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Summary 

This paper speculates on how to program 
a machine that is suitable for microelectronic 
components to be an intelligent technician. 
The point of departure is from a class of ma­
chines described by J. H. Holland in a con­
current paper entitled, "On Iterative Circuit 
Computers Constructed of Microelectronic Com­
ponents and Systems." These machines consist 
of a regular lattice of active modules, each 
possessing both processing and memory functions. 
The goal is a machine with the problem solving 
capabilities of a smart human technical assist­
ant, and the volume processing capabilities 
normally associated with digital computers. 
This goal is chosen because it coincides with 
many current developments. After discussing 
the eventual capabilities desired and the most 
striking features of Holland's machines, the 
speculation proceeds by considering the basic 
organization for information processing. This 
is followed by briefer treatments of the organ­
ization for problem solving, supervision, in­
terpretation and production. 

Introduction 

This is a speculative paper. I have been • 
invited to provide a link in a chain of reason­
ing stretching from the impending advances in 
microelectronic components to their social con­
sequences. I take as given a class of machines 
postulated by J. H. Holland in the preceding 
paper1, which I will henceforth call Holland 
machines. A Holland machine is very different 
from any current computer, reflecting both 
potential virtues and vices of microelectronic 
techniques. On balance, of course, the great 
increase in speed of action and number of com­
ponents guarantees a great increase in proces­
sing potential. I am to show how this potential 
can be realized. 

* All my thinking on intelligent processes and 
computer languages has occurred in the context 
of joint research with J. C. Shaw and H. A. 
Simon. For the speculative application of these 
ideas to Holland*s machines, I alone must take 
responsibility, of course. I am indebted to 
J. H. Holland. He not only provided the basic 
stuff out of which to fantasize, but he helped 
me to clarify the underlying concepts and sug­
gested implications of the modes of organiz­
ation I was trying to achieve. 

A Holland machine is so strange on first 
contact that the problem seems to be to regain 
the programming facility attained on current 
machines in a decade of effort. But magnitude 
increases in basic capacity should yield equiva­
lent increases in delivered power. The prospect 
of working hard to reestablish what already 
exists is not inviting. Hence, my task includes 
providing some vision commensurate with the new 
capacities. 

The givens and the desired are yet 
further apart. A Holland machine is an abstract 
automaton, and I am free-that is, forced—to 
specify the exact version that will suit my 
needs. The boundary between the logical designer 
and the programmer has shifted so that by any 
normal job description I play both roles. The 
difference lies in the components available to 
me. I have not AND's and OR's, but "semi-
computers," out of which to construct a machine. 

The Vision 

An Intelligent Technician 

Of the myriad things that will occur 
with the continued development of information 
processing machines, I will select just one 
for consideration—a machine that is an in­
telligent processor of information. There is 
nothing very dramatic about such a machine, 
except perhaps the results that are achievable 
with it. It is difficult to differentiate this 
machine from an extremely compliant, fairly 
bright, human technical assistant, backed up by 
an impressive computing establishment. The user 
will converse with such a machine about his 
problem with the freedom of ordinary technical 
discourse. The language may not be English, 
but it might as well be for the freedom and 
flexibility it will afford. The machine will 
return answers with a rather breath-taking 
rapidity, and it is difficult to predict how 
rapidly a human-plus-machine can advance into 
a problem. Like all machines (and humans) it 
will have finite capacities. Ordinary intelli­
gence could pose useful problems that require 
processing that the machine can do in a reason­
able time. Ordinary muddleheadedness could so 
confuse the machine that it would not know what 
is desired. Ordinary knavery could fool it 
into doing the wrong thing. In short, the total 
product will depend on the joint intelligence 
and processing capacity of the user-plus-machine. 
A smart, articulate, well prepared man will 
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produce more with the machine than a dull, am­
biguous, unprepared man. 

All our lives are spent learning to live 
with other intelligences, and relating to an 
intelligent machine will seem more familiar 
than strange. Since we want machines to help us 
solve problems, the more intelligent we are able 
to make it, the more unobtrusive it should 
be in providing this help. Contemplating the 
more extreme forms of this vision, there is 
little to describe about the machine except that 
it gives a great deal of help quickly and with 
very little pain. Not even this picture of 
productive harmony is safe, since we will soon 
accept all the benefits that flow from the new 
capability and will become aware of the con­
straints and annoyances that mark the new 
boundary of limitations. Joining a reasonable 
level of intelligence with the volume processing 
characteristics we already associate with the 
large computers will produce large and dramatic 
consequences. But these require detailed con­
sideration for each subject matter, a task ex­
emplified by the last paper in the chain by G. W. 
Churchman.2 

Why This Vision? 

I select this particular vision because I 
believe it lies along the main path of com­
puter development quite independent of micro­
electronic advances. 

The history of computers is marked by a 
sequence of innovations, each eliminating some 
factor limiting the rate of information pro­
cessing. Kbst of these limitations were the 
time it took humans to make decisions or take 
action. The addition of memory and control to 
a fast arithmetic device bypassed the human de­
cision time in doing simple numerical procedures. 
This innovation produced the computer essentially 
in its present form. The excessive time that it 
takes for humans to code has given rise to the 
assemblers, algebraic compilers, list languages, 
and the like. The wastage from a half-second 
human tending a microsecond machine is forcing 
the development of supervisory routines and 
interrupt systems that will eventually eliminate 
the operator. 

