an index having in

f U. S. Naval Ordnance Lab., Corona, Calif.

it just the key words and the location on the correspond
ing record. A particular record is then located by search
ing the index to determine the record's location and
then taking the most rapid approach in arriving at the
record. Since only the key words and the locations of the
corresponding records are stored in the index this tech
nique reduces the amount of information which must be
handled during a search. With the smaller amount of in
formation involved it is often possible to utilize the com
puter's high-speed memory for the storage and search
ing of the index. Furthermore, this index can now be
ordered or otherwise subjected to speed-up techniques.
This index approach often can greatly improve the op
erating efficiency of record handling programs. In many
instances this improvement is sufficient but there are
also many cases where a further increase in efficiency
is necessary. In particular, the time required to per
form the search when consulting the index may still be
objectionably large. If this is true then it is necessary to
apply a speed-up technique to the searching operation.
Of course these techniques can be applied to any table
lookup problem where the nature of the key word or
words does not lead directly to the desired entry.

Peterson1 has suggested a method of arranging such
an index which greatly reduces the lookup time when
it can be applied. This method, referred to as the
"bucket method," calls for randomizing the digits of the
key word to produce a number which indicates that
point in the available memory where a particular key
and its corresponding record location should be stored.
If this particular space is not available it is stored in
the next highest (or lowest) available space. When seek
ing a particular record, the exact randomization process
is repeated producing the same indicated point and a
search is begun from that point in memory and in the
previously used direction. When using this method,
facility must be provided to continue from the other end
when one limit of the available space is reached. During
the process of placing an entry in this table a record is
kept of the number of steps which must be taken before
finding space to store the entry. This number is then
compared with and, if necessary, replaces the previously
occurring maximum. This maximum can then be used to
limit the operation when a search is undertaken for an
item for which there is no entry.

The object of this procedure is to distribute the rec
ords evenly throughout the available space in spite of
uneven characteristics which occur because of similar
ities in the structure of the keys. A limitation of this

1 W. W. Peterson, "Addressing for random-access storage," IBM
J. Res. Dev., vol. 1, pp. 130-146; April, 1957.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1457838.1457895&domain=pdf&date_stamp=1959-03-03

296 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE

method is that it is necessary to store the key as a part
of the entry in order to identify an item positively
during the searching phase. This increases the storage
space used and, as the memory fills up, the average
number of spaces which must be examined before an
entry is located increases. This saturation effect greatly
decreases the operating efficiency. Furthermore, this
method becomes far too involved from the bookkeeping
standpoint when the keys are variable word-length
words which exceed the length of one computer word
when working with a fixed word-length machine.

A problem involving variable word-length information
confronted us in writing a FORTRAN type compiler
for the Datatron 205. In this version of FORTRAN we
allow the names of quantities to be of any length and
they may consist of any number of separate words pro
vided there are no intervening special characters. For
reasons of simplicity in the internal handling, each of
these external names must be converted to a code word
of specific length such that it may be stored with other
information within one cell. Further, it is necessary that
the external name be preserved and made easily avail
able for annotating the finished program. To accomplish
this, each external word is placed in a file which, for
future reference, is written on tape as it is formed. The
position of each entry in this file is then used as the
code word for the name. Knowing the position of a
particular external word makes it very simple to recover
for annotation purposes.

When it is necessary to have some method of deter
mining whether any given word has occurred previously,
sequentially scanning the previous entries is impractical
because of the limitations mentioned previously. A more
desirable situation would be a scheme that in no way
depended upon the amount of previously stored in
formation in the file. If this could be accomplished, the
operating time would then be more nearly proportional
to the number of items for which a search was performed
rather than the product of this number and the total
number of entries in the file.

The technique we have developed accomplishes the
goal. The operating time is related to each letter of the
external word and is, therefore, proportional to the
number of letters in each word for which a search is per
formed. The size of the file has little effect on the op
erating time. Total operating time is proportional to the
number of external words multiplied by the time re
quired for a word of average length.

In our particular application each external name
becomes a record which is stored on tape. The location
of the first word of each record is the code for that ex
ternal word. The external word itself is the key. In the
computer's main (drum) memory we form an index of
the key and its corresponding code. The organization
of this index is the reason for this method's efficiency.
We call this the "letter tables" method. The index con
sists of a set of tables with the number of tables as well
as the number of entries in each table varying with

each running of the program. An address, usually the
lowest numbered available cell, is assigned as the start
ing point of the table of first letters. The key words are
examined letter by letter and each first letter which
occurs is entered in the table of first letters if such an

1st Letter Table * C~F

2nd Letter Tables A 0 f X d

5th Letter Tables Y T D C~E "D"

6th Letter Tables _ _ _ R I T

7th Letter Tables C

All entries of any one table are covered by a single arc (—),

Fig. 1—Formation of a set of tables.

entry does not already exist (Fig. 1). A new table is
assigned to each of these letters. I t is formed by assign
ing it a starting address. Each second letter which occurs
is entered in the table assigned to the letter which it
follows. To each of these second letter entries a new table
is assigned as before. Each third letter is placed in the
table assigned to the letter pair which it follows. Thus,
there will be a table for the letters which follow "CA"
and a different table for those letters which follow "CB"
if these combinations occur. To each third letter a table
is assigned and the technique is repeated until all letters
of the key have been taken care of.

