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ABSTRACT

Many of the recently proposed algorithms for learning
feature-based ranking functions are based on the pairwise
preference framework, in which instead of taking documents
in isolation, document pairs are used as instances in the
learning process [3, 5]. One disadvantage of this process is
that a noisy relevance judgment on a single document can
lead to a large number of mis-labeled document pairs. This
can jeopardize robustness and deteriorate overall ranking
performance. In this paper we study the effects of outlying
pairs in rank learning with pairwise preferences and intro-
duce a new meta-learning algorithm capable of suppressing
these undesirable effects. This algorithm works as a second
optimization step in which any linear baseline ranker can
be used as input. Experiments on eight different ranking
datasets show that this optimization step produces statis-
tically significant performance gains over state-of-the-art
methods.

Categories: H.3.3 Information Search and Retrieval: Re-
trieval models General Terms: Algorithms.

1. OUTLIERSIN PAIRWISE RANKING

Learning effective feature-based ranking functions is a fun-
damental task for search engines, and has recently become
an active area of research [3, 7]. One popular approach
to learning feature-based ranking functions is the pairwise
ranking framework, where the goal is to learn a preference
function over pairs of documents given a query.

There are many practical advantages in adopting the pair-
wise preference ranking framework. First, most classifica-
tion methods can be easily adapted to this formulation of
the ranking problem. Second, this framework can be gener-
alized to any graded relevance levels (e.g. definitely relevant,
somewhat relevant, non-relevant). Third, in many scenarios
it is easier to obtain large amounts of pairwise preference
data [5]. In addition, there is evidence that assessment of
pairwise preferences is easier for assessors and yields higher
inter-annotator agreement [1].

Using pairwise preferences, however, does pose some risks.
In the presence of labeling errors or other “noise” in the
document relevance information, creating a training set by
pairing documents causes a quadratic increase in the num-
ber of noisy outlier observations, and this can have a strong
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Figure 1: Example of outliers in pairwise ranking. (top)
Histogram of pairwise scores. (bottom) Test MAP when
excluding training instances whose scores were below
cutoff.

negative impact on the quality of the learned ranking func-
tion. Specifically, mis-labeling of a single document’s ab-
solute judgement will lead to many “mis-labeled” document
pair preferences. When using graded relevance levels, con-
fusion or inconsistencies between different relevance levels
may make mis-labeling a common problem.

Mis-labeling the absolute relevance level of a document is
not the only source of outliers. Due to the nature of key-
word search, we have an extremely impoverished view of the
information need — typically only 2-3 terms per query. For
this reason, the query-document features may not be expres-
sive enough to truly distinguish relevant from non-relevant
documents. This may result in many non-relevant docu-
ments “looking similar” to relevant in the query-document
feature space. These non-relevant documents can also yield
a quadratic increase in the number of pairwise outliers.

To illustrate the effect of outliers on rank learning, we
trained a RankSVM model [5] on SEAL-1, a Set Expan-
sion dataset [2]. Given the model learned, we calculated the
pairwise decision scores P, [2] for all training data instances
and constructed a histogram, as shown in the top of Fig-
ure 1. Most pairwise instances had positive scores, showing
that the learned ranking model correctly ordered most of the



training instances. Some instances, however, had negative
scores and the few having the most negative scores may be
outliers.

We then retrained the same RankSVM model excluding
from the training data a few instances whose scores were
below a cutoff value, P/, and evaluated the learned model
on the same test set. The bottom of Figure 1 shows test
MAP results of this experiment. The dashed horizontal line
shows performance when all instances are used for training.
The leftmost point shows the performance when instances
with score below —15 were removed from training. As the
removal cuttoff increases up to —4, performance goes up,
indicating that the removal of outliers improves the ranker’s
performance. For larger cutoffs, this effect is curtailed by
the larger numbers of instances being discarded and perfor-
mance drops.

Further evidence also suggests that pairwise ranking can
be improved by removing or down-weighting outliers. In
perceptron-based algorithms, outliers were identified as doc-
ument pairs that consistently mis-ranked in several itera-
tions through the training data, and removal of these outliers
improved performance and stability of the learned ranking
function [3, 4]. This technique, known as the a-bound [6],
limits the influence of potential outlier observations on the
final learned hypothesis, but it is still unclear how it gener-
alizes to other learning algorithms.

