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ON THE REDUCTION OF ERROR IN CERTAIN ANALOG COMPUTER 
CALCULATIONS BY THE USE OF CONSTRAINT EQUATIONS 

Robert M. Turner 
Lockheed Aircraft Corporation - Missiles and Space Division 

1123 North Mathilda Avenue, Sunnyvale, California 

This paper describes a method of reducing 
the error in certain analog computer calculations 
by the negative gradient technique where one has 
additional information about system performance 
in the form of constraint equations. In general, 
the technique leads to correction terms which are 
introduced into the system differential equations. 
In some cases, however, simulation is obtained by 
operating directly with the constraint relations 
themselves. 

The theory is developed, and several ex
amples discussed at some length in order to show 
both the manner in which the corrections may be 
introduced, and the character of the corrected 
solutions. 

Theory 

Let the equation set I represent the system under 
investigation; i.e., it is the basic differential 
equation set describing the physics of the situa
tion. Since any nth order differential equation 
may be written in the form of n first order equa
tions no generality is lost and considerable con
venience gained by adopting this presentation,. 
The x are independent or driving functions. 

• 1»f 1(x L, V... Vy 1,y 2 /... 7 a) 

where 

t2^JLL,X2> •••Vyl'y2' •yn) 

y n - ' n ^ V — V y l ' 7 2 ' — ^ 

Let the equation set II describe the constraints 
in (or to be imposed upon) the physical system I. 

1 = €l( Xl>V ' • • V y l ' y 2 ' * * *V*yl'y2' * * -yn} 

II 
e q ~ ^ ( x ^ X g , . . ^ ^ , ^ ,ynjyl'y2'*"yn) 

The set H is written such that e. equals zero 
for all j. Now since the x are considered to r be independent variables or driving functions, 
any deviation of the e. from zero must be due to 
incorrect values obtained from the v. in the sol
ution of set I, (where u «= 0 for y, and 1 for y.) 

q. 

j=*l 
£ / ( i ) 

Now for any given value of x and y. we may find 
the change required in each of the y. making up 
E by considering E as a surface in Euclidean N 
space. The vector giving the direction of great
est change in E is the gradient vector, VE. 
Since we are interested in the direction of great
est decrease of the function, we turn our atten
tion to the negative gradient, which has the 
components 

-VE for 
u = 0, 1 

i = 1,2,. 
(2) 

u u Then we may assign to each Ay., where Ay? is 
defined as the correction term to be added to the 
y. obtained from the solution of I, the value 

u 
Ay± 

<1 de. 

V J for 
* 

0, 1 

1,2,...n 
(3) 

That is, we add to each y. a value proportional 
to the component of -VE in the y. direction. K. 
is a weighting factor determined Dy the importance 
attached to the particular e.. Depending upon the 
process of gradient determination and subsequent 
correction insertion one has either a true grad
ient method or steepest descent method. For the 
applications in this paper, the gradient is de
termined and the corrections added continuously. 
Thus no sequential series of steps is taken,along 
one gradient before the next is determined. ' 

If we add these corrections directly and contin
uously to the positional values of the y., each 
member of the corrected differential equation set 
becomes 

yi = fi£xl'V *' 'V yl' y2' * * *yn^ + ̂ "i 

y± - J 7±Q.t + A^i 

where y\, is the corrected rate term. 

w 

Note that Ay. is not the integral of Ay. as each 
arises independently from (3). We call this the 
Ep correction of I. 

Since we wish to consider all the e. simultaneous
ly, we take as our optimization criteria the min
imization of a non-negative function E of e. 

J 

This method is in general quite difficult to im
plement on an analog computer due to the formation 
of algebraic loops in the generation of the error 
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terms. We may, however, take a different point 
of view and consider each &y to arise from a 
change in the defining rate of y^; i.e., we put 

be 
dt-<^i> -

q. z 
3*1 

SJ Vj^f for 
U * °'1 (5) 
i - .1,2, .. .n 

L ^ ' ^ ' • V y i ' 

This also will give to each y£ a correction in the 
desired direction hut in quite a different manner 
due to the integration process. Thus each member 
of the corrected differential equation set becomes 

Y2r---Yn) + ^ i +/^i (6) 

since when u « 1 in (5) a second derivative term 
in &y. arises which cannpt be inserted in y, with
out increasing the order of the system. We call 
(6) the IL correction of I. 

