
Towards an Error-Free Arabic Stemming
Eiman Tamah Al-Shammari

George Mason University
Dept. of Computer Science

4400 University Drive
Fairfax, VA 22030

Eiman.tamah@gmail.com

Jessica Lin, Ph.D.
George Mason University

Dept. of Computer Science
4400 University Drive

Fairfax, VA 22030
jessica@cs.gmu.edu

ABSTRACT
Stemming is a computational process for reducing words to their
roots (or stems). It can be classified as a recall-enhancing or
precision-enhancing component.

Existing Arabic stemmers suffer from high stemming error-rates.
Arabic stemmers blindly stem all the words and perform poorly
especially with compound words, nouns and foreign Arabized
words.

The Educated Text Stemmer (ETS) is presented in this paper. ETS
is a dictionary free, simple, and highly effective Arabic stemming
algorithm that can reduce stemming errors in addition to decreasing
computational time and data storage.

The novelty of the work arises from the use of neglected Arabic
stop-words. These stop-words can be highly important and can
provide a significant improvement to processing Arabic documents.

The ETS stemmer is evaluated by comparison with output from
human generated stemming and the stemming weight technique.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – Indexing methods, Linguistic processing.

General Terms
Algorithms, Documentation, Experimentation, Human Factors,
Languages, Standardization.

Keywords
Arabic, Lemmatization, Stemming, Text Mining, Tokenization.

1. INTRODUCTION
Stemmers are basic elements in query systems, indexing, web
search engines and information retrieval systems (IRS).
Stemming offers the benefits of minimizing storage requirements by
eliminating redundant terms, as well as increasing matching
probability for document comparison and unifying vocabulary [1].

Unfortunately, stemming can cause errors in the form of over-
stemming, mis-stemming and under-stemming. These errors
decrease the effectiveness of stemming algorithms [2] however
reducing one type of errors can lead to an increase of the other [3].

Over-stemming occurs when two words with different stems are
stemmed to the same root. An over-stemming example is when the
word “probe” and “probable” are merged together after stemming.

Under-stemming occurs when two words that should be stemmed to
the same root are not, for example, when the stemmer fails to
conflate the words “adhere” and the word “adhesion” to the same
root.

Mis-stemming is defined as “taking off what looks like an ending,
but is really part of the stem [4] for example, stemming the word
“red to “r” or the word “reply to “rep”.

The challenges associated with stemming are even more
pronounced in Arabic. Arabic is one of the most complex
languages, in both its spoken and written forms. However, it is also
one of the most common languages in the world. The Arabic
language exhibits a very complicated morphological structure.

This paper presents a stemming algorithm that relies on Arabic
language morphology and Arabic language syntax. The stemming
algorithm automatically identifies nouns and verbs without the need
for a dictionary. Nouns and verbs are stored in a separate dictionary.
Automated addition to the syntactic knowledge and construction of
corpus-based dictionaries reduce both stemming errors and
stemming cost.

The remainder of this paper is organized as follows:

Section II includes a brief review of Arabic language morphology
and discusses previous Arabic language stemming processes.
Section III introduces the proposed methodology followed by a
description of the stemming algorithm in section IV. Section V
presents the evaluation criteria and experimental results. A
conclusion and discussion of future work can be found in section
VI.

2. BACKGROUND AND RELATED WORK
Arabic language is a semantic language with a composite
morphology. Arabic words are categorized as particles, nouns, or
verbs [5].

Unlike most western languages, Arabic script writing orientation
is from right to left. There are 28 characters in Arabic. The
characters are connected and do not start with capital letter as in
English. Figure 1 below shows a list of Arabic characters.
Furthermore, most of the characters differ in shape based in their
position in the sentence and adjunct letters. Figure 2 below
demonstrates some of the Arabic characters changes in shape.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
iNEWS’08, October 30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-60558-253-5/08/10...$5.00.

9

 ا ب ت ث ج ح خ

 د ذ ر ز س ش ص

 ض ط ظ ع غ ف ق

 ك ل م ن ه و ي

Figure 1: Arabic characters (letters)

Figure 2: Arabic characters shape differ as their position in

the word change

In Arabic, proper nouns do not start with capital letter as in
English, which makes one particularly challenging task for
machines, recognizing and extracting proper nouns from Arabic
texts.