In our program the words which make up a key are
compressed to eliminate blank spaces before being
placed in the table as one word. A blank space is then
used to signify the end of the word. This blank space is
stored in the set of tables as a signal that the entry is
complete and the code word which was previously de
termined is stored with this blank instead of an indica
tion of a table assigned for the next letter. If preserva
tion of the blanks is necessary, a special unique mark
may be used to signal the end of a key.

When attempting to determine the previous occur
rence of a particular word the procedure is first to scan
the table of first letters until the desired letter is found.
The second letter is then compared with the various
entries in the assigned table until agreement is found for
the second letter. The third letter is compared in a
similar manner with the indicated table and the process
is continued until comparison occurs with a blank. When
this occurs the desired code may be found in the re
mainder of the entry with that blank. In the event that
the desired letter does not occur in a particular list, it is
known that this word is not in the index. If this word is
to be added, it is now necessary to store the remaining

De La Briandais: File Searching Using Variable Length Keys 297

letters of the word in the index using the previously de
scribed technique. The first letter to be added will be
the one which did not occur. Once a letter has been
added to the tables there are no entries in the newly
formed table so no further searching is necessary, and it
is only necessary to add each letter remaining in the
word to the new tables.

As previously mentioned, the code is stored with the
blank which signifies the end of the word. This code is
the next available location for a record in the external
language file. As soon as the index is complete the ex
ternal word, which is this next record, is placed in the
file. The location indicator is adjusted to indicate the
next available space in this file and this determines
what the next code word will be.

Since the amount of space required for any of the
tables in this type of operation depends upon the man
ner in which the letters happen to follow each other, it
becomes necessary to assign space to each of the tables
as it is needed. This is best done by assigning the next
available space to whichever table is being expanded.
The programming principles involved in this type of
operation were first described by Newell and Shaw.2

However, since in our application it is not necessary to
remove entries from the tables as was the case in their
application, a less involved method than the one they
described can be applied. If a continuous portion of
memory can be devoted to the storage of the tables it
can be utilized in a sequential fashion with the next
available space being the next cell. A simple counter
can then be used to keep track of this next available
space. This operation results in the storage of the various
tables in an overlapping fashion and, therefore, it is
necessary that each entry in a table have an indication
of the location of the next entry in that table.

Sg
2-diglt
letter
code

4-digit address
of assigned table

4-digi t address
of next entry

(a)

Sg 0 0 C O D E
4-digit address
of next entry

(b)
Fig. 2—(a) Format of a letter entry, (b) Format of a

word-terminating entry.

Fig. 2 shows the two types of entries in these tables.
The letter entry shown in Fig. 2(a) has the letter in the
two digits on the left end of the word, and the four
digits on the right end are used for the address of the
next entry in this table. The remaining four digits spec
ify the address of the first word in the assigned table.

2 A. Newell and J. C. Shaw, "Programming the logic theory ma
chine," Proc. WJCC, pp. 230-240; February, 1957.

Fig. 2(b) shows the configuration used for the storage
of a blank which signifies the end of a word. In this
word, the first two digits are blank, the next four digits
are the code, and as in the previous case, the last four
digits indicate the address of the next entry. The end
of a particular list is signified by the absence of an
address indicating the next entry.

Cell Contents

2000

2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014

C

A
N
-
D
Y
-
0
U
L
D
-
N
T
-

2001

2002
2003
CODE
2005
2006
CODE
2008
2009
2010
2011
CODE
2013
2014
CODE

2007

2004

2012

-̂

Fig. 3—Memory distribution of a set of tables.

Fig. 3 shows a memory distribution which would re
sult from the storage of the four words: can, candy,
count, and could. In this example there are a total of
twelve separate tables stored in the fifteen spaces. Al
though the system may appear more complicated, no
more bookkeeping is required than in a system of se
quentially searching a list of entries where the different
entries require different numbers of words in memory
for their storage.

An additional time-saving feature tha t can be applied
with a slight additional cost of memory space is the
establishment of a full set of possible first letters with
the corresponding second letter tables assigned starting
points. By this we mean that if the first letter is "E" the
first entry in the assigned second letter table will be in
the fifth cell with respect to the beginning of the tables.
Those first letters which do not occur are then wasting
one memory word each.

