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Program analysis and verification require decision procedures to reason on theories of data struc-
tures. Many problems can be reduced to the satisfiability of sets of ground literals in theory
T . If a sound and complete inference system for first-order logic is guaranteed to terminate on
T -satisfiability problems, any theorem-proving strategy with that system and a fair search plan
is a T -satisfiability procedure. We prove termination of a rewrite-based first-order engine on the
theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem

stating sufficient conditions for termination on a combinations of theories, given termination on
each. The above theories, as well as others, satisfy these conditions. We introduce several sets of
benchmarks on these theories and their combinations, including both parametric synthetic bench-
marks to test scalability, and real-world problems to test performances on huge sets of literals.
We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite.
Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in
theories, the experiments are overall favorable to the theorem prover, showing that not only the
rewriting approach is elegant and conceptually simple, but has important practical implications.

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Inference engines

General Terms: Automated reasoning

Additional Key Words and Phrases: Decision procedures, satisfiability modulo a theory, combi-
nation of theories, inference, superposition, rewriting, termination, scalability

1. INTRODUCTION

Decision procedures for satisfiability in theories of data types, such as arrays, lists
and records, are at the core of many state-of-the-art verification tools (e.g., PVS
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[Owre et al. 1992], ACL2 [Kaufmann et al. 2000], Simplify [Detlefs et al. 2005], CVC
[Barrett et al. 2000], ICS [de Moura et al. 2004], CVC Lite [Barrett and Berezin
2004], Zap [Lahiri and Musuvathi 2005a], MathSAT [Bozzano et al. 2005], Yices
[Dutertre and de Moura 2006] and Barcelogic [Nieuwenhuis and Oliveras 2007]).
The design, proof of correctness, and implementation of satisfiability procedures1

present several issues, that have brought them to the forefront of research in auto-
mated reasoning applied to verification.
First, most verification problems involve more than one theory, so that one needs

procedures for combinations of theories, such as those pioneered by [Nelson and
Oppen 1979] and [Shostak 1984]. Combination is complicated: for instance, under-
standing, formalizing and proving correct Shostak’s method required much work
(e.g., [Cyrluk et al. 1996; Rueß and Shankar 2001; Barrett et al. 2002b; Ganzinger
2002; Ranise et al. 2004]). The need for combination of theories means that de-
cision procedures ought to be easy to modify, extend, integrate into, or at least
interface, with other decision procedures or more general systems. Second, satisfi-
ability procedures need to be proved correct and complete: a key part is to show
that whenever the algorithm reports satisfiable, a model of the input does exist.
Model-construction arguments for concrete procedures are specialized for those, so
that each new procedure requires a new proof. Frameworks that offer a higher level
of abstraction (e.g., [Bachmair et al. 2003; Ganzinger 2002]) often focus on combin-
ing the quantifier-free theory of equality2, with at most one additional theory, while
problems from applications, and existing systems, combine many. Third, although
systems begin to offer some support for adding theories, developers usually have to
write a large amount of new code for each procedure, with little software reuse and
high risk of errors.
If one could use first-order theorem-proving strategies, combination would be-

come conceptually much simpler, because combining theories would amount to
giving as input to the strategy the union of the presentations of the theories. No
ad hoc correctness and completeness proofs would be needed, because a sound and
complete theorem-proving strategy is a semi-decision procedure for unsatisfiability.
Existing first-order provers, that embody the results of years of research on data
structures and algorithms for deduction, could be applied, or at least their code
could be reused, offering a higher degree of assurance about soundness and com-
pleteness of the procedure. Furthermore, theorem-proving strategies support proof
generation and model generation, that are two more desiderata of satisfiability pro-
cedures (e.g., [Necula and Lee 1998; Stump and Dill 2002; Lahiri and Musuvathi
2005a]), in a theory-independent way. Indeed, if the input is unsatisfiable, the
strategy generates a proof with no additional effort. If it is satisfiable, the strategy
generates a saturated set, that, if finite, may form a basis for model generation
[Caferra et al. 2004].

1In the literature on decision procedures, a “satisfiability procedure” is a decision procedure for
“satisfiability problems” that are sets of ground literals.
2Also known as EUF for Equality with Un-interpreted Function symbols. In the literature on
decision procedures, most authors use “interpreted” and “un-interpreted” to distinguish between
those symbols whose interpretation is restricted to the models of a given theory and those whose
interpretation is unrestricted. In the literature on rewriting, it is more traditional to use “definite”
in place of “interpreted” and “free” in place of “un-interpreted”, as done in [Ganzinger 2002].
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The crux is termination: in order to have a decision procedure, one needs to
prove that a complete theorem-proving strategy is bound to terminate on satisfi-
ability problems in the theories of interest. Results of this nature were obtained
in [Armando et al. 2003]: a refutationally complete rewrite-based inference system,
named SP (from superposition), was shown to generate finitely many clauses on
satisfiability problems in the theories of non-empty lists, arrays with or without
extensionality, encryption, finite sets with extensionality, homomorphism, and the
combination of lists and arrays. This work was extended in [Lynch and Morawska
2002], by using a meta-saturation procedure to add complexity characterizations3.
Since the inference system SP reduces to ground completion on a set of ground
equalities and inequalities, it terminates and represents a decision procedure also
for the quantifier-free theory of equality4.
These termination results suggest that, at least in principle, rewrite-based the-

orem provers might be used “off the shelf” as validity checkers. The common
expectation, however, is that validity checkers with built-in theories will be much
faster than theorem provers that take theory presentations as input. In this pa-
per, we bring evidence that using rewrite-based theorem provers can be a pratical
option. Our contributions include:

—New termination results, showing that SP generates finitely many clauses from
satisfiability problems in the theories of more data structures, records with or
without extensionality and possibly empty lists, and in two fragments of integer
arithmetic, the theories of integer offsets and integer offsets modulo;

—A general modularity theorem, that states sufficient conditions for SP to ter-
minate on satisfiability problems in a union of theories, if it terminates on the
satisfiability problems of each theory taken separately;

—A report on experiments where six sets of parametric synthetic benchmarks were
given to the rewrite-based theorem prover E [Schulz 2002; 2004], the Cooperating
Validity Checker CVC [Stump et al. 2002] and its successor CVC Lite [Barrett
and Berezin 2004]: contrary to expectation, the general first-order prover with the
theory presentations in input was, overall, comparable with the validity checkers
with built-in theories, and in some cases even outperformed them.

Among the termination results, the one for the theory of integer offsets is perhaps
the most surprising, because the axiomatization is infinite. All the theories consid-
ered in this paper (i.e., records with or without extensionality, lists, integer offsets,
integer offsets modulo, arrays with or without extensionality and the quantifier-free
theory of equality) satisfy the hypotheses of the modularity theorem, so that a fair
SP-strategy is a satisfiability procedure for any of their combinations. This shows
the flexibility of the rewrite-based approach.
For the experiments, we chose a state-of-the-art theorem prover that implements
SP , and two systems that combine decision procedures with built-in theories à la
Nelson-Oppen. At the time of these experiments, CVC and CVC Lite were the only
state-of-the-art tools implementing a correct and complete procedure for arrays with

3Meta-saturation as in [Lynch and Morawska 2002] was later corrected in [Lynch and Tran 2007].
4That ground completion can be used to compute congruence closure has been known since
[Lankford 1975].
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extensionality5, namely that of [Stump et al. 2001]. We worked with parametric
synthetic benchmarks, because they allow one to assess the scalability of systems
by a sort of experimental asymptotic analysis. Three sets of benchmarks involve the
theory of arrays with extensionality, one combines the theory of arrays with that
of integer offsets, one is about queues, and one is about circular queues. In order
to complete our appraisal, we tested E on sets of literals extracted from real-world
problems of the UCLID suite [Lahiri and Seshia 2004], and found it solves them
extremely fast. The selection of problems emphasizes the combination of theories,
because it is relevant in practice. The synthetic benchmarks on queues feature the
theories of records, arrays and integer offsets, because a queue can be modelled as a
record, that unites a partially filled array with two indices that represent head and
tail. Similarly, the benchmarks on circular queues involve the theories of records,
arrays and integer offsets modulo, because a circular queue of length k is a queue
whose indices take integer values modulo k. The UCLID problems combine the
theory of integer offsets and the quantifier-free theory of equality.

1.1 Previous work

Most termination results for theorem-proving methods are based on identifying
generic syntactic constraints that the input must satisfy to induce termination
(e.g., [Fermüller et al. 2001; Caferra et al. 2004] for two overviews). Our results
are different, because they apply to specific theories, and in this respect they can
be considered of a more semantic nature. There are a few other recent works that
experiment with the application of first-order theorem provers to decidable the-
ories of data structures. A proof of correctness of a basic Unix-style file system
implementation was obtained in [Arkoudas et al. 2004], by having a proof checker
invoke the SPASS [Weidenbach et al. 1999] and Vampire [Riazanov and Voronkov
2002] provers for non-inductive reasoning on lists and arrays, on the basis of their
first-order presentations. The haRVey system [Déharbe and Ranise 2003] is a ver-
ification tool based on the rewriting approach that we propound in this paper. It
integrates the E prover with a SAT solver, based on ordered binary decision di-
agrams, to implement decision procedures for a few theories. Experiments with
haRVey offered additional evidence of the effectiveness of the rewriting approach
[Ranise and Déharbe 2003].
The collection of theories considered here is different from that treated in [Ar-

mando et al. 2003]. Lists à la Shostak (with cons, car, cdr and three axioms) and
lists à la Nelson-Oppen (with cons, car, cdr, atom and four axioms) were covered in
[Armando et al. 2003]. Both axiomatize non-empty lists, since there is no symbol
such as nil to represent the empty list. Here we consider a different presentation,
with cons, car, cdr, nil and six axioms, that allows for empty lists. In an approach
where the axioms are given in input to a theorem prover, a different presenta-
tion represents a different problem, because termination on satisfiability problems
including a presentation does not imply termination on satisfiability problems in-
cluding another presentation. To wit, the finite saturated sets generated by SP
are different (cf. Lemma 11 in this article with Lemmata 4.1 and 5.1 in [Armando

5Neither Simplify nor ICS are complete in this regard: cf. Section 5 in [Detlefs et al. 2005] and
[Rueß 2004], respectively.
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et al. 2003]). Application of a rewrite-based engine to the theories of records, inte-
ger offsets and integer offsets modulo is studied here for the first time. Although
the presentation of the theory of records resembles that of arrays, the treatment
of extensionality is different and the generated saturated sets are very different (cf.
Lemma 2 and 14 in this article). The only overlap with [Armando et al. 2003] is
represented by the theory of arrays, for which we redo only the case analysis of
generated clauses, because that reported in [Armando et al. 2003] is incomplete (cf.
Lemma 14 in this article with Lemma 7.2 in [Armando et al. 2003]). A short version
and an extended abstract of this article were presented in [Armando et al. 2005b]
and [Armando et al. 2005a], respectively. Very preliminary experiments with a few
of the synthetic benchmarks were reported in [Armando et al. 2002].

2. BACKGROUND

We employ the basic notions from logic usually assumed in theorem proving. For
notation, the symbol ≃ denotes equality;6 ⊲⊳ stands for either ≃ or 6≃; = denotes
identity; l, r, u, t are terms; v, w, x, y, z are variables; other lower-case Latin letters
are constant or function symbols based on arity; L is a literal; C and D denote
clauses, that is, multisets of literals interpreted as disjunctions; ϕ is a formula; and
σ is used for substitutions. More notation will be introduced as needed.
A theory is presented by a set of sentences, called its presentation or axiomati-

zation. Given a presentation T , the theory Th T is the set of all its logical conse-
quences, or theorems: Th T = {ϕ | T |= ϕ}. Thus, a theory is a deductively-closed
presentation. An equational theory is a theory presented by a set of universally
quantified equations. A Horn clause is a clause with at most one positive literal,
and a definite Horn clause, or non-negative Horn clause, is a clause with at most
and at least one positive literal. A Horn theory is presented by a set of non-negative
Horn clauses, and a Horn equational theory is Horn theory where the only predi-
cate is equality. From a model-theoretic point of view, the term theory refers to the
family of models of T , or T -models. A model is called trivial if its domain has only
one element. It is customary to ascribe to a model the cardinality of its domain,
so that a model is said to be finite or infinite if its domain is.
By T -atom, T -literal, T -clause, T -sentence and T -formula, we mean an atom, a

literal, a clause, a sentence and a formula, respectively, on T ’s signature, omitting
the T when it is clear from context. Equality is the only predicate, so that all
T -atoms are T -equations. The problem of T -satisfiability, or, equivalently, satisfi-
ability modulo T , is the problem of deciding whether a set S of ground T -literals
is satisfiable in T , or has a T -model. The more general T -decision problem con-
sists of deciding whether a set S of quantifier-free T -formulæ is satisfiable in T .
In principle, the T -decision problem can be reduced to the T -satisfiability prob-
lem via reduction of every quantifier-free T -formula to disjunctive normal form.
However, this is not pratical in general. In this paper, we are concerned only with
T -satisfiability.7 T -satisfiability is important, because many problems reduce to T -
satisfiability: the word problem, or the problem of deciding whether T |= ∀x̄ l ≃ r,
where l ≃ r is a T -equation, the uniform word problem, or the problem of deciding

6The notation ≃ is standard for unordered pair, so that l ≃ r stands for l ≃ r or r ≃ l.
7We discuss existing approaches and future directions for the T -decision problem in Section 7.
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whether T |= ∀x̄ C, where C is a Horn T -clause, and the clausal validity problem,
or the problem of deciding whether T |= ∀x̄ C, where C is a T -clause, all reduce,
through skolemization, to deciding the unsatisfiability of a set of ground literals,
since all variables are universally quantified.
The traditional approach to T -satisfiability is that of “little” engines of proofs

(e.g., [Shankar 2002]), which consists of building each theory into a dedicated in-
ference engine. Since the theory is built into the engine, the input of the procedure
consists of S only. The most basic example is that of congruence closure algorithms
for satisfiability of sets of ground equalities and inequalities (e.g., [Shostak 1978;
Nelson and Oppen 1980; Downey et al. 1980; Bachmair et al. 2003])8. Theories are
built into the congruence closure algorithm by generating the necessary instances
of the axioms (see [Nelson and Oppen 1980] for non-empty lists) or by adding pre-
processing with respect to the axioms and suitable case analyses (see [Stump et al.
2001] for arrays with extensionality). Theories are combined by using the method
of [Nelson and Oppen 1979]. Two properties relevant to this method are convexity
and stable infiniteness :

Definition 1. A theory Th T is convex, if for any conjunction H of T -atoms
and for T -atoms Pi, 1 ≤ i ≤ n, T |= H ⊃

∨n

i=1 Pi implies that there exists a j,
1 ≤ j ≤ n, such that T |= H ⊃ Pj.

In other words, if
∨n

i=1 Pi is true in all models of T ∪H , there exists a Pj that is
true in all models of T ∪H . This excludes the situation where all models of T ∪H
satisfy some Pj , but no Pj is satisfied by all. Since Horn theories are those theories
whose models are closed under intersection – a fact due to Alfred Horn [Horn 1951,
Lemma 7] – it follows that Horn theories, hence equational theories, are convex.
The method of Nelson-Oppen without case analysis (also known as “branching” or
“splitting”) is complete for combinations where all theories are convex (e.g., [Nelson
and Oppen 1979; Barrett et al. 2002b; Ganzinger 2002]). The method of Nelson-
Oppen with case analysis is complete for combinations where all involved theories
are stably infinite [Tinelli and Harandi 1996]:

Definition 2. A theory Th T is stably infinite, if for any quantifier-free T -
formula ϕ, ϕ has a T -model if and only if it has an infinite T -model.

When combining the quantifier-free theory of equality with only one other theory,
the requirement of stable infiniteness can be dropped [Ganzinger 2002]. For first-
order logic, compactness implies that if a set of formulæ has models with domains
of arbitrarily large finite cardinality, then it has models with infinite domains (e.g.,
[van Dalen 1989] for a proof). Thus, for T a first-order presentation, and ϕ a
quantifier-free T -formula, if ϕ has arbitrarily large finite T -models, it has infinite
T -models; or, equivalently, if it has no infinite T -model, there is a finite bound
on the size of its T -models.9 Using this property, one proves (cf. Theorem 4 in
[Barrett et al. 2002b]):

8Unknown to most, the conference version of [Downey et al. 1980] appeared in [Downey et al.
1978] with a different set of authors.
9A proof of this consequence of compactness in the context of decision procedures appears in
[Ganzinger et al. 2004], where ϕ is assumed to have been reduced to disjunctive normal form, so
that the proof is done for a set of literals.
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Theorem 2.1. (Barrett, Dill and Stump 2002) Every convex first-order theory
with no trivial models is stably-infinite.

Thus, stable infiniteness is a weaker property characterizing the theories that can
be combined according to the Nelson-Oppen scheme.

