
Towards an Error-Free Arabic Stemming 
Eiman Tamah Al-Shammari 

George Mason University 
Dept. of Computer Science 

4400 University Drive 
Fairfax, VA 22030 

Eiman.tamah@gmail.com 

Jessica Lin, Ph.D. 
George Mason University 

Dept. of Computer Science 
4400 University Drive 

Fairfax, VA 22030 
jessica@cs.gmu.edu 

ABSTRACT 
Stemming is a computational process for reducing words to their 
roots (or stems). It can be classified as a recall-enhancing or 
precision-enhancing component. 

Existing Arabic stemmers suffer from high stemming error-rates. 
Arabic stemmers blindly stem all the words and perform poorly 
especially with compound words, nouns and foreign Arabized 
words.  

The Educated Text Stemmer (ETS) is presented in this paper. ETS 
is a dictionary free, simple, and highly effective Arabic stemming 
algorithm that can reduce stemming errors in addition to decreasing 
computational time and data storage.  

The novelty of the work arises from the use of neglected Arabic 
stop-words. These stop-words can be highly important and can 
provide a significant improvement to processing Arabic documents.  

The ETS stemmer is evaluated by comparison with output from 
human generated stemming and the stemming weight technique.  

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – Indexing methods, Linguistic processing. 

General Terms 
Algorithms, Documentation, Experimentation, Human Factors, 
Languages, Standardization. 

Keywords 
Arabic, Lemmatization, Stemming, Text Mining, Tokenization. 

1. INTRODUCTION 
Stemmers are basic elements in query systems, indexing, web 
search engines and information retrieval systems (IRS).  
Stemming offers the benefits of minimizing storage requirements by 
eliminating redundant terms, as well as increasing matching 
probability for document comparison and unifying vocabulary [1].  

Unfortunately, stemming can cause errors in the form of over-
stemming, mis-stemming and under-stemming. These errors 
decrease the effectiveness of stemming algorithms [2] however 
reducing one type of errors can lead to an increase of the other [3]. 

Over-stemming occurs when two words with different stems are 
stemmed to the same root. An over-stemming example is when the 
word “probe” and “probable” are merged together after stemming.  

Under-stemming occurs when two words that should be stemmed to 
the same root are not, for example, when the stemmer fails to 
conflate the words “adhere” and the word “adhesion” to the same 
root.  

Mis-stemming is defined as “taking off what looks like an ending, 
but is really part of the stem [4] for example, stemming the word 
“red to “r” or the word “reply to “rep”.  

The challenges associated with stemming are even more 
pronounced in Arabic. Arabic is one of the most complex 
languages, in both its spoken and written forms. However, it is also 
one of the most common languages in the world. The Arabic 
language exhibits a very complicated morphological structure. 

This paper presents a stemming algorithm that relies on Arabic 
language morphology and Arabic language syntax. The stemming 
algorithm automatically identifies nouns and verbs without the need 
for a dictionary. Nouns and verbs are stored in a separate dictionary. 
Automated addition to the syntactic knowledge and construction of 
corpus-based dictionaries reduce both stemming errors and 
stemming cost.  

The remainder of this paper is organized as follows: 

Section II includes a brief review of Arabic language morphology 
and discusses previous Arabic language stemming processes.  
Section III introduces the proposed methodology followed by a 
description of the stemming algorithm in section IV.  Section V 
presents the evaluation criteria and experimental results.  A 
conclusion and discussion of future work can be found in section 
VI. 

2. BACKGROUND AND RELATED WORK  
Arabic language is a semantic language with a composite 
morphology. Arabic words are categorized as particles, nouns, or 
verbs [5].  

Unlike most western languages, Arabic script writing orientation 
is from right to left. There are 28 characters in Arabic. The 
characters are connected and do not start with capital letter as in 
English. Figure 1 below shows a list of Arabic characters. 
Furthermore, most of the characters differ in shape based in their 
position in the sentence and adjunct letters. Figure 2 below 
demonstrates some of the Arabic characters changes in shape.  
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 ا ب ت ث ج ح خ

 د ذ ر ز س ش ص

 ض ط ظ ع غ ف ق

 ك ل م ن ه و ي

Figure 1: Arabic characters (letters) 

 

 
Figure 2: Arabic characters shape differ as their position in 

the word change 

In Arabic, proper nouns do not start with capital letter as in 
English, which makes one particularly challenging task for 
machines, recognizing and extracting proper nouns from Arabic 
texts.   