Furthermore, in English, words are formed by attaching prefixes
and suffixes to either or both sides of the root. For example the
word Untouchables is formed as follows

Un touch able s

Prefix Root First Suffix Second
Suffix

In Arabic, additions to the root can be within the root (not only on
the word sides) which is called an infix. This causes a serious
issue in stemming Arabic documents because it is hard to
differentiate between root characters (letters) and affix letters. For

example, for the root “drink” in Arabic, adding the infix
letter “ا” (circulated in Figure 3) formed a different word:

 “drinker”.

Figure 3. Arabic infix example

Table 1 displays an example of the Arabic Word = الشارب
(drinker) and its stems with the common prefixes and suffixes.

Table 1. Arabic Example

Prefixes + Stem (Root + Pattern) + Suffixes

Root شرب drink

Prefixes ال the

Stem شارب drinker

Suffixes ين OR
 ان

dual

Suffixes ون plural

Suffixes ة feminine

 the drinkers (dual) الشاربان

 the drinkers (plural) الشاربين

 the drinker (masculine) الشارب

ربهالشا the drinker (feminine)

Suffixes, prefixes and infixes are categorized based on their uses.
Similar to other Western languages, there are specific suffixes to
convert the word from the singular form to the plural form and
others to convert from masculine to feminine.
Due to its complicated morphological structure, Arabic requires a
different stemming process from other languages.
Automatic Arabic stemming proved to be an effective technique for
text processing for small collections [6-8] and large collections
[9,10] of documents. Xu et al. [11] showed that spelling
normalization combined with the use of tri-grams and stemming
could significantly improve the accuracy of Arabic text processing
by 40%. Additionally, in Al-Shammari et.al [6] it was proven that
stemming can improve text clustering.
Stemming Arabic documents was performed manually prior to
TREC (Text Retrieval Conference) and only applied on small
corpora. Later, many researchers both native and non-native Arabic
speakers created a considerable amount of Arabic stemming
Algorithms.
Based on the required level of analysis, Arabic stemmers are
categorized as either root-based [12, 13] or stem-based [9, 10, 14] .
In Arabic, the root is the original form of the word before any
transformation process [15]. However, a stem is a morpheme or a
set of concatenated morphemes that can accept an affix [16].
A superior root-based stemmer is the Khoja's stemmer[14],
presented by Khoja and Garside[12] . The Khoja algorithm removes
suffixes, infixes and prefixes and uses pattern matching to extract
the roots. The algorithm suffered from problems especially with
names and nouns.
A possible solution for this problem is to add a lookup dictionary to
check the nouns, roots and names. Although this solution seems
straightforward and easy, this process is computationally expensive.
Al-Fedaghi and Al-Anzi [17] estimated that there are around 10,000
independent roots. Each root word can have prefixes, suffixes,
infixes, and regular and irregular tenses.

On the other hand, there have been several proposed Arabic stem-
based (light) algorithms [9, 10, 14, 18-20]. The prominent Arabic
light stemmer is Aljlayl [14, 18] light stemmer. Light stemming

10

does not deal with patterns or infixes; it is simply the process of
stripping off prefixes and/or suffixes. Unfortunately, the unguided
removal of a fixed set of prefixes and suffixes causes many
stemming errors especially where it is hard to distinguish between
an extra letter and a root letter.

Although light stemmers produce fewer errors than aggressive root-
based stemmers; in contrast, aggressive stemmers reduce the size of
the corpus significantly. Paice [3,21,22] proved that light stemming
reduces the over-stemming errors, but increases the under-stemming
errors. On the other hand, heavy stemmers reduce the under-
stemming errors while increasing the over-stemming errors.

Both Arabic root-based and stem-based algorithms suffer from
generating stemming errors. The main cause of this problem is the
stemmer’s lack of knowledge of the word’s lexical category (i.e.
noun, verb, proposition, etc.)

To mitigate the drawbacks of the previous work on Arabic
stemming, we propose an alternative that defines a rule to stem
words instead of chopping off the letters. This rule is set by the
syntactical structure of the word. For example, verbs require
aggressive stemming and need to be represented by their roots.
Nouns on the contrary only require light suffixes and prefixes
elimination. This advanced stemming is known as Lemmatization
[6].

In this work, we propose the first Arabic stemming algorithm that
uses the syntactical knowledge to make stemming decisions, and we
hypothesize that my approach will be more efficient in tokenizing
Arabic documents than the existing approaches. In addition to the
general stemming benefits, my approach can reduce the stemming
errors, as well as stemming cost by reducing unnecessary stemming.
An earlier version of my stemmer was introduced in and proved to
improve clustering [6].