For certain algebraic applications (see Example l) 
the system order is indeed increased, but in gen
eral, this is not desirable. Direct positional 
insertion may be used, however, so that both E_ 
and EL corrections are applied in the same system. 
In this case, (6) becomes 

yi ~ f l ^ L ' V ' * 'V y l ' y 2 ' ' * -yn) + 4sr± + 4&i (7) 

Example (k) considers this in some detail. 

Simply stated, equation (3) shows that corrections 
may arise for all functions and their derivatives 
which occur explicitly in the constraint equations. 
Equations (k), (5), (6) and (7) show how the cor
rections can be added to the system I. 

We shall next illustrate E_, and E_ corrections as 
applied to certain problems of a general nature 
arising in analog simulations. The Ep simulation 
is usually quite easy to obtain from €he original 
system mechanization, since in general it only 
involves adding the correction terms into the 
several integrators. This, of course, enables 
one to compare corrected and uncorrected perform
ance quite readily. E p correction on the other 
hand is not so straight forward, and as previously 
noted, generally gives rise to stability problems 
on analog equipment. 

Examples 

Example 1 

Consider the desired calculation 

y i - J L (1.1) 

(1.2) 

(1.3) 

a.*) 

Utilizing the zero order constraint, form 
y l V X 2 " € 

Taking 

y l * y l ( ° ) + ^ 1 

Differentiating and applying (5) 

yi - -it^i* ~ -Vi 7̂ - - w 

Thus for quasi-static x.., x^ 

*'*& (1-5) 

For x1 > 0 we note the. possibility of incorpora
ting it into the constant K,. This saves one 
multiplication; i.e., put 

d 
dt 

(A^) - - K ^ for x. > 0 (1.6) 

Table I shows the type of convergence to the cor
rect solution for several cases where x *r x... 
Only the exponents are shown since the solution 
form is the same as (l«5). Note that for the 
case x * x„ »= sin wt (l.¥) will not give correc
tion until x, becomes large enough to offset 
sin 2 fait . 

2u> 

Further investigation of the. (non-linear) equa
tions (l.*0 and (1.6) is required to establish 
convergence criteria for arbitrary x. and x_. 
Equation (l.^) is mechanized in Figure (1.2; with 
the aid of the symbols in Figure (l.l). 

TABLE I 

Using (l.fc) Using (1.6) 

x- and Xp constant: 

-Klxft 

x, » x_ = t: 

-K.t5/? 

x.. m x_ •» sin ut: 

Kj (+ sin 2 ut^ 
~~2~ 2w 

x,= x = A + sin wt: 

-Kjj?t + t/2 + 2A/w 
-2A/W coswt-l/4w sin2ut] 

-w 

-Y^/2. 

Not applicable 
since x. is not 
always > 0 

For A > 1 

- 1 ^ ^ + i-(l-cos «t) ] 

In Figure 1.2 G is to be as large as possible 
since it effectively increases K-.x^x^N, and N~ 
are to be taken as quasi-static where N, and Np 

are errors which exist at the points indicated. 
The instantaneous differential equation is 

yl " ̂ l + V*l + N2 (1.7) 

which yields the instantaneous solution form 

yx - ^ ( O e ^ ^ - J | + 3jU ](1-- S l4 t ) ( l4 

Attenuation of the error thro-'Ugh the first 
multiplication channel is as j£— and through the 
second by 1 . 1 

Vl 
Because of this noise attenuation i t becomes 
practical to use division in forming special 



functions; for example: 

Given y to form z » In y we note 

y 

Note that 

(1.9) 

Here z is formed by the division circuit, then 
integrated to give z. The method is useful pro
vided z is used ultimately in the equation for 
y (i.e., the z integration is not open loop). 
A particular advantage obtains in that the range 
of the In function is determined merely by an 
initial condition on the integrator. 

Notice that when (1.6) is applicable, two independ
ent x_/x and X../X-. divisions are obtainable 
with one multiplier. For either (l.^) or (1.6), 
y is available, though greatly attenuated and 
noisy. 

Example 2 

Inverse function generators in the feedback loop 
of high gain amplifiers are frequently used to 
generate monotonic functions having steep slopes. 
The method is advantageous because of the re
ciprocal relation between the slopes. Approach
ing this problem from the point of view of a con
straint relation yields the following. 

Let y »s f(x) be the desired function, given x. 

Now 

f(y) 

Using (5): 

and € « f (y) 

JL (Ay) - y 
dt 

-K6 -ay 

r~"l - 1 2 

x we see that f (y) «= y and so 
y m -2Key; y(0) « \x(0)k 

2 
y - x 

(2.1) 

(2.2) 

(2.3) 

(2 .k) 

Performance is good except near x = 0. (2.3) is 
mechanized in Figure 2.1. 