Furthermore, in English, words are formed by attaching prefixes 
and suffixes to either or both sides of the root. For example the 
word Untouchables is formed as follows  

 

Un touch able s 

Prefix Root First Suffix Second 
Suffix 

 

In Arabic, additions to the root can be within the root (not only on 
the word sides) which is called an infix. This causes a serious 
issue in stemming Arabic documents because it is hard to 
differentiate between root characters (letters) and affix letters. For 

example, for the root “drink”  in Arabic, adding the infix 
letter “ا” (circulated in Figure 3) formed a different word: 

  “drinker”.  

 

 
Figure 3. Arabic infix example 

Table 1 displays an example of the Arabic Word =  الشارب
(drinker) and its stems with the common prefixes and suffixes. 

Table 1.  Arabic Example 

Prefixes + Stem ( Root + Pattern) + Suffixes 

Root شرب drink 

Prefixes ال the 

Stem  شارب drinker 

Suffixes  ين OR 
 ان 

dual 

Suffixes  ون plural 

Suffixes  ة feminine 

 the drinkers (dual) الشاربان

 the drinkers (plural) الشاربين

 the drinker (masculine) الشارب

ربهالشا  the drinker (feminine) 

Suffixes, prefixes and infixes are categorized based on their uses. 
Similar to other Western languages, there are specific suffixes to 
convert the word from the singular form to the plural form and 
others to convert from masculine to feminine.  
Due to its complicated morphological structure, Arabic requires a 
different stemming process from other languages.  
Automatic Arabic stemming proved to be an effective technique for 
text processing for small collections [6-8] and large collections 
[9,10] of documents. Xu et al. [11] showed that spelling 
normalization combined with the use of tri-grams and stemming 
could significantly improve the accuracy of Arabic text processing 
by 40%. Additionally, in Al-Shammari et.al [6] it was proven that 
stemming can improve text clustering. 
Stemming Arabic documents was performed manually prior to 
TREC (Text Retrieval Conference) and only applied on small 
corpora. Later, many researchers both native and non-native Arabic 
speakers created a considerable amount of Arabic stemming 
Algorithms. 
Based on the required level of analysis, Arabic stemmers are 
categorized as either root-based [12, 13] or stem-based [9, 10, 14] . 
In Arabic, the root is the original form of the word before any 
transformation process [15]. However, a stem is a morpheme or a 
set of concatenated morphemes that can accept an affix [16].  
A superior root-based stemmer is the Khoja's stemmer[14], 
presented by Khoja and Garside[12] . The Khoja algorithm removes 
suffixes, infixes and prefixes and uses pattern matching to extract 
the roots. The algorithm suffered from problems especially with 
names and nouns.  
A possible solution for this problem is to add a lookup dictionary to 
check the nouns, roots and names. Although this solution seems 
straightforward and easy, this process is computationally expensive. 
Al-Fedaghi and Al-Anzi [17] estimated that there are around 10,000 
independent roots. Each root word can have prefixes, suffixes, 
infixes, and regular and irregular tenses. 

On the other hand, there have been several proposed Arabic stem-
based (light) algorithms [9, 10, 14, 18-20]. The prominent Arabic 
light stemmer is Aljlayl [14, 18] light stemmer. Light stemming 
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does not deal with patterns or infixes; it is simply the process of 
stripping off prefixes and/or suffixes. Unfortunately, the unguided 
removal of a fixed set of prefixes and suffixes causes many 
stemming errors especially where it is hard to distinguish between 
an extra letter and a root letter.  

Although light stemmers produce fewer errors than aggressive root-
based stemmers; in contrast, aggressive stemmers reduce the size of 
the corpus significantly. Paice [3,21,22] proved that light stemming 
reduces the over-stemming errors, but increases the under-stemming 
errors. On the other hand, heavy stemmers reduce the under-
stemming errors while increasing the over-stemming errors.  

Both Arabic root-based and stem-based algorithms suffer from 
generating stemming errors. The main cause of this problem is the 
stemmer’s lack of knowledge of the word’s lexical category (i.e. 
noun, verb, proposition, etc.)  

To mitigate the drawbacks of the previous work on Arabic 
stemming, we propose an alternative that defines a rule to stem 
words instead of chopping off the letters. This rule is set by the 
syntactical structure of the word. For example, verbs require 
aggressive stemming and need to be represented by their roots. 
Nouns on the contrary only require light suffixes and prefixes 
elimination. This advanced stemming is known as Lemmatization 
[6].  

In this work, we propose the first Arabic stemming algorithm that 
uses the syntactical knowledge to make stemming decisions, and we 
hypothesize that my approach will be more efficient in tokenizing 
Arabic documents than the existing approaches. In addition to the 
general stemming benefits, my approach can reduce the stemming 
errors, as well as stemming cost by reducing unnecessary stemming. 
An earlier version of my stemmer was introduced in and proved to 
improve clustering [6]. 