3. METHODOLOGY
Stop words (functional words or structural word list [1]) are words
that either carry no meaning or are very common [23] thus do not
represent the document. Stop words list usually contains
prepositions, pronouns, and conjunctions.

Text processing often performs stop words removal early in the
process, although there is currently no standardized list of Arabic
Stop Words. The current available Arabic stop words list [9]
introduces less than 200 words.

we was able to define more than 2,200 stop words and categorize
them into “useful” and “useless” stop words.

Useless stop words are stop words that are used extensively and
give no benefits to the subsequent words. On the contrary, useful
stop words are words that can indicate the syntactical categories of
the subsequent words. For example, in an English sentence such as
“I read a book yesterday,” it is easy to realize that book is a noun
and thus does not require aggressive stemming. Table 2 and 3 are
examples of useful stop words.
Unfortunately, due to the early removal of the stop words, this
valuable information is lost. The same scenario applies to Arabic
language too. we believe that the useful stop words can help us
identify nouns and verbs and direct us into the appropriate
stemming. ETS automatically identifies nouns and verbs and
generates global nouns and verbs dictionaries. The benefit of these
dictionaries is to find similar nouns in the corpus that were used
differently in other sentences. For example, in the following

paragraph the word book is identified as a noun and was recognized
as a noun in the following sentence.

 I read a book yesterday, I love books.

In Table 2, a sub list of stop words preceding verbs is shown, and
Table 3 presents some of the stop words preceding nouns. The stop
words list was initially generated by three methods; English stop
words translation, identification of common words in arbitrary
Arabic documents, and manual search of synonyms to the
previously identified stop words.
In the following section the ETS algorithm will be described in
detail.

Table 2. Preposition Preceding Verbs

Preposition English

 Wherever حيثما

 Whenever آلّما

 If إذا

 When (not for question) عندما

Table 3. Arabic circumstantial nouns indicating time and
place

Preposition English Equivalence

 until ,near, towards ,to إلَى

 in front of أمامَ

 On the direction of باتجاه

 Aside, next to, beside بجانب

 After بعد

 Between بينَ

 Below, beneath, down تحت

 Till (time and location) حتى

 Outside of خارج

 ,Through, during خلال

 Through عبر

 Over على

 Above, up فوق

 In (time, location, duration) في

 Before قبلَ

 Near قريب

 since منذ

ءَورا Behind ,Beyond

11

4. ARABIC STEMMING ALGORITHM
Prior to applying the ETS algorithm, normalization is performed to
make the data sets more consistent. Normalization consists of the
following steps:

• Convert text to Unicode.

• Remove diacritics and punctuation.

• Remove non letters (for example, numbers).

• Replace آ with double alif اا .

• Replace ى with ا .

• Replace initial إ with أ.

• Replace all hamza forms ئ , ؤ , ء with أ

As shown in Figure 4, the algorithm consists of different phases.
During the first phase, useless stop words are removed to reduce the
size of the corpus. Next, nouns are identified by either locating stop
words that always precede nouns (example: the, a, over, etc) or
words starting with definite articles. At this level, these words are
flagged as nouns as a preparation for the stemming phase. In
parallel to that process verbs are found by locating stop words that
always precede verbs. Similar to the nouns, the verbs are added to a
global verb dictionary and tagged as verbs.

In Arabic, we cannot have two consecutive verbs, thus any word
following a verb is either a stop word or a noun. If the word is not a
stop word then the word is added to the noun dictionary and flagged
as a noun. Verbs are stemmed using the Khoja root-based stemmer
and nouns are lightly stemmed. The new stemmed nouns and verbs
are also added to the nouns and verb dictionary respectively.

The document is revisited by categorizing words with missing flags
using the noun corpus and the verb corpus as a lookup table. Nouns
usually co-occur in the same document, thus the lookup table will
allow us to identify un-flagged nouns. Other words that do not
belong in any category will be treated as nouns and stemmed
lightly. Before we direct a word to the appropriate stemming by the
word flag, all the stop words are removed since they offer no further
advantage. Table 4 below summarizes the algorithm.

Figure 4. The educated Arabic stemming algorithm simplified

Table 4. The Educated Text Stemmer (ETS) Arabic Stemming
Algorithm

ETS

Input: Arabic document

Output: Stemmed document.

 Noun Dictionary.

 Verbs Dictionary.

