
Modeling and Exploiting Query Interactions in Database
Systems

Mumtaz Ahmad
University of Waterloo

m4ahmad@uwaterloo.ca

Ashraf Aboulanaga
University of Waterloo

ashraf@cs.uwaterloo.ca

Shivnath Babu
Duke University

shivnath@cs.duke.edu
Kamesh Munagala

Duke University
kamesh@cs.duke.edu

ABSTRACT
The typical workload in a database system consists of a mix-
ture of multiple queries of different types, running concur-
rently and interacting with each other. Hence, optimizing
performance requires reasoning about query mixes and their
interactions, rather than considering individual queries or
query types. In this paper, we show the significant impact
that query interactions can have on workload performance.
We present a new approach based on planning experiments
and statistical modeling to capture the impact of query in-
teractions. This approach requires no prior assumptions
about the internal workings of the database system or the
nature or cause of query interactions, making it portable
across systems. As a concrete demonstration of the poten-
tial of capturing, modeling, and exploiting query interac-
tions, we develop a novel interaction-aware query scheduler
that targets report-generation workloads in Business Intelli-
gence (BI) settings. Under certain assumptions, the sched-
ule found by this scheduler is within a constant factor of
optimal. An experimental evaluation with TPC-H queries
on IBM DB2 demonstrates that our scheduler consistently
outperforms (up to 4x) conventional schedulers that do not
account for query interactions.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
The typical workload in a database system consists of a

mixture of queries of different types, running concurrently
and interacting with each other. The interaction among
queries can have a significant effect on performance. Hence,
optimizing performance requires reasoning about query mixes
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and their interactions, rather than considering individual
queries or query types. Current trends like server consolida-
tion and offering database applications as a service [5] are
causing database systems to support more heterogeneous
clients concurrently, leading to richer query mixes. For ex-
ample, Salesforce.com supports many concurrent clients run-
ning customer relationship management applications on the
same backend database.

A query Q1 that runs concurrently with another query Q2

could impact Q2’s performance in different ways, either neg-
atively or positively. For example, the resource demands of
Q1 and Q2 could interfere with each other, with the interfer-
ence happening at one or more of different physical resources
like CPU, L1 or L2 cache, memory, and I/O bandwidth.
Moreover, the queries can interfere at internal resources in-
side the database system such as latches, locks, and buffer
pools. In such cases, the presence of more concurrent in-
stances of Q1 will degrade Q2’s performance significantly.
On the other hand, queries running concurrently in a mix
may positively affect each other. For example, Q1 may bring
data into the buffer pool that is then used by Q2.

Previous work related to query interactions – e.g., on lock
or buffer-pool contention [14, 15], and on multi-query opti-
mization [25] – is highly scattered. We are not aware of any
work that considers query interactions in a general way that
encompasses the various types of interactions that occur in
modern database systems. This lack of attention is surpris-
ing because interactions are a major cause of performance
problems in database systems, and database administrators
spend many hours trying to track them down. In this paper,
we will show the significant impact that query interactions
can have on database performance.

A major hurdle posed by query interactions is in finding
effective ways to capture and model them. As we hinted
above, there is a large spectrum of possible causes for in-
teractions that includes resource-related, data-related, and
configuration-related dependencies. Sometimes, interactions
are benign. However, depending on the system setting, the
effect of interactions can vary all the way from severe per-
formance degradation to huge performance gains. Further-
more, an interaction that occurs when a database system
runs on one hardware configuration may not happen when
the same system runs on a different hardware configuration.

The implication of these challenges is that the analytical
cost models used today by database query optimizers to cost
query plans will not work for modeling interactions. (Cur-
rent cost models work on a per query plan basis, and are



very inaccurate at estimating the overall behavior of multi-
ple concurrent query plans.) To make the conventional ap-
proach work for modeling query interactions, we will need
to develop models for the complex internal behavior of each
distinct database system, and how this behavior depends
on hardware characteristics, resource allocation, and data
properties; a seemingly impossible task.

In this paper, we propose an entirely different and prac-
tical approach to capture and model interactions. First, we
measure the impact of interactions in terms of how they
affect the average completion time of queries. Completion
time is an intuitive and universal metric that is oblivious to
the actual cause of the interaction. Second, we propose a
proactive experiment-driven approach to tease out the sig-
nificant interactions that exist in a query workload. This
approach is based on running a small set of carefully-chosen
query mixes from the workload, and measuring how the av-
erage completion time of different queries is affected by run-
ning them in a mix instead of in isolation. We will show that
most significant interactions can be captured in practice by
“sampling” very few mixes.

While the experiment-driven approach has to be repeated
for each new database and hardware setting, it has two im-
portant advantages: (i) it works independent of the root
cause of interaction because the effect of any interaction will
be captured in the monitoring data collected from the ex-
periments; and (ii) it supports incremental update as query
workloads evolve over time, as well as on-line maintenance
based on the monitoring data available when query mixes
run in the production setting. In this paper, we will show
how the data generated from the experiments can be used
to track significant interactions – e.g., which query types
when present in a mix can degrade the presence of a specific
query type the most? – and also for generating performance
models for tasks like smart query scheduling.