The intelligent technician is simply an­
other step in this development. The time for 
human invention and accurate specification of 
memory organization and elementary procedures 
in most programs is already too long. It will 
become intolerable with Holland machines made 
from microelectronic components. We need a 
"problem-oriented machine" instead of a 
"machine-oriented machine"—and such a machine, 
truly conceived, is equivalent to an intelligent 
assistant. 

Fundamentals 

The Requirements of Intelligent Action 

When applied to humans, intelligent 
action means action that achieves desired ends* 
There is; no reason to modify this usage with 
respect to machines. An intelligent technician 
must be able to achieve desired ends. As; nor­
mally used the term is ambiguous, since the re­
sources given to the intelligence are not stated. 
This ambiguity is essential, since high intel­
ligence in the real world means the ability to 
surmount the "givens" if they get in the way of 
problem solution. It means the ability to 
achieve desired ends even when defined with 
surprisingly little information. Intelligence 
is our word to indicate the fact of successful 
performance against theoretically inadequate 
conditions. Intelligence is the resolution of 
ambiguity by means of an adequate theory. 

The notions expressed above trace capri­
cious paths through the concept of intelligence. 
They can be summarized in four requirements for 
the behavior of the intelligent technician. 

Indefinite Resources. The intelligent 
technician must be able to solve problems. 
Ifore importantly, he must be able to work on 
any problem that can be stated to him. No 
limit can exist to the resources available for 
working on a given problem. These need not be 
all the methods available nor very good ones, 
but the machine should not quit because it has no 
more things to try. An intelligent human working 
on some hard differential equations will try to 
solve them analytically; then will turn to power 
series; then to a book on trigonometric series 
so he can apply these; then to a treatise on dif­
ferential equations for some new clue (finding 
this via a reference in his standard text on the 
subject); then to numerical procedures. On and 
on it goes. If there is any fixed limit—any 
sharp restriction to a special class of methods— 
we will recognize soon enough that the intel­
ligent technician cannot be left on his own, 
that it is really not intelligent enough. 

Indefinite Awareness. A distressing 
feature of current computers is their instability 
in the face of trivial errors, a feature often 
cited in making comparisons between brains and 
computers. To be intelligent is not to be 
trapped easily—not to require external help for 
little things. The machine itself must be aware 
of its own behavior and of the context in which 
its work is done. No sharp boundary can exist 
for which particular features the machine is 
aware , even though it cannot be aware of 
everything. This would soon reveal itself as a 
"quirk" or "blind spot" that limits the intel­
ligence. 

I do not consider the vision radical. In­
deed, the programming and computing world is al­
ready on its way to achieving it. 

Indefinite Language. The machine's 
capabilities are mirrored accurately in the 
external language used between it and the human 



user. For example, if the language is limited 
to procedures, then it is not possible to ask 
the machine to solve problems, such as "Find x 
such that sin x - x • .5." The model of lan­
guage required might be labeled the "Hide and 
Seek" model. Any information the transmitter 
can hide in the expressions being communicated, 
the receiver can find, providing the rules of 
hiding are given in the language. Any restric­
tion to a fixed vocabulary, a fixed grammar, or 
a fixed technical area will be viewed immediately 
as a limitation in intelligence. 

Indefinite Accumulation. Anything that is 
reasonably intelligent learns from what it does. 
Indeed, problem solving involves learning in 
many ways—e.g., learning about trigonometric 
series in the example above. Part of the stream 
of facts, procedures, clues, theories, and so on 
that pass through an intelligent machine will be 
accumulated for later use. Again, no definite 
boundaries can exist on what is selected or how 
it is filed and indexed. Limitations of this 
sort will reveal themselves as inappropriate 
repetitions, and will immediately be seen as a 
deficiency in intelligence. 

Perhaps I am grooming the machine to be a 
genius, rather than a mere technician. I do not 
think so. Educated men possess these character­
istics to a remarkable degree. Limits will 
exist, or the machine would be smarter than 
most men. But these limits will be indefinite 
and shifting, and will express themselves in a 
global measure of the machine's intelligence. 

It may seem that all the emphasis is on 
intelligence and none on the volume processing 
capacities that are also needed. On the con­
trary, the machine is for high volume work. 
The intelligence forms the connective tissue 
that allows the machine to rapidly organize it­
self to be highly repetitive and efficient. 

General Layout of the Machine 

Although I cannot provide a complete pic­
ture, I will give some considerations about an 
organization for such a machine. These fall 
under the headings of information processing, 
problem solving, supervision, and interpretation 
and production. These headings are machine 
oriented and are not coordinate with the require­
ments of intelligent action. The general layout 
is shown in Figure 1. 

A*1 External Language is used between the 
machine and those things with which it communi­
cates. This language is completely independent 
of the internal structure of the machine. Only 
incidentally will it refer to things and pro­
perties inside the machine. The expressions 
in the external language are taken in bodily 
and made available in the Input-output area. 