If a decision procedure with a built-in theory is a little engine of proof, an inference
system for full first-order logic with equality can be considered a “big” engine of
proof (e.g., [Stickel 2002]). One such engine is the rewrite-based inference system
SP , whose expansion and contraction inference rules are listed in Figures 1 and 2,
respectively. Expansion rules add what is below the inference line to the clause set
that contains what is above the inference line. Contraction rules remove what is
above the double inference line and add what is below the double inference line.
Combinations of these inference rules or variants thereof form the core of most
theorem provers for first-order logic with equality, such as Otter [McCune 2003],
SPASS [Weidenbach et al. 1999], Vampire [Riazanov and Voronkov 2002], and E
[Schulz 2002], to name a few. Formulations with different terminologies (e.g., left
and right superposition in place of paramodulation and superposition) appear in
the vast literature on the subject (e.g., [Plaisted 1993; Bonacina 1999; Nieuwenhuis
and Rubio 2001; Dershowitz and Plaisted 2001] for surveys where more references
can be found).

A fundamental assumption of rewrite-based inference systems is that the universe
of terms, hence those of literals and clauses, is ordered by a well-founded ordering.
SP features a complete simplification ordering (CSO) ≻ on terms, extended to
literals and clauses by multiset extension as usual. A simplification ordering is
stable (l ≻ r implies lσ ≻ rσ for all substitutions σ), monotonic (l ≻ r implies
t[l] ≻ t[r] for all t, where the notation t[l] represents a term where l appears as
subterm in context t), and has the subterm property (i.e., it contains the subterm
ordering ✄: l✄ r implies l ≻ r). An ordering with these properties is well-founded.
A CSO is also total on ground terms. The most commonly used CSO’s are instances
of the recursive path ordering (RPO) and the Knuth-Bendix ordering (KBO). An
RPO is based on a precedence (i.e., a partial ordering on the signature) and the
attribution of a status to each symbol in the signature (either lexicographic or
multiset status). If all symbols have lexicographic status, the ordering is called
lexicographic (recursive) path ordering (LPO). A KBO is based on a precedence
and the attribution of a weight to each symbol. All instances of RPO and KBO
are simplification orderings. All instances of KBO and LPO based on a total
precedence are CSO’s. Definitions, results and references on orderings for rewrite-
based inference can be found in [Dershowitz and Plaisted 2001].

A well-founded ordering≻ provides the basis for a notion of redundancy: a ground
clause C is redundant in S if for ground instances {D1, . . .Dk} of clauses in S it is
{D1, . . . Dk} |= C and {D1, . . . Dk} ≺ {C}; a clause is redundant if all its ground
instances are. An inference is redundant if it uses or generates a redundant clause
and a set of clauses is saturated if all expansion inferences in the set are redundant.
In SP , clauses deleted by contraction are redundant and expansion inferences that
do not respect the ordering constraints are redundant.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Superposition
C ∨ l[u′] ≃ r D ∨ u ≃ t

(C ∨D ∨ l[t] ≃ r)σ
(i), (ii), (iii), (iv)

Paramodulation
C ∨ l[u′] 6≃ r D ∨ u ≃ t

(C ∨D ∨ l[t] 6≃ r)σ
(i), (ii), (iii), (iv)

Reflection
C ∨ u′ 6≃u

Cσ
∀L ∈ C : (u′ ≃ u)σ 6≺ Lσ

Equational Factoring
C ∨ u ≃ t ∨ u′ ≃ t′

(C ∨ t 6≃ t′ ∨ u ≃ t′)σ
(i), ∀L ∈ {u′ ≃ t′} ∪ C : (u ≃ t)σ 6≺ Lσ

where σ is the most general unifier (mgu) of u and u′, u′ is not a variable in Superposition

and Paramodulation, and the following abbreviations hold:

(i). is uσ 6� tσ,

(ii). is ∀L ∈ D : (u ≃ t)σ 6� Lσ,

(iii). is l[u′]σ 6� rσ, and

(iv). is ∀L ∈ C : (l[u′] ⊲⊳ r)σ 6� Lσ.

Fig. 1. Expansion inference rules of SP .

Strict Subsumption
C D

C
D •> C

Simplification
C[u] l ≃ r

C[rσ], l ≃ r
u = lσ, lσ ≻ rσ, C[u] ≻ (l ≃ r)σ

Deletion
C ∨ t ≃ t

where D •> C if D •≥ C and C 6•≥ D; and D •≥ C if Cσ ⊆ D (as multisets) for some
substitution σ. In practice, theorem provers such as E apply also subsumption of variants:
if D •≥ C and C •≥ D, the oldest clause is retained.

Fig. 2. Contraction inference rules of SP .

Let SP≻ be SP with CSO ≻. An SP≻-derivation is a sequence of sets of clauses

S0 ⊢
SP≻

S1 ⊢
SP≻

. . . Si ⊢
SP≻

. . .

where at each step an SP≻-inference is applied. A derivation is characterized by
its limit, defined as the set of persistent clauses

S∞ =
⋃

j≥0

⋂

i≥j

Si.

A derivation is fair if all expansion inferences become redundant eventually, and a
fair derivation generates a saturated limit.
Since inference systems are non-deterministic, a theorem-proving strategy is ob-

tained by adding a search plan, that drives rule application. A search plan is fair if
it only generates fair derivations. An SP≻-strategy is a theorem-proving strategy
with inference system SP≻. If the inference system is refutationally complete and
the search plan is fair, the theorem-proving strategy is complete: S∞ is saturated
and the empty clause ✷ is in S∞ if and only if S0 is unsatisfiable. A proof of the
refutational completeness of SP can be found in [Nieuwenhuis and Rubio 2001] and

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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definitions and references for redundancy, saturation and fairness in (e.g., [Bonacina
and Hsiang 1995; Nieuwenhuis and Rubio 2001; Bonacina and Dershowitz 2007]).
For additional notations and conventions used in the paper, V ar(t) denotes the

set of variables occurring in t; the depth of a term t is written depth(t), and
depth(t) = 0, if t is either a constant or a variable, depth(t) = 1+max{depth(ti) : 1 ≤
i ≤ n}, if t is a compound term f(t1, . . . , tn). A term is flat if its depth is 0 or 1. For
a literal, depth(l ⊲⊳ r) = depth(l)+depth(r). A positive literal is flat if its depth is 0
or 1. A negative literal is flat if its depth is 0. Let Γ = 〈D, J〉 be the interpretation
with domain D and interpretation function J . Since our usage of interpretations is
fairly limited, we use Γ without specifying D or J whenever possible. Lower case
letters surmounted by a hat, such as d̂ and ê, denote elements of the domain D. As
usual, [t]Γ denotes the interpretation of term t in Γ. Generalizing this notation, if
c is a constant symbol and f a function symbol, we use [c]Γ in place of J(c) for the
interpretation of c in Γ and [f ]Γ in place of J(f) for the interpretation of f in Γ.
Small capital letters, such as s, denote sorts. If there are many sorts, D is replaced
by a tuple of sets, one per sort, and [s]Γ denotes the one corresponding to s in Γ.

3. REWRITE-BASED SATISFIABILITY PROCEDURES

The rewriting approach to T -satisfiability aims at applying an inference system
such as SP to clause sets S0 = T ∪ S, where T is a presentation of a theory and
S a set of ground T -literals. This is achieved through the following phases, that,
together, define a rewrite-based methodology for satisfiability procedures:

(1) T -reduction: specific inferences, depending on T , are applied to the problem
to remove certain literals or symbols and obtain an equisatisfiable T -reduced
problem.

(2) Flattening: all ground literals are transformed into flat literals, or flattened,
by introducing new constants and new equations, yielding an equisatisfiable T -
reduced flat problem. For example, a literal store(a1, i1, v1) ≃ store(a2, i2, v2)
is replaced by the literals store(a1, i1, v1) ≃ c1, store(a2, i2, v2) ≃ c2 and c1 ≃
c2. Depending on T , flattening may precede or follow T -reduction.

(3) Ordering selection and termination: SP≻ is shown to generate finitely many
clauses when applied fairly to a T -reduced flat problem. Such a result may
depend on simple properties of the ordering ≻: an ordering that satisfies them
is termed T -good, and an SP≻-strategy is T -good if ≻ is. It follows that a fair
T -good SP≻-strategy is guaranteed to terminate on a T -reduced flat problem.
The T -goodness requirement may be vacuous, meaning that any CSO is T -
good.

This methodology can be fully automated, except for the proof of termination and
the definition of T -goodness: indeed, T -reduction is made of mechanical inferences,
flattening is a mechanical operation, and contemporary theorem provers feature
mechanisms to generate automatically orderings for given signatures and with given
properties.
Let E denote the empty presentation, that is, the presentation of the quantifier-

free theory of equality. If T is E , S is a set of ground equational literals built
from free function and constant symbols, and SP≻ reduces to ground completion,
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which is guaranteed to terminate, with no need of flattening, T -reduction or T -
goodness. Therefore, any fair SP≻-strategy is a satisfiability procedure for the
quantifier-free theory of equality. In the rest of this section we apply the rewrite-
based methodology to several theories. For each theory, the signature contains
the function symbols indicated and a finite set of constant symbols. A supply of
countably many new constant symbols is assumed to be available for flattening.

3.1 The theory of records

Records aggregate attribute-value pairs. Let Id = {id1, . . . , idn} be a set of at-
tribute identifiers and t1, . . . ,tn be n sorts. Then, rec(id1 : t1, . . . , idn : tn),
abbreviated rec, is the sort of records that associate a value of sort ti to the at-
tribute identifier idi, for 1 ≤ i ≤ n. The signature of the theory of records has a
pair of function symbols rselecti : rec→ ti and rstorei : rec× ti → rec for each
i, 1 ≤ i ≤ n. The presentation, named R(id1 : t1, . . . , idn : tn), or R for short, is
given by the following axioms, where x is a variable of sort rec and v is a variable
of sort ti:

∀x, v. rselecti(rstorei(x, v)) ≃ v for all i, 1 ≤ i ≤ n (1)

∀x, v. rselectj(rstorei(x, v)) ≃ rselectj(x) for all i, j, 1 ≤ i 6= j ≤ n (2)

For the theory of records with extensionality, the presentation, named Re, in-
cludes also the following axiom, that states that two records are equal if all their
fields are:

∀x, y. (
n
∧

i=1

rselecti(x) ≃ rselecti(y) ⊃ x ≃ y) (3)

where x and y are variables of sort rec. R and Re are Horn theories, and there-
fore they are convex. We begin with R-reduction, that allows us to reduce Re-
satisfiability to R-satisfiability:

Definition 3. A set of ground R-literals is R-reduced if it contains no literal
l 6≃ r, where l and r are terms of sort rec.

Given a set of ground R-literals S and a literal L = l 6≃ r ∈ S, such that l and r
are terms of sort rec, R-reduction first replaces L by the clause

CL =

n
∨

i=1

rselecti(l) 6≃ rselecti(r)

that is the resolvent of L and the clausal form of (3). Thus, if S = S1 ⊎ S2, where
S2 contains the literals l 6≃ r with l and r of sort rec and S1 all the other literals,
S is replaced by S1 ∪ {CL : L ∈ S2}. Then, this set of clauses is reduced into
disjunctive normal form, yielding a disjunction of R-reduced sets of literals. Let
RedR(S) denote the class of R-reduced sets thus obtained.

Lemma 1. Given a set of ground R-literals S, Re ∪ S is satisfiable if and only
if R∪Q is, for some Q ∈ RedR(S).

Proof:
(⇐) Let Γ be a many-sorted model of R ∪ Q. The claim is that there exists an
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interpretation Γ′ that satisfies Re ∪S. The only non-trivial part is to show that Γ′

satisfies the extensionality axiom of Re, because in order to satisfy extensionality
Γ′ needs to interpret the equality predicate ≃ also on records, whereas Γ does not.
To simplify notation, let ∼Γ stand for [≃]Γ and ∼Γ′ stand for [≃]Γ′ . Then let Γ′ be
the interpretation that is identical to Γ, except that ∼Γ′ is defined as follows:

—for all â, b̂ ∈ [rec]Γ, â ∼Γ′ b̂ if and only if [rselecti]Γ(â) ∼Γ [rselecti]Γ(b̂) for all i,
1 ≤ i ≤ n, and

—for all â, b̂ ∈ [ti]Γ, â ∼Γ′ b̂ if and only if â ∼Γ b̂, for all i, 1 ≤ i ≤ n.

The relation ∼Γ′ is clearly an equivalence. To prove that it is a congruence, we only
need to show that if â ∼Γ′ b̂, then [rstorei]Γ(â, ê) ∼ [rstorei]Γ(b̂, ê) for all i, 1 ≤ i ≤ n

and ê ∈ [ti]Γ. By way of contradiction, assume that â ∼Γ′ b̂, but [rstorei]Γ(â, ê) 6∼Γ′

[rstorei]Γ(b̂, ê) for some i, 1 ≤ i ≤ n, and ê ∈ [ti]Γ. In other words, by definition

of ∼Γ′ , it is [rselectk]Γ([rstorei]Γ(â, ê)) 6∼Γ [rselectk]Γ([rstorei]Γ(b̂, ê)) for some k,
1 ≤ k ≤ n. There are two cases: either k = i or k 6= i. If k = i, then, since Γ, whence
Γ′, is a model of axiom (1), it follows that ê 6∼Γ ê, a contradiction. If k 6= i, since Γ,

whence Γ′, is a model of axiom (2), it follows that [rselectk]Γ(â) 6∼Γ [rselectk]Γ(b̂),
which contradicts the assumption a ∼Γ′ b. Thus, ∼Γ′ is well defined, and Γ′ is a
model of Re ∪ S.
(⇒) This case is simple and is omitted for brevity. ✷

Termination depends on a case analysis showing that only certain clauses can be
generated, and resting on a simple assumption on the CSO:

Definition 4. A CSO ≻ is R-good if t ≻ c for all ground compound terms t
and constants c.

Most orderings can meet this requirement easily: for instance, for RPO’s, it is
sufficient to assume a precedence where all constant symbols are smaller than all
function symbols.

Lemma 2. All clauses in the limit S∞ of the derivation S0 ⊢SP S1 . . . Si ⊢SP . . .
generated by a fair R-good SP≻-strategy from S0 = R∪S, where S is an R-reduced
set of ground flat R-literals, belong to one of the following classes, where r, r′ are
constants of sort rec, and e, e′ are constants of sort ti for some i, 1 ≤ i ≤ n:

i) the empty clause;

ii) the clauses in R:

ii.a) rselecti(rstorei(x, v)) ≃ v, for all i, 1 ≤ i ≤ n
ii.b) rselectj(rstorei(x, v)) ≃ rselectj(x), for all i, j, 1 ≤ i 6= j ≤ n;

iii) ground flat unit clauses of the form:

iii.a) r ≃ r′,
iii.b) e ≃ e′,
iii.c) e 6≃ e′,
iii.d) rstorei(r, e) ≃ r′, for some i, 1 ≤ i ≤ n,

iii.e) rselecti(r) ≃ e, for some i, 1 ≤ i ≤ n;

iv) rselecti(r) ≃ rselecti(r
′), for some i, 1 ≤ i ≤ n.
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Proof: we recall that inequalities r 6≃ r′ are not listed in (iii), because S is R-
reduced. All clauses in the classes above are unit clauses, and therefore have a
unique maximal literal. Since ≻ is an R-good CSO, the left side of each literal
is maximal (for (iii.a), (iii.b), (iii.c) and (iv) this can be assumed without loss of
generality). The proof is by induction on the index i of the sequence {Si}i. For
i = 0, all clauses in S0 are in (ii) or (iii). For the inductive case, we assume the
claim is true for i and we prove it for i+1. Equational factoring applies to a clause
with at least two positive literals, and therefore does not apply to unit clauses.
Reflection may apply only to a clause in (iii.c) to yield the empty clause. For
binary inferences, we consider each class in turn:

—Inferences within (ii): None applies.

—Inferences within (iii): The only possible inferences produce ground flat unit
clauses in (iii) or the empty clause.

—Inferences between a clause in (iii) and a clause in (ii): A superposition of a
clause in (iii.d) into one in (ii.a) yields a clause of the form rselecti(r

′) ≃ e
which is in (iii.e). A superposition of a clause in (iii.d) into one in (ii.b) yields a
clause of the form rselectj(r

′) ≃ rselectj(r) which is in (iv). No other inferences
apply.

—Inferences between a clause in (iv) and a clause in (ii)-(iv): the only applicable
inferences are simplifications between clauses in (iii.a), (iii.e) and (iv) which
yield clauses in (iii.e) or (iv). ✷

Since only finitely many clauses of the kinds enumerated in Lemma 2 can be
built from a finite signature, the saturated limit S∞ is finite, and a fair derivation
is bound to terminate:

Lemma 3. A fair R-good SP≻-strategy is guaranteed to terminate when applied
to R∪ S, where S is an R-reduced set of ground flat R-literals.