Third, we provide an end-to-end use case that shows how
interactions can be modeled and exploited to gain huge per-
formance improvements in database systems. Our use case
considers the problem of scheduling large batches of queries
in Business Intelligence (BI) settings [21]. In particular,
we have developed a query scheduler, called QShuffler (for
Query Shuffler), that focuses on throughput-oriented work-
loads like those encountered in report generation systems. In
such systems, there is a fixed number of report types that a
user can request, but the reports requested during a certain
period vary depending on user activity. Depending on user
activity, multiple reports may be requested over a short pe-
riod of time. The goal of the system is to minimize the total
completion time for generating all the reports (i.e., to maxi-
mize throughput). For example, we may have a batch of 100
reports that need to be generated every night. In this case,
the response time of individual queries is not important as
long as all the queries are executed within the specified time
window. BI systems like Cognos [9] and Business Objects [7]
are examples of such systems.

Concretely, the goal of QShuffler is to schedule appropri-
ate query mixes for a given query workload W to minimize
W ’s total completion time. We show that schedulers used
in commercial and research database systems today (e.g.,
first come first serve, shortest job first) rely on the charac-
teristics of individual queries, and can produce suboptimal
schedules when significant inter-query interactions exist. By
taking into account the interactions among different queries

in a query mix when making scheduling decisions, QShuffler
can provide performance improvements up to 4x over con-
ventional schedulers. Under heavy load, interaction-aware
query scheduling can turn an otherwise unresponsive sys-
tem into one that processes its workload in a timely fashion.

Apart from understanding query interactions, QShuffler’s
performance gains come from a novel algorithm for schedul-
ing a large batch of queries. This algorithm uses a linear-
programming-based formulation of the scheduling problem.
Given accurate performance models for estimating query
completion times in the presence of interactions, this algo-
rithm is guaranteed to produce a schedule that is within a
constant additive factor of the optimal schedule. However,
we face a tradeoff here because increases in model accu-
racy come at the cost of observing the performance of more
query mixes through experiments. Fortunately, QShuffler’s
scheduling algorithm is very robust to model inaccuracies.
As long as the performance models can distinguish the good
query mixes from the bad ones, the algorithm can find effi-
cient schedules that are far better than the schedules found
by conventional schedulers.

1.1 Summary of Contributions and Roadmap
• Query interactions: To the best of our knowledge, this

work is the first to capture, model, and exploit query in-
teractions in a general way. In Section 2 we show the
significant impact that interactions can have and moti-
vate why modeling them is nontrivial.

• Experiment-driven modeling: Section 3 presents our
new approach based on planning experiments and sta-
tistical modeling to capture the impact of query inter-
actions. This approach requires no prior assumptions
about the internal workings of the database system or the
nature or cause of query interactions; making it portable
across systems.

• Interaction-aware scheduling: Section 4 describes
our novel scheduling algorithm that is aimed at BI re-
port generation workloads. These are an important class
of workloads (see, e.g., [21]), and our work can provide
significant performance improvements here.

• Evaluation: Section 5 presents an experimental study
using TPC-H queries on DB2, showing up to 4x improve-
ments over (interaction-unaware) scheduling algorithms
used in database systems today.

2. IMPACT OF QUERY INTERACTIONS
Consider a database system whose workload W comes

from applications that generate queries belonging to a fixed
set of query types. These query types could be different SQL
query templates (e.g., SQL queries with parameter markers).
For example, in the report generation settings we consider,
each client application is responsible for generating one or
more reports, where each report contains specific SQL tem-
plates that are instantiated with parameter values at run
time. Different parameter values give rise to different query
results. These templates can be identified from the applica-
tion source code or by monitoring application execution.

Let Q1, Q2, . . . , QT be the T query types in a database sys-
tem whose multi-programming level (MPL) is M . The MPL
represents the number of queries that execute concurrently
in the system at any time. A set of queries that execute con-
currently in the system is referred to as a query mix. Query
mix mi can be represented as a vector 〈Ni1, Ni2, . . . , NiT 〉,



Symbol Description

M Multiprogramming level
T Number of query types
Qj Query type j
tj Average execution time of a Qj

query when running alone
mi = A query mix, mi, with Nij

〈Ni1, Ni2, . . . , NiT 〉 instances of each query type j
Aij Average completion time of a Qj

query when running in mix mi

W Workload to be scheduled

Table 1: Notation used in the paper

where Nij is the number of instances of query type Qj in

mi, and
∑T

j=1 Nij = M . Table 1 summarizes our notation.
In order to understand different queries can interact and

impact each other, we take the concrete case of TPC-H, a
decision-support benchmark. In TPC-H there are 22 query
types. Table 2 shows the run time of the 12 longest running
TPC-H queries, on a 1GB database, when they run alone in
the system, which we denote by tj .

1 Next, Table 3 shows
two mixes consisting of the 6 longest running query types
from Table 2 with an MPL M = 30. For each mix, the table
shows the query frequencies, Nij , and the average run time
in seconds for each query type, Aij . The behavior of queries
changes from mix to mix depending on interaction among
queries. For example, we run the same number of instances
of Q7 in both mixes, but Aij for Q7 in m2 is almost twice
the Aij for Q7 in m1.

Further, Table 4 shows the run time of the above 6 longest
running TPC-H queries on a 10GB database when they are
alone in the system. Table 5 shows two query mixes for this
setting with MPL M = 10. Mix m1 in this table presents
an interesting case of “positive” interaction for Q7. The run
time of Q7 when it is alone in the system, tj , is 102.06 sec-
onds. In m1, we observe an average run time for Q7, Aij , of
72.66 seconds per query. Thus, Q7 benefits from being run
in this mix. Note that what we are seeing here is not the
typical benefit of concurrent execution, where the individ-
ual response times of a set of queries will increase but the
total time for executing the whole set of queries is less than
executing the queries one at a time. Instead, what we are
seeing is that a single instance of Q7 is taking, on average,
less time to finish in a mix than if it was running alone.