There is a single Processing area* struc­
turally homogeneous, but divided into two 
functional areas: the Interpreter and the 

Factory. The Interpreter produces the processes 
indicated by the External Language expressions 
in the Input-output area. These action pro­
cesses are constructed in the Factory, and 
constitute the activities that the machine does 
in response to the external world. 

The processes in the Factory are in the 
Internal Language, as are the interpretation pro­
cesses in the Interpreter. In Holland machines 
it is difficult to distinguish programs from 
processes—expressions that say what to do from 
structures that do it. A language expression 
written in a set of modules may be sufficient 
to convert these modules into a process that 
behaves according to the expression. Hence, 
"internal language," "program" and "process" 
are used interchangeably. 

Besides the Input-output area, there 
are three stores for information. Each is 
structurally distinct because of different 
reading and writing requirements. The Program 
Store contains the large number of program 
forms required by the Interpreter and the 
Factory. The Associative Store contains 
entities with the properties normally associated 
with symbols. The Warehouse is a tertiary 
store that backs up all the other areas. It 
is a reminder that, even in a machine with lO^1 

component's, access time must be traded for space 
in order to remember enough information. 

Holland Machines 

A Holland machine consists of a regular 
lattice of identical modules, as shown in 
Figure 2. Each module is directly connected 
with its immediate neighbors in the lattice. 
These direct physical connections can form 
paths between distant modules. A module's 
capacity for paths is limited. Once formed, the 
paths give immediate access independent of 
length. Each module has both memory and pro­
cessing functions, and may be active simultane­
ously with and independently of other modules. 
The functions of a module are represented by 
settings of bit patterns, so that a module may 
take on any possible character by writing a new 
bit pattern into it. Operations change the 
state of a module as a function of the states of 
other modules connected to it by paths. These 
include operations for reading and writing in­
formation into modules and for building up 
paths. The machine is basically synchronous. 

Within the bounds indicated almost any 
kind of a system is possible. There is freedom 
to specify the number of immediate neighbors, 
the kinds of information held by each module, 
the operations performed by each module, and the 
sizes of the paths. For a given amount of basic 
componentry the more complex the module the more 
components it will take per module and the fewer 
modules that will be available. The original 
papers should be consulted for more detail. 



270 
9.3 

The following features summarize most of 
the advantages and problems of Holland machines: 

Indefinite Parallelism, The most striking 
feature of Holland machines is their active 
nature. Many processes can run in parallel, 
each of arbitrary composition. Our experience 
is almost entirely with completely serial ma­
chines. Machines with a small number of in­
dependent processors are just coming into being. 
Although a telephone system is like a big 
parallel computer in many ways, it accomplishes 
unsophisticated functions compared to those 
needed for general computation. There is little 
work in the literature on programming systems 
of this sort. Besides Holland's papers, work 
by linger^ and Selfridge^ is relevant, although 
they both focus on pattern recognition. 

Industrial organizations are examples of 
highly parallel systems, and face many problems 
similar to this one. We can expect to be in­
volved in the same crucial issues of central­
ization-decentralization, coordination, and 
division of labor. We can also expect the 
growing rationalization of management, typified 
by operations research, to be a prime source of 
clues for programming these systems. 

Local Action. The modules of Holland 
machines work by local contact along paths. In­
formation is designated by pointing to it, 
rather than by symbols that refer to it. A major 
gain recently made in programming was finally to 
create an entity that behaves in many ways like 
a linguistic symbol (the address with a list of 
associated information). No simple correspondent 
to this exists in Holland machines. 

Iterative Structure. The modules in a 
Holland machine are identical, although different 
Holland machines can be used for the gross areas 
of Figure 1. This iterative character, besides 
being suitable microelectronic production tech­
nique, provides a "space" already rich in pos­
sibilities in which structures can be created 
at will by information transfer operations rather 
than actual construction operations (in the car­
penter's sense of the word). However, this 
implies that most modules will have only a small 
fraction of their componentry utilized. 

Fixed Network of Connections. The multi­
dimensional connections between modules seem at 
first glance to be a blessing. The virtue fades 
as soon as arbitrary structures must be processed. 
The information is invariably incommensurate with 
the fixed network. "Dead ends," in which all the 
paths to a module are occupied and no way exists 
to gain access to the module, are continually a 
problem. Simple data organizations must be used, 
even though they prohibit clever ways of encoding 
particular information. 

Information Processing 

The first level of organization of the 
machine is the information processing level. 
It contains means for building up structures of 
information and for forming processes to operate 
on these structures. It involves specifying the 
Holland machine for the Processing area (the 

Interpreter and the Factory) and indicating how 
the problems of memory and program organization 
will be solved. In the following I draw heavily 
on the programming experience with the problem 
solving programs described in the next section 
and on the list languages^ constructed to aid 
in programming them. Properties of the Proces­
sing area will be accumulated; then a Holland 
machine for them will be sketched. 