Since in this scheme there is only one letter stored in
each word, it requires far more space than other schemes
where several letters are stored in one word. However,
the advantage in scanning speed makes up for this dis
advantage and it becomes practical to form several
tables of this type, storing them in a slower memory
medium until needed. When doing this, difficulty can
arise if care is not taken to avoid excessive transfers to
and from this slower memory. Methods of overcoming
this problem depend upon the particular application.
In our application each set of tables is no longer needed
after one complete pass of the input, and when overflow
of space occurs, during input, those words which cannot
be converted are marked. After completion of the first

298 1959 PROCEEDINGS OF THE WESTERN JOINT COMPUTER CONFERENCE

input pass the set of letter tables is erased and a second
input pass begins at that point in the input data where
overflow occurred. A new set of tables is formed to con
vert the marked words and the process can be repeated
as often as necessary.

Now let us look more closely at the technique in an
effort to determine the operating time. For the sake of
the following discussion, we shall assume each character
to be one of 40 possibilities. This list of possibilities could
include the 26 letters of the alphabet, ten decimal digits,
a blank, and three special characters. The maximum
number of comparisons necessary to determine a word
then comes to 40 for each character in the word includ
ing the blank which terminates the word. We find how
ever that this maximum is seldom reached. To show
this, let us assume a file contains 1000 words. If the first
characters of these words are evenly distributed among
the 40 possibilities there will be approximately 25 words
starting with each character. Since 25 words can pro
vide only five-eighths of the possible entries in the sec
ond letter tables we can expect that to determine a
word, the average number of comparisons needed will
be 20 to determine the first letter, 13 to determine the
second letter, and thereafter only one per letter. Thus
a nine-letter word including the blank might require an
average of approximately 40 comparisons.

Now we increase the number of words to 10,000 and
we find that we have an average of 250 words per char
acter in the first letter table, 62 \ per character in the
second letter tables, and approximately one and one-
half in the third letter tables. The average number of
comparisons for a nine-letter word now comes to 20 for
each of the first three letters and one for each of the re
maining letters. This new total of 66 is 1.65 times greater
than the previous average.

When the words stored in such a fashion are taken
from some formal language such as English, the num
ber of words beginning with certain characters tends to
increase and, therefore, the possibility of having all of
the various characters occur in the table of first letters
is decreased. This decreases the average number of
comparisons needed to determine the first letter. Fur
thermore, the number of letters which normally might
follow a particular letter is limited so that the average
number of comparisons is reduced for subsequent letters
also.

For example we normally expect "U" to follow "Q"
and one of the vowels or the letters "H," "L," "R," or
"Y" to follow the letter "C." Thus we find we are able
to adjust favorably the averages we determined previ
ously due to bunching, a phenomenon which usually
leads to decreased efficiency in other methods. In the in
stance of the 10,000-word file we might expect the aver
ages to be more like 16, 12, 8, 3, and one thereafter
which would be 44 for the nine-letter word, an improve
ment of one-third.

We shall now attempt to compare this technique with
Peterson's "bucket method." The bunching which we
described as useful to us must be overcome when using
the "bucket method." This is usually done by generat
ing a number which is influenced by all characters of the
word and yet appears to be random with respect to
them. This is extremely difficult when dealing with vari
able word length information, especially with long words
where only one letter differs or where the letters are the
same but two have been interchanged. Other difficulties
encountered with the "bucket method" include termi
nating the search when enough entries have been ex
amined to know that the word is not in the file and then
finding suitable space to insert the word. The resultant
bookkeeping can actually consume many times more
operating time than the actual comparison operation
requires. Thus, although fewer comparisons may be re
quired when using the "bucket method," due to the vari
able word length problems, the operating time is
pushed up into the same range as that of the "letter
tables method" which we have described.

Another way in which the two methods must be com
pared is with regard to the amount of memory required
for the storage of similar amounts of information. In a
fixed word length machine up to all but one character
might be wasted with each word stored when using the
"bucket method." Also, when a minimum of two adja
cent cells are used, one for the word and one for the code,
an occasional word will be lost due to storage of a word
requiring an odd number of cells in such a position as to
leave only one unused cell between itself and an adja
cent entry. The amount of memory space required for
the storage of a particular amount of information in the
"letter tables method" cannot be specifically determined
because it is quite dependent upon the number of repeti
tions of letter sequences which occur. The number of
cells required will always be greater than the number of
words and may in some instances approach the total
number of characters stored. This means that the "letter
tables method" will probably require from two to six
times as much memory space as the "bucket method"
for a similar amount of information.

The amount of code required by the "bucket method"
may run three to five times as much as for the "letter
tables method" depending on the application. Also, this
latter method could quite probably be written as a sub
routine or by a generator in a compiling routine with
much greater ease than could the "bucket method."
The final choice of method depends on details of the
specific problem and also on operating characteristics
of the machine on which it is to be run. It may in some
cases be necessary to program and run tests before a
final determination can be made. Both methods are an
order of magnitude faster than the simple sequential
search and we have found them both to be of value in
different parts of the FORTRAN for Datatron Project.