Thus, interactions in mixes of concurrently running queries
can be both negative (where Aij > tj) and positive (where
Aij < tj). Interestingly, Mix m1 in Table 5 shows both pos-
itive and negative interactions: while Q7 benefits from run-
ning in the mix, the average completion times of the three
other concurrent query types are degraded severely.

Modeling query interactions can be difficult, as we show
in the following example. Figure 1 shows three-way inter-
actions for mixes consisting of Q1, Q7, and Q21 on a 1GB
TPC-H database, where the MPL M = 30. To simplify the
presentation, we fix Nij for Q21 at 6, 9, and 12, and we vary
the number of instances of the other two query types and
observe the effect on the average run time Aij of Q1. When
Nij = 6 for Q21, Aij of Q1 first decreases and then increases.
For Nij = 9 and 12, the effect on Aij of Q1 is even more
complicated. Thus, even for this apparently simple case of
three-way interaction, the behavior is non-trivial to model.

1See Section 5 for details of our experimental setup.

Figure 1: Effect on Q1 of different mixes

3. EXPERIMENTAL MODELING
In the previous section, we showed the impact that in-

teractions can have on query completion times. We now
consider how this impact can be estimated so that we can
answer questions like: which queries have the largest impact
on query Qj ’s average completion time when running con-
currently with Qj? Or, consider the mix m1 in Table 3. Mix
m1 contains 11, 8, 3, 2, 2, and 4 instances respectively of
query types Q1, Q7, Q9, Q13, Q18, and Q21 from TPC-H.
Given this information, can we estimate the average com-
pletion time, Aij , of each query when running in this mix?

One approach that can be tried is to develop analytical
formulas to estimate Aij for mixes. Historically, analyti-
cal formulas have been used successfully by database query
optimizers to estimate the execution cost of query plans.
For example, standard database textbooks give the formula
to estimate the cost of a block nested loop join based on
the number of blocks in the inner and outer tables and the
amount of memory given to the join.

However, developing accurate analytical formulas to esti-
mate the properties of query mixes will require a detailed
understanding of all possible causes of inter-query interac-
tions. Interactions can arise from a variety of causes: re-
source limitations, locking, configuration parameter settings
(including misconfigurations), properties of the hardware or
the software implementation, correlation or skew in the data,
and others. This space of potential causes is large, not fully
known ahead of time, and can vary from one database sys-
tem to another. Thus, general-purpose analytical formulas
are hard to develop. We propose a different approach.

Our approach is based on running a small set of carefully-
chosen query mixes from the possible input workloads; to
collect samples of the form shown in Table 3. Each sam-
ple gives a measure of how the average completion time of
different queries is affected by running them in a specific
mix. The full set of collected samples can be analyzed to
identify various interactions (and non-interactions). In ad-
dition, statistical models can be trained from the collected
samples, and then used to estimate the average completion
of a query when it runs in any given mix.

This approach does not depend on what the root causes
of interaction are because the effect of any significant inter-
action will show up in the samples. The rest of this section
gives the full details of our approach. The effectiveness of
this approach will be shown empirically in Section 5.

Sampling: The more critical aspect of our approach is iden-
tifying which samples to collect. Each sample is collected by



Query Type Q1 Q9 Q21 Q18 Q13 Q7 Q6 Q20 Q8 Q3 Q10 Q5
Run Time tj (sec) 10.07 9.66 7.3 7.12 6.12 5.76 4.77 4.48 4.15 3.41 2.65 2.60

Table 2: Average run time of different TPC-H query types on a 1GB database

Q1 Q7 Q9 Q13 Q18 Q21
Mix Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij

m1 11 143.9 8 144.6 3 211.2 2 97.8 2 149.8 4 127.5
m2 2 361.7 8 298.6 1 476.0 18 121.2 0 0.0 1 231.2

Table 3: Aij for different query types in query mixes on a 1GB database

scheduling an experiment where a selected query mix mi is
run purely to observe the average query completion times
(Aij values) of the queries contained in mi. In our cur-
rent implementation, when the database system is running
a query mix as part of an experiment, it does not process the
production workload. Thus, experiments expose a tradeoff:
• On one hand, more experiments bring in more samples,

which will lead to a better understanding of query inter-
actions as well as more accurate models to estimate Aij

values for given mixes.
• On the other hand, experiments add to the system over-

head, so we want to minimize the number of experiments
needed.

In our empirical evaluation, we consider how many samples
(experiments) are needed to produce fairly-accurate models
for estimating Aij values. (Our sampling techniques will
be described momentarily.) We will show that these values
can be estimated with reasonable accuracy from few samples
(50-60). In particular, the accuracy obtained from these
samples is good enough for our query scheduler to produce
efficient schedules that outperform the schedules produced
by conventional schedulers.

While these results may seem surprising at first, it should
be understood that our scheduling algorithm performs well
as long as it can distinguish the bad mixes (where the per-
formance of one or more queries is degraded severely) from
the good ones. Statistical models need far fewer samples to
separate the bad mixes from the good ones than what they
need to predict all Aij values with high accuracy. An anal-
ogy from query optimization is relevant here. Cost models
used by query optimizers can be notoriously bad at estimat-
ing absolute plan completion times, but they have been suc-
cessful because of their ability to distinguish the bad plans
from the good ones.