V: Verb dictionary (one dimensional array sorted alphabetically1)

N: Noun dictionary (one dimensional array sorted alphabetically)

NSW: Array of stop words proceeding nouns

VSW: Array of stop words proceeding verbs

SW: Array of stop words (including both NSW and VSW)

1. Remove useless stop words

2. Locate words attached to definite articles, and preceded by
NSW and flag them as Nouns

3. Add nouns to the noun dictionary N.

4. Locate Verbs proceeded by VSW. Flag verbs in the
document.

5. Add the identified Verbs to the verb dictionary V.

6. Revisit the document searching for nouns and verbs existing
in the document.

7. Tokens (words) with missing tags are treated as nouns.

8. Remove the rest of the stop words (useful stop words).

9. Apply light stemming Algorithm on nouns.

10. Apply Khoja’s root-based stemmer on verbs.

5. EVALUATION AND EXPERIMENTS
Different criteria are used to evaluate the performance of a stemmer.
A good stemmer (by definition) is a stemmer that stems all the
words to their correct roots.

Paice [3,22] introduced The stemming weight (SW) as an indicator
to the stemmer efficiency. Stemming weight is the ratio between the
under stemming errors and the over stemming errors.

For text mining applications that deal with a massive number of
documents, the ability to significantly reduce the size of the text is
also a desirable property for a good stemmer. In my previous work
[6] we compared the effect of my algorithm on document clustering
to that of the leading Arabic root-based stemmer presented by
Khoja using Cluster Purity [24]. Applying K-means clustering on
the three datasets leads to an overall cluster purity of 70.8% for the
documents stemmed by ETS and 58% for the documents stemmed
by Khoja’s stemmer.

1 For fast lookup, these dictionaries can be implemented using hash tables

12

In summary, measures discussed in the literature [21, 22, 25] to
evaluate the performance of a stemmer include algorithm speed,
storage saving (compression), stemming weight and retrieval
effectiveness.

5.1 Paice’s Evaluation Methodology
The first evaluation approach is an evaluation method proposed by
Paice, applied to compare various English stemmers.

Paice introduced three new quantitative parameters to evaluate a
stemmer performance: Under-stemming index (UI) , Over-
stemming index(OI), and their ratio , the stemming weight (SW).

A group of morphologically and semantically related words are
submitted to the stemmer. If the stemmer produces more than one
stem (root for Arabic) for the same group then the stemmer has
made an under-stemming error. If words belonging to different
groups are stemmed to the same stem then the stemmer has made an
over-stemming error. The ideal stemmer should be able to conflate
(group) the related words to the same stem and has low UI and OI.

The Khoja stemmer (root-based) tends to stem morphologically
related words (but not necessarily semantically related) and as a
result has a high over-stemming error rate.

Arabic light stemmers only remove frequent suffixes and prefixes
from the word leading to a high under-stemming error rate. To
achieve a balance between these two parameters, the ratio between
UI and OI, Stemming Weight (SW) is introduced.

To generate the samples to test the stemmer, we have to generate
different words from a single stem by adding suffixes, infixes and
prefixes. Contrary to English, in Arabic, adding affixes, prefixes or
suffixes to the word can change the meaning completely. Therefore,
creating a group of morphologically and semantically related words
is not a trivial task. To achieve this, we first created all the possible
derivations of a single stem, and then eliminated the word that does
not belong semantically.

Suppose we had the following samples divided into two groups as
shown in Table 5. Group 1 represents the root child and its
derivations and group two represents the word parasite and it is
derivations.

Table 5 : List of words derived from the stem طفل

 Child طفل

 Children أطفال

 The Children الأطفال

 Your child طفلكم

 Your children أطفالكم

 Childhood طفولة

Group 1

 For childhood للطفولة

 parasite طفيلي

 parasites طفيليات

Group 2

 parasite طفيل

The Desired merge total (DMT) is the number of different possible
word form pairs in the particular group, and is given by the formula:
[22,26]

DMT = 0.5 n (n – 1)

Where n is the number of words in that group.
The Global Desired Merge (GDMT) is the sum of all the DMT’s of
the various samples.
There exists a case where certain words in a specific group can be
conflated after stemming with words from another semantic group.
To count all the possible word pairs formed we use the Desired
Non-merge Total (DNT):

DNT = 0.5 n (W – 1)

Where W is the total number of words, the sum DNT for all the
groups is defined as the Global Desired Non-Merge (GDNT).
After the stemming process is performed, we would like to see if all
the words in a group are conflated in the same group. To quantify
the stemmer’s inability to merge these words, Paice introduced the
“Unachieved Merge Total” (UMT):

UMT = 0.5 ui (n − ui)
i=1

s

∑

Where s is the number of distinct stems, and ui is the number of
instances of each stem.
From the sum of UMT for each group (in our example 2 groups),
we obtain the Global Unachieved Merge Total (GUMT).
The under-stemming index (UI) is: GUMT/GDMT [27].
Table 6 displays the output of both stemmers. In Tables 7 and 8 the
output of the ETS stemmer and the Khoja stemmer for group one
and group two respectively is demonstrated.