3. METHODOLOGY 
Stop words (functional words or structural word list [1]) are words 
that either carry no meaning or are very common [23] thus do not 
represent the document. Stop words list usually contains 
prepositions, pronouns, and conjunctions.  

Text processing often performs stop words removal early in the 
process, although there is currently no standardized list of Arabic 
Stop Words. The current available Arabic stop words list [9] 
introduces less than 200 words.  

we was able to define more than 2,200 stop words and categorize 
them into “useful” and “useless” stop words.  

Useless stop words are stop words that are used extensively and 
give no benefits to the subsequent words.  On the contrary, useful 
stop words are words that can indicate the syntactical categories of 
the subsequent words.  For example, in an English sentence such as 
“I read a book yesterday,” it is easy to realize that book is a noun 
and thus does not require aggressive stemming. Table 2 and 3 are 
examples of useful stop words.  
Unfortunately, due to the early removal of the stop words, this 
valuable information is lost. The same scenario applies to Arabic 
language too.  we believe that the useful stop words can help us 
identify nouns and verbs and direct us into the appropriate 
stemming. ETS automatically identifies nouns and verbs and 
generates global nouns and verbs dictionaries. The benefit of these 
dictionaries is to find similar nouns in the corpus that were used 
differently in other sentences. For example, in the following 

paragraph the word book is identified as a noun and was recognized 
as a noun in the following sentence. 

 I read a book yesterday, I love books.  

In Table 2, a sub list of stop words preceding verbs is shown, and 
Table 3 presents some of the stop words preceding nouns.  The stop 
words list was initially generated by three methods; English stop 
words translation, identification of common words in arbitrary 
Arabic documents, and manual search of synonyms to the 
previously identified stop words. 
In the following section the ETS algorithm will be described in 
detail. 

Table 2. Preposition Preceding Verbs 

Preposition English  

 Wherever حيثما

 Whenever آلّما

 If إذا

 When (not for question) عندما

 

Table 3. Arabic circumstantial nouns indicating time and 
place 

Preposition English Equivalence 

 until ,near, towards ,to إلَى

 in front of أمامَ

 On the direction of باتجاه

 Aside, next to, beside بجانب

 After بعد

 Between بينَ

 Below, beneath, down تحت

 Till (time and location) حتى

 Outside of خارج

  ,Through, during خلال

 Through     عبر

 Over على

 Above, up فوق

 In (time, location,  duration) في

 Before قبلَ

 Near قريب

 since منذ

ءَورا  Behind ,Beyond 
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4. ARABIC STEMMING ALGORITHM 
Prior to applying the ETS algorithm, normalization is performed to 
make the data sets more consistent. Normalization consists of the 
following steps:  

• Convert text to Unicode. 

• Remove diacritics and punctuation. 

• Remove non letters (for example, numbers). 

• Replace  آ with double alif اا . 

• Replace  ى with ا  .  

• Replace initial إ  with أ.  

• Replace all hamza forms   ئ , ؤ , ء  with أ 

As shown in Figure 4, the algorithm consists of different phases. 
During the first phase, useless stop words are removed to reduce the 
size of the corpus. Next, nouns are identified by either locating stop 
words that always precede nouns (example: the, a, over, etc) or 
words starting with definite articles. At this level, these words are 
flagged as nouns as a preparation for the stemming phase. In 
parallel to that process verbs are found by locating stop words that 
always precede verbs. Similar to the nouns, the verbs are added to a 
global verb dictionary and tagged as verbs.  

In Arabic, we cannot have two consecutive verbs, thus any word 
following a verb is either a stop word or a noun.  If the word is not a 
stop word then the word is added to the noun dictionary and flagged 
as a noun. Verbs are stemmed using the Khoja root-based stemmer 
and nouns are lightly stemmed. The new stemmed nouns and verbs 
are also added to the nouns and verb dictionary respectively. 

The document is revisited by categorizing words with missing flags 
using the noun corpus and the verb corpus as a lookup table. Nouns 
usually co-occur in the same document, thus the lookup table will 
allow us to identify un-flagged nouns. Other words that do not 
belong in any category will be treated as nouns and stemmed 
lightly. Before we direct a word to the appropriate stemming by the 
word flag, all the stop words are removed since they offer no further 
advantage. Table 4 below summarizes the algorithm. 

 

 
Figure 4. The educated Arabic stemming algorithm simplified 

Table 4. The Educated Text Stemmer (ETS) Arabic Stemming 
Algorithm 

ETS 

Input: Arabic document 

Output: Stemmed document. 