Units and a Principle of Homogeneity 

In current machines and coding a large 
discontinuity exists between the machine level 
and all structures built up from this level. A 
subroutine is not like an instruction; a double 
precision number is not like a number contained 
in one word. The temptation to create Holland 
machines similarly is strong—to create neat, 
powerful, elementary operations for modules and 
then to build up everything from these in 
structures that look very different from modules. 
There would be a preferred size of channel (the 
one between modules), a preferred size of in­
formation (the word in the module), and a pre­
ferred set of operations (the operation code of 
the module). 

Contrariwise, the Processing area satis­
fies a Principle of Homogeneity, according to 
which a module and a higher unit cannot be dis­
tinguished by any of the conventions for dealing 
with them. The basic structure of the Processing 
area is the following: 

1. The Processing area consists of a 
stack of planar fields, each field containing 
spatial units. These are rectangular in shape 
and vary in size. Their boundaries do not cross 
each other, but units may exist inside other 
units. 

2. The units are connected by paths. 
These run in horizontal and vertical segments 
and may be of any width. Two paths may cross 
each other at right angles, but otherwise two 
paths may not occupy the same space. 

, 3. Each unit has registers that hold 
information in bit patterns. There can be units 
with any number of registers, and registers witjh 
any number of bits. 

4. Each unit can accomplish an inform­
ation process involving reception from some 
paths, transmission along others, and changes 
in internal registers. 



These properties allow units to be built up 
from networks of other units in order to accom­
plish more complex processes. Similarly, units 
may be analysable into subunits connected by 
paths. If analysis proceeds far enough, units 
are reached that are not further analysable. 
These may be either modules O K aggregates of 
modules that, for reasons of speed and space, 
have been arranged internally in ways that do not 
correspond to all the conventions of units. 

It is now unimportant where the modular 
level is, and what operations and registers 
modules contain. I am now free to specify flow 
diagrams of units with arbitrary functions con­
nected by paths of arbitrary information content. 
No assumptions need be made about the module op­
erations, except completeness. For the machine, 
the problem of organizing itself has been much 
simplified. 

Spatial Operations 

The machine needs ways to assemble and 
manipulate units and paths. These should also 
be homogeneous and should not require extensive 
knowledge about the distribution of units in 
the field. The following additional properties 
seem appropriate: 

5. Units can be moved in any of the six 
directions (vertical movement between layers is 
needed). The entire unit moves at once with a 
velocity of one module per basic cycle (vari­
able or faster speeds are complicated). 

6. Movement takes place freely into 
space not occupied by paths or other units. A 
moving unit coming into contact with a station­
ary unit or path sets the new unit in motion in 
the same direction. Two colliding units stop. 
A moving unit stops upon contact with the in­
side boundary of a unit. 

7. Paths remain connected to moving units, 
growing and contracting as required. 

8. Units can expand and contract. In ex­
pansion the same conventions hold as for a 
moving unit. It sets other units in motion and 
stops when it contacts the inside of a boundary. 
In contraction, the inward moving boundary sets 
the inside units in motion, and all motion comes 
to a halt when the subunits are jammed together. 

9. Units can be copied. This always oc­
curs in the vertical plane, as shown in Figure 
3 (a direct horizontal copy is difficult). The 
figure shows a horizontal copy obtained by 
copying-up, moving-over, and moving-down. 

These capabilities provide convenient ways 
to manipulate structures. Movement is control­
led by always working inside a higher unit as 
a sort of corral. Rearrangements occur auto­
matically, since all units tend to move out of 
the way. 

Information Structures 

The more complex the programs, the more 
irregular and dynamic are the structures of 
information built up of units and paths. The 
machine must be prepared for network-like 
affairs, as shown in Figure 4. The left side 
shows a simple tree; the right side indicates 
that matters are not always so simple. To put 
such structures (and their more elaborate 
cousins) into the rectangular grid of the Pro­
cessing area, a standard outline form is used 
(Figure 5). Each unit is allocated a horizon­
tal band. Subunits are indented to the right 
and put immediately below their superunits. 
The connecting paths use the space made avail­
able to the left. As the tree grows all tne 
units are put in downward motion. Each unit 
can also grow independently to the right in 
its band. The right hand limit is given by 
the boundary of the superunit that contains 
the entire structure. 

Splitting Operations. The simple outline 
is insufficient for general networks, as an 
attempt to add the paths for the right side 
of Figure 4 shows. Already paths can cross 
paths, but they must also be able to cross 
units. Splitting the unit is one solution: 

10. A unit can be split into two parts, 
either vertically or horizontally, and these 
two parts may be moved indefinitely far apart. 
The space between the parts contains only 
paths. Elongations of the internal paths of 
the unit run across the split, so that the 
unit remains unchanged as far as information 
flows are concerned. Other paths can run 
along the split, and so traverse a unit. 

The outline conventions and the split­
ting operation allow the machine to put any 
kind of information structure into the Pro­
cessing area. This stylized form is often 
less compact than other forms, but it avoids 
solving many problems in memory organization. 

Definitional Control 

No sharp distinction exists between in­
formational units and processing units. Most 
data is contained in units that actively trans­
mit the data over paths, rather than waiting 
passively to be read. Both the Interpreter 
and the Factory are systems of many inter­
connected, simultaneously active units, and 
techniques must be provided for control and co­
ordination. 