Table 6: A comparison between the stemmers output for
Sample1, the right stem is underlined.

Word Khoja output ETS output

 طفل طفل طفل

 طفل طفل أطفال

 طفل طفل الأطفال

 طفل طفل طفلكم

 طفل طفل أطفالكم

 طفل طفل طفولة

 طفل طفل للطفولة

 طفيل طفل طفيلي

 طفيل طفل طفيليات

 طفيل طفل طفيل

13

A stemmer might transform different words to the same stem
(over-stemming). For such cases Paice introduced the Wrongly
Merged Total (WMT), which is the count of over-stemming errors
for each group[27].

∑
=

−=
t

i
isi vnvWMT

1
)(5.0

Where t is the number of original groups that share the same stem,
ns is the number of instances of that stem, and, vi is the number of
stems for group t.

Similar to the above we can obtain the Global Wrongly Merged
Total (GWMT) by summing the WMT for all the groups.

The over-stemming index (OI) is: GWMT/GDNT.

The table below demonstrates the evaluation of both stemmers on
both groups.

Table 7: Khoja stemmer evaluation

 DMT DNT UMT WMT

 24 45 0 10.5

Totals 46 139 0 10.5

Table 8: ETS stemmer evaluation

 DMT DNT UMT WMT

 24 45 0 0

Totals 46 139 0 0

From the previous experiment, Khoja’s stemmer had no under-
stemming errors but had a UI = 0.0755. For the ETS stemmer,
both UI and OI were zero.

The Khoja stemmer is an aggressive stemmer, therefore the under-
stemming error was expected. We continued the experiments on
many other samples, in all the cases the ETS were able to make less
over-stemming errors than the Khoja stemmer. We can conclude
that my stemmer is more efficient than the Khoja stemmer.

5.2 Comparison to an Expected Output
In order to assess the effectiveness of the stemmer, we compared
its output to that of a manually generated stem. we randomly
picked two samples of Arabic documents. The first sample
contains 47 medical documents (total of 9435 words), and the
second sample contains 10 long, Arabic sports articles from
CNN.com (total of 7071 words).

The samples were processed manually, and words were assigned
to their correct stem. In addition, a noun and a verb dictionary
were created by the tester (Native Arabic speaker).

After manually generating the set of expected output, we ran my
stemmer on the same set of samples. We performed these
experiments at the designing phase of the ETS stemmer, thus we

was able to analyze the output of the ETS stemmer and tackle the
errors. we recursively repeated the experiments after adding extra
rules and additional stop words.

At the end of the testing phase, on average, the ETS stemmer was
able to generate 96% correct stems.

We observed that the ETS stemmer produces better results when
more documents are involved in the stemming process. The
automatic generation of global nouns and verbs dictionaries helps to
identify nouns and verbs appearing in different context. The system
initializes a new noun and verb dictionary for every experiment.
The storage and the reuse of dictionaries will improve the accuracy
of the stemmer where more nouns and verbs are recognized.

6. CONCLUSION AND FUTURE WORK
In this paper we introduced a novel approach for stemming Arabic
documentation. we compared the performance of the new
algorithm with that of the Khoja stemming algorithm using
stemming weight as an evaluation criterion.

We showed that the use of presently neglected Arabic stop words
can be highly effective and can provide a significant improvement
when processing Arabic documents.

Additionally we introduce a new framework to normalize Arabic
documents by overcoming the limitations of previous approaches,
caused by the early removal of stop words.

The experiments showed a promising future for the stemming
approach, which encourages further research into more in-depth
comparisons of its performance with that of other leading
stemmers.

7. REFERENCES
[1] G. Salton, Automatic text processing: the transformation,

analysis, and retrieval of information by computer, Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA,
1989.

[2] R.A. Baeza-Yates, “Text-Retrieval: Theory and Practice,”
North-Holland Publishing Co., 1992, pp. 465-476.