        Noun Dictionary. 

        Verbs Dictionary. 

V: Verb dictionary (one dimensional array sorted alphabetically1) 

N: Noun dictionary (one dimensional array sorted alphabetically) 

NSW: Array of stop words proceeding nouns 

VSW: Array of stop words proceeding verbs 

SW: Array of stop words (including both NSW and VSW) 

 

1. Remove useless stop words 

2. Locate words attached to definite articles, and preceded by 
NSW and flag them as Nouns 

3. Add nouns to the noun dictionary N. 

4. Locate Verbs proceeded by VSW. Flag verbs in the 
document.  

5. Add the identified Verbs to the verb dictionary V. 

6. Revisit the document searching for nouns and verbs existing 
in the document. 

7. Tokens (words) with missing tags are treated as nouns. 

8. Remove the rest of the stop words (useful stop words). 

9. Apply light stemming Algorithm on nouns. 

10. Apply Khoja’s root-based stemmer on verbs. 

 

5. EVALUATION AND EXPERIMENTS 
Different criteria are used to evaluate the performance of a stemmer. 
A good stemmer (by definition) is a stemmer that stems all the 
words to their correct roots.  

Paice [3,22] introduced The stemming weight (SW) as an indicator 
to the stemmer efficiency. Stemming weight is the ratio between the 
under stemming errors and the over stemming errors.  

For text mining applications that deal with a massive number of 
documents, the ability to significantly reduce the size of the text is 
also a desirable property for a good stemmer. In my previous work 
[6] we compared the effect of my algorithm on document clustering 
to that of the leading Arabic root-based stemmer presented by 
Khoja using Cluster Purity [24]. Applying K-means clustering on 
the three datasets leads to an overall cluster purity of 70.8% for the 
documents stemmed by ETS and 58% for the documents stemmed 
by Khoja’s stemmer.  

                                                                 
1 For fast lookup, these dictionaries can be implemented using hash tables 
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In summary, measures discussed in the literature [21, 22, 25] to 
evaluate the performance of a stemmer include algorithm speed, 
storage saving (compression), stemming weight and retrieval 
effectiveness.  

5.1 Paice’s Evaluation Methodology 
The first evaluation approach is an evaluation method proposed by 
Paice, applied to compare various  English stemmers.  

Paice introduced three new quantitative parameters to evaluate a 
stemmer performance: Under-stemming index (UI) , Over-
stemming index(OI), and  their ratio , the stemming weight (SW).  

A group of morphologically and semantically related words are 
submitted to the stemmer. If the stemmer produces more than one 
stem (root for Arabic) for the same group then the stemmer has 
made an under-stemming error. If words belonging to different 
groups are stemmed to the same stem then the stemmer has made an 
over-stemming error. The ideal stemmer should be able to conflate 
(group) the related words to the same stem and has low UI and OI.  

The Khoja stemmer (root-based) tends to stem morphologically 
related words (but not necessarily semantically related) and as a 
result has a high over-stemming error rate.  

Arabic light stemmers only remove frequent suffixes and prefixes 
from the word leading to a high under-stemming error rate. To 
achieve a balance between these two parameters, the ratio between 
UI and OI, Stemming Weight (SW) is introduced. 

To generate the samples to test the stemmer, we have to generate 
different words from a single stem by adding suffixes, infixes and 
prefixes. Contrary to English, in Arabic, adding affixes, prefixes or 
suffixes to the word can change the meaning completely. Therefore, 
creating a group of morphologically and semantically related words 
is not a trivial task. To achieve this, we first created all the possible 
derivations of a single stem, and then eliminated the word that does 
not belong semantically. 

Suppose we had the following samples divided into two groups as 
shown in Table 5. Group 1 represents the root child and its 
derivations and group two represents the word parasite and it is 
derivations.  

Table 5 : List of words derived from the stem طفل 

 Child طفل

 Children أطفال

 The Children الأطفال

 Your child طفلكم

 Your children أطفالكم

 Childhood طفولة

Group 1 

 For childhood للطفولة

 parasite طفيلي

 parasites طفيليات

Group 2 

 parasite طفيل

 

The Desired merge total (DMT) is the number of different possible 
word form pairs in the particular group, and is given by the formula: 
[22,26] 

DMT = 0.5 n (n – 1) 

Where n is the number of words in that group. 
The Global Desired Merge (GDMT) is the sum of all the DMT’s of 
the various samples.  
There exists a case where certain words in a specific group can be 
conflated after stemming with words from another semantic group. 
To count all the possible word pairs formed we use the Desired 
Non-merge Total (DNT):  

DNT = 0.5 n (W – 1) 