Collection | Percep Percep RankSVM RankSVM
+Sigmoid +Sigmoid
OHSUMED | 0.318 0.4517T 0.447 0.448
TREC-03 0.067 0.2541f 0.203 0.244
TREC-04 0.324 0.385" 0.385 0.393
SEAL-1 0.851 0.8667T 0.862 0.86611
SEAL-2 0.869 0.89371 0.890 0.894f%
SEAL-3 0.906 0.9241f 0.916 0.920f
TOCCBCC | 0.425 0.47971 0.472 0.480%1
CCBCC 0.463 0.524ff 0.516 0.521

Table 1: MAP test values for all datasets. Statisti-
cal significance tests over the previous column values
are marked with T or T for the Wilcoxon Matched-Pairs
Signed-Ranks test with p < 0.05 or 0.01, respectively.

2. ROBUST PAIRWISE RANKING

In order to develop a new general mechanism to down-
weight the influence of outliers in pairwise preference learn-
ing, we first observed that many competitive rank learners,
such as RankSVM [5], utilize convex loss functions in order
to optimize rank orderings. One of the disadvantages of con-
vex loss function is its sensitivity to outliers. Outlier points
have a strong contribution to the global loss, giving these
outliers an important role in determining the final learned
hypothesis.

To address this problem, we propose to approximate the
number of misranks (the empirical 0/1 loss) using a non-
convex sigmoidal function, instead of a convex one'. There
are at least two advantages in using this particular loss func-
tion. First, this non-linear penalty suppresses the effect of
outliers, i.e., not giving larger loss values to instances with
very large negative pairwise scores. Second, this penalty can

!Details on the complete optimization procedure with the
sigmoid-based loss function can be found elsewhere [2].

arbitrarily approximate the empirical 0/1, leading to poten-
tially higher generalization accuracy.

The sigmoid loss function is not convex, thus the learn-
ing procedure is only guaranteed to reach a local maximum.
To avoid learning poor locally optimal solutions, the sigmoid
ranker is used as a second optimization step, refining the hy-
pothesis produced by another ranker. Specifically, sigmoid-
based optimization is seeded with the hypothesis learned
from a base ranker, such as RankSVM, and then it con-
verges to a local optimum close to the (presumably good)
seed hypothesis. Among other methods, gradient descent
can be used to learn parameters on this model [2].

We performed experiments on eight different ranking
datasets: three datasets from LETOR (TREC-03, TREC-
04, and Ohsumed), two from email recipient recommenda-
tion task (TOCCBCC and CCBCC) [2] and three other
datasets from the set expansion task (SEAL-1, SEAL-2 and
SEAL-3)[2]. Experiments were conducted with the sigmoid
ranker using three baseline rankers: RankSVM and the
averaged perceptron [3] trained using only 5 passes over
the data. Description and details on the aforementioned
datasets and algorithms can be found elsewhere [2].

Performance results for all ranking tasks are illustrated
in Table 1. On all SEAL datasets there were statistically
significant MAP improvements for the sigmoid ranker on
the top of both base rankers. On both CCBCC and TOC-
CBCC tasks, the proposed ranker produced significantly
better results than the averaged perceptron ranker. There
are also visible performance gains for sigmoid ranker applied
to RankSVM, although more modest.

In all LETOR datasets, the sigmoid optimization signifi-
cantly improved results for the averaged perceptron ranker.
For RankSVM, the sigmoid ranker produced improvements
in all collections, with the largest gain for TREC-03. Al-
though the proposed ranker improved performance on av-
erage, these improvements were not statistically significant.
Because the LETOR collections have a relatively larger num-
ber of features and a smaller number of queries, we speculate

that these ranking models are overfitting the training data.
Surprisingly, the perceptron+Sigmoid performance num-
bers were comparable, and sometimes slightly better, than
those using stronger base rankers. This may be an indica-
tion that initially using a method that is sensitive to outliers
can lead the learner astray, yielding a seed model that is too
strongly influenced by those outliers. Please refer to the
longer version of this paper [2] for a more detailed descrip-
tion of the algorithm and further experimental analysis.
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