[3] C.D. Paice, “An evaluation method for stemming
algorithms,” Dublin, Ireland: Springer-Verlag New York,
Inc., 1994, pp. 42-50.

[4] “Snowball: A language for stemming algorithms”;
http://snowball.tartarus.org/texts/introduction.html.

[5] M. Al-Saeedi, “Awdah Almasalik ila Alfiyat Ibn Malek,”
Published by Dar ihyaa al oloom {In Arabic}. Beruit, Saudi
Arabia, 1999.

[6] Eiman Al-Shammari and Jessica Lin, “A novel Arabic
lemmatization algorithm,” Proceedings of the second
workshop on Analytics for noisy unstructured text data,
2008, pp. 113-118.

[7] I.A. Al-Kharashi, “Micro-AIRS: A microcomputer-based
Arabic information retrieval system comparing words, stems,
and roots as index terms,” 1991.

[8] I.A. Al-Kharashi and M.W. Evens, “Comparing Words,
Stems, and Roots as Index Terms in an Arabic Information

14

Retrieval System.,” Journal of the American Society for
Information Science, vol. 45, 1994, pp. 548-60.

[9] L.S. Larkey and M.E. Connell, “Arabic Information
Retrieval at UMass in TREC-10,” Proceedings of the Tenth
Text REtrieval Conference (TREC-10)”, EM Voorhees and
DK Harman ed, 2001, pp. 562-570.

[10] L.S. Larkey, L. Ballesteros, and M.E. Connell, “Improving
stemming for Arabic information retrieval: light stemming
and co-occurrence analysis,” Tampere, Finland: ACM,
2002, pp. 275-282.

[11] J. Xu, A. Fraser, and R. Weischedel, “Empirical studies in
strategies for Arabic retrieval,” Proceedings of the 25th
annual international ACM SIGIR conference on Research
and development in information retrieval, 2002, pp. 269-274.

[12] S. Khoja and R. Garside, “Stemming Arabic Text,”
Lancaster, UK, Computing Department, Lancaster
University, 1999.

[13] W. Al-Fares, “Arabic root-based clustering: An algorithm for
identifying roots based on n-grams and morphological
similarity,” 2002.

[14] M. Aljlayl and O. Frieder, “On arabic search: improving the
retrieval effectiveness via a light stemming approach,”
Proceedings of the eleventh international conference on
Information and knowledge management, McLean, Virginia,
USA: ACM, 2002, pp. 340-347.

[15] M. George, Al Khaleel: A dictionary of Arabic syntax terms,
Beirut: Library of Lebanon, 1990.

[16] M.A. Al Khuli, “A Dictionary of theoretical linguistics:
English-Arabic with an Arabic-English glossary,” 1982.

[17] S.S. Al-Fedaghi and F. Al-Anzi, “A New Algorithm to
Generate Arabic Root-Pattern Forms,” Proceedings of the

11th National Computer Conference and Exhibition, 1989,
pp. 391–400.

[18] M.A. Aljlayl, “On Arabic Search: The Effectiveness of
Monolingual and Bidirectional Information Retrieval,” 2002.

[19] H.K. Al Ameed et al., “Arabic Light stemmer: a new
Enhanced Approach.”

[20] K. Darwish, Al-stem: A light Arabic stemmer, 2002.
[21] C.D. Paice, “Another stemmer,” SIGIR Forum, vol. 24,

1990, pp. 56-61.
[22] C.D. Paice, “Method for evaluation of stemming algorithms

based on error counting,” Journal of the American Society
for Information Science, vol. 47, 1996, pp. 632-649.

[23] K. Lin and R. Kondadadi, “A Word-Based Soft Clustering
Algorithm for Documents,” Proceedings of 16th
International Conference on Computers and Their
Applications, 2001.

[24] Y. Zhao and G. Karypis, “Criterion Functions for Document
Clustering,” Experiments and Analysis University of
Minnesota, Department of Computer Science/Army HPC
Research Center.

[25] W.B. Frakes, “Stemming algorithms,” 1992.
[26] C.D. Pake, “An Evaluation Method for Stemming

Algorithms,” SIGIR'94: Proceedings of the 17th Annual
International ACM-Sigir Conference on Research and
Development in Information Retrieval, Dublin, Ireland, July
1994, 1994.

[27] V.M. Orengo and C. Huyck, “A stemming algorithm for the
portuguese language,” String Processing and Information
Retrieval, 2001. SPIRE 2001. Proceedings. Eighth
International Symposium on, 2001, pp. 186-193.

15