A straightforward approach to pick experiments is to sam-
ple randomly from the space of possible mixes. As an at-
tempt to selectively cover different parts of the space of
mixes with few experiments, we developed a new sampling
approach called corner, diagonal, and random (CDR) sam-
pling. CDR sampling works as follows.

• For MPL M , we start by running T experiments where
we sample the“corner”points of the space, i.e., the mixes
〈M, 0, . . . , 0〉, 〈0, M, . . . , 0〉, . . . , 〈0, 0, . . . , M〉.

• Next, we sample “diagonally”. We first run the mix
with equal number of occurrences of each query type,
i.e., 〈M

T
, M

T
, . . . , M

T
〉. Then, we take a fixed number of

random samples from the space of possible mixes, with
a constraint that there has to be at least k instances of
each query type. k is varied across a small range of values
in 1, . . . , M

T
− 1.

• Finally, we take some samples completely at random (like
random sampling) from the full space of mixes.

After collecting the samples, we can analyze this data to
identify important interactions (like we did in Section 2) or
to train statistical models.

Statistical Models: In this paper, we consider three types
of statistical models: linear models, quadratic models, and
regression trees. The statistical model is a pluggable compo-
nent of our framework, so any other appropriate statistical
model can be used. However, in our empirical evaluation
(Section 5) we have found that these simple models consis-
tently give accurate and robust estimates.

A linear model uses the following structure to compute

Âij , the estimate of Aij for mix i and query type j:

Âij = β0 +
T∑

k=1

βkNik

A quadratic model uses a second-degree polynomial in Nij

to compute Âij as:

Âij = β0 +
T∑

k=1

βkNik +
T∑

k=1

T∑
l=1

βklNikNil

The β parameters in both models are regression coefficients
that will be estimated while learning the model from data,
e.g., using the popular method of least squares estimation.

Regression trees are piecewise regression models [18, 34].
Each piece in such a model corresponds to a partition of the
space of mixes of the form Nij ≤ const. Partitioning is car-
ried out recursively, beginning with the full set of samples,
and the set of partitions is presented as a binary decision
tree. The nonleaf nodes in the tree define the partitioning
conditions. Each leaf node L is associated with a constant
or a function which is used to predict Âij for all mixes that
match the criteria along the path from the root node to L.
Efficient software packages are available to learn piecewise
constant, piecewise linear, and other types of regression trees
from given samples (we use [34]).

Incremental Model Maintenance: One important ques-
tion is whether the sample collection and model learning has
to be done from scratch each time a query type is added or
deleted. The answer is no. For example, when a new query
type Q is added, all we need are a few new samples with
nonzero number of instances of Q. These samples can be
used to update the linear regression, quadratic regression,
or regression tree models incrementally.

4. QSHUFFLER
In this section, we provide an end-to-end use case that

shows how interactions can be modeled and exploited to
gain huge performance improvements in database systems.
We develop a query scheduler, called QShuffler, that ad-
dresses the problem of scheduling large batches of queries in
Business Intelligence (BI) settings [21].



Type Q1 Q9 Q21 Q18 Q13 Q7
tj (sec) 294.61 578.61 570.37 554.56 101.27 102.06

Table 4: Average run time of different TPC-H query types on a 10GB database

Q1 Q7 Q9 Q13 Q18 Q21
Mix Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij

m1 1 1897.42 2 72.66 5 2919.29 0 0.0 2 1904.12 0 0.0
m2 0 0.0 0 0.0 0 0.0 1 284.7 9 1053.31 0 0.0

Table 5: Aij for different query types in query mixes on a 10GB database

Figure 2: Problem setting

The workload to be scheduled, W , comes from a set of
clients (e.g., report-generation applications) that each issues
a bounded set of queries belonging to one of the T possi-
ble types Q1, Q2, . . . , QT . The clients place their queries
in an arrival queue, and QShuffler schedules queries from
this queue. Figure 2 illustrates our problem setting. Let Ij

denote the total number of queries of type Qj in W , thus

|W | =
∑T

j=1 Ij . QShuffler has to choose an entire sequence
of query mixes to schedule in order to complete W .

The objective of QShuffler is to choose the sequence of
query mixes to schedule so that the total completion time of
W is minimized (which is equivalent to maximizing through-
put). In our report generation scenario, this objective cor-
responds to producing all the reports requested in a cer-
tain period as fast as possible to stay within the available
time budget. Since most database systems do not preempt
queries once they start, we focus on non-preemptive schedul-
ing. There is work on preemptive scheduling of plan opera-
tors (e.g., [6]), but our focus is on scheduling entire queries.

The rest of this section presents our scheduling algorithm.
Under certain assumptions, this algorithm generates a sched-
ule whose total completion time is within an additive con-
stant factor of the total completion time of the optimal
schedule. The algorithm considers a large set of mixes X =
{m1, m2, . . . , m|X|} such that the schedule chosen for W will
consist of: (i) a subset of mixes selected from X, and (ii)
a specification of how the Ij instances of each query type
should be executed using the selected mixes. Next, we de-
scribe how X is picked and how the schedule is chosen.

The space X of mixes considered: X is a systematic
enumeration of a very large subset of the full space of query
mixes. For an MPL M and number of query types T , the
space of possible mixes is a bounded T -dimensional space.
The total size of this space is the number of ways we can

select M objects from T object types, unordered and with
repetition. This is an M-selection from a set of size T , and
the number of possible selections is given by S(T, M) =(

M+T−1
M

)
[26].