Example 3 

The problem of finding R, sin cp and cos 9 given 
x and y frequently arises in coordinate trans
formations. When cp is not available and the 
frequency too high for standard circuits, the 
following method has been used with success. 

Since 

we put 

2 ^ 2 _2 
x + y •» R 
x • R cos cp 

y * E s in cp 

6 , m R COS Cp -

e2 >= R s in cp -

X 

y 

(3.1) 

(3.2) 

(3.3) 

R = x cos cp + y sin cp (3.K) 

Thus e, and ep enable us to find sin cp and cos cp; 
(3.4) determines R. 

Using (5) 

d (A cos 9) mJSK1e1 J b . dt 6 cos cp 

J L (A sin cp) »-2K, e0
 deg 

S -Ke, for R > 0 

dt d sin cp 

(3-5) 

(3-6) 

« -Ke2 for R> 0 
(which are mechanized, in Figure 3«l) 

The previous examples have illustrated methods 
of using the system equations themselves to form 
error (or constraint) equations. Minimizing 
these led directly to a solution of the system 
equations. 

We shall next consider two examples of systems 
which are amenable to error correction in the 
more general sense of constraining the solution 
of I to satisfy the relations in II by the use 
of E_ and/or Ep corrections. 

Example k 

Amplitude stabilization of the harmonic oscilla
tor using essentially Ep type correction has . 
been treated extensively in the literature.^' 
However, as this second-order system affords a 
particularly simple vehicle for obtaining quali
tative solutions which aid in understanding the 
roles of the correction terms, it will again be 
considered here. To this end, then, let it be 
desired to generate the sine and cosine of the 
angle cp where cp is given. 

y= sin cp -• yp =* cp cos cp 

y 1 = cos cp -»• y, = -cp s in cp 

Thus the system equations are : 

yi --too 

The const ra in t r e l a t i o n s we adopt here arei 

1 2 , 2 
e1"Y1 + y2 

and y iy , 1/2 
y 2 y l " 

(k.2) 

(*.5) 

(k.6) 

€p i s a measure of system r a t e e r r o r , since 

d TV---1 
dt L 

Thus 

tan"* y2 I 
~7iJ 

y i y 2 ^ - P2 y l 
y i + 72? 

±. - • / 2 2, 
y l*2 " y 2 y l * ^ y l + y2^ 

(*-7) 

(*.8) 



.2 

and 

Using e, to obtain Ay, and Ay ?: i Ay. and 

- 2 K01 el^l AST, 

4y„ 5 K02 el y£ '2 

Using e p to obtain Ay., and Ay p: 

^ 1 - ̂ l ^ 

^ 2 *^i2* e:7i 

(*.9) 

(4.10) 

(4.12) 

(^.13) 

The weighting functions are deliberately identi
fied in the manner shown in order to determine 
the effect of mismatch; always an important con
sideration in analog work. 

Using (7), the corrected system equations become: 

y2 « qjy-L + Ay2 + Ay2 (4 . i4) 

y x * for2 + ^ + Ay-L (4.13) 

Carrying out the work assuming quasi-static e, 
(which amounts to treating it as sign invariant 
during the instantaneous integration process) 
yields 

Ae-01 s in tot 

. -a t 

where 

yn - e 

A = 1 + 

sin(cot + cp_) 

(K-n - K ) 
"11 12' 

a - ( K 0 1 + K o 2 ) e ] 

£ s= tan 

4>[1- e ^ + K ^ ) ] 

1 u 
€ l ' K 02 " ^ 1 

(4.16) 

(^.17) 

(*.18) 

(*.19) 

(4.20) 

(4.21) 

and where second-order terms have been dropped. 

An analysis of (4.l6) and (4.17) shows that the 
system process is such as to decrease the absolute 
value of e... (4.18) and (4.21) give the detri
mental effects of mismatch. Note that damping 
arises only from E_, and rate correction (to first 
order terms) from E p . 

The mechanization of (4.3) and (4.4) with E_ 
corrections arising from e., is shown in Figure 4.1 
Stable frequencies in excess of 150 cps have been 
generated using this technique. 

Example 5 

This final example will treat with the compound 
pendulum of Figure 5.1 having a total angular 
excursion of * -K/Z radians. The non-linear 
differential equation describing this system 

may be*solved by elliptic integrals. 

