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ABSTRACT

Currently there are hundreds of millions (high-quality) im-
ages in online image repositories such as Flickr. This makes
is necessary to develop new algorithms that allow for search-
ing and browsing in those large-scale databases. In this work
we explore deep networks for deriving a low-dimensional im-
age representation appropriate for image retrieval. A deep
network consisting of multiple layers of features aims to cap-
ture higher order correlations between basic image features.
We will evaluate our approach on a real world large-scale im-
age database and compare it to image representations based
on topic models. Our results show the suitability of the
approach for very large databases.

Categories and Subject Descriptors

1.5.4 [Pattern Recognition|: Applications; I11.3.1 [Infor-
mation Storage and Retrieval]: Content Analysis and
Indexing

General Terms

Algorithms, Experimentation

1. INTRODUCTION

Large-scale community image databases such as Flickr are
growing fast and contain hundreds of millions of images.
They are currently mostly indexed and searched based on
manually entered tags. However, the tags — if present at
all — are provided by the creator of the picture and do not
necessarily refer to the content shown. In this paper we con-
centrate on developing a retrieval approach which explores
the usage of image features. Specifically we are interested in
deriving a low-dimensional image description that enables
fast retrieval of images of similar content.

Motivated by the promising results achieved by deep net-
works in information retrieval [10], we will exploit those
models for deriving a low-dimensional description of the
coarse image content. A deep network (DN) consists of
multiple, non-linear layers each capturing the strong cor-
relations of the feature activations in the level below. This

© Owner/Author | ACM 2008. This is the author's version of the work. It is
posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in:

MM08, October 26-31, 2008, Vancouver,
https://doi.org/10.1145/1459359.1459449

British Columbia, Canada.

643

Rainer Lienhart
Multimedia Computing Lab
University of Augsburg
Augsburg, Germany

lienhart@informatik.uni-augsburg.de

way we compute a multi-level representation of each im-
age; by decreasing the number of units in each higher layer
the dimensionality of our input vector is reduced. By using
only the low-dimensional image representation of the high-
est layer, we are able to perform fast and accurate retrieval
as our experimental results show.

The works which are most similar to our approach are
the application of DNs to information retrieval [10] and the
very recent work of Torralba et al. [12] where a deep net-
work is used for performing image recognition. In [12] the
authors use a global image description in contrast to our
local features. Also they apply the model in a different con-
text: it is applied to a labeled image database as well as
to a web database with images of size 40 x 40 pixels, con-
taining mostly only one object. Other approaches for low-
dimensional image representations in the context of large-
scale image retrieval include topic-models, e.g. [8] used prob-
abilistic Latent Semantic Analysis (pLSA) [6] based models,
[7] applied Latent Dirichlet Allocation (LDA) [2] to derive
a topic representation and [3] adopted the Correlated Topic
Model (CTM) [1]. In the experimental evaluation we com-
pare our approach with those models.

The paper is organized as follows. First we describe the
computation of the basic image representation followed by
an introduction to DNs in Sec. 2 and 3, respectively. In
Sec. 4 we present our image retrieval approach and evaluate
it experimentally in Sec. 5. Sec. 6 concludes the paper.

2. BASIC IMAGE REPRESENTATION

The first step in applying a deep network model to our
image database is to obtain a basic representation for each
image. Therefore we compute a visual word co-occurrence
vector for each image. This kind of representation is very
flexible and has shown good performance in various image
analysis tasks. A co-occurrence vector for a specific image is
derived by counting the number of occurrences of so-called
visual words from a fixed sized visual vocabulary in that im-
age. Note that the geometric relations between the different
words and thus between the extracted visual features are
completely ignored.

Visual words are derived by vector-quantizing local fea-
ture descriptors that are extracted at predefined locations
and scales. There exist various techniques for learning vi-
sual words from local image features. In this work we derive
the vocabulary by merging the results of multiple k-means
clusterings on non-overlapping feature subsets. Therefore
relatively small sets of features are selected randomly from
all features and k-means clustering is applied to each subset.



The means of each cluster are kept as visual words. Finally,
the derived visual words of each subset are amalgamated
into the vocabulary [8].

There are various possibilities for finding locations and
scales of interest as well as for describing these regions of in-
terest by features. In this work we will consider two different
possibilities of defining interest points and scales for feature
extraction: sparse features extracted at extrema in the dif-
ference of Gaussian pyramid [9] and dense features which
are extracted at regular grid points at various scales. Fur-
thermore we consider two different kinds of local features:
SIFT features [9] and self-similarity features [11]. Both fea-
ture types have shown good performance in related image
analysis tasks.

Given the vocabulary, features are extracted from each
image first. Then, each detected feature vector is replaced
by its most similar visual word defined as the closest word
in the high-dimensional feature space. Finally, counting the
specific word occurrences for each image results in the co-
occurrence vectors: one for each image. These vectors are
usually of high dimension.