If we restrict the space of mixes by assuming that queries
of the same type can be scheduled only in batches of size

b, then we get a subspace of size S(T, M
b

) =
( M

b
+T−1
M
b

)
. We

use values of b ∈ [1-10], and set X to be the corresponding
subspace of the full space. This strategy has consistently
given us very good results.

Linear program to pick a subset of X: QShuffler uses a
linear program (LP) [28] to pick the subset of X used in the
chosen schedule. Intuitively, an LP optimizes an objective
function over a set of variables subject to some constraints.
The inputs to the LP used by the scheduler consist of the set
of query mixes mi ∈ X and Ij , 1 ≤ j ≤ T , the total number
of instances of each query type Qj to be scheduled. The LP
contains an unknown variable ni (ni ≥ 0) corresponding to
each mix mi ∈ X. ni is the total time for which queries will
be scheduled with mix mi in the chosen schedule.

The chosen schedule should perform the work required to
complete all Ij input instances of each query type Qj . This
requirement can be written in the form of T constraints:

|X|∑
i=1

ni
Nij

Aij
≥ Ij , ∀j ∈ {1, . . . , T} (1)

Recall that Nij denotes the number of instances of query
type Qj in the mix mi, and Aij denotes the average com-
pletion time of a query of type Qj in mi. (Nij and Aij

are constants that depend only on mi and Qj . Section 3
shows how Aij values can be estimated for all the mixes in
X.) Suppose the work needed to complete the execution
of one instance of Qj is 1. Then, the total work required
to complete the execution of Ij instances of Qj in the in-

put workload is Ij .
Nij

Aij
denotes the fraction of this work

that gets completed per unit time when mix mi is sched-

uled. Thus,
∑|X|

i=1 ni
Nij

Aij
denotes the total work done for Qj

in the chosen schedule, which must not be less than Ij . This
reasoning explains the T constraints presented in Equation
1 that the LP should work with.

The objective of the LP is to find the schedule with the
minimum total time to completion. Since only one mix will
be scheduled at any point in time, the LP’s optimization

objective can be written naturally as Minimize
∑|X|

i=1 ni. We
can solve the LP using any LP solver; we use the highly-
efficient CPLEX tool [11]. In the LP solution, some ni vari-
ables will be set to nonzero values and the rest will be zero.
Next, we show how the mixes with nonzero ni are used in
the chosen schedule. We have the following lemma.



Lemma 4.1. The number of nonzero ni in the LP solution
is at most T , assuming T ≤ |X|.
The above lemma follows from linear-programming theory
where it is the case that the number of variables set to
nonzero values in the LP solution will not be greater that the
number of constraints in the LP [28]. Recall from Equation
1 that our LP has T constraints, one per query type.

4.1 Bound on Degradation from Optimal
It follows from Lemma 4.1 that the LP will choose at most

T mixes out of the |X| mixes given as input. We can pick
any order in which to schedule the chosen mixes. For each
chosen mix, the respective ni value found by the LP gives
the total time for which query instances should be executed
with that mix. In this way, we can generate a complete
schedule from the LP solution.

However, this schedule assumes that we can preempt
queries that are running when the time (ni) assigned to a
mix expires; the LP may have chosen to finish running these
queries using one or more other mixes. Since instantaneous
query preemption is not easy in most database systems (re-
call Section 2), we need to transform the possibly preemptive
schedule generated by the LP to an efficient preemption-free
schedule. We give Theorem 4.2 which uses the following
notation: (i) Among all mixes with nonzero ni in the LP
solution, let aj be the maximum average completion time
for a query of type Qj . Let amax be the maximum among

all aj ; (ii) Let OPT =
∑|X|

i=1 ni be the time to completion
computed by the LP for the input query workload.

Theorem 4.2. We can produce a preemption-free sched-
ule S whose time to completion for the input workload is at
most OPT +amaxT if the following assumption holds: reduc-
ing the number of query instances in a mix will not increase
the average completion time of any query type in that mix.

Proof Sketch: The assumption in Theorem 4.2 is that
interactions among queries should not affect queries posi-
tively; which holds if the interactions arise due to software
or hardware resource limitations (e.g., locking, I/O bottle-
necks). Such interactions are perhaps the most common ones
in practice. We can construct a preemption-free schedule S
with the property stated in Theorem 4.2 as follows:
1. Pick one among the remaining mixes with a nonzero ni.

Suppose we picked mix mi.
2. Schedule input query instances with mi for time ni.
3. Now wait until all scheduled queries finish. Do not sched-

ule any more queries with mi. Set ni =0 for mi.
4. If there are more mixes with nonzero ni, go to Step 1.

Note that S does not preempt running queries. For each
of the query mixes with nonzero ni in the LP solution, S
takes at most ni + amax time. (amax more time than ni will
be required if S just scheduled the “longest running query”
when time ni expires for the current mix; S will have to wait
until this query finishes before starting the next mix.) Since
there are at most T mixes with nonzero ni (Lemma 4.1), S
will finish in time OPT +amaxT . �

4.2 Robustness of the Chosen Schedule
The LP requires estimates of the Aij values for the mixes

in X. Section 3 shows how QShuffler estimates these values
through statistical modeling. Even if these models are not
very accurate, we have observed that the LP chooses a good

subset of mixes. However, the ni values output by the LP as
the time to run each mix become less reliable. In this case,
we can use a technique that is slightly different from the one
in the proof sketch to generate a preemption-free schedule
from the LP solution. While this technique is more robust
to modeling errors, the generated schedule does not have a
provable bound on total completion time.