Experience at the programming level is 
exclusively with sequential control. Se­
quencing information is given independent, of 
the content of the processes, usually by the 
order of instructions. A form of sequential 
control could be adapted to the present ma­
chine. Instead, a more radical, fully asyn­
chronous procedure is used. This is called 
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definitional control, since it rests on the fact 
that procedures work from the defined towards 
the undefined. Although similar to existing 
asynchronous techniques, I am not familiar with 
any discussion of it for general procedures. 
However, some work by Steward" is relevant. 

Any procedure can be put into the form of 
a hierarchy of subprocedures: The lowest pro­
cedures work on the input data; the next pro­
cedures work on the outputs from these; the next 
higher ones work on the outputs of these; and 
so on. Figure 7 shows the computation of Ke""^K 

in this form, as it would occur in the Factory. 
Iterative, recursive, and conditional processes 
can be analysed analogously. 

Assume that each process is sensitive to 
whether its inputs are available and to whether 
its output can be accepted. As long as K re­
mains undefined no computation takes place. As 
soon as K becomes defined, say by some other 
process feeding a number into it, then the first 
multiplier can operate, since both of its inputs 
are defined. Once its computation is finished 
and it transmits the product, the exponential 
process can operate; once this is finished, the 
final multiplication operates. Finally the re­
sult is printed. Each process operates as soon 
as it can—that is, when the situation is de­
fined for it. Until that time, it simply waits. 

Suppose a process at the bottom was feeding 
numbers into K at a faster rate than the printer 
could operate. Until the printer accepts a 
result, the top multiplier does not accept the 
inputs from K and the exponential; the exponen­
tial does not accept the product' from the lower 
multiplier; and it, in turn, does not accept 
the next value of K. The computation auto­
matically becomes paced by the printer. 

This form of control partially rational­
izes the construction of procedures. No in­
dependent sequencing problem must be solved. 
A process that is put together correctly accord­
ing to the flow of information is ready to go, 
and will sequence itself automatically. Since 
the machine constructs its own programs, this 
seems a desirable property. 

To obtain definitional control, the follow­
ing are needed: 

11. Every register is either defined or 
undefined; this can be detected on any path 
leading into or out of the register. (This is 
simple enough unless there are multiple trans­
mitters and receivers, in which case things 
get complicated.) No transmit operation will 
be executed into a defined register (it's al­
ready occupied), and no read operation will be 
executed from an undefined register. 

12. Each unit is either active or in­
active. If a unit becomes active all its sub-
units become simultaneously active also. If it 
is inactive it will not perform any processing 

(spatial operations excepted), and all of its 
registers will be undefined. If it is active, 
it will perform its processes as soon as all 
paths involved are admissible (inputs defined 
and output receivers undefined). 

Modules and Mass Operations 

I must at least indicate how the numerous 
asserted properties might be achieved in a 
Holland machine. The ideas seem independently 
interesting because they involve mass operations, 
which affect all modules in a region simultane­
ously and identically. Little experience exists 
with such operations-^; but they seem worthwhile 
exploring. 

Each module consists of two parts: a 
regular part and a substrate. The regular part 
involves operation codes and storage registers 
from which processing and memory functions will 
be synthesized. The substrate takes care of 
defining units with their spatial and activity 
properties. The regular part satisfies the 
homogeneity principle. The substrate achieves 
the homogeneity principle for aggregates of 
modules and has no counterpart at the unit level. 
The regular part need not he defined because of 
the homogeneity principle, but the substrate 
needs discussion. 

The substrate consists of a state for 
each module, some operations for changing state, 
and some paths interconnecting modules. Every 
module is either: 

1. occupied or unoccupied; 
2. active or inactive; 
3. repetitive or nonrepetitive; 
4. stationary or in motion in one of 

six directions (four horizontal and 
two vertical); 

5. Open or closed, independently, in 
each of the four horizontal direc­
tions to the transmission of influence. 

All the modules in a plane are inter­
connected so that they must all change state 
simultaneously. If one module goes from in­
active to active, all modules go to the active 
state. This network of influence, which ex­
tends from any module to all other modules, can 
be broken by modules that are closed. If some 
modules are surrounded by a boundary of modules, 
all closed with respect to transmission outward, 
then changes inside affect everything inside 
but affect nothing outside the module. A unit 
is; a rectangular set of modules with a boundary 
that blocks influence from the inside out but 
transmits influence from the outside in. This 
last condition makes possible hierarchies of 
units. Anything that occurs in the larger unit 
affects the subunits (like moves, executes, 
stops, etc.), but not vice versa (a subunit can 
move about in the unit without making the unit 
move). 

A module in motion copies its content into 
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the next module in the given direction. This 
leaves the motion state unchanged, and motion 
continues until something turns one of the 
modules to stationary. As soon as this happens, 
all modules within the unit instantly become 
stationary and the unit stops moving. 