Theorem 3.1. A fair R-good SP≻-strategy is a polynomial satisfiability proce-
dure for R and an exponential satisfiability procedure for Re.

Proof: it follows from Lemmas 1 and 3 that a fair R-good SP≻-strategy is a
satisfiability procedure for R and Re. For the complexity, let m be the number of
subterms occurring in the input set of literals S. Let h be the number of literals
of S in the form l 6≃ r, with l and r terms of sort rec. RedR(S) contains nh sets,
where n is a constant, the number of field identifiers in the presentation. Since h is
O(m), RedR(S) contains O(nm) sets. Since flattening is a O(m) operation, after
flattening there are O(nm) sets, each with O(m) subterms. For each set, inspection
of the types of clauses and inferences allowed by Lemma 3 shows that the number
of generated clauses is O(m2). In other words, the size of the set of clauses during
the derivation is bound by a constant k which is O(m2). Since each inference step
takes polynomial time in k, the procedure is polynomial for each set, and therefore
for R, and exponential for Re. ✷

3.2 The theory of integer offsets

The theory of integer offsets is a fragment of the theory of the integers, which is
applied in verification (e.g., [Bryant et al. 2002]). Its signature does not assume
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sorts, or assumes a single sort for the integers, and has two unary function symbols
s and p, that represent the successor and predecessor functions, respectively. Its
presentation, named I, is given by the following infinite set of sentences, as in, e.g.,
[Ganzinger et al. 2004]:

∀x. s(p(x)) ≃ x (4)

∀x. p(s(x)) ≃ x (5)

∀x. si(x) 6≃ x for i > 0 (6)

where s1(x) = s(x), si+1(x) = s(si(x)) for i ≥ 1, and the sentences in (6) are
called acyclicity axioms. For convenience, let Ac = {∀x. si(x) 6≃ x : i > 0} and
Ac(n) = {∀x. si(x) 6≃ x : 0 < i ≤ n}. Like the theory of records, I is also Horn, and
therefore convex.

Remark 1. Axiom (5) implies that s is injective:

∀x, y. s(x) ≃ s(y) ⊃ x ≃ y (7)

Indeed, consider the set {p(s(x)) ≃ x, s(a) ≃ s(b), a 6≃ b}, where {s(a) ≃ s(b), a 6≃ b}
is the clausal form of the negation of (7). Superposition of s(a) ≃ s(b) into p(s(x)) ≃
x generates p(s(b)) ≃ a. Superposition of p(s(b)) ≃ a into p(s(x)) ≃ x generates
a ≃ b, that contradicts a 6≃ b.

Definition 5. A set of ground flat I-literals is I-reduced if it does not contain
occurrences of p.

Given a set S of ground flat I-literals, the symbol p may appear only in literals of
the form p(c) ≃ b. Negative ground flat literals have the form c 6≃ b, and therefore
do not contain p. I-reduction consists of replacing every equation p(c) ≃ b in S
by c ≃ s(b). The resulting I-reduced form of S is denoted RedI(S). I-reduction
reduces satisfiability with respect to I to satisfiability with respect to Ac, so that
axioms (4) and (5) can be removed, provided lemma (7) is added:

Lemma 4. Let S be a set of ground flat I-literals. I ∪S is satisfiable if and only
if Ac ∪ {(7)} ∪RedI(S) is.

Proof :
(⇒) It follows from Remark 1 and the observation that I ∪ S |= RedI(S), since
c ≃ s(b) is a logical consequence of I and p(c) ≃ b, as it can be generated by a
superposition of p(c) ≃ b into axiom s(p(x)) ≃ x.
(⇐) Let Γ be a model of Ac∪{(7)}∪RedI(S) and let D be its domain. We build a
model Γ′ of I ∪ S. Γ′ interprets all constants in S in the same way as Γ does. The
crucial point is that p does not occur in Ac ∪ {(7)} ∪RedI(S), so that Γ does not
interpret it, whereas Γ′ should. Since not all elements of D may have predecessor in
D itself, the domain D′ of Γ′ will be a superset of D, containing as many additional
elements as are needed to interpret p. We construct recursively families of sets
{Di}i and functions {si}i and {pi}i in such a way that, at the limit, all elements
have predecessor:

—Base case: i = 0. Let D0 = D, s0 = [s]Γ and p0 = ∅. By establishing s0 = [s]Γ,

the interpretation of s on D is preserved: for all d̂ ∈ D, [s]Γ(d̂) = [s]Γ′(d̂). We
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start by partitioning D0 into the subset E0 of elements that are successors of
some other element, and the subset F0 of those that are not: E0 = {ê : s0(d̂) =

ê for some d̂ ∈ D0} and F0 = D0 \ E0. For all ê ∈ E0, we define p1(ê) = d̂

such that s0(d̂) = ê: such a d̂ exists by definition of E0 and it is unique because
Γ |= (7). Thus, p1 is well-defined on E0. Next, we define p1 on F0. Let D′

0 be
a set disjoint from D0 and let η0 : F0 → D′

0 be a bijection: intuitively, η0 maps

each element of F0 to its predecessor that is missing in D0. Indeed, for all d̂ ∈ F0,
we define p1(d̂) = η0(d̂). Then we define s1: for all ê ∈ D0, s1(ê) = s0(ê) and for

all ê ∈ D′
0, s1(ê) = d̂, where d̂ is the element such that η0(d̂) = ê. Establishing

that D1 = D0 ⊎D′
0 closes the base case.

—Recursive case: suppose that for i ≥ 1, we have a Di−1 ⊆ Di, where we have
defined si and pi in such way that for all d̂ ∈ Di−1, there exists an ê ∈ Di such
that si(d̂) = ê and pi(ê) = d̂. On the other hand, there may be elements in
Di that are not successors of any other element, so that their predecessor is not
defined. Thus, let Ei = {ê : si(d̂) = ê for some d̂ ∈ Di} and Fi = Di\Ei. Let D

′
i

be a set of new elements and ηi : Fi → D′
i a bijection. Then, let Di+1 = Di ⊎D′

i.

For pi+1, for all ê ∈ Ei, pi+1(ê) = d̂ such that si(d̂) = ê and for all d̂ ∈ Fi,

pi+1(d̂) = ηi(d̂). For si+1, for all ê ∈ Di, si+1(ê) = si(ê) and for all ê ∈ D′
i,

si+1(ê) = d̂, where d̂ is the element such that ηi(d̂) = ê.

Then we define D′ =
⋃

iDi, [s]Γ′ =
⋃

i si and [p]Γ′ =
⋃

i pi. We show that Γ′ |=
I ∪ S. Axioms (4) and (5) are satisfied, since, by construction, for all ê ∈ D′,

[p]Γ′(ê) = d̂ and [s]Γ′(d̂) = ê. The only equations in S \ RedI(S) are the p(c) ≃ b

for which s(b) ≃ c ∈ RedI(S). Let [b]Γ′ = d̂ and [c]Γ′ = ê: since Γ |= s(b) ≃ c, it
follows that ê ∈ E0, and Γ′ |= p(c) ≃ b. ✷

Example 1. Let S = {s(c) ≃ c′} and let Γ be the model with domain IN, such
that c is interpreted as 0 and c′ as 1. Then D0 = IN, E0 = IN \ {0} and F0 = {0}.
At the first step of the construction, we can take D′

0 = {−1}, and have p1(0) = −1
and s1(−1) = 0. Then F1 = {−1}, and we can take D′

1 = {−2}, and so on. At the
limit, D′ is the set Z of the integers.

The next step is to bound the number of axioms in Ac needed to solve the
problem. The intuition is that the bound will be given by the number of elements
whose successor is determined by a constraint s(c) ≃ c′ in S. Such a constraint
establishes that, in any model Γ of S, the successor of [c]Γ must be [c′]Γ. We call
s-free an element that is not thus constrained:

Definition 6. Let S be a satisfiable I-reduced set of ground flat I-literals, Γ be
a model of S with domain D and CS be the set of constants CS = {c : s(c) ≃ c′ ∈ S}.

An element d̂ ∈ D is s-free in S for Γ, if for no c ∈ CS , it is the case that [c]Γ = d̂.

We shall see that it is sufficient to consider Ac(n), where n is the cardinality of
CS .

Example 2. If S = {s(c1) ≃ c2, s(c1) ≃ c3, c2 ≃ c3}, then CS = {c1} and |CS | =
1. In the worst case, however, all occurrences of s apply to different constants, so
that |CS | is the number of occurrences of s in S.
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We begin with a notion of s-path that mirrors the paths in the graph (D, [s]Γ)
defined by an interpretation Γ:

Definition 7. Let S be a satisfiable I-reduced set of ground flat I-literals and
let Γ be a model of S with domain D. For all m ≥ 2, a tuple 〈d̂1, s, d̂2, s, . . . d̂m, s〉
is an s-path of length m if

(1 ) ∀i, j, 1 ≤ i 6= j ≤ m, d̂i 6= d̂j and

(2 ) ∀i, 1 ≤ i < m, d̂i+1 = [s]Γ(d̂i).

It is an s-cycle if, additionally, [s]Γ(d̂m) = d̂1.

It is clear to see that Γ |= Ac(n) if and only if Γ has no s-cycles of length smaller
or equal to n.

Lemma 5. Let S be an I-reduced set of ground flat I-literals with |CS | = n. If
there is an s-path p of length m > n in a model Γ of S, then p includes an element
that is s-free in S.

Proof : by way of contradiction, assume that no element in p = 〈d̂1, s, d̂2, s, . . . d̂m, s〉
is s-free in S. By Definition 6, this means that for all j, 1 ≤ j ≤ m, there is a
constant cj ∈ CS such that [cj ]Γ = d̂j . Since by Definition 7 all elements in an
s-path are distinct, it follows that CS should contain at least m elements, or n ≥ m,
which contradicts the hypothesis that m > n. ✷

Lemma 6. Let S be an I-reduced set of ground flat I-literals with |CS | = l. For
n ≥ l, if Ac(n) ∪ {(7)} ∪ S is satisfiable then Ac(n+ 1) ∪ {(7)} ∪ S is.

Proof : let Γ = 〈D, J〉 be a model of Ac(n) ∪ {(7)} ∪ S. Γ has no s-cycles of length
smaller or equal to n. We build a model Γ′ with no s-cycles of length smaller
or equal to n + 1. Let P = {p : p is an s−cycle of length n + 1}. If P = ∅,
Γ |= Ac(n + 1) and Γ′ is Γ itself. If P 6= ∅, there is some p ∈ P . Since n + 1 > l,

by Lemma 5, there is some d̂ in p that is s-free in S for Γ. Let Ep = {êj : j ≥ 0}
be a set disjoint from D, and let Jp be the interpretation function that is identical

to J , except that Jp(s)(d̂) = ê0 and Jp(s)(êj) = êj+1 for all j ≥ 0. By extending
D into D ∪ Ep and extending J into Jp, we obtain a model where the s-cycle p
has been broken. By repeating this transformation for all p ∈ P , we obtain the Γ′

sought for. Indeed, Γ′ |= Ac(n + 1), because it has no s-cycles of length smaller
or equal to n + 1. Γ′ |= S, because it interprets constants in the same way as Γ,
and for each s(c) ≃ e ∈ S, [c]Γ is not s-free in S, which means [s(c)]Γ′ = [s(c)]Γ.

To see that Γ′ |= (7), let d̂ and d̂′ be two elements such that [s]Γ′(d̂) = [s]Γ′(d̂′). If

[s]Γ′(d̂) ∈ D, then [s]Γ′(d̂) = [s]Γ(d̂), so that d̂ = d̂′, because Γ |= (7). If [s]Γ′(d̂) 6∈ D,

then [s]Γ′(d̂) = ê for some ê introduced by the above construction, so that d̂ is the

unique element whose successor is ê, and d̂ = d̂′. ✷

By compactness, we have the following:

Corollary 1. Let S be an I-reduced set of ground flat I-literals with |CS | = n.
Ac ∪ {(7)} ∪ S is satisfiable if and only if Ac(n) ∪ {(7)} ∪ S is.

Proof : the “only if” direction is trivial and for the “if” direction induction using
Lemma 6 shows that for all k ≥ 0, if Ac(n) ∪ {(7)} ∪ S is satisfiable, then so is
Ac(n+ k) ∪ {(7)} ∪ S. ✷
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Definition 8. A CSO ≻ is I-good if t ≻ c for all constants c and all terms t
whose root symbol is s.

For instance, a precedence where all constant symbols are smaller than s will yield
an I-good RPO.

Lemma 7. All clauses in the limit S∞ of the derivation S0 ⊢SP S1 . . . Si ⊢SP . . .
generated by a fair I-good SP≻-strategy from S0 = Ac(n)∪{(7)}∪S, where S is an
I-reduced set of ground flat I-literals with |CS | = n, belong to one of the following
classes, where b1, . . . bk, d1, . . . dk, c, d and e are constants (k ≥ 0):

i) the empty clause;

ii) the clauses in Ac(n) ∪ {(7)}:
ii.a) si(x) 6≃ x, for all i, 0 < i ≤ n,
ii.b) s(x) 6≃ s(y) ∨ x ≃ y;

iii) ground flat unit clauses of the form:
iii.a) c ≃ d,
iii.b) c 6≃ d,
iii.c) s(c) ≃ d;

iv) other clauses of the following form:

iv.a) s(x) 6≃ d ∨ x ≃ c ∨
∨k

i=1 di 6≃ bi,

iv.b) c ≃ e ∨
∨k

i=1 di 6≃ bi,

iv.c)
∨k

i=1 di 6≃ bi,

iv.d) s(c) ≃ e ∨
∨k

i=1 di 6≃ bi,

iv.e) sj(c) 6≃ e ∨
∨k

i=1 di 6≃ bi, 1 ≤ j ≤ n− 1.

Proof: since ≻ is a CSO, the first literal is the only maximal literal in (ii.b). Since
it is I-good, the first literal is the only maximal literal in (iv.a), (iv.d) and (iv.e).
For the same reason, the left hand side is maximal in the maximal literals in (iii.c),
(iv.a), (iv.d) and (iv.e). The proof is by induction on the sequence {Si}i. For the
base case, all clauses in S0 are in (ii) or (iii). For the inductive case, we consider
all possible inferences, excluding upfront equational factoring, which applies to a
clause with at least two positive literals, and therefore does not apply to Horn
clauses.

—Inferences within (ii): Reflection applies to (ii.b) to generate x ≃ x, that gets
deleted by deletion.

—Inferences within (iii): The only possible inferences produce ground flat unit
clauses in (iii) or the empty clause.

—Inferences between a clause in (iii) and a clause in (ii): A paramodulation of
an equality of kind (iii.c) into an inequality of type (ii.a) yields inequalities
si−1(d) 6≃ c, 1 ≤ i ≤ n, that are in (iv.e) with k = 0 (for i > 1) or (iii.b) (for
i = 1). A paramodulation of a (iii.c) equality into (ii.b) yields s(x) 6≃ d ∨ x ≃ c
which is in (iv.a) with k = 0.

—Inferences between a clause in (iv) and a clause in (ii): A paramodulation of a
clause in (iv.d) into (ii.a) produces a clause in (iv.c) or (iv.e), and a paramodu-
lation of a clause in (iv.d) into (ii.b) produces a clause in (iv.a).
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—Inferences between a clause in (iv) and a clause in (iii): A simplification of a
clause in (iv) by an equality in (iii.a) or (iii.c) generates another clause in (iv).
Paramodulating an equality of kind (iii.c) into a (iv.a) clause yields a (iv.b)
clause. Similarly, superposing a (iii.c) unit with a (iv.d) clause gives a (iv.b)
clause. The only possible remaining inferences between a clause in (iv) and one
in (iii) are paramodulations or superpositions of a (iv.b) clause into clauses in
(iii), that add clauses in (iv.b), (iv.c) and (iv.d).

—Inferences within (iv): Reflection applies to clauses in (iv.b) and (iv.c) to yield
clauses in (iv.b) or (iii.a) and (iv.c) or (iii.b), respectively. A paramodulation or
superposition of a (iv.b) clause into a (iv.b), (iv.c), (iv.d) or (iv.e) clause generates
clauses also in (iv.b), (iv.c), (iv.d) or (iv.e), respectively. A superposition of a
clause of kind (iv.d) into a (iv.a) clause gives a clause in (iv.b). A superposition
between two (iv.d) clauses adds a (iv.b) clause. A paramodulation of a clause of
type (iv.d) into a (iv.e) clause yields a clause in (iv.e) or (iv.c). ✷

Given a finite signature, only finitely many clauses of the types allowed by
Lemma 7 can be formed. Thus, we have:

Lemma 8. A fair I-good SP≻-strategy is guaranteed to terminate when applied
to Ac(n) ∪ {(7)} ∪ S, where S is an I-reduced set of ground flat I-literals with
|CS | = n.

Theorem 3.2. A fair I-good SP≻-strategy is an exponential satisfiability pro-
cedure for I.