Without loss of generality, let the mixes with nonzero ni in
the LP solution be m1, m2, . . . , mT , with respective ni values
n1, n2, . . . , nT . (It does not matter if less than T mixes have
nonzero ni.) We partition the total number of instances Ij of
query type Qj among m1, m2, . . . , mT in proportion to the
fraction of work related to Qj that the LP solution assigned
to each mix, namely:

n1
N1j

A1j
: n2

N2j

A2j
: · · · : nT

NTj

ATj

Once the entire input workload I1, I2, . . . , IT has been par-
titioned among the mixes m1, m2, . . . , mT , these mixes are
scheduled in decreasing order of ni values. For each mix mi,
we schedule queries from the set of instances assigned to mi

until they all complete, then we move to the next mix.
We also considered the possibility of starting queries from

the next mix as soon as individual queries from the current
mix complete. However, when we start new queries in this
manner, we are effectively running new mixes that may not
be part of the solution to the LP. These mixes have unpre-
dictable performance and may render our schedule highly
sub-optimal; hence our decision to allow scheduled mixes to
run to completion.

4.3 Scalability of Linear Programming
Our LP solver can handle a very large number of mixes in

X (variables in the LP) in real-time, e.g., an LP with close to
0.34 million variables was processed within 8 seconds. Thus,
with an LP, X can be a very large subset of the full space
of possible query mixes; increasing the chances of finding
the best subset of mixes for the chosen schedule. This ben-
efit would be lost if we use an approach based on integer
programming (IP) since IP is computationally intractable.

5. EXPERIMENTS
5.1 Experimental Setup
Machine and database: Our experiment were run on ma-
chines with dual 3.4GHz Intel Xeon CPUs and 4.0GB of
RAM running Windows Server 2003. The database server
we use is DB2 version 8.1. We use the TPC-H database with
scale factors of 1GB and 10GB. Unless we note otherwise,
we always use the 1GB database with the standard TPC-H
data generator that generates uniform data. The exceptions
to this are Section 5.3, in which we use a 10GB database and
Section 5.4 in which we use a data set with a skewed data
distribution. The buffer pool size of the database was set
to 400MB for the 1GB database, and 2.4GB for the 10GB
database. We leave all other tuning parameters of DB2 at
their default value. We used the DB2 Design Advisor to
recommend indexes for the TPC-H workload. In our exper-
iments, we vary MPL M from 20 to 60. The default MPL
for DB2 (or the number of agents in DB2 terms) is 200.
Query workload: Our workloads use the 12 longest run-
ning TPC-H query types shown in Table 2, with different
parameter values for each instantiation chosen according to
TPC-H rules. These queries are also identified as long run-
ning in the disclosure reports of commercial benchmark runs.



Scheduling algorithms: We experimented with 3 differ-
ent scheduling algorithms: QShuffler, SJF, and FCFS. Since
FCFS scheduling is sensitive to the arrival order of queries,
we define different arrival orders for FCFS as follows: We ar-
range the query types in our workload in the order in which
they are specified in the TPC-H benchmark (i.e., Q1 first,
then Q3, . . . , Q21). We then go through the list of query
types in a round robin manner, placing p randomly gener-
ated instances of each query type in the arrival queue until
all queries are in the queue. The parameter p specifies the
degree of skew in the workload arrival order. As p increases,
more queries of the same type arrive together.
Performance metric: Our performance metric is total
completion time for the workload. Since the workload queries
are fixed in each experiment, minimizing total completion
time is equivalent to maximizing throughput.

5.2 Scheduler Effectiveness
Figure 3 shows the total completion time of the sched-

ule chosen by QShuffler for a workload consisting of 60
instances of each of the 12 longest running TPC-H query
types, for a total of 720 queries. The figure shows the
completion times on a 1GB database for different MPLs.
The completion times increase slightly with MPL, which
is expected. However, the slope of the increase is very
low, which means that the system is not thrashing and we
are within the load capacity of the system for this work-
load. We measure the performance of other algorithms in
terms of slowdown compared to QShuffler schedule, defined

as:
completion time of alternate schedule
completion time of QShuffler schedule

× 100%.

Figures 4, 5, and 6 show the performance for different
MPLs of QShuffler, FCFS, and SJF for p = 5, 25, and 50,
respectively. The figures show that QShuffler is significantly
better than FCFS and SJF. The approximation made by the
algorithm to get a non-preemptive schedule and its reliance
on model accuracy do not reduce its effectiveness.

The figures show that as MPL increases, FCFS and SJF
are not able to keep up with the increased load on the system
and their performance degrades compared to QShuffler. As
MPL increases, there are more interactions that come into
play, and QShuffler is able to take these interactions into
account when choosing the schedule.

The figures also show that as p increases, the performance
gap between QShuffler and FCFS also increases. FCFS is the
scheduling algorithm used by all database systems that we
are aware of, and this experiment shows that its sensitivity
to arrival order can significantly degrade its performance.
However, for this experiment, SJF consistently turns out to
be the worst policy overall. Interestingly, SJF is the optimal
scheduling policy if query interactions are ignored, and the
fact that it is the worst policy in this experiment demon-
strates the importance of modeling query interactions when
scheduling. To illustrate the potential benefit of QShuffler
(or, conversely, the opportunity lost by using FCFS), we
note that for p = 50 the performance gain of QShuffler over
FCFS is up to 60%. This gain comes “for free” simply by
scheduling the queries in the correct way.