A unit is made active by changing any of 
its modules from inactive to active. All the 
modules are simultaneously made active, and the 
unit immediately begins to "push11 to execute its 
process, since those parts which can operate go 
into immediate operation. Two states of oper­
ation are needed, repetitive and non-repetitive. 
A repetitive module remains active even though 
it has just executed its operation; it imme­
diately tries again. A non-repetitive module 
sets itself inactive as soon as the operation is 
accomplished. This change immediately affects 
the entire smallest unit that contains the 
module, but it does not affect the modules out­
side the unit. Incidentally, this shows that 
influence must depend on state changes and not 
states, since otherwise the existence of active 
modules outside would immediately reactivate a 
module that had just turned itself off. 

Although this development is incomplete, 
the outlines are clear, including the power of 
the mass operations. 

Symbols and the Associative Store 

Both human language behavior and the pro­
gramming of complex systems point to the need 
for a stock of symbols for general information 
processing. Symbols are entities with the follow­
ing properties: 

1. It is always possible to obtain easily 
a new symbol, not otherwise being used (within 
the limits of the total stock). 

2. It is possible to produce indefinitely 
many occurrences of a symbol (symbol tokens) and 
these can be moved around and placed in struc­
tures. 

3. Given the occurrence of two symbols, 
it is possible to determine whether they are 
the occurrences of the same or different symbols. 

4. A symbol is a locus of associations. 
This means the following operations can always 
be performed: 

a. An associative link can be formed 
from a symbol S to a symbol S1, and the link 
labeled with the symbol S". Only one link with 
a given name, S", exists for a given symbol, S. 

* I reiterate that this formulation, and several 
others throughout the paper, come from joint 
efforts with J. C. Shaw and H. A. Simon. 

b. The symbol associated to the symbol 
S by the link labeled S" can be found. This is 
the inverse operation to the one above, and forms 
the sole significance of the "associative link." 
No association with label S" needs to exist, but 
if it does it is unique. 

c. The link labeled S" for the symbol S 
can be destroyed. 

This set of properties ties the concept 
of a symbol to the concept of an associative 
memory. Likewise, these properties give one 
definition of an associative memory, which is 
equivalent to being able to form and distin­
guish arbitrary single-valued functions of one 
discrete variable. It implies that an ade­
quate concept of symbol and reference can be 
formed from the concept of a locus of associ­
ations. Without arguing any of these points, 
this formulation is taken as the requirement 
for giving a machine symbols. 

Although the Processing area contains an 
elaborate system for processing information, 
it provides nothing that resembles a symbol. 
One unit designates another, not by having a 
symbol that names it, but by directly pointing 
to it. Although the bit patterns can be copied, 
transferred and compared, they do not allow 
associations. They are used entirely as objects 
and never refer to anything. 

A separate Holland machine, the Associ­
ative Store, provides symbols. The same dif­
ficulties in trying to map a free structure 
into a rectangular grid arise here. To each 
symbol there corresponds a structure that 
encodes an indefinite number of associative 
links, so that the total store is a completely 
arbitrary, dynamically changing network. 

Figure 8 shows a scheme for the Associ­
ative Store. The Holland machine for the Store 
consists of planes of modules. Each symbol has 
two adjacent lines of modules in the Store for 
its associations and an unique bit pattern for 
its token. Each association takes two modules, 
one in the lower line and one right above it in 
the upper line. The lower module is concerned 
with the symbol that labels the link, and the 
upper module is concerned with the symbol to 
which the link is made. 

Each module has a single register that 
holds a token. The horizontal data paths, 
which transmit tokens, are open, so that all 
the modules in a line see the same token simul­
taneously. The horizontal command paths are 

* This is an old notion with psychologists. 
However, this associative system is considerably 

more powerful than any proposed for organisms 
by psychologists. The essential difference is 
that here the links themselves can be labeled with 
symbols and hence can take associations. 
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directional to the right, so that a command 
issued by a module is seen simultaneously by all 
modules to the right but by none to the left. 
The vertical command paths connect each module 
to its immediate neighbor above. 

Each module is either in the "defined" or 
"undefined" state. Each can record the token 
on the data path in the register; transmit the 
token in the register onto the data path; compare 
the token in the register with the token on the 
data path; and receive and transmit commands. 
Three specific patterns of these actions are re­
quired for the associative operations. (The 
•link token' means the token of the symbol that 
labels the link; the 'symbol token' means the 
token of the symbol to which linkage is made.) 

1. Form an associative link? The symbol 
token is put on the upper data path and the link 
token is put on the lower data path. Each link 
module in the defined state compares the link 
token with the one in its register, and if they 
are equal commands the symbol module above it 
to record the symbol token in its register. Each 
link module in the undefined state records the 
link token in its register, commands the symbol 
module above it to record the symbol token in 
its register, and sets itself to be defined. 
Further, all modules that took action command 
all modules to the right that have this link 
token registered to set themselves undefined. 
This order overrides; any action to set a module 
defined. The net result is that one and only 
one module-pair records the association. Many 
modules may have the information in their regis­
ters, but only the leftmost one will be in the 
defined state. This assures that there cannot 
be two links with the same label. 

2. Find an associated symbol. The link 
token is put on the lower data path. Each link 
module in the defined state compares this with 
the token in its register. If they are the same, 
it commands the symbol module above it to trans­
mit the token in its register onto its data path 
as the symbol token. By the nature of the system 
either no module transmits or exactly one module 
transmits. 