Where W is the total number of words, the sum DNT for all the 
groups is defined as the Global Desired Non-Merge (GDNT).  
After the stemming process is performed, we would like to see if all 
the words in a group are conflated in the same group. To quantify 
the stemmer’s inability to merge these words, Paice introduced the 
“Unachieved Merge Total” (UMT): 

UMT = 0.5 ui (n − ui)
i=1

s

∑  

Where s is the number of distinct stems, and ui is the number of 
instances of each stem. 
From the sum of UMT for each group (in our example 2 groups), 
we obtain the Global Unachieved Merge Total (GUMT).  
The under-stemming index (UI) is: GUMT/GDMT [27]. 
Table 6 displays the output of both stemmers. In Tables 7 and 8 the 
output of the ETS stemmer and the Khoja stemmer for group one 
and group two respectively is demonstrated. 

Table 6: A comparison between the stemmers output for 
Sample1, the right stem is underlined. 

Word Khoja output ETS output 

 طفل طفل طفل

 طفل طفل أطفال

 طفل طفل الأطفال

 طفل طفل طفلكم

 طفل طفل أطفالكم

 طفل طفل طفولة

 طفل طفل للطفولة

 طفيل طفل طفيلي

 طفيل طفل طفيليات

 طفيل طفل طفيل
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A stemmer might transform different words to the same stem 
(over-stemming). For such cases Paice introduced the Wrongly 
Merged Total (WMT), which is the count of over-stemming errors 
for each group[27]. 

∑
=

−=
t

i
isi vnvWMT

1
)(5.0    

Where t is the number of original groups that share the same stem, 
ns is the number of instances of that stem, and, vi is the number of 
stems for group t. 

Similar to the above we can obtain the Global Wrongly Merged 
Total (GWMT) by summing the WMT for all the groups. 

The over-stemming index (OI) is: GWMT/GDNT. 

The table below demonstrates the evaluation of both stemmers on 
both groups. 

 

Table 7: Khoja stemmer evaluation 

 DMT DNT UMT WMT 

 24 45 0 10.5 

Totals 46 139 0 10.5 

 

Table 8: ETS stemmer evaluation 

 DMT DNT UMT WMT 

 24 45 0 0 

Totals 46 139 0 0 

 

From the previous experiment, Khoja’s stemmer had no under-
stemming errors but had a UI = 0.0755. For the ETS stemmer, 
both UI and OI were zero.  

The Khoja stemmer is an aggressive stemmer, therefore the under-
stemming error was expected. We continued the experiments on 
many other samples, in all the cases the ETS were able to make less 
over-stemming errors than the Khoja stemmer. We can conclude 
that my stemmer is more efficient than the Khoja stemmer.  

5.2 Comparison to an Expected Output 
In order to assess the effectiveness of the stemmer, we compared 
its output to that of a manually generated stem. we randomly 
picked two samples of Arabic documents. The first sample 
contains 47 medical documents (total of 9435 words), and the 
second sample contains 10 long, Arabic sports articles from 
CNN.com (total of 7071 words).  

The samples were processed manually, and words were assigned 
to their correct stem. In addition, a noun and a verb dictionary 
were created by the tester (Native Arabic speaker). 

After manually generating the set of expected output, we ran my 
stemmer on the same set of samples. We performed these 
experiments at the designing phase of the ETS stemmer, thus we 

was able to analyze the output of the ETS stemmer and tackle the 
errors. we recursively repeated the experiments after adding extra 
rules and additional stop words. 

At the end of the testing phase, on average, the ETS stemmer was 
able to generate 96% correct stems.  

We observed that the ETS stemmer produces better results when 
more documents are involved in the stemming process. The 
automatic generation of global nouns and verbs dictionaries helps to 
identify nouns and verbs appearing in different context. The system 
initializes a new noun and verb dictionary for every experiment. 
The storage and the reuse of dictionaries will improve the accuracy 
of the stemmer where more nouns and verbs are recognized. 

 

6. CONCLUSION AND FUTURE WORK 
In this paper we introduced a novel approach for stemming Arabic 
documentation. we compared the performance of the new 
algorithm with that of the Khoja stemming algorithm using 
stemming weight as an evaluation criterion.  

We showed that the use of presently neglected Arabic stop words 
can be highly effective and can provide a significant improvement 
when processing Arabic documents.  

Additionally we introduce a new framework to normalize Arabic 
documents by overcoming the limitations of previous approaches, 
caused by the early removal of stop words.  

The experiments showed a promising future for the stemming 
approach, which encourages further research into more in-depth 
comparisons of its performance with that of other leading 
stemmers. 
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