5.3 Scalability and Robustness of QShuffler
We study the scalability of QShuffler in two dimensions:

query types T and size of the data set.
As T increases, the space of possible query mixes increases,

which affects both model building and scheduling. To test

Figure 3: QShuffler Execution Time

Figure 4: Scheduling for p = 5

QShuffler for higher T , we use a workload comprised of 21 of
the 22 queries in the TPC-H benchmark. We do not use Q15
since it creates and drops a view, which is not supported in
our current implementation. The workload consists of 60
queries of each type, for a total of 1220 queries. Figure 7
shows the performance of the different scheduling algorithms
for this workload for MPL 30 and varying p. The completion
time for QShuffler in this case is 2554 seconds. The figure
shows that, as in previous experiments, QShuffler performs
better than both FCFS and SJF.

To test QShuffler for larger database sizes, we use the
10GB TPC-H database. Since the hardware is unchanged
from the 1GB case, the queries place a much higher load on
the system and have much higher run times in the 10GB
case. Therefore, we experiment with only the 6 longest run-
ning query types from Table 2. The run times of these 6
queries in the 10GB setting are given in Table 4. The work-
load consists of 10 queries of each type for a total of 60
queries, and MPL is set to 10. The arrival order of the
queries is determined based on the parameter p, and we
use p = 2, 5, and 10 since we have a lower MPL than the
1GB case. Figure 8 shows the performance of the different
scheduling algorithms for this workload. The completion
time for QShuffler in this case is 1.78 hours and it is signifi-
cantly better than the other algorithms, e.g., beating FCFS
(7.43 hours) by a factor of 4.2. Once again, this shows the
potential of interaction-aware scheduling. On examining the
different mixes we found that, unlike the 1GB case, the ho-
mogeneous mixes (i.e., containing one query type only) are
among the best mixes. As the arrival patterns become more
skewed, FCFS is able to hit these good mixes through its
default behavior.



Figure 5: Scheduling for p = 25

Figure 6: Scheduling for p = 50

5.4 Scheduling for Skewed Databases
The scheduling algorithm of QShuffler makes use of aver-

age completion times at the level of query types, where a
type in our current implementation is a distinct query tem-
plate like in TPC-H (Section 2). If the data distribution in
the database is highly skewed, then it is possible that two
instances of the same query type that have different param-
eter values could have very different effects in the same mix.
This can be dealt with by dividing each query template into
several query types based on parameter ranges. Thus we
would be dealing with more query types as demonstrated
above in Section 5.3 . Automatically determining the best
set of query types in the presence of skew is a subject of
future work. However to test the robustness of our current
implementation that does not have this ability, we use the
skewed TPC-D/H database generator available at [31]. This
database generator populates a TPC-D/H database using
skewed random values that follow a Zipf distribution. This
distribution has a parameter z that controls the degree of
skew, where z = 0 generates a uniform distribution and as
z increases, the data becomes more and more skewed.

We test our scheduling algorithms on a 1GB database that
was generated using z = 1. The skew in the data exhibits
itself in the varying run times for different instances of the
same query type. However, we do not change the way that
we define the query types for our scheduling algorithms. We
continue to group all instances of a TPC-H query together
into one query type, and we use the average execution time
of these instances to build performance models.

Figure 9 shows our results for workloads consisting of 60
instances (with different parameter values) of the 6 longest
running query types in Table 2, for a total of 360 queries.

Figure 7: Scheduling for T = 21

Figure 8: Scheduling for 10GB database

The figure shows three workloads with p = 5, 25, and 50,
and MPL 30. The figure shows that QShuffler is consistently
better than FCFS and SJF for the different workloads for
all values of p. Thus, we can see that our technique, while
primarily developed assuming uniform query run times for
the different types, can still perform well even for skewed
data distributions. Our scheduling algorithm performs well
as long as it can distinguish the bad mixes (where the perfor-
mance of one or more queries is degraded severely because
of interactions) from the good ones.

5.5 Cost and Accuracy of Modeling
Since performance modeling is an essential part of our

technique, we consider in our final experiment: (1) How ac-
curate are our performance models? and (2) How expensive
is it to build these models? To answer these questions, we
sample the space of possible query mixes using CDR sam-
pling as described in Section 3, and we use our samples to
build performance models for query completion times, Aij .
Mean Relative Error (MRE): We compute the accu-
racy of a performance model as follows. We pick S = 100
test samples at random from the full space of samples (dif-
ferent from the samples used to build the model), and we
compute the model-predicted value of performance pest for
each test sample (i.e., the estimated Aij). MRE is defined

as 1
S

∑S
i=1

|pest−pobs|
pobs

, where pobs is the actual performance

observed for the sample (i.e., the actual Aij). MRE is a
common metric for quantifying model accuracy.

Figures 10 and 11 show the MRE on the test samples vs.
the number of samples used for model building for Q13 and
Q18, respectively. The figures show MRE for the three types
of models presented in Section 3: linear regression models,
regression trees (CART [34]), and quadratic regression mod-



Figure 9: Scheduling for skewed data

Figure 10: Model accuracy for Q13

els. The “Best on Full Data” plot shows the best modeling
accuracy achieved using all the samples we collected (more
than 400 for our default setting). The graphs for other query
types are similar that we omit them due to lack of space.