3. DEEP NETWORKS

Having computed a basic visual representation for each
image, we now apply a deep network model to derive a low-
dimensional image representation. The applied deep net-
work uses multiple, non-linear hidden layers and was in-
troduced by Hinton et al. in [5] and [10]. It will be de-
scribed in the following. The learning procedure for such
a deep model consists of two stages. In the first stage, the
pretraining, an initialization based on restricted Boltzmann
machines (RBM) is computed. In the second stage it is re-
fined by using backpropagation.

RBMs provide a simple way to learn a layer of hidden
features without any supervision. They consists of a layer
of visible units which are connected to hidden units using
symmetrically weighted connections. Note that a RBM does
not have any visible-visible or hidden-hidden connections
(Fig. 1). Assuming binary vectors as our input, the energy
of the joint configuration of visible, stochastic, binary units v
and hidden, stochastic, binary units h is given by [5]:

B(v,h) == bivi— > bjh; — > wvihjwy; (1)
i J 2%

where v; and h; are the binary states of the visible and
hidden units respectively, b; and b; their biases and wj; the
symmetric weights. The probability of a visible vector v
given this model can be computed as follows:

> nexp(=E(v,h))
g XP(—E(u,g))’

Given the states of the visible units, the probability that a
hidden unit h; is activated on is:

p(h; =11v) = o(b; + Y _ viwyy)

p(v) = 2)

®3)

where o(z) denotes the logistic function. Similarly it holds:

p(vi = 1|h) = o (b; + Z hjwij) (4)

In order to learn the variables, i.e. the weights w;; and the
biases b;, bj, we apply one step contrastive divergence [4]:
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Figure 1: Restricted Boltzmann machine
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Figure 2: DN models: layer-by-layer pretraining
(left); unrolling and fine-tuning (right)

Aw;; = e(< vihj >data — < Vilj >recon). A similar update
equation is used for learning the biases.

To construct a deep network, Hinton et al. [5] propose
to learn additional layers of features by treating the hidden
states (or activation probabilities) of the lower level RBM as
the visible data for training a higher level RBM, that learns
the next layer of features (see Fig. 2 left). By repeating this
greedy layer-by-layer training several times, we can learn a
deep model which is able to capture higher order correlations
between the input units.

After having greedily pretrained all layers, the parame-
ters of the deep model are further refined. This is done by
replacing the stochastic activities of the binary features by
deterministic real-valued probabilities and unrolling the lay-
ers to create an autoencoder as proposed in [5] (see Fig. 2
right). Using the pretrained biases and weights to initial-
ize the backpropagation algorithm, backpropagation is used
to fine-tune the parameters for optimal reconstructing the
input data.

4. IMAGE RETRIEVAL

In this work our aim is to study the representation of
images by deep networks. When applying the DN model
described in the previous section to our image data, some
modifications to that model are necessary as the input vec-
tor at the lowest layer is a co-occurrence vector and not
binary. We first divide each entry of the respective vector
by the total number of visual words detected in the specific
image. This creates a discrete probability distribution over
the visual vocabulary for each image document. According
to [5], the probabilities of the visible units given the hidden



ones can be modeled by a so called 'softmax’ unit:
exp(bi + Zj hjwi])
>k exp(br + 325 hywe;)

The learning rules for the weights are not affected by the
usage of softmax units. However, the weights w;; from visi-
ble unit ¢ to hidden unit j are multiplied by the number of
detected features Ny in image d, whereas the weights from
hidden units to visible units remain w;;. This is done to
account for the fact that each image d may contain a dif-
ferent number of visual words depending on its size in case
of densely extracted features or size and image structure in
case of sparsely extracted features.

It should be noted that there are different possibilities
to choose the type of unit at the top level of the network.
In this work we will evaluate two different types of units:
logistic units and linear units.

After pretraining the layers of the deep network, an au-
toencoder is created as described in the previous section.
The parameters of the autoencoder are initialized with the
pretrained biases and weights and refined using the back-
propagation algorithm. For backpropagation the multi-class
cross-entropy error function is used:

e=— Z v; log(9;)
i

where ¥; denotes the reconstruction of v; by the autoencoder
and v; is the i-th component of the normalized input vector.

For image retrieval we apply the learned deep model to
each image in the database and use its top-level unit values
as its low-dimensional description. It should be noted that
the mapping from the co-occurrence vector, i.e. the basic
image description, to the high level representation only con-
sists of a single matrix multiplication and single squashing
function per network unit. Given a query image, we then re-
trieve images of similar content by comparing the high level
image representations based on some distance metric. In
this work we use the simple L1 distance metric.