Proof: the main result follows from Lemma 4, Corollary 1 and Lemma 8. For the
complexity, let m be the number of subterms occurring in the input set of literals S.
RedI(S) has the same number of subterms as S, since I-reduction replaces literals
of the form p(c) ≃ b by literals of the form c ≃ s(b). Flattening is O(m). The
number n of retained acyclicity axioms, according to Lemma 8, is also O(m), since
in the worst case it is given by the number of occurrences of s in S. By the proof
of Lemma 7, at most h = O(m2) distinct literals and at most O(2h) clauses can be
generated. Thus, the size of the database of clauses during the derivation is bound
by a constant k which is O(2h). Since each inference step takes polynomial time in

k, the overall procedure is O(2m
2

). ✷

Corollary 2. A fair SP≻-strategy is a polynomial satisfiability procedure for
the theory presented by the set of acyclicity axioms Ac.

Proof: the proof of Lemma 7 shows that if the input includes only Ac(n) ∪ S, the
only generated clauses are finitely many ground flat unit clauses from S (inferences
within (iii)), and finitely many equalities in the form si−1(d) 6≃ c, for 1 ≤ i ≤ n,
by paramodulation of equalities s(c) ≃ d ∈ S into axioms si(x) 6≃ x (inferences
between a clause in (iii) and a clause in (ii)). It follows that the number of clauses
generated during the derivation is O(m2), where m is the number of subterms
occurring in the input set of literals. The size of the database of clauses during the
derivation is bound by a constant k which is O(m2), and since each inference step
takes polynomial time in k, a polynomial procedure results. ✷
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3.3 The theory of integer offsets modulo

The above treatment extends to the theory of integer offsets modulo, which makes
possible to describe data structures with indices ranging over the integers modulo
k, such as circular queues. A presentation for this theory, named Ik, is obtained
from I by replacing Ac with the following k axioms

∀x. si(x) 6≃ x for 1 ≤ i ≤ k − 1 (8)

∀x. sk(x) ≃ x (9)

where k > 1. Ik also is Horn and therefore convex.
Definition 5 and Lemma 4 apply also to Ik, whereas Lemma 6 is no longer

necessary, because Ik is finite to begin with. Termination is guaranteed by the
following lemma, where C(k) = {∀x. sk(x) ≃ x}:

Lemma 9. A fair I-good SP≻-strategy is guaranteed to terminate when applied
to Ac(k−1)∪C(k)∪{(7)}∪S, where S is an I-reduced set of ground flat Ik-literals.

Proof: the proof of termination rests on the proof of Lemma 7, with n = k − 1
and the following additional cases to account for the presence of C(k). As far as
inferences between axioms are concerned (i.e., within group (ii) in the proof of
Lemma 7), C(k) does not introduce any, because sk(x) ≃ x cannot paramodulate
into si(x) 6≃ x, since i < k, and cannot paramodulate into (7), since k > 1. For
inferences between axioms and literals in S (i.e., groups (ii) and (iii) in the proof
of Lemma 7), the presence of C(k) introduces superpositions of literals s(c) ≃ d ∈ S
into sk(x) ≃ x, generating si−1(d) ≃ c for 1 ≤ i ≤ k. If we use j in place of i − 1
and n in place of k− 1, we have sj(d) ≃ c for 0 ≤ j ≤ n. Excluding the cases j = 0
and j = 1 that are already covered by classes (iii.a) and (iii.c) of Lemma 7, we
have an additional class of clauses, with respect to those of Lemma 7:

v) sj(d) ≃ c for 2 ≤ j ≤ n.

Thus, we only need to check the inferences induced by clauses of type (v). There
are only two possibilities. Paramodulations of equalities in (v) into inequalities in
(ii.a) gives more clauses in (iv.e) with k = 0. Paramodulations of equalities in (v)
into clauses in (iv.e) gives more clauses in (iv.c) or (iv.e). Since only finitely many
clauses of types (i-v) can be formed from a finite signature, termination follows. ✷

Theorem 3.3. A fair I-good SP≻-strategy is an exponential satisfiability pro-
cedure for Ik.

Proof: it follows the same pattern of the proof of Theorem 3.2, with Lemma 9 in
place of Lemma 8. ✷

Alternatively, since Ik is finite, it is possible to omit I-reduction and show ter-
mination on the original problem format. The advantage is that it is not necessary
to include the injectivity property (7), so that the resulting procedure is polyno-
mial. Furthermore, abandoning the framework of I-reduction, that was conceived
to handle the infinite presentation of I, one can add axioms for p that are dual of
(8) and (9), resulting in the presentation I ′k made of (4), (5), (8), (9) and:

∀x. pi(x) 6≃ x for 1 ≤ i ≤ k − 1 (10)

∀x. pk(x) ≃ x (11)
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with k > 1. I ′k is also Horn and therefore convex.

Definition 9. A CSO ≻ is I ′k-good if t ≻ c for all ground compound terms t
and constants c.

Lemma 10. A fair I ′k-good SP≻-strategy is guaranteed to terminate when applied
to I ′k ∪ S, where S is a set of ground flat I ′k-literals.

Proof: termination follows from the general observation that the only persistent
clauses, that can be generated by SP≻ from I ′k ∪ S, are unit clauses l ⊲⊳ r, such
that l and r are terms in the form sj(u) or pj(u), where 0 ≤ j ≤ k−1 and u is either
a constant or a variable. Indeed, if a term in this form with j ≥ k were generated,
it would be simplified by axioms (9) sk(x) ≃ x or (11) pk(x) ≃ x. Similarly, if a
term where s is applied over p or vice versa were generated, it would be simplified
by axioms (4) s(p(x)) ≃ x or (5) p(s(x)) ≃ x. Given a finite number of constants
and with variants removed by subsumption, the bound on term depth represented
by k implies that there are only finitely many such clauses. ✷

Theorem 3.4. A fair I ′k-good SP≻-strategy is a polynomial satisfiability proce-
dure for I ′k.

Proof: termination was established in Lemma 10. To see that the procedure is
polynomial, let m be the number of subterms in the input set of ground literals.
After flattening, we have O(m) subterms, and since I ′k has O(k) subterms, the
input to the SP≻-strategy has O(m + k) subterms. By the proof of Lemma 10,
only unit clauses are generated, so that their number is O((m+k)2). Since the size
of the database of clauses during the derivation is bound by a constant h which is
O((m+ k)2), and each inference takes polynomial time in h, the overall procedure
is polynomial. ✷

3.4 The theory of possibly empty lists

Different presentations were proposed for a theory of lists. A “convex theory of
cons, car and cdr,” was studied by [Shostak 1984], and therefore it is named LSh.
Its signature contains cons, car and cdr, and its axioms are:

∀x, y. car(cons(x, y)) ≃ x (12)

∀x, y. cdr(cons(x, y)) ≃ y (13)

∀y. cons(car(y), cdr(y)) ≃ y (14)

The presentation adopted by [Nelson and Oppen 1980], hence called LNO, adds
the predicate symbol atom to the signature, and the axioms

∀x, y. ¬ atom(cons(x, y)) (15)

∀y. ¬ atom(y) ⊃ cons(car(y), cdr(y)) ≃ y (16)

to axioms (12) and (13).
A third presentation also appeared in [Nelson and Oppen 1980], but was not used

in their congruence-closure-based algorithm. Its signature features the constant
symbol nil, together with cons, car and cdr, but not atom. This presentation, that
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we call L, adds to (12) and (13) the following four axioms:

∀x, y. cons(x, y) 6≃ nil (17)

∀y. y 6≃ nil ⊃ cons(car(y), cdr(y)) ≃ y (18)

car(nil) ≃ nil (19)

cdr(nil) ≃ nil (20)

L is not convex, because y ≃ nil∨ cons(car(y), cdr(y)) ≃ y is in Th L, but neither
disjunct is.
Unlike the presentation of records given earlier, and that of arrays, that will be

given in the next section, these presentations of lists are unsorted, or lists and their
elements belong to the same sort. This is desirable because it allows lists of lists.
Also, neither LSh nor LNO nor L exclude cyclic lists (that is, a model of anyone
of these presentations can satisfy car(x) ≃ x). The rewriting approach was already
applied to both LSh and LNO in [Armando et al. 2003]. The following analysis
shows that it applies to L as well.

Definition 10. A CSO ≻ is L-good if (1) t ≻ c for all ground compound terms
t and constants c, (2) t ≻ nil for all terms t whose root symbol is cons.

It is sufficient to impose a precedence >, such that function symbols are greater
than constant symbols, including cons > nil, to make an RPO, or a KBO with a
simple weighting scheme (e.g., weight given by arity), L-good. No L-reduction is
needed, and the key result is the following:

Lemma 11. All clauses in the limit S∞ of the derivation S0 ⊢SP S1 . . . Si ⊢SP . . .
generated by a fair L-good SP≻-strategy from S0 = L ∪ S, where S is a set of
ground flat L-literals, belong to one of the following classes, where ci and di for all
i, 1 ≤ i ≤ n, and e1, e2, e3 are constants (constants include nil):

i) the empty clause;

ii) the clauses in L:
ii.a) car(cons(x, y)) ≃ x,
ii.b) cdr(cons(x, y)) ≃ y,
ii.c) cons(x, y) 6≃ nil,
ii.d) cons(car(y), cdr(y)) ≃ y ∨ y ≃ nil,
ii.e) car(nil) ≃ nil,
ii.f) cdr(nil) ≃ nil;

iii) ground flat unit clauses of the form:
iii.a) c1 ≃ c2,
iii.b) c1 6≃ c2,
iii.c) car(c1) ≃ c2,
iii.d) cdr(c1) ≃ c2,
iii.e) cons(c1, c2) ≃ c3;

iv) non-unit clauses of the following form:
iv.a) cons(e1, cdr(e2)) ≃ e3 ∨

∨n

i=1 ci ⊲⊳ di,
iv.b) cons(car(e1), e2) ≃ e3 ∨

∨n

i=1 ci ⊲⊳ di,
iv.c) cons(car(e1), cdr(e2)) ≃ e3 ∨

∨n

i=1 ci ⊲⊳ di,
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iv.d) cons(e1, e2) ≃ e3 ∨
∨n

i=1 ci ⊲⊳ di,
iv.e) car(e1) ≃ car(e2) ∨

∨n

i=1 ci ⊲⊳ di,
iv.f) cdr(e1) ≃ cdr(e2) ∨

∨n

i=1 ci ⊲⊳ di,
iv.g) car(e1) ≃ e2 ∨

∨n

i=1 ci ⊲⊳ di,
iv.h) cdr(e1) ≃ e2 ∨

∨n

i=1 ci ⊲⊳ di,
iv.i)

∨n

i=1 ci ⊲⊳ di.

Proof: since ≻ is an L-good CSO, each clause in the above classes has a unique
maximal literal, which is the first one in the above listing (up to a permutation of
indices for (iv.i)). Furthermore, the left side in each maximal literal is maximal (for
(iii.a), (iii.b), (iv.e), (iv.f), (iv.i) this can be assumed without loss of generality).
The proof is by induction on the sequence {Si}i. For the base case, input clauses
are in (ii) or (iii). For the inductive case, we consider all classes in order:

—Inferences within (ii): All inferences between axioms generate clauses that get
deleted. Superposition of (ii.a) into (ii.d) generates cons(x, cdr(cons(x, y))) ≃
cons(x, y)∨cons(x, y) ≃ nil, which is simplified by (ii.b) to cons(x, y) ≃ cons(x, y)∨
cons(x, y) ≃ nil, which is deleted. Superposition of (ii.d) into (ii.a) produces
car(y) ≃ car(y)∨y ≃ nil which is deleted. Superposition of (ii.b) into (ii.d) yields
cons(car(cons(x, y)), y) ≃ cons(x, y) ∨ cons(x, y) ≃ nil, whose simplification by
(ii.a) gives cons(x, y) ≃ cons(x, y) ∨ cons(x, y) ≃ nil, which is deleted. Superpo-
sition of (ii.d) into (ii.b) generates cdr(y) ≃ cdr(y) ∨ y ≃ nil which gets deleted.
Paramodulation of (ii.d) into (ii.c) produces the tautology y ≃ nil∨y 6≃nil, which
is eliminated by a step of reflection followed by one of deletion. Superposition of
(ii.e) into (ii.d) yields cons(nil, cdr(nil)) ≃ nil∨nil ≃ nil which is deleted. Sim-
ilarly, superposition of (ii.f) into (ii.d) yields cons(car(nil), nil) ≃ nil∨nil ≃ nil
which is also deleted, and no other inferences apply among axioms.

—Inferences within (iii): Inferences on the maximal terms in (iii) can generate only
more ground flat unit clauses like those in (iii) or the empty clause.

—Inferences between a clause in (iii) and a clause in (ii): Inferences between an
axiom and a ground flat unit clause generate either more ground flat unit clauses
or non-unit clauses in the classes (iv.a) and (iv.b). Indeed, the only applica-
ble inferences are: superposition of a unit of kind (iii.c) into (ii.d), which gives
a clause in the form cons(c2, cdr(c1)) ≃ c1 ∨ c1 ≃ nil of class (iv.a); super-
position of a unit of kind (iii.d) into (ii.d), which gives a clause in the form
cons(car(c1), c2) ≃ c1 ∨ c1 ≃ nil of class (iv.b); superposition of a unit of kind
(iii.e) into (ii.a), (ii.b), (ii.c), which generates unit clauses in (iii.c), (iii.d) and
(iii.b), respectively.

—Inferences between a clause in (iv) and a clause in (ii): We consider the clauses
in (ii) in order. For (ii.a): superposing a clause of kind (iv.a) or (iv.d) into (ii.a)
generates car(e3) ≃ e1 ∨

∨n

i=1 ci ⊲⊳ di, that is in (iv.g); superposing a clause of
kind (iv.b) or (iv.c) into (ii.a) generates car(e1) ≃ car(e3) ∨

∨n

i=1 ci ⊲⊳ di that
is in (iv.e). For (ii.b): superposing a clause of kind (iv.a) or (iv.c) into (ii.b)
generates cdr(e2) ≃ cdr(e3) ∨

∨n

i=1 ci ⊲⊳ di that is in (iv.f); superposing a clause
of kind (iv.b) or (iv.d) into (ii.b) generates cdr(e3) ≃ e2 ∨

∨n

i=1 ci ⊲⊳ di, that
is in (iv.h). Paramodulating clauses of classes (iv.a), (iv.b), (iv.c) and (iv.d)
into (ii.c) gives clauses in class (iv.i). For (ii.d): a superposition of (ii.d) into
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(iv.c) or (iv.c) into (ii.d) yields a clause in (iv.i); a superposition of (iv.e) or
(iv.f) into (ii.d) produces cons(car(e2), cdr(e1)) ≃ e1 ∨ e1 ≃ nil∨

∨n

i=1 ci ⊲⊳ di or
cons(car(e1), cdr(e2)) ≃ e1 ∨ e1 ≃ nil∨

∨n

i=1 ci ⊲⊳ di that are in (iv.c); a superpo-
sition of (iv.g) into (ii.d) produces cons(e2, cdr(e1)) ≃ e1∨e1 ≃ nil∨

∨n

i=1 ci ⊲⊳ di
that is in (iv.a); a superposition of (iv.h) into (ii.d) produces cons(car(e1), e2) ≃
e1 ∨ e1 ≃ nil∨

∨n

i=1 ci ⊲⊳ di that is in (iv.b). Clause (ii.e) can simplify clauses
in (iv.b), (iv.c), (iv.e), (iv.g), to clauses in (iv.d), (iv.a), (iv.g), (iv.i), respec-
tively. Clause (ii.f) can simplify clauses in (iv.a), (iv.c), (iv.f), (iv.h), to clauses
in (iv.d), (iv.b), (iv.h), (iv.i), respectively. No other inferences apply.

—Inferences between a clause in (iv) and a clause in (iii): The only possible ex-
pansion inference here is a paramodulation of a clause in (iv.i) into a clause in
(iii.b), which generates another clause in (iv.i). All other possible steps are sim-
plifications, where an equality of class (iii) reduces a clause in (iv) to another
clause in (iv).