3. Destroy a link. The link token is put 
on the lower data path. Each link module in the 
defined state compares this with the token in 
its register. If they are the same, it sets 
itself to the undefined state. 

The scheme is still incomplete in essential 
respects. Mast important is the connection be­
tween the token, which is a bit pattern, and the 
two lines of the associative store that corres­
pond to its symbol. The mechanism described 
simply delivers and remembers bit patterns in 
response to bit patterns transmitted on special 
data paths. Some way must exist for units in 
the processing area to take a token and con­
struct a path for themselves to the data paths 
in the associative store. Once they connect 

they must be able to command the associative 
operations and receive bit patterns back along 
the path in return. 

This problem is strikingly similar to 
that of a telephone system. Connections must 
be made from a set of subscribers, the units, 
that are widely scattered throughout the pro­
cessing area. The connections are only tempor­
ary; once formed they persist for variable 
periods. Finally, only a few subscribers want 
access to the store at any one time. The token 
bit pattern, then, is a "telephone number" and 
the units "dial" the associative store. 

Problem Solving 

The organization of the machine at the 
information processing level is now clear 
enough to allow a brief consideration of higher 
levels of organization. Most important is an 
ability to problem solve. 

Combinatorial Problems 

Recent work on heuristic programs pro­
vides considerable information on the processes 
involved in problem solving. Programs have been 
written for tasks which are sufficiently complex 
and difficult to require intelligent action by 
humans. These tasks include theorem proving in 
elementary domains, chess and checker playing, 
musical composition, and some management science 
problems'. All these programs formulate the 
problem in a common way and attempt to solve the 
problem by a common approach. 

The problems all involve a set of objects 
and a set of operators for producing new objects 
from old objects. The goal is to find a se­
quence of operators that produces an object with 
certain desirable properties, given some in­
itial objects. For example, in chess the ob­
jects are positions; the operators are legal 
moves; and the goal is to produce a sequence 
of moves that will result in a winning posi­
tion. In theorem proving, the objects are 
theorems; the operators are rules of inference; 
and the goal is to produce a sequence of in­
ferences that will result in the theorem to be 
proved. 

These problems are combinatorial in 
nature. They involve the selection of a se­
quence with certain properties out of the set of 
all possible sequences. The possible sequences 
can be represented as an expanding tree: given 
an initial object, application of the operators 
in all possible ways yields a set of new ob­
jects. Applying the operators in all possible 
ways to each of these objects yields another 
(much larger) set of objects two steps removed 
from the starting point. This can be repeated 
to generate the tree to any depth by taking all 
of the objects obtained at depth D and applying 
the operators in all ways to them to get the 



objects at depth D+l. If approximately E< ap­
plications are possible for each object, there 
are F branches at each node, and of the order 
of Ir objects are generated at depth D. Thus 
the number of paths in the tree goes up exponen­
tially with depth. 

If the solution lies at depth D, then of 
the order of B^ paths must be* examined to dis­
cover the solution. It is easy to show that 
immense numbers of paths occur for any real 
problem. For example, chess has a B of about 
30 and a D of about 80, yielding about 1 0 1 2 0 

paths. Since the entire tree cannot be ex­
plored, it is necessary to be sophisticated in 
searching—to look only where the answer is. In 
hard problems no single item of information tells 
exactly where the desired object is, and many 
different bits of information, each of low cali­
bre, must be used to restrict the search to a 
reasonable number of branches. These odd bits 
of information and the ways of organizing them 
are called heuristics. An example from geometry 
is "Don't try to prove two angles equal unless 
they appear about equal in a well drawn diagram." 
This heuristic reduces the average number of 
branches at each node by rejecting some that 
would otherwise have to be explored. The effect 
of heuristics is to reduce the parameters, B 
and D, in the search formula, B", leaving the 
form of the problem unchanged—search in an ex­
ponentially expanding space. 

Problem solving by heuristic search is not 
the universal solvent that dissolves all parti­
cular methods. It is the last ditch defense 
when no special methods are known. The machine 
has many special methods, from analytic dif­
ferentiation to Newton's method, and uses them 
wherever appropriate. It also needs some model 
for all the other problems that arise. Heuris­
tic search is the best available. 

Parallel Search 

The problem is to organize the machine for 
problem solving. In current serial machines a 
single program, the problem solver, conducts the 
search. It carries with it an accumulation of 
information about the maze and its activities 
in it, and combines this with its more general 
heuristics to decide which branches to explore. 
If on the average it takes C time units per 
node, then the search time is of the order of CB^. 

Being parallel, the machine is not limited 
to a single problem solving process. With P 
problem solvers, the time of solution is of the 
order of (C/P)B". This speeds up the process 
by a factor of P, but does not affect the ex­
ponential, which governs the growth of the search 
tree. Coordination problems also exist, since 
no one problem solver accumulates all the inform­
ation. Each must contain additional processes 
for transmitting its information and analysing 
the information received from the other problem 
solvers. 
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Parallelism can be pushed further. Each 
problem solver can have the task of not only 
creating the B branch points, but of making B 
copies of itself and of setting one copy to work 
independently on each branch. Mow every branch 
point is active, and even if it takes an ad­
ditional K time units to produce each new prob­
lem solver, the total search time to depth D 
is of the order of (C+BK)D. If this equation 
were only true, all the world's problems could 
be solved in a day* It claims that the search 
time, instead of being exponential with depth, 
is linear with depth. Thus, at a microsecond 
per chess position, it would take only a few 
milliseconds to compute the perfect game. The 
absurdity of this is manifest, but it is in­
structive to examine why it cannot hold. 