From the figures, we can see that: (1) MRE quickly con-
verges to a value of around 25-30% with a small number
of training samples (50-60), (2) simple linear models, which
we use in QShuffler, are not drastically off the accuracy of
the more complex regression tree models, and (3) quadratic
models are the least accurate, which shows that a more com-
plex model structure does not necessarily lead to more ac-
curacy. Thus, we see that modeling Aij can be done quite
effectively: we can get good accuracy by using simple linear
models and training these models with a small number of
query mixes sampled from the space of possible mixes. In
particular, the accuracy obtained from these samples is good
enough for our query scheduler to produce efficient sched-
ules that outperform the schedules produced by conventional
schedulers. The time needed for modeling, which includes
both sample collection time and model building time, is as
follows for our experimental settings: (i) 3 hours for T = 12,
1 GB, 60 samples; and (ii) around 24 hours for T = 6, 10
GB, and 30 samples. We saw that just on one run in the
10 GB case we saved more than 5 hours. With repeated
runs in a report generation setting, the cost of modeling is
well justified by the savings in query completion time. Thus,
we see that the modeling requirements of QShuffler can be
effectively satisfied through simple statistical modeling.

6. RELATED WORK
This paper builds on an earlier version that appeared as

a poster [4]. Some recent papers have employed the con-
cept of modeling the performance of transaction mixes in
different application areas. These papers define a transac-
tion mix as transactions of different types running during a

Figure 11: Modeling accuracy for Q18

time interval or monitoring window, which is fundamentally
different from our notion of a concurrent query mix. Like
our work, these papers use statistical modeling. In [16], the
authors propose the use of transaction-mix models for de-
tecting performance anomalies in multi-tier enterprise appli-
cations. This work is extended in [32], where the models are
also used to predict performance. In [35] and [36], the au-
thors use transaction-mix models for resource provisioning
and capacity planning in multi-tier applications. However,
unlike our work, none of these papers consider the concur-
rent execution of transactions and the interaction among
these transactions. Furthermore, we use our models to solve
the problem of scheduling query mixes, while these papers
focus on performance prediction.

Prior work on concurrently running query mixes generally
falls into two categories: work on multi-query optimization
(e.g., [25]), and work on sharing scans in the buffer pool
(e.g., [23]). Both of these categories try to induce positive
interactions between queries, but they are fairly restricted
in the types of interactions that they consider. In our work,
we can capture different kinds of both positive and negative
interactions, and our scheduler can be implemented with-
out requiring modifications to the internals of the database
system, as would be required by multi-query optimization.

There is a wealth of literature on scheduling (e.g., [10]).
Scheduling in database systems has been studied in the con-
text of concurrency control, where the focus is on minimiz-
ing lock contention [14, 15]; and in real-time database sys-
tems (RTDBMS) [1, 2, 3] with the goal of minimizing missed
deadlines. These works study how scheduling around criti-
cal resources can help meet this goal. In [17] and [24], the
focus is on differentiating classes of requests in RTDBMS.
Prioritization for resources has been studied in the context
of general purpose database systems in [8, 19, 20]. Admis-
sion control and external scheduling have been studied for
multi-tier applications in [12]. In [27], the optimal buffer
space for a query is estimated and used to check that the
memory consumption of scheduled queries does not exceed
available memory. This addresses only one resource (buffer
space) and does not consider interactions in the buffer pool,
which can be significant. Our work is different from all these
works in that reasoning about query mixes is central to our
approach. Ignoring query interactions in a mix may result
in suboptimal decisions. For example, [12] proposes using
shortest job first as a scheduling policy, which may be the
worst policy if there is query interaction (Section 5).

Another area of related work is admission control and set-
ting the multi-programming level (or MPL) of the database
system [12, 13, 22, 30]. The MPL is the number of requests
served concurrently by the system. These works also do



load control, reacting in different ways to deviations in the
load from optimal. However, the works on admission control
and workload management in database systems generally fo-
cus on transactional workloads. BI workloads, on the other
hand are very different from transactional workloads and
the common approach used by commercial BI systems is to
set the MPL statically [21]. In [21], the authors propose
a batch BI workload manager that does admission control
by admitting batches of queries such that their memory re-
quirement equals the available memory on the system. In
our work we show that query interaction can render such
simple scheduling policies highly sub-optimal.

Scheduling becomes more important for systems under
heavy load, since the alternative to scheduling is load shed-
ding, for which there are several techniques (e.g., [33]). Re-
cently, [29] proposed using shortest remaining time first
(SRTF) scheduling to avoid dropping requests when the sys-
tem is under load. QShuffler also avoids overload, but by
taking query interaction into account we are able to make
better scheduling decisions. For example, we show that SJF,
the non-preemptive version of SRTF, is often a bad policy.

7. CONCLUSIONS
In this paper, we demonstrate that interactions among

concurrently running queries in a query mix can have a sig-
nificant effect on performance. Hence, we argue that it
is important to take these interactions into account when
making performance related decisions. We propose an ex-
perimental modeling approach for capturing interactions in
query mixes, since analytical modeling of these interactions
is too complex. We present QShuffler, a throughput oriented
scheduler for BI report generation workloads. QShuffler de-
termines the best schedule for the entire workload, and it is
based on a linear programming formulation of the problem
that results in a solution that is guaranteed to be within
an additive factor of the true optimal solution. We experi-
mentally validate the effectiveness of our modeling approach
and of QShuffler using a BI benchmark on a real database
system. We show that modeling is accurate enough and con-
verges quickly, and we show that QShuffler can give us up
to a four-fold improvement in performance over the default
FCFS scheduler used by database systems.
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