—Inferences within (iv): Reflection applied to a clause in (iv) generates either the
empty clause or a clause in (iv). Equational factoring applies only to a clause
in (iv.i), to yield another clause of the same kind. The only other applicable
inferences are superpositions that generate more clauses in (iv). Specifically,
clauses of kind (iv.a) superpose with clauses in (iv.a), (iv.f), (iv.h) and (iv.i) to
generate clauses in (iv.i), (iv.a) and (iv.d). Clauses of kind (iv.b) superpose with
clauses in (iv.b), (iv.e), (iv.g) and (iv.i) to generate clauses in (iv.i), (iv.b) and
(iv.d). Clauses of kind (iv.c) superpose with clauses in (iv.c), (iv.e), (iv.f), (iv.g),
(iv.h) and (iv.i) to generate clauses in (iv.i), (iv.c), (iv.a) and (iv.b). Clauses of
kind (iv.d) superpose with clauses in (iv.d) and (iv.i) to generate clauses in (iv.i)
and (iv.d). Clauses of kind (iv.e) superpose with clauses in (iv.e), (iv.g) and
(iv.i) to generate clauses in (iv.e) and (iv.g). Clauses of kind (iv.f) superpose
with clauses in (iv.f), (iv.h) and (iv.i) to generate clauses in (iv.f) and (iv.h).
Clauses of kind (iv.g) superpose with clauses in (iv.g) and (iv.i) to generate
clauses in (iv.i) and (iv.g). Clauses of kind (iv.h) superpose with clauses in
(iv.h) and (iv.i) to generate clauses in (iv.i) and (iv.h). Clauses of kind (iv.i)
superpose with clauses in (iv.i) to generate clauses in (iv.i). ✷

It follows that the limit is finite and a fair derivation is bound to halt:

Lemma 12. A fair L-good SP≻-strategy is guaranteed to terminate when applied
to L ∪ S, where S is a set of ground flat L-literals.

Theorem 3.5. A fair L-good SP≻-strategy is an exponential satisfiability pro-
cedure for L.

Proof: let m be the number of subterms occurring in the input set of literals. After
flattening the number of subterms is O(m). The types of clauses listed in Lemma 11
include literals of depth at most 2 (cf. (iv.a), (iv.b) and (iv.c)). Hence, at most
h = O(m3) distinct literals and at most O(2h) clauses can be generated. It follows
that the size of the set of clauses during the derivation is bound by a constant k
which is O(2h). Since applying an inference takes polynomial time in k, the overall

complexity is O(2m
3

). ✷
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Exponential complexity was expected, because it was shown already in [Nelson and
Oppen 1980] that the satisfiability problem for L is NP-complete.

3.5 The theory of arrays

Let index, elem and array be the sorts of indices, elements and arrays, respec-
tively. The signature has two function symbols, select : array × index → elem,
and store : array× index× elem→ array, with the usual meaning. The stan-
dard presentation, denoted A, is made of two axioms, where x is a variable of sort
array, w and z are variables of sort index and v is a variable of sort elem:

∀x, z, v. select(store(x, z, v), z) ≃ v (21)

∀x, z, w, v. (z 6≃w ⊃ select(store(x, z, v), w) ≃ select(x,w)) (22)

This theory also is not convex, because z ≃ w∨select(store(x, z, v), w) ≃ select(x,w))
is valid in the theory, but neither disjunct is. For the theory of arrays with exten-
sionality, the presentation, named Ae, includes also the extensionality axiom

∀x, y. (∀z. select(x, z) ≃ select(y, z) ⊃ x ≃ y) (23)

where x and y are variables of sort array, and z is a variable of sort index.

Definition 11. A set of ground A-literals is A-reduced if it contains no literal
l 6≃ r, where l and r are terms of sort array.

Given a set of ground A-literals S, A-reduction consists of replacing every literal
l 6≃ r ∈ S, where l and r are terms of sort array, by select(l, skl,r) 6≃ select(r, skl,r),
where skl,r is a Skolem constant of sort index. The resulting A-reduced form of S,
denoted RedA(S), is related to the original problem by the following (cf. Lemma
7.1 in [Armando et al. 2003]):

Lemma 13. (Armando, Ranise and Rusinowitch 2003) Let S be a set of ground
A-literals. Ae ∪ S is satisfiable if and only if A∪RedA(S) is.

Definition 12. A CSO ≻ is A-good if (1) t ≻ c for all ground compound terms
t and constants c, and (2) a ≻ e ≻ j, for all constants a of sort array, e of sort
elem and j of sort index.

If ≻ is an RPO, it is sufficient to impose a precedence >, such that function symbols
are greater than constant symbols, and a > e > j for all constants a of sort array,
e of sort elem and j of sort index, for ≻ to be A-good. If it is a KBO, the same
precedence and a simple choice of weights will do.

Lemma 14. All clauses in the limit S∞ of the derivation S0 ⊢SP S1 . . . Si ⊢SP . . .
generated by a fair A-good SP≻-strategy from S0 = A∪S, where S is an A-reduced
set of ground flat A-literals, belong to one of the following classes, where a, a′ are
constants of sort array, i,i1, . . . , in,i

′
1, . . . , i

′
n, j1, . . . , jm,j′1, . . . , j

′
m are constants

of sort index (n,m ≥ 0), e, e′ are constants of sort elem, and c1, c2 are constants
of either sort index or sort elem:

i) the empty clause;

ii) the clauses in A:
ii.a) select(store(x, z, v), z) ≃ v and
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ii.b) select(store(x, z, v), w) ≃ select(x,w) ∨ z ≃ w;

iii) ground flat unit clauses of the form:
iii.a) a ≃ a′,
iii.b) c1 ≃ c2,
iii.c) c1 6≃ c2,
iii.d) store(a, i, e) ≃ a′,
iii.e) select(a, i) ≃ e; and

iv) non-unit clauses of the following form:
iv.a) select(a, x) ≃ select(a′, x)∨x ≃ i1∨ . . .∨x ≃ in∨ j1 ⊲⊳ j′1 ∨ . . .∨ jm ⊲⊳ j′m,

for x ∈ index,
iv.b) select(a, i) ≃ e ∨ i1 ⊲⊳ i′1 ∨ . . . ∨ in ⊲⊳ i′n,
iv.c) e ≃ e′ ∨ i1 ⊲⊳ i′1 ∨ . . . ∨ in ⊲⊳ i′n,
iv.d) e 6≃ e′ ∨ i1 ⊲⊳ i′1 ∨ . . . ∨ in ⊲⊳ i′n,
iv.e) i1 ≃ i′1 ∨ i2 ⊲⊳ i′2 ∨ . . . ∨ in ⊲⊳ i′n,
iv.f) i1 6≃ i′1 ∨ i2 ⊲⊳ i′2 ∨ . . . ∨ in ⊲⊳ i′n,
iv.g) t ≃ a′ ∨ i1 ⊲⊳ i′1 ∨ . . . ∨ in ⊲⊳ i′n, where t is either a or store(a, i, e).

Proof: we recall that inequalities a 6≃ a′ are not listed in (iii), because S is A-
reduced. Since ≻ is total on ground terms and A-good, each clause in the above
classes has a unique maximal literal, which is the first one in the above listing (up
to a permutation of indices for (iv.e) and (iv.f)). Classes (iv.e) and (iv.f) are really
one class separated in two classes based on the sign of the maximal literal. The
proof is by induction on the sequence {Si}i. For the base case, input clauses are in
(ii) or (iii). For the inductive case, we have:

—Inferences within (ii): The only inference that applies to the axioms in A is
a superposition of (ii.a) into (ii.b) that generates the trivial clause z ≃ z ∨
select(x, z) ≃ v, which is eliminated by deletion.

—Inferences within (iii): Inferences between ground flat unit clauses can produce
only ground flat unit clauses in (iii) or the empty clause.

—Inferences between a clause in (iii) and a clause in (ii): Superposition of (iii.d)
store(a, i, e) ≃ a′ into (ii.a) select(store(x, z, v), z) ≃ v yields select(a′, i) ≃ e
which is in (iii.e). Superposition of (iii.d) into (ii.b) select(store(x, z, v), w) ≃
select(x,w) ∨ z ≃ w yields select(a′, w) ≃ select(a, w) ∨ i ≃ w which is in (iv.a).

—Inferences between a clause in (iv) and a clause in (ii): Superposition of (iv.g)
store(a, i, e) ≃ a′ ∨ i1 ⊲⊳ i′1 ∨ . . .∨ in ⊲⊳ i′n into (ii.a) yields select(a′, i) ≃ e∨ i1 ⊲⊳
i′1 ∨ . . . ∨ in ⊲⊳ i′n, which is in (iv.b). Superposition of (iv.g) into (ii.b) yields
select(a′, w) ≃ select(a, w)∨ i ≃ w∨ i1 ⊲⊳ i′1 ∨ . . .∨ in ⊲⊳ i′n, which is in (iv.a). No
other inferences apply.

—Inferences between a clause in (iv) and a clause in (iii): For an inference to apply
to (iii.a) and (iv) it must be that a (or a′) appears in a clause in (iv). Similarly,
for an inference to apply to (iii.b) and (iv) it must be that c1 (or c2) appears in
a clause in (iv). In either case, simplification of the clause of class (iv) by the
clause of class (iii) applies. Such a step can only generate a clause in (iv). The
only inference that can apply to (iii.c) and (iv) is a paramodulation of a clause
in (iv) into a clause in (iii.c). If c1, c2 ∈ elem, paramodulation of (iv.c) into
(iii.c) generates a clause in (iv.d). If c1, c2 ∈ index, paramodulation of (iv.e)
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into (iii.c) produces a clause in (iv.f) or (iv.e), depending on the sign of the
maximal literal in the resulting clause. We consider next (iii.d) and (iv). The
only possible application of simplification consists of applying (iii.d) to reduce a
clause in (iv.g) to a clause in the same class. A superposition of (iv.c) or (iv.e)
into (iii.d) generates a clause in (iv.g). No other inferences are possible. Last
come (iii.e) and (iv). As a simplifier, (iii.e) may apply only to (iv.b) to yield a
clause in (iv.c). All possible superpositions, namely superposition of (iii.e) and
(iv.a), superposition of (iv.e) into (iii.e), and superposition of (iv.g) into (iii.e)
give clauses of class (iv.b).

—Inferences within (iv): Equational factoring applies only to a clause of class
(iv.e) to yield a clause in (iv.e) or (iv.f). Reflection applies to a clause in (iv.d)
or (iv.f), to yield a clause in one of (iii.b), (iii.c), (iv.e) or (iv.f). Then, for
each kind of clause we consider all binary inferences it can have with clauses
that follows in the list. We begin with (iv.a): superposition of (iv.a) and (iv.a)
gives (iv.a); superposition of (iv.a) and (iv.b) gives (iv.b); superposition of (iv.g)
into (iv.a) gives (iv.a). Second comes (iv.b): superposition of (iv.b) and (iv.b)
gives (iv.c); superposition of (iv.e) into (iv.b) gives (iv.b); superposition of (iv.g)
into (iv.b) gives (iv.b). Next there is (iv.c): superposition of (iv.c) and (iv.c)
gives (iv.c); paramodulation of (iv.c) into (iv.d) gives (iv.d); superposition of
(iv.c) into (iv.g) gives (iv.g). For (iv.e) and (iv.f), we have: superposition of
(iv.e) and (iv.e) gives (iv.e) or (iv.f); paramodulation of (iv.e) into (iv.f) gives
(iv.e) or (iv.f); superposition of (iv.e) into (iv.g) gives (iv.g). Last, all possible
applications of superposition within (iv.g) give (iv.g). ✷

Thus, we have (cf. Lemma 7.3 and Theorem 7.2 in [Armando et al. 2003]):

Lemma 15. (Armando, Ranise and Rusinowitch 2003) A fair A-good SP≻-
strategy is guaranteed to terminate when applied to A∪S, where S is an A-reduced
set of ground flat A-literals.

Theorem 3.6. (Armando, Ranise and Rusinowitch 2003) A fair A-good SP≻-
strategy is an exponential satisfiability procedure for A and Ae.

4. REWRITE-BASED SATISFIABILITY: COMBINATION OF THEORIES

A big-engines approach is especially well-suited for the combination of theories,
because it makes it possible to combine presentations rather than algorithms. The
inference engine is the same for all theories considered, and studying a combination
of theories amounts to studying the behavior of the inference engine on a problem
in the combination. In a little-engines approach, on the other hand, there is in
principle a different engine for each theory, and studying a combination of theories
may require studying the interactions among different inference engines.
In the rewrite-based methodology, the combination problem is the problem of

showing that an SP≻-strategy decides T -satisfiability, where T =
⋃n

i=1 Ti, know-
ing that it decides Ti-satisfiability for all i, 1 ≤ i ≤ n. Since Ti-reduction applies
separately for each theory, and flattening is harmless, one only has to prove ter-
mination. The main theorem in this section establishes sufficient conditions for
SP≻ to terminate on T -satisfiability problems if it terminates on Ti-satisfiability
problems for all i, 1 ≤ i ≤ n. A first condition is that the ordering ≻ be T -good:
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Definition 13. Let T1, . . . , Tn be presentations of theories. A CSO ≻ is T -
good, where T =

⋃n

i=1 Ti, if it is Ti-good for all i, 1 ≤ i ≤ n.

The second condition will serve the purpose of excluding paramodulations from
variables, when considering inferences across theories. This is key, since a variable
may paramodulate into any proper non-variable subterm:

Definition 14. A clause C is variable-inactive for ≻ if no maximal literal in
C is an equation t ≃ x where x 6∈ V ar(t). A set of clauses is variable-inactive for
≻ if all its clauses are.

Definition 15. A theory presentation T is variable-inactive for SP≻ if the limit
S∞ of any fair SP≻-derivation from S0 = T ∪ S is variable-inactive for ≻.

For satisfiability problems, S is ground, hence immaterial for variable-inactivity.
If axioms persist, as generally expected, T ⊆ S∞, and Definition 15 requires that
they are variable-inactive. If they do not persist, they are irrelevant, because a fair
strategy does not need to perform inferences from clauses that do not persist.
The third condition is that the signatures do not share function symbols, which

excludes paramodulations from compound terms. Sharing of constant symbols,
including those introduced by flattening, is allowed. Thus, the only inferences
across theories are paramodulations from constants into constants, that are finitely
many:

Theorem 4.1. Let T1, . . . , Tn be presentations of theories, with no shared func-
tion symbol, and let T =

⋃n

i=1 Ti. Assume that for all i, 1 ≤ i ≤ n, Si is a
Ti-reduced set of ground flat Ti-literals. If for all i, 1 ≤ i ≤ n, a fair Ti-good SP≻-
strategy is guaranteed to terminate on Ti ∪ Si, and Ti is variable-inactive for SP≻,
then a fair T -good SP≻-strategy is guaranteed to terminate on T ∪ S1 ∪ . . . ∪ Sn.

Proof: let Si
∞ be the set of persistent clauses generated by SP≻ from Ti ∪ Si.

Since SP≻ terminates on Ti ∪ Si, for all i, 1 ≤ i ≤ n, we are concerned only
with binary expansion inferences between a clause in Si

∞ and a clause in Sj
∞, with

1 ≤ i 6= j ≤ n. We consider first paramodulations from variables. Assume that
a literal t ≃ x occurs in a clause C in Si

∞. If x ∈ V ar(t), it is t ≻ x by the
subterm property of the CSO, and therefore, there is no paramodulation from x.
If x 6∈ V ar(t), t ≃ x is not maximal in C, because Si

∞ is variable-inactive by
hypothesis. In other words, there is another literal L in C such that L ≻ t ≃ x. By
stability of ≻, Lσ ≻ (t ≃ x)σ for all substitutions σ. Thus, no instance (t ≃ x)σ
can be maximal, so that, again, there is no paramodulation from x. Therefore,
there are no paramodulations from variables. Since there are no shared function
symbols, no paramodulation from a compound term applies to a clause in Si

∞ and
a clause in Sj

∞. The only possible inferences are those where a clause a ≃ t ∨ C
paramodulates into a clause l[a] ⊲⊳ u∨D, where a is a constant, t is also a constant
(it cannot be a variable, because a ≃ t ∨ C is variable-inactive, and it cannot be a
compound term, because ≻ is stable and good), the context l may be empty, the
mgu is empty, and C and D are disjunctions of literals. Since there are only finitely
many constants, only finitely many such steps may apply. ✷

Corollary 3. Let T1, . . . , Tn be presentations of theories, with no shared func-
tion symbol, and let T =

⋃n

i=1 Ti. If for all i, 1 ≤ i ≤ n, a fair Ti-good SP≻-strategy
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is a satisfiability procedure for Ti, and Ti is variable-inactive for SP≻, then a fair
T -good SP≻-strategy is a satisfiability procedure for T .

The requirement of being variable-inactive is rather natural for equational theo-
ries:

Theorem 4.2. If T is a presentation of an equational theory with no trivial
models, then T is variable-inactive for SP≻ for any CSO ≻.