Although quite simple to mechanize on an analog 
computer, the errors after 5 seconds are pro
hibitive for a pendulum having a 5 cps frequency. 
The introduction of two constraint relations is 
necessary to preserve solution integrity. 

m *• 

1 « 
0 * 
G » 
k x 

a • 
mg» 

mass of pendulum 
length of pendulum 
point of suspension 
center of mass 
radius of gyration 
about 0 
0C 
force due to gravity 

Figure 5*1 

Parameters and Definitions 

H a l gram 

1 = 1.2 cm 

a «s .346 cm 

2 m .2391)-
D 

r 

g s 980 cm/sec£ 

r 
B - l/2 mk* 

G ts mga 

y 2= sin cp 

y *s cos cp 

These parameters give a 5 cps frequency for an 
excursion of + Jt/2 radians. Initially the pen
dulum is at cp m + it/2 which is defined as the 
point of minimum kinetic energy. 

The energy equation is 

Bcp2 + G(l - cos cp) m G (5-1) 

Differentiating this leads to the system equations 

<P 

-Ay„ 

where y and cp are related by 

y0 * fan 

---«py0 

(5.2) 

(5-3) 

y is the driving function for (5.2). Any errors 
arising in & and cp (we do not employ cp in the 
mechanization) arise from the product A y g and the 
subsequent integration. 

cp is the driving function for (5*3) . We know 
that amplitude stabilization of (5*3) is desir
able, but here (5«l) imposes yet another con
straint upon the y, formed in (5*3) • 

Using both the total energy and the amplitude 
stabilization relation, we define 



€ i " y? + y2 _ 1 

e 2 « Bcp2- Gyx 

from which one obtains (using 3) 

AI) «s 0 

Aw « Acp xs-2Kp€2Bq) 

Acp - - K ^ O 

Ay2 » Ay1 - 0 

Ay2 --SB^e^g 

Ayx - - S ^ e ^ -fl^gG 

Using (7): 

<f> at W + Aq) + A$ 

to = -Ay2 + Aw 

(5-5) 

(5-6) 

6.2 
factors as large as possible in order to hasten 
the (less efficient) minimization process. 

(5-7) 

V 1̂ + ̂ 2 

y-^ -4v2 + Ayx 

(5-8) 

(5-9) 

Note that an attempt to include either Acp or Acp 
in the $ equation leads to an unstable algebraic 
loop since ep contains cp. 

With this restriction, the corrected system is 

* " u (5.10) 
w «^Ay2 - ZK^^Bfy 

- 2. !Klely2 

y-L* -$y2 " ̂ I 6 ! + K 2 e 2 G 
(5-11) 

Any attempt to implement (6.10) and (6.1l) leads 
immediately to scaling difficulties due to the 
disparity of B and G. Further, the units of A" 
and Ax, make impossible a consistent definition 
in the units of K_. Actually, this is to be ex
pected for our treatment of K. has neglected any 
mention of u and i -which certainly must be con
sidered if any rational system of units is to be 
maintained in the several corrections. 

The dilemma confronting us is quite fundamental, 
for if the K. are to be determined by a consider
ation of i and u as well as j, what are to be the 
weights attached to them? Unless this is known, 
the corrections will not lie along the negative 
gradient as desired. We do know, however, that 
these newly considered constants will all be 
positive. Thus, no matter what weights are 
attached to them, the resulting correction vector 
will decrease E though certainly not in general 
along its negative gradient. For small E this is 
probably not significant, but in any case the 
remedy seems to be to make all the K. and their 

Thus, except in simple systems where no incon
sistency in units arises for the correction terms, 
we shall follow this rule. 

This has been done for (5«10) and (5.11) which 
are mechanized in Figure (5 «2) .Deviations from 
the theoretical solution were monitored for a 
variety of cases and the results are given in 
Plates I and II. 

Plate I shows the results after 5 seconds of 
solution time of 

1. No correction 
2. Amplitude correction into the cosine only 
3. Amplitude correction into the sine only 
k. Amplitude correction into both the sine 

and cosine 
5. Correction in the potential energy only 
6. Correction in the kinetic energy only 
7. Correction in both kinetic energy and 

potential energy. 

All of these solutions had errors growing witht&ae. 

Plate II gives the results of applying corrections 
arising from both e, and e . All of these solu
tions are stable, but notice that they may be 
substantially in error unless the corrections are 
added as specified by (5«10j and (^.ll). 

In accordance with the theory of keeping K. as 
large as possible here, it was noted that decreas
ing K, or L degraded system performance. 
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