5. EXPERIMENTAL EVALUATION

Dataset and implementation details: All experiments
are performed on a real world database consisting of 246,348
images. The images were selected from all public Flickr im-
ages uploaded prior to Sep. 2006 and labeled as geotagged
together with one of the following tags: sanfancisco, beach
and tokyo. Of these images only images having at least
one of the following tags were kept: wildlife, animal, ani-
mals, cat, cats, dog, dogs, bird, birds, flower, flowers, graf-
fiti, sign, signs, surf, surfing, night, food, building, buildings,
goldengate, goldengatebridge, baseball. Note that the tags
are only needed for pre-selecting a subset of images from
the entire Flickr database and are not used at any stage
in our retrieval approach. We computed the visual vocab-
ulary for each feature type from 12 randomly selected non-
overlapping subsets, deriving a total vocabulary size of 2400
visual words. The trained DNs consisted of four hidden lay-
ers with a 2400-1000-500-250-50 structure. Thus, we obtain
a 50-dimensional image description for image retrieval. We
used 50,000 images for training, 25 iterations for pretrain-
ing each layer and 50 iterations to optimize the autoencoder.

p(vi = 1lh) = (5)

(6)

Performance metric: To evaluate our approach, we
judge its performance by users in a query-by-example task.
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Figure 3: Avg. # of correctly retrieved images using
DN-based image models with two different types of
top layer units: logistic and linear.
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Figure 4: Avg. # of correctly retrieved images using
different image models.

Here the objective is to obtain images with similar content to
the given query image. We selected a total of 60 test query
images in a random fashion. For each query image the 20
most similar images (including the query image) according
to the L1 distance measure are returned to the users. For
each experiment we asked ten users to judge the retrieval
results by counting how many of the retrieved images show
content similar to the query image. As the query image is
counted too, the lowest number of correctly retrieved images
is one and the largest 20. The average number of similar im-
ages over all queries for one retrieval technique is computed
for each user to give the final score. Note that the user’s
judgment is subjective. As our test users varied for each ex-
periment, we may derive different average results in different
experiments even for the same approach and parameters.
Therefore we will also show the standard deviation in addi-
tion to the average number of correctly retrieved images.

Experiments: First we examine the influence of the top
layer type on our retrieval results. We compare the logistic
unit type with the linear unit type using sparsely extracted
SIFT features. As can be seen from the results in Fig. 3, the
performances of both types differ only slightly with a small
edge for the linear units. Thus we will use the linear units
for our subsequent experiments.

Our second experiment compares the results of the DN-
based image representation to other proposed approaches.
For comparison we use three recently proposed approaches
described in [8], [7] and [3] which have shown good perfor-
mance in large-scale image retrieval tasks. The approaches
are based on different topic models: the CTM, LDA and
pLSA. All three models derive a low-dimensional topic-based
representation from the original co-occurrence vectors. We
train each model with 50,000 images to derive 50 topics,
resulting in a 50-dimensional topic vector for image repre-
sentation. Fig. 4 displays the average number of correctly
retrieved images for each approach. Again we have assumed



Figure 6: Retrieval results for different local features; each top left image depicts the query image.
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Figure 5: Avg. # of correctly retrieved images using
DN-based image models with different local image
detectors and descriptors.

sparsely extracted SIFT as the basic image feature. Clearly,
CTM shows the worst performance. Further, it can be ob-
served that DN, LDA and pLSA perform almost equally
well with a very slight advantage for the pLSA. However
DN has the advantage of modeling each image by multiple
layers of feature activations. Here we only used the high-
est level in the model to represent an image. Nevertheless,
there are possibilities of extending the approach by using
multi-level representations. Further, the mapping from the
high-dimensional word count vector to the low-dimensional
representation is much faster for the DN model compared to
inference in the LDA and pLSA model. As inference in those
models requires multiple iterations of the (variational) EM
algorithm, it is more costly than the feed forward structure
of the DN, requiring only a matrix multiplication followed
by a non-linearity per unit for each layer.

In our last experiment we compare three different types
of visual features as the basic building block: sparse SIFT,
dense SIFT and dense self-similarity features. The result is
depicted in Fig. 5. It can be observed that dense feature ex-
traction outperforms the sparse extraction. Furthermore the
dense SIF'T descriptor shows slightly better results than the
densely extracted self-similarity features. One should note
that the SIFT descriptor has 128 dimensions whereas the
self-similarity feature consists of only 80 dimensions, which
results in a faster vocabulary and co-occurrence vector com-
putation. Finally we show some retrieval examples for dif-
ferent types of features in Fig. 6.

6. CONCLUSION

In this work we have proposed a novel approach for image
search in very large databases, which applies a deep net-
work to derive a low-dimensional image representation. We
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have evaluated our system experimentally. User studies have
shown that the DN based image representation is suitable for
retrieval in large, real world databases and that our system
performs as well as other state of the art algorithms. Future
work will consist of a more extensive evaluation. Also we
want to extend our system to multiple modalities, i.e. in-
cluding the noisy tags or other available image information.
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