Proof: by way of contradiction, assume that T is not variable-inactive, that is, for
some variable inactive S0, S∞ is not variable inactive. Thus, there is an equation
t ≃ x ∈ S∞ such that x 6∈ V ar(t). Since SP is sound, S0 |= t ≃ x. An equation
t ≃ x such that x 6∈ V ar(t) is satisfied only by a trivial model. Thus, S0 has only
trivial models. Since T ⊂ S0, a model of S0 is also a model of T . It follows that T
has trivial models, contrary to the hypothesis. ✷

Given an equational presentation T , the addition of the axiom ∃x∃y x 6≃ y is suffi-
cient to exclude trivial models. Since the clausal form of this axiom is the ground
flat literal sk1 6≃ sk2, where sk1 and sk2 are two Skolem constants, this addition
preserves all termination results for SP≻ on T -satisfiability problems.
For Horn theories, refutational completeness is preserved if SP≻ is specialized to

a maximal unit strategy, that restricts superposition to unit clauses and paramod-
ulates unit clauses into maximal negative literals [Dershowitz 1991]. Equational
factoring is not needed for Horn theories. This strategy resembles positive unit res-
olution in the non-equational case and has the same character of a purely forward-
reasoning strategy. At the limit, all proofs in S∞ are valley proofs, that is, equa-
tional rewrite proofs in the form u→∗ ◦←∗ t. It follows that all non-unit clauses
are redundant in S∞:

Theorem 4.3. If T is a presentation of a Horn equational theory with no trivial
models, then T is variable-inactive for SP≻ for any CSO ≻ and the maximal unit
strategy.

Proof: it is the same as for Theorem 4.2, because S∞ only contains unit clauses. ✷

For first-order theories, the requirement that S∞ be variable-inactive excludes the
generation of clauses in the form a1 ≃ x∨ . . .∨an ≃ x, where for all i, 1 ≤ i ≤ n, ai
is a constant. Such a disjunction may be generated, but only within a clause that
contains at least one greater literal, such as one involving function symbols (e.g.,
clauses of type (iv.a) in Lemma 14).

Theorem 4.4. Let T be a presentation of a first-order theory: if a1 ≃ x ∨ . . .∨
an ≃ x ∈ S∞, where S∞ is the limit of any fair SP≻-derivation from S0 = T ∪ S,
for any CSO ≻, then Th T is not stably infinite. Furthermore, if T has no trivial
models, Th T is also not convex.

Proof: since SP is sound, a1 ≃ x ∨ . . . ∨ an ≃ x ∈ S∞ implies S0 |= ∀x a1 ≃
x ∨ . . . ∨ an ≃ x. It follows that S0 has no infinite model. On the other hand,
a1 ≃ x ∨ . . . ∨ an ≃ x ∈ S∞ implies that S0 is satisfiable, because if S0 were
unsatisfiable, by the refutational completeness of SP , S∞ would contain only the
empty clause. Thus, S0 has models, but has no infinite model. Equivalently, S
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has T -models, but has no infinite T -model. This means that Th T is not stably
infinite, and, if it has no trivial models, it is also not convex by Theorem 2.1. ✷

In other words, if T is not variable-inactive for SP≻, because it generates a clause
in the form a1 ≃ x ∨ . . . ∨ an ≃ x, then T is not stably infinite either.
The notion of a clause in the form a1 ≃ x∨ . . .∨an ≃ x was “lifted” in [Bonacina

et al. 2006] to those of variable clause and cardinality constraint clause. A variable
clause is a clause containing only equations between variables or their negations.
The antecedent-mgu10 (a-mgu, for short) of a variable clause C is the most general
unifier of the unification problem {x=? y : x 6≃ y ∈ C}. Then, a variable clause C is
a cardinality constraint clause, if C+µ is not empty and contains no trivial equation
x ≃ x, where µ is the a-mgu of C and C+ is made of the positive literals in C. This
notion allows one to prove the following (cf. Lemma 5.2 in [Bonacina et al. 2006]):

Lemma 16. (Bonacina, Ghilardi, Nicolini, Ranise and Zucchelli 2006) If S0 is
a finite satisfiable set of clauses, then S0 admits no infinite models if and only if
the limit S∞ of any fair SP≻-derivation from S0 contains a cardinality constraint
clause.

Next, we note that a cardinality constraint clause cannot be variable-inactive,
because it must have some positive literal in the form x ≃ y that is maximal. For
example, in z 6≃ y ∨ x ≃ y ∨ z ≃ w, all three literals are maximal. Thus, it follows
that:

Theorem 4.5. If a first-order theory T is variable-inactive for SP≻, then it is
stably-infinite.

Proof: assume that T is not stably-infinite. Then there exists a quantifier-free T -
formula ϕ, that has a T -model but no infinite T -model. Let S0 be the clausal form
of T ∪{ϕ}: S0 is finite, satisfiable and admits no infinite model. By Lemma 16, the
limit S∞ of a fair SP≻-derivation from S0 contains a cardinality constraint clause.
Thus, S∞, and hence T , is not variable-inactive for SP≻. ✷

We conclude by applying Theorem 4.1 to any combination of the theories studied
in Section 3. The goodness requirement (Definition 13) is easily satisfied: any CSO
is good for E , and it is simple to obtain an ordering that is simultaneously R-
good, I-good, L-good and A-good. The reductions of Re to R (Lemma 1) and
Ae to A (Lemma 13) apply also when the signature contains free function symbols
f : s0, . . . , sm−1 → sm, m ≥ 1, provided that none of the si, 1 ≤ i ≤ m, is rec or
array, respectively. A function symbol satisfying this requirement is said to be
record-safe or array-safe, respectively. Thus, we have:

Theorem 4.6. A fair SP≻-strategy is a satisfiability procedure for any combina-
tion of the theories of records, with or without extensionality, integer offsets, integer
offsets modulo, possibly empty lists, arrays, with or without extensionality, and the
quantifier-free theory of equality, provided (1) ≻ is R-good whenever records are
included, (2) ≻ is I-good whenever integer offsets are included, (3) ≻ is L-good
whenever lists are included and (4) ≻ is A-good whenever arrays are included, and

10The name derives from the sequent-style notation for clauses adopted in [Bonacina et al. 2006].
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(5) all free function symbols are array-safe (record-safe) whenever arrays (records)
with extensionality and the quantifier-free theory of equality are included.

Proof: for the quantifier-free theory of equality, E is vacuously variable-inactive for
SP≻. For the other theories, the lists of clauses in Lemma 2, Lemma 7, Lemma 9,
Lemma 11 and Lemma 14, show that R, I, Ik, L and A, respectively, are variable-
inactive for SP≻. Therefore, the result follows from Theorem 4.1. ✷

This theorem holds if L is replaced by LSh or LNO, since they are also variable-
inactive for SP≻ (cf. Lemmata 4.1 and 5.1 in [Armando et al. 2003]).

5. SYNTHETIC BENCHMARKS

This section presents six sets of synthetic benchmarks: three in the theory of arrays
with extensionality (STORECOMM, SWAP and STOREINV); one in the combination of the
theories of arrays and integer offsets (IOS); one in the combination of the theories
of arrays, records and integer offsets to model queues (QUEUE); and one in the
combination of the theories of arrays, records and integer offsets modulo to model
circular queues (CIRCULAR QUEUE). Each problem set is parametric, that is, it is
formulated as a function Pb, that takes a positive integer n as parameter, and
returns a set of formulæ Pb(n). For all these problems, the size of Pb(n) grows
monotonically with n. This property makes them ideal to evaluate empirically how
a system’s performance scale with input’s size, as we shall do in Section 6.

5.1 First benchmark: STORECOMM(n) and STORECOMM INVALID(n)

The problems of the STORECOMM family express the fact that the result of storing a
set of elements in different positions within an array is not affected by the relative
order of the store operations. For instance, for n = 2 the following valid formula
belongs to STORECOMM(n):

i1 6≃ i2 ⊃ store(store(a, i1, e1), i2, e2) ≃ store(store(a, i2, e2), i1, e1).

Here and in the following a is a constant of sort array, i1, . . . , in are constants of
sort index, and e1, . . . , en are constants of sort elem.
In general, let n > 0 and p, q be permutations of {1, . . . , n}. Let STORECOMM(n, p, q)

be the formula:
∧

(l,m)∈Cn

2

il 6≃ im ⊃ (Tn(p) ≃ Tn(q))

where Cn
2 is the set of 2-combinations over {1, . . . , n} and

Tk(p) =

{

a if k = 0
store(Tk−1(p), ip(k), ep(k)) if 1 ≤ k ≤ n.

(24)

Since only the relative position of the elements of p with respect to those of q is
relevant, q can be fixed. For simplicity, let it be the identity permutation ι. Then
STORECOMM(n) = {STORECOMM(n, p, ι) : p is a permutation of {1, . . . , n}}.

Example 3. If n = 3 and p is such that p(1) = 3, p(2) = 1, and p(3) = 2, then

Tn(p) = store(store(store(a, i3, e3), i1, e1), i2, e2)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



30 · A. Armando and M. P. Bonacina and S. Ranise and S. Schulz

Tn(ι) = store(store(store(a, i1, e1), i2, e2), i3, e3))

and STORECOMM(n, p, ι) is

((i1 6≃ i2 ∧ i2 6≃ i3 ∧ i1 6≃ i3) ⊃

store(store(store(a, i3, e3), i1, e1), i2, e2) ≃ store(store(store(a, i1, e1), i2, e2), i3, e3)).

Each element of STORECOMM(n), once negated, reduced to clausal form, A-reduced
and flattened, leads to a problem whose number of clauses is in O(n2), because it

is dominated by the
(

n
2

)

= n(n−1)
2 clauses in {il 6≃ im : (l,m) ∈ Cn

2 }.
A slight change in the definition of STORECOMM generates sets of formulæ that are

not valid in A:

STORECOMM INVALID(n) = {STORECOMM(n, p, ι′) : p is a permutation of {1, . . . , n}}

where ι′ : {1, . . . , n} → {1, . . . , n} is such that ι′(k) = k for 1 ≤ k ≤ n − 1 and
ι′(n) = 1.

Example 4. For n, p and Tn(p) as in Ex. 3,

Tn(ι
′) = store(store(store(a, i1, e1), i2, e2), i1, e1))

and STORECOMM INVALID(n, p, ι′) is

((i1 6≃ i2 ∧ i2 6≃ i3 ∧ i1 6≃ i3) ⊃

store(store(store(a, i3, e3), i1, e1), i2, e2) ≃ store(store(store(a, i1, e1), i2, e2), i1, e1)).

5.2 Second benchmark: SWAP(n) and SWAP INVALID(n)

An elementary property of arrays is that swapping an element at position i1 with an
element at position i2 is equivalent to swapping the element at position i2 with the
element at position i1. The problems of the SWAP family are based on generalizing
this observation to any number n of swap operations. For instance, for n = 2 the
following valid fact is in SWAP(n):

swap(swap(a, i0, i1), i2, i1) ≃ swap(swap(a, i1, i0), i1, i2)

where swap(a, i, j) abbreviates the term store(store(a, i, select(a, j)), j, select(a, i)).
In general, let c1, c2 be subsets of {1, . . . , n}, and let p, q be functions p, q :
{1, . . . , n} → {1, . . . , n}. Then, we define SWAP(n, c1, c2, p, q) to be the formula:

Tn(c1, p, q) ≃ Tn(c2, p, q)

with Tk(c, p, q) defined by

Tk(c, p, q) =







a if k = 0,
swap(Tk−1(c, p, q), ip(k), iq(k)) if 1 ≤ k ≤ n and k ∈ c, and
swap(Tk−1(c, p, q), iq(k), ip(k)) if 1 ≤ k ≤ n and k 6∈ c.

(25)

Tn(c, p, q) is the array obtained by swapping the elements of position p(k) and q(k)
of the array a for 1 ≤ k ≤ n. The role of the subset c is to determine whether the
element at position p(k) has to be swapped with that at position q(k) or vice versa,
and has the effect of shuffling the indices within the formula.
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Example 5. If n = 3, c1 = {1}, c2 = {2, 3}, p and q are such that p(k) = k and
q(k) = 2, for all k, 1 ≤ k ≤ n, then

Tn(c1, p, q) = swap(swap(swap(a, i1, i2), i2, i2), i2, i3)

Tn(c2, p, q) = swap(swap(swap(a, i2, i1), i2, i2), i3, i2).

Thus, SWAP(n) = {SWAP(n, c1, c2, p, q) : c1, c2 ⊆ {1, . . . , n} and p, q : {1, . . . , n} →
{1, . . . , n}}. Each formula, once negated, transformed into clausal form, A-reduced
and flattened, leads to a problem with O(n) clauses.
A small change in the definition produces a class SWAP INVALID. With c1, c2, p, q

defined as for SWAP, let SWAP INVALID(n, c1, c2, p, q) be the formula:

Tn(c1, p, q) ≃ Tn(c2, p, q
′)

where Tk(c, p, q) is as in (25), q′ : {1, . . . , n} → {1, . . . , n} is such that q′(1) =
(q(1)+1) mod n, and q′(k) = q(k) for all k, 2 ≤ k ≤ n. Then, SWAP INVALID(n) =
{SWAP INVALID(n, c1, c2, p, q) : c1, c2 ⊆ {1, . . . , n}, p, q : {1, . . . , n} → {1, . . . , n}}.

Example 6. If n, c1, c2, p and q are as in Example 5,

Tn(c1, p, q) = swap(swap(swap(a, i1, i2), i2, i2), i2, i3)

Tn(c2, p, q
′) = swap(swap(swap(a, i3, i1), i2, i2), i3, i2).

5.3 Third benchmark: STOREINV(n) and STOREINV INVALID(n)

The problems of the STOREINV family capture the following property: if the arrays
resulting from swapping elements of array a with the elements of array b occurring
in the same positions are equal, then a and b must have been equal to begin with.
For the simple case where a single position is involved, we have:

store(a, i, select(b, i)) ≃ store(b, i, select(a, i)) ⊃ a ≃ b.

For n ≥ 0, let STOREINV(n) = {multiswap(a, b, n) ⊃ a ≃ b}, where

multiswap(a, b, k) =















(a ≃ b) if k = 0,
let (a′ ≃ b′) = multiswap(a, b, k − 1) in

store(a′, ik, select(b
′, ik)) ≃ store(b′, ik, select(a

′, ik))
if k ≥ 1.

(26)

Example 7. For n = 2 we have

store(a′, i2, select(b
′, i2)) ≃ store(b′, i2, select(a

′, i2)) ⊃ a ≃ b

where a′ = store(a, i1, select(b, i1)) and b′ = store(b, i1, select(a, i1)).

Transformation into clausal form of the negation of the formula in STOREINV(n),
followed by A-reduction and flattening, yields a problem with O(n) clauses.
For STOREINV INVALID, let store(ta, in, select(tb, in)) ≃ store(tb, in, select(ta, in))

be the formula returned by multiswap(a, b, n) for n ≥ 2. Then, we define

STOREINV INVALID(n) =

{store(ta, i1, select(tb, in)) ≃ store(tb, in, select(ta, in)) ⊃ a ≃ b}.
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5.4 Fourth benchmark: IOS(n)

The problems of the IOS(n) family combine the theories of arrays and integer offsets.
Consider the following two program fragments:

for(k=1;k<=n;k++) for(k=1;k<=n;k++)

a[i+k]=a[i]+k; a[i+n-k]=a[i+n]-k;

If the execution of either fragment produces the same result in the array a, then
a[i+n]==a[i]+n must hold initially for any value of i, k, a, and n.

Example 8. For n = 2, IOS(n) includes only the following valid formula:

store(store(a, i + 1, select(a, i) + 1), i+ 2, select(a, i) + 2) ≃

store(store(a, i + 1, select(a, i+ 2)− 1), i, select(a, i+ 2)− 2)

⊃ select(a, i+ 2) ≃ select(a, i) + 2.

In general, for n ≥ 0 let IOS(n) = {Ln
n ≃ Rn

n ⊃ select(a, i+n) ≃ select(a, i)+n}
where

Ln
0 = Rn

0 = a

Ln
k = store(Ln

k−1, i+ k, select(a, i) + k) for k = 1, . . . , n

Rn
k = store(Rn

k−1, i+ n− k, select(a, i+ n)− k) for k = 1, . . . , n.

Each formula in IOS(n), once negated, reduced to clausal form, flattened and I-
reduced, generates O(n) clauses. A-reduction is not needed, since the negation of
the formula does not contain inequalities of sort array.

5.5 Fifth benchmark: QUEUE(n)

The theories of arrays, records and integer offsets can be combined to specify queues,
defined as usual in terms of the functions enqueue : elem × queue → queue,
dequeue : queue → queue, first : queue → elem, last : queue → elem and
reset : queue→ queue, where queue and elem are the sorts of queues and their
elements, respectively.
Indeed, a queue can be implemented as a record with three fields: items is an

array storing the elements of the queue, head is the index of the first element of
the queue in the array, and tail is the index where the next element will be in-
serted in the queue. Following Section 3.1, the signature features function symbols
rstoreitems, rstorehead, rstoretail, rselectitems, rselecthead and rselecttail, abbrevi-
ated as rstorei, rstoreh, rstoret, rselecti, rselecth, rselectt, respectively. Then, the
above mentioned functions on queue are defined as follows:

enqueue(v, x) = rstoret(rstorei(x, store(rselecti(x), rselectt(x), v)), s(rselectt(x)))
dequeue(x) = rstoreh(x, s(rselecth(x)))

first(x) = select(rselecti(x), rselecth(x))
last(x) = select(rselecti(x), p(rselectt(x)))

reset(x) = rstoreh(x, rselectt(x))

where x and v are variables of sort queue and elem, respectively, store and select
are the function symbols from the signature of A, p and s are the function symbols
for predecessor and successor from the signature of I.
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A basic property of queues is the following: assume that q0 is a properly ini-
tialized queue and q is obtained from q0 by performing n + 1 enqueue opera-
tions (n > 0), that insert n + 1 elements e0, e1, . . . , en, and m dequeue operations
(0 ≤ m ≤ n), that removem elements e0, e1, . . . , em−1; then first(q) = em. Dequeue
operations can be interleaved with enqueue operations in any order, provided the
number of dequeue operations is always strictly smaller than the number of pre-
ceding enqueue operations. For instance, if q = enqueue(e2, dequeue(enqueue(e1,
enqueue(e0, reset(q0))))), then first(q) = e1. Problems in the QUEUE(n) family ex-
press an instance of this property, where the dequeue operator is applied once every
3 applications of the enqueue operator. Thus, the number of dequeue operations
will be m = ⌊(n+ 1)/3⌋.
Given a term t where the function symbols reset, enqueue, dequeue, first, last

and reset may occur, let t↓ denote the term obtained from t by unfolding the above
function definitions. Then QUEUE(n), for n > 0, is defined as follows:

QUEUE(n) = {(q0 ≃ reset(q)↓ ∧
n−1
∧

i=0

qi+1 ≃ fi+1(ei, qi)) ⊃ first(qn)↓ ≃ em},

where

fi(e, q) =

{

dequeue(enqueue(e, q))↓ if i mod 3 = 0,
enqueue(e, q)↓ otherwise,

and m = ⌊(n+ 1)/3⌋.

Example 9. If n = 1, then QUEUE(n) is the formula:
(

q0 ≃ rstoreh(q, rselectt(q)) ∧
q1 ≃ rstoret( rstorei(q0, store(rselecti(q0), rselectt(q0), e0)), s(rselectt(q0)))

)

⊃

select(rselecti(q1), rselecth(q1)) ≃ e0.

Each formula in QUEUE(n), once negated, reduced to clausal form, flattened and
I-reduced, generates O(n) clauses. A-reduction and R-reduction are not needed,
since the negation of the formula does not contain inequalities of sort array or
rec.

5.6 Sixth benchmark: CIRCULAR QUEUE(n, k)

It is sufficient to replace the theory of integer offsets I by Ik, to work with indices
modulo k and extend the approach of the previous section to model circular queues
of length k. The problems of the CIRCULAR QUEUE(n, k) family say that if qn+1 is
obtained from a properly initialized circular queue q0 by inserting n + 1 elements
e0, e1, . . . , en, for n > 0, and n mod k = 0, then first(qn+1) ≃ last(qn+1) holds,
because the last element inserted overwrites the one in the first position (e.g.,
picture inserting 4 elements in a circular queue of length 3). This is formally
expressed by

CIRCULAR QUEUE(n, k) =

{(q0 ≃ reset(q)↓ ∧
n
∧

i=0

qi+1 ≃ enqueue(ei, qi)↓) ⊃ first(qn+1)↓≃ last(qn+1)↓},

for n > 0 such that n mod k = 0.
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Example 10. If k = n = 1, then CIRCULAR QUEUE(1, 1) is the formula:




q0 ≃ rstoreh(q, rselectt(q)) ∧
q1 ≃ rstoret(rstorei(q0, store(rselecti(q0), rselectt(q0), e0)), s(rselectt(q0))) ∧
q2 ≃ rstoret(rstorei(q1, store(rselecti(q1), rselectt(q1), e1)), s(rselectt(q1)))





⊃ select(rselecti(q2), rselecth(q2)) ≃ select(rselecti(q2), p(rselectt(q2))).

Each formula in CIRCULAR QUEUE(n, k), once negated, reduced to clausal form, flat-
tened and I-reduced, generates O(n) clauses.

6. EXPERIMENTS

The synthetic benchmarks of Section 5 were submitted to three systems: E 0.82,
CVC 1.0a and CVC Lite 1.1.0. The prover E implements (a variant of) SP with a
large choice of fair search plans, based on the “given-clause” algorithm [Schulz 2002;
2004], that ensure that the empty clause will be found, if the input is unsatisfiable,
and a finite satisfiable saturated set will be generated, if the input set is satisfiable
and admits one. CVC [Stump et al. 2002] and CVC Lite [Barrett and Berezin 2004]
combine several theory decision procedures following the Nelson-Oppen method,
including that of [Stump et al. 2001] for arrays with extensionality, and integrate
them with a SAT engine [Barrett et al. 2002a]. CVC is no longer supported; it
was superseded by CVC Lite, a more modular and programmable system. While
CVC Lite has many advantages, at the time of these experiments CVC was reported
to be still faster on many problems. CVC and CVC Lite feature a choice of SAT
solvers: a built-in solver or Chaff [Moskewicz et al. 2001] for CVC, a “fast” or a
“simple” solver for CVC Lite. In our experiments, CVC and CVC Lite performed
consistently better with their built-in and “fast” solver, respectively, and therefore
only those results are reported.
We wrote a generator of pseudo-random instances of the synthetic benchmarks,

producing either TPTP11 or CVC syntax, and a set of scripts to run the solvers
on all benchmarks. The generator creates either T -reduced, flattened input files
or plain input files. Flattening times were not included in the reported run times,
because flattening is a one-time linear time operation, and the time spent on flat-
tening was insignificant. In the following, native input means flattened, T -reduced
files for E, and plain, unflattened files for CVC and CVC Lite.
The experiments were performed on a 3.00GHz Pentium 4 PC with 512MB RAM.

Time and memory were limited to 150 sec and 256 MB per instance. If a system ran
out of either time or memory under these limits, the result was recorded as a “fail-
ure.” When Pb(n) is not a singleton (cf. STORECOMM(n), STORECOMM INVALID(n),
SWAP(n) and SWAP INVALID(n)), the median run time over all tested instances is
reported.12 For the purpose of computing the median, a failure is considered to be
larger than all successful run times. The median was chosen in place of the average,
precisely because it is well-defined even in cases where a system fails on some, but
not all instances of a given size, a situation that occurred for all systems.

11TPTP, or “Thousands of Problems for Theorem Provers” is a de facto standard for testing
general-purpose first-order theorem provers: see http://www.tptp.org/.
12Reported figures refer to runs with 9 instances for every value of n. Different numbers of
instances (e.g., 5, 20) were also tried, but the impact on the plots was negligible.
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The results for E refer to two variants of a simple strategy, termed E(good-lpo)
and E(std-kbo), for reasons that will be clear shortly. This strategy adopts a single
priority queue for clause selection, where E(good-lpo) gives the same priority to
all clauses, while E(std-kbo) privileges ground clauses. Additionally, E(good-lpo)
ensures that all input clauses are selected before the generated ones, whereas E(std-
kbo) does not. Both variants employ a very simple clause evaluation heuristic to
rank clauses of equal priority: it weights clauses by counting symbols, giving weight
2 to function and predicate symbols and weight 1 to variable symbols. Since these
are the default term weights that E uses for a variety of operations, they are pre-
computed and cached, so that this heuristic is very fast, compared to more complex
schemes.
E(std-kbo) features a Knuth-Bendix ordering (KBO), where the weight of symbols

is given by their arity, and the precedence sorts symbols by arity first, and by inverse
input frequency second (that is, rarer symbols are greater), with ties broken by order
of appearance in the input. This KBO is R-good, I-good, and it satisfies Condition
(1), but not Condition (2), in Definition 12, so that it is notA-good. It was included
because it is a typical ordering for first-order theorem proving, and therefore E(std-
kbo) can be considered representative of the behavior of a plain, standard, theorem-
proving strategy. E(good-lpo) has a lexicographic (recursive) path ordering (LPO),
whose precedence extends that of E(std-kbo), in such a way that constants are
ordered by sort. Thus, also Condition (2) in Definition 12 is satisfied and the
resulting LPO is R-good, I-good and A-good. In both precedences, constants
introduced by flattening are smaller than those in the original signature. It is
worth emphasizing that contemporary provers, such as E, can generate precedences
and weighting schemes automatically. The only human intervention was a minor
modification in the code to enable the prover to recognize the sort of constants and
satisfy Condition (2) in Definition 12.

6.1 Experiments with STORECOMM and STORECOMM INVALID

Many problems involve distinct objects, that is, constants which name elements
that are known to be distinct in all models of the theory. E features a complete
variant of SP that builds knowledge of the existence of distinct objects into the
inference rules [Schulz and Bonacina 2005]. Under this refinement, the prover
treats strings in double quotes and positive integers as distinct objects. This aspect
is relevant to the STORECOMM problems, because they include the inequalities in
{il 6≃ im : (l,m) ∈ Cn

2 }, stating that all indices are distinct. Thus, E was applied
to these problems in two ways: with {il 6≃ im : (l,m) ∈ Cn

2 } included in the input
(axiomatized indices), and with array indices in double quotes (built-in index type).
Figure 3 shows that all systems solved the problems comfortably and scaled

smoothly. On valid instances, E(good-lpo) with axiomatized indices and CVC Lite
show nearly the same performance, with E apparently slightly ahead in the limit.
E(good-lpo) with built-in indices outperformed CVC Lite by a factor of about 2.5.
CVC performed best improving by another factor of 2. It is somewhat surprising
that E, a theorem prover optimized for showing unsatisfiability, performed com-
paratively even better on invalid (that is, satisfiable) instances, where it was faster
than CVC Lite, and E(good-lpo) with built-in indices came closer to CVC. The
shared characteristics of all the plots strongly suggest that for STORECOMM the most
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Fig. 3. Performance on valid (left) and invalid (right) STORECOMM instances with native
input.

important feature is sheer processing speed. Although there is no deep reasoning or
search involved, the general-purpose prover can hold its own against the specialized
solvers, and even edge out CVC Lite.

 0.5

 1

 1.5

 2

 2.5

 3

 10  20  30  40  50  60

R
un

 ti
m

e 
(s

)

Instance size

CVC (flattened)
CVC Lite (flattened)

E (good-lpo), built-in index type
E (good-lpo), axiomatized indices

 0.5

 1

 1.5

 2

 2.5

 3

 10  20  30  40  50  60

R
un

 ti
m

e 
(s

)

Instance size

CVC (flattened)
CVC Lite (flattened)

E (good-lpo), built-in index type
E (good-lpo), axiomatized indices

Fig. 4. Performance on valid (left) and invalid (right) STORECOMM instances with flat input
for all.

When all systems ran on flattened input (Figure 4), both CVC and CVC Lite
exhibited run times approximately two times higher than with native format, and
CVC Lite turned out to be the slowest system. CVC and E with built-in indices
were the fastest: on valid instances, their performances are so close, that the plots
coincide, but E is faster on invalid instances. It is not universally true that flat-
tening hurt CVC and CVC Lite: on the SWAP problems CVC Lite performed much
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better on flattened input. This suggests that specialized decision procedures are
not insensitive to input format.
Although CVC was overall the fastest system on STORECOMM, E was faster than

CVC Lite, and did better than CVC on invalid instances when they were given the
same input. As CVC may be considered a paradigmatic representative of optimized
systems with built-in theories, it is remarkable that the general-purpose prover
could match CVC and outperform CVC Lite.

6.2 Experiments with SWAP and SWAP INVALID
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Fig. 5. Performance on valid (left) and invalid (right) SWAP instances, native input.

Rather mixed results arose for SWAP, as shown in Figure. 5. Up to instance size
5, the systems are very close. Beyond this point, on valid instances, E leads up to
size 7, but then is overtaken by CVC and CVC Lite. E could solve instances of size
8, but was much slower than CVC and CVC Lite, which solved instances up to size
9. No system could solve instances of size 10. For invalid instances, E solved easily
instances up to size 10 in less than 0.5 sec. CVC and CVC Lite were much slower
there, taking 2 sec and 4 sec, respectively. Their asymptotic behaviour seems to be
clearly worse.
Consider the lemma

store(store(x, z, select(x,w)), w, select(x, z)) ≃

store(store(x,w, select(x, z)), z, select(x,w))

that expresses “commutativity” of store. Figure 6 displays the systems’ perfor-
mance on valid instances, when the input for E includes this lemma. Although
this addition means that the theorem prover is no longer a decision procedure,13 E

13Lemma 14 and therefore Theorem 3.6 do not hold, if this lemma is added to presentation A.
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Fig. 6. Performance on valid SWAP instances with added lemma for E.

terminated also on instances of size 9 and 10, and its plot suggests a better asymp-
totic behavior. While no system emerged as a clear winner, this experiment shows
how a prover that takes a theory presentation in input offers an additional degree
of freedom, because useful lemmata may be added.

6.3 Experiments with STOREINV and STOREINV INVALID
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Fig. 7. Performance on valid (left) and invalid (right) STOREINV instances with native
input.

The comparison becomes even more favorable for the prover on the STOREINV

problems, reported in Figure 7. CVC solved valid instances up to size 8 within the
given resource limit. CVC Lite went up to size 9, but E solved instances of size
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10, the largest generated. A comparison of absolute run times at size 8, the largest
solved by all systems, gives 3.4 sec for E, 11 sec for CVC Lite, and 70 sec for CVC.
Furthermore, E(std-kbo) (not shown in the figure) solved valid instances in nearly
constant time, taking less than 0.3 sec for the hardest problem. Altogether, E with
a suitable ordering was clearly qualitatively superior than the dedicated systems.
For invalid instances, E did not do as well, but the run times there were minimal,
with the largest run time for instances of size 10 only about 0.1 sec.

6.4 Experiments with IOS
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Fig. 8. Performance on the IOS instances: since in the graph on the left the curve for
CVC is barely visible, the graph on the right shows a rescaled version of the same data,
including only the three fastest systems.

The IOS problems were encoded for CVC and CVC Lite by using their built-in
linear arithmetic, on the reals for CVC and on the integers for CVC Lite. We
tried to use inductive types in CVC, but it performed badly and even reported
incorrect results.14 In terms of performance (Figure 8, left), CVC was clearly the
best system, as expected from a tool with built-in arithmetic. E(good-lpo) was no
match, although it still solved all tried instances (Figure 8, left). On the other hand,
E(std-kbo) proved to be competitive with the systems with built-in arithmetic. At
least two reasons explain why E(std-kbo) behaved much better than E(good-lpo):
first, KBO turned out to be more suitable than LPO for these benchmarks; second,
by not preferring initial clauses, the search plan of E(std-kbo) did not consider the
acyclicity and array axioms early in the search, a choice that turned out to be
good. More remarkably, E(std-kbo) did better than CVC Lite (Figure 8, right):
its curve scales smoothly, while CVC Lite displays oscillating run times, showing
worse performance for even instance sizes than for odd ones.

14This is a known bug, that will not be fixed since CVC is no longer supported [Stump 2005].
CVC Lite 1.1.0 does not support inductive types.
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6.5 Experiments with QUEUE and CIRCULAR QUEUE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5  10  15  20  25  30  35  40  45  50

R
un

 ti
m

e 
(s

)

Instance size

CVC
CVC Lite

E (good-lpo)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5  10  15  20  25  30  35  40  45
R

un
 ti

m
e 

(s
)

Instance size

CVC Lite
E (good-lpo)

Fig. 9. Performance of E, CVC and CVC Light on QUEUE (left) and CIRCULAR QUEUE (right)
with k = 3.

Similar to the IOS tests, CVC and CVC Light were expected to enjoy a great
advantage over E on the QUEUE and CIRCULAR QUEUE problems, because both CVC
and CVC Light build all theories involved in these benchmarks, namely arrays,
records and linear arithmetic, into their decision procedures. The diagram on the
left of Figure 9 confirms this expectation, showing that CVC was the fastest system
on the QUEUE(n) problems. However, E(good-lpo) was a good match for CVC Light,
and E(std-kbo) (not reported in the figure) also solved all tried instances. The
plots on the right of Figure 9 refers to the experiments with CIRCULAR QUEUE(n, k),
where k = 3. It does not include CVC, because CVC cannot handle the modulo-k
integer arithmetic required for circular queues. Between CVC Lite and E, the latter
demonstrated a clear superiority: E(good-lpo) exhibited nearly linear performance,
and proved the largest instance in less than 0.5 sec, nine times faster than CVC Lite.
E(std-kbo) behaved similarly.

6.6 Experiments with “real-world” problems

While synthetic benchmarks test scalability, “real-world” problems such as those
from the UCLID suite [Lahiri and Seshia 2004] test performance on huge sets of
literals. UCLID is a system that reduces all problems to propositional form without
theory reasoning. Thus, in order to get problems relevant to our study, we used
haRVey [Déharbe and Ranise 2003] to extract T -satisfiability problems from various
UCLID inputs. This resulted in 55,108 proof tasks in the combination of the theory
of integer offsets and the quantifier-free theory of equality, so that I-reduction was
applied next. We ran E on all of them, using a cluster of 3 PC’s with 2.4GHz
Pentium-4 processors. All other parameters were the same as for the synthetic
benchmarks.
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Fig. 10. Distribution of run times for E in automatic mode (left) and using an optimized
strategy (right) for the UCLID test set.

These problems (all valid) turned out to be easy for E in automatic mode, where
the prover chooses automatically ordering and search plan. It could solve all prob-
lems, taking less than 4 sec on the hardest one, with average 0.372 sec and median
0.25 sec. Figure 10 shows a histogram of run times: the vast majority of problems
was solved in less than 1 sec and very few needed between 1.5 and 3 sec. An op-
timized search plan was found by testing on a random sample of 500 problems, or
less than 1% of the full set. With this search plan, very similar to E(std-kbo), the
performance improved by about 40% (Figure 10, right): the average is 0.249 sec,
the median 0.12 sec, the longest time 2.77 sec, and most problems were solved in
less than 0.5 sec.

7. DISCUSSION

The application of automated reasoning to verification has long shown the im-
portance of decision procedures for satisfiability in decidable theories. The most
common approach to these procedures, popularized as the “little” proof engines
paradigm [Shankar 2002], works by building each theory T into a dedicated infer-
ence engine. For T -satisfiability procedures, that decide conjunctions of ground
T -literals, the mainstay is the congruence closure algorithm, enhanced by building
T into the algorithm (e.g., [Nelson and Oppen 1980; Stump et al. 2001; Lahiri
and Musuvathi 2005b; 2005a; Dutertre and de Moura 2006; Nieuwenhuis and Oliv-
eras 2007]). Such procedures are combined according to the scheme of [Nelson and
Oppen 1979] or its variants (e.g., [Tinelli and Harandi 1996; Barrett et al. 2002b;
Ganzinger 2002; Ghilardi 2004; Baader and Ghilardi 2005; Ranise et al. 2005]).
Recent systematic treatments appeared in [Krstić and Conchon 2003; Manna and
Zarba 2003; Conchon and Krstić 2003; Ranise et al. 2004; Ganzinger et al. 2004;
Ghilardi et al. 2005].
For T -decision procedures, that decide arbitrary quantifier-free T -formulæ, the

so-called “eager” approaches seek efficient reductions of the problems to SAT and
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submit them to SAT solvers (e.g., [Jackson and Vaziri 2000; Bryant and Velev 2001;
Bryant et al. 2002; Seshia et al. 2003; Meir and Strichman 2005]). The so-called
“lazy” approaches (e.g., [de Moura et al. 2002; Barrett et al. 2002a; Flanagan et al.
2003; Déharbe and Ranise 2003; Barrett and Berezin 2004; Ganzinger et al. 2004;
Detlefs et al. 2005; Bozzano et al. 2005; Bozzano et al. 2005; Nieuwenhuis and
Oliveras 2007]) integrate T -satisfiability procedures based on congruence closure
with SAT solvers, usually based on the Davis-Putnam-Logemann-Loveland proce-
dure (e.g., [Chang and Lee 1973; Moskewicz et al. 2001]). The resulting systems
are called SMT solvers.

By symmetry with little proof engines, we used “big” proof engines (e.g., [Stickel
2002]), for theorem-proving strategies for full first-order logic with equality, as im-
plemented in state-of-the-art general-purpose theorem provers (e.g., [McCune 2003;
Weidenbach et al. 1999; Riazanov and Voronkov 2002; Schulz 2002]). There has
always been a continuum between big and little engines of proof, as testified by the
research on reasoning modulo a theory in big engines. The rewriting approach to
T -satisfiability aims at a cross-fertilization where big engines work as little engines.
The general idea is to explore how the technology of big engines (orderings, infer-
ence rules, search plans, algorithms, data structures, implementation techniques)
may be applied selectively and efficiently “in the small,” that is, to decide specific
theories.

This exploration finds its historical roots in the relationship between congruence
closure and Knuth-Bendix completion [Knuth and Bendix 1970] in the ground case:
the application of ground completion to compute congruence closure was discovered
as early as [Lankford 1975]; the usage of congruence closure to generate canonical
rewrite systems from sets of ground equations was investigated further in [Gallier
et al. 1993; Plaisted and Sattler-Klein 1996]; more recently, a comparison of ground
completion and congruence closure algorithms was given in [Bachmair et al. 2003];
and ground completion and congruence closure were included in an abstract frame-
work for canonical inference in [Bonacina and Dershowitz 2007]. The central com-
ponent of the rewriting approach is the inference system SP , that is an offspring of a
long series of studies on completion for first-order logic with equality. These systems
were called by various authors rewrite-based, completion-based, superposition-based,
paramodulation-based, contraction-based, saturation-based or ordering-based, to em-
phasize one aspect or the other. Relevant surveys include [Plaisted 1993; Bonacina
1999; Nieuwenhuis and Rubio 2001; Dershowitz and Plaisted 2001].

The gist of the rewriting approach to T -satisfiability is to show that a sound and
refutationally complete “big” engine, such as SP , is guaranteed to generate finitely
many clauses from T -satisfiability problems. By adding termination to soundness
and completeness, one gets a decision procedure: an SP-strategy that combines SP
with a fair search plan is a T -satisfiability procedure. Depending on the theory,
termination may require some problem transformation, termed T -reduction, which
is fully mechanizable for all the theories we have studied. We emphasize that the
inference system is not adapted to the theories. The only requirement is on the
ordering: SP is parametric with respect to a CSO, and the termination proof for
T may require that this ordering satisfies some property named T -goodness. For
all considered theories, T -goodness is very simple and easily satisfied by common
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orderings such as RPO’s and KBO’s.
We proved termination of SP on several new theories, including one with infinite

axiomatization15. We gave a general modularity theorem for the combination of
theories, and carried out an experimental evaluation, to test the pratical feasibility
of the rewriting approach. The modularity theorem states sufficient conditions
(no shared function symbols, variable-inactive theories) for SP to terminate on
a combination of theories if it terminates on each theory separately. The “no
shared function symbols” hypothesis is common for combination results. Variable-
inactivity is satisfied by all equational theories with no trivial models. First-order
theories that fail to be variable-inactive in an intuitive way are not stably infinite,
and therefore cannot be combined by the Nelson-Oppen scheme either. On the other
hand, it follows from work in [Bonacina et al. 2006] that variable-inactive theories
are stably infinite. The quantifier-free theories of equality, lists, arrays with or
without extensionality, records with or without extensionality, integer offsets and
integer offsets modulo, all satisfy these requirements, so that any fair SP-strategy
is a satisfiability procedure for any of their combinations. The theories of arrays
and possibly empty lists are not convex, and therefore cannot be combined by the
Nelson-Oppen scheme without case analysis.
A different approach to big engines in the context of theory reasoning, and espe-

cially combination of theories, appeared in [Ganzinger et al. 2006]: the combination
or extension of theories is conceived as mixing total and partial functions, and a
new inference system with partial superposition is introduced to handle them. Be-
cause the underlying notion of validity is modified to accomodate partial functions,
the emphasis of [Ganzinger et al. 2006] is on defining the new inference system and
proving its completeness. The realization of such an approach requires to imple-
ment the new inference system. The essence of our methodology, on the other hand,
is to leave the inference system and its completeness proof unchanged, and prove
termination to get decision procedures. This allows us to take existing theorem
provers “off the shelf.”
For the experimental evaluation, we designed six sets of synthetic benchmarks on

the theory of arrays with extensionality and combinations of the theories of arrays,
records and integer offsets or integer offsets modulo. For “real-world problems,”
we considered satisfiability benchmarks extracted from the UCLID suite. Our ex-
perimental comparison between the SP-based E prover and the validity checkers
CVC and CVC Lite is a first of its kind, and offers many elements for reflection
and suggestions for future research.
The analysis of the traces of the theorem prover showed that these satisfiabil-

ity problems behave very differently compared to more typical theorem-proving
problems. Classical proof tasks involve a fairly large set of axioms, a rich signature,
many universally quantified variables, many unit clauses usable as rewrite rules and
many mixed positive/negative literal clauses. The search space is typically infinite,
and only a very small part of it gets explored. In T -satisfiability problems, input
presentations are usually very small and there is a large number of ground rewrite
rules generated by flattening. The search space is finite, but nearly all of it has

15Our termination result for the theory of integer offsets was generalized in [Bonacina and Echenim
2007b] to the theories of recursive data structures as defined in [Oppen 1980].
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to be explored, before unsatisfiability (validity) can be shown. Table I compares
the behavior of E on some medium-difficulty unsatisfiable array problems and some
representative TPTP problems of similar difficulty for the prover.

Problem Initial Generated Processed Remaining Unnecessary
Name clauses clauses clauses clauses inferences

STORECOMM(60)/1 1896 2840 4323 7 26.4%

STOREINV(5) 27 22590 7480 31 95.5%
SWAP(8)/3 62 73069 21743 56 98.2%

SET015-4 15 39847 7504 16219 99.90%
FLD032-1 31 44192 3964 31642 99.96%
RNG004-1 20 50551 4098 26451 99.90%

The data are for E in automatic mode. STORECOMM(60)/1 is one of the problems in
STORECOMM(n) for n = 60, STOREINV(5) is STOREINV(n) for n = 5 and SWAP(8)/3 is one of

the problems in SWAP(n) for n = 8. The others are representative problems from
TPTP 3.0.0. The sum of processed and remaining clauses may be smaller than the sum
of initial and generated clauses, because E removes newly generated trivial clauses, as

well as unprocessed clauses whose parents become redundant, without counting them as
processed. The final column shows the percentage of all inferences (expansion and

contraction) that did not contribute to the final proof.

Table I. Performance characteristics of array and TPTP problems.

Most search plans and features of first-order provers were designed assuming
the search space characteristics of typical first-order problems. Thus, the theorem
prover turned out to be competitive with the little-engines systems, although it
was optimized for different search problems. This means that not only is using a
theorem prover already a viable option in practice, but there is a clear potential to
improve both performance and usability, by studying implementation techniques of
first-order inferences that target T -satisfiability, by designing theory-specific search
plans, and by equipping the prover with the ability to recognize which theories ap-
pear in the input set. The prover also terminated in many cases beyond the known
termination results (cf. Figure 6 and the runs with E(std-kbo), whose ordering is
not A-good). Thus, theorem provers are not as brittle as one may fear with re-
spect to termination, and still offer the flexibility of adding useful lemmata to the
presentation, as shown in Section 6.2.
The above remarks suggest that stronger termination results may be sought. The

complexity of the rewrite-based procedures may be improved by adopting theory-
specific search plans. Methods to extract models from saturated sets can be inves-
tigated to complement proof finding with model generation, which is important for
applications. For instance, in verification, a model represents a counter-example
to a conjecture of correctness of a system. The ability to generate models marks
the difference between being able to tell that there are errors (by reporting “sat-
isfiable”), and being able to give some information on the errors (by reporting
“satisfiable” and a model). Since we do not expect the rewrite-based approach to
work for full linear arithmetic, another quest is how to integrate it with methods
for arithmetic [Rueß and Shankar 2004] or other theories such as bit-vectors [Cyrluk
et al. 1996]. Research on integration with the latter theory began in [Kirchner et al.
2005].
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Most verification problems involve arbitrary quantifier-free T -formulæ, or, equiv-
alently, sets of ground T -clauses. Thus, a major open issue is how to apply big
engines towards solving general T -decision problems. Since SP is an inference sys-
tem for general first-order clauses, a set of ground T -clauses may be submitted
to an SP-based prover. Showing that an SP-strategy is a T -decision procedure
requires extending the termination results from sets of ground literals to sets of
ground clauses. Sufficient conditions for termination of SP on T -decision problems
were given recently in [Bonacina and Echenim 2007a]. However, verification prob-
lems of practical interest typically yield large sets with huge non-unit clauses, and
first-order provers are not designed to deal with large disjunctions as efficiently as
SAT solvers.
In practice, a more plausible approach could be to follow a simple “lazy” scheme

(e.g., [Barrett et al. 2002a; Flanagan et al. 2003]), and integrate a rewrite-based T -
satisfiability procedure with a SAT solver that generates assignments. The rewrite-
based T -solver produces a proof, whenever it detects unsatisfiability, and can be
made incremental to interact with the SAT solver according to the “lazy” scheme.
However, the state of the art in SMT solvers indicates that a tight integration of
the two solvers is required to achieve high performances. SAT solvers are based on
case analysis by backtracking, whereas rewrite-based inference engines are proof-
confluent, which means they need no backtracking. While proof confluence is an
advantage in first-order theorem proving, this dissimilarity means that a tight in-
tegration of SAT solver and rewrite-based T -solver requires to address the issues
posed by the interplay of two very different kinds of control.
In current work we are taking a diffrent route: we are exploring ways to decom-

pose T -decision problems, in such a way that the big engine acts as a pre-processor
for an SMT solver, doing as much theory reasoning as possible in the pre-processing
phase. In this way we hope to combine the strength of a prover, such as E, in equa-
tional reasoning with that of an SMT solver in case analysis. Even more general
problems require to reason with universally quantified variables, that SMT solvers
handle only by heuristics, following the historical lead of [Detlefs et al. 2005]. In
summary, big engines are strong at reasoning with equalities, universally quantified
variables and Horn clauses. Little engines are strong at reasoning with proposi-
tional logic, non-Horn clauses and arithmetic. The reasoning environments of the
future will have to harmonize their forces.
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Ranise, S., Ringeissen, C., and Tran, D. K. 2004. Nelson-Oppen, Shostak and the extended
canonizer: a family picture with a newborn. In Proc. 1st ICTAC, K. Araki and Z. Liu, Eds.
LNCS. Springer.

Ranise, S., Ringeissen, C., and Zarba, C. G. 2005. Combining data structures with nonstably
infinite theories using many-sorted logic. In Proc. 5th FroCoS, B. Gramlich, Ed. LNAI, vol.
3717. Springer, 48–64.

Riazanov, A. and Voronkov, A. 2002. The design and implementation of VAMPIRE. J. of AI

Communications 15, 2/3, 91–110.

Rueß, H. 2004. Personal communication on ICS 2.0 (e-mail message to Alessandro Armando).

Rueß, H. and Shankar, N. 2001. Deconstructing Shostak. In Proc. LICS-16, J. Halpern, Ed.
IEEE Computer Society Press.

Rueß, H. and Shankar, N. 2004. Solving linear arithmetic constraints. Tech. Rep. CSL-SRI-
04-01, SRI International, Menlo Park, CA, U.S.A.

Schulz, S. 2002. E – a brainiac theorem prover. J. of AI Communications 15, 2–3, 111–126.

Schulz, S. 2004. System description: E 0.81. In IJCAR-2, D. Basin and M. Rusinowitch, Eds.
LNAI, vol. 3097. Springer, 2223–228.

Schulz, S. and Bonacina, M. P. 2005. On handling distinct objects in the superposition calculus.
In Notes 5th IWIL Workshop, LPAR-11. 66–77.

Seshia, S. A., Lahiri, S. K., and Bryant, R. E. 2003. A hybrid SAT-based decision procedure
for separation logic with uninterpreted functions. In Proc. 40th DAC, L. Fix and L. Lavagno,
Eds. 425–430.

Shankar, N. 2002. Little engines of proof. Invited talk, 3rd FLoC, Copenhagen, Denmark; and
course notes of Fall 2003, http://www.csl.sri.com/users/shankar/LEP.html.

Shostak, R. E. 1978. An algorithm for reasoning about equality. C. ACM 21, 7, 583–585.

Shostak, R. E. 1984. Deciding combinations of theories. J. ACM 31, 1, 1–12.

Stickel, M. E. 2002. Herbrand Award speech. 3rd FLoC, Copenhagen, Denmark.

Stump, A. 2005. Personal communication on CVC 1.0a (e-mail message to Alessandro Armando).

Stump, A., Barrett, C. W., and Dill, D. L. 2002. CVC: a Cooperating Validity Checker. In
Proc. CAV-14, K. G. Larsen and E. Brinksma, Eds. LNCS, vol. 2404. Springer, 500–504.

Stump, A., Barrett, C. W., Dill, D. L., and Levitt, J. 2001. A decision procedure for an
extensional theory of arrays. In Proc. LICS-16, J. Halpern, Ed. IEEE Computer Society Press.

Stump, A. and Dill, D. L. 2002. Faster proof checking in the Edinburgh Logical Framework. In
Proc. CADE-18, A. Voronkov, Ed. LNAI, vol. 2392. Springer, 392–407.

Tinelli, C. and Harandi, M. 1996. A new correctness proof of the Nelson-Oppen combination
procedure. In Proc. 1st FroCoS, F. Baader and K. Schulz, Eds. Applied Logic Series, vol. 3.
Kluwer Academic Publishers.

van Dalen, D. 1989. Logic and Structure. Springer-Verlag. Second edition.

Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt, C.,
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