Parallel computation trades space for 
time. The space required to hold the data of a 
problem tree also increases exponentially with 
time (although serial strategies exist that 
keep the space proportional to D or BD). In the 
fully parallel case space must be found to put 
the exponentially increasing number of problem 
solvers. Since space becomes available at the 
rate at which units can move apart, the ulti­
mate determiner of the growth of the tree is 
the velocity of movement. Since this is al­
ways limited (to one module per cycle for this 
machine), the time to search the tree remains 
exponentially related to depth.* This is simply 
the Malthusian problem for programs, in which a 
population of programs reproduces itself geo­
metrically, while its sustenance, space, grows 
only linearly. 

Parallel search is still an effective 
strategy. By suitably spacing the initial points, 
extremely rapid exploration can be had of the 
first part of the tree. The devices described 
earlier for information processing make the 
mechanization of these procedures straightfor­
ward. Independent problem trees can exist simul­
taneously in the processing area, each encased 
in an expanding boundary. The entire set of 
growing units moves around in the yet larger 
bounded area that contains them all, utilizing the 
total space in a reasonable, if not optimal, 
fashion. 

Supervision 

Earlier a principle of awareness was 
stated by which the machine should be able to 
detect the consequences of its actions and have 
some ability to correct, modify, or prevent them. 
This covers reliable computation as well as more 
subtle things, such as inconsistencies in the 
user's data. 

* Even if space expands in N dimensions, the 
volume cannot grow fast enough to keep up with an 
exponential demand. However, added dimensions 
help. If N dimensions are available for expan­
sion, the search time becomes like Br' . 
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An approach to this problem is to provide 
reliable containment of consequences and super­
vision by independent processes that are suf­
ficiently intelligent to handle the errors that 
occur. The unit boundaries, impervious to out­
ward flowing influence but transparent to inward 
flowing influence, are naturally suited to con­
tain consequences. The supervisory processes 
are units that sit outside the units they super­
vise, checking and correcting certain classes 
of errors. Not all errors can be checked, since 
only a finite amount of effort can be spent on 
supervision, and there are many errors the ma­
chine cannot possibly rectify. 

Two aspects of the problem can profitably 
be discussed further at this level. First, who 
shall guard the guardians? The simplest answer 
is to have another supervisor, as shown in 
Figure 9. Each lower system is contained in a 
walled cell, and the supervisor outside has paths 
into it for monitoring it. The problem is to 
avoid the implied infinite regress. One solu­
tion is to adhere to the rule that any unit 
that acts outside itself must be supervised, but 
any unit that only takes in information need not 
be supervised. In Figure 9, assume the action 
program is for a user and will result in an ex­
ternal response. It must be supervised, so 
Supervisor #1 must exist. As long as Supervisor 
#1 takes no action on the action program, it 
need not be supervised. The moment Supervisor #1 
goes into action, Supervisor #2 must come into 
existence, and so on through an upward recur­
sion of supervisory routines. As units complete 
their tasks the supervisory units disappear again. 
If supervisors are constructed to act rarely, 
say only when errors occur, then the height of 
the recursion is governed by the successive 
powers of the error probability and is kept 
under good control. 

The second aspect is the nature of general 
computation. Current programs normally consist 
of a single procedure, all of which must be 
gone through to produce the final result. Con­
trariwise, most procedures carried out by people 
are done in the context of a tree of alternatives, 
where at each step, although one action is taken, 
others are possible to achieve the same end. 
Thus, if the computed value of the cosine is 
wrong, it can be recomputed; if still wrong, it 
can be looked up in a tablej if still wrong, the 
look-up procedure can be checked; and so on. 
The strategy is not to correct errors directly, 
but to bypass them and produce the result a 
different way. All computations are to be carried 
out as a problem solving search to discover the 

* An alternative approach, which has been much 
pursued, is to achieve the reliability at the 
level of the smallest component by such means as 
error-correcting codes and multiplexing. This 
approach tries to solve the problem without re­
course to the larger context in which the com­
putation occurs. 

solution.The nodes in the search tree are stages 
in the computation; the branches are the pos­
sible computational actions. It makes little 
difference whether a path to the answer is re­
jected because it is "a wrong computational 
step" or because it is "a right computational 
step with an error." 

Interpretation and Production 

There are two conflicting requirements 
for this machine. For volume processing of 
data, its programs should be as efficient as 
possible. But, since these programs come to it 
from outside, they should be as easily communi­
cated as possible. The external language and 
the internal language are completely divorced 
from ea"ch other in order to deal with the con­
flict. The external language is communication 
oriented; the internal language is production 
oriented. The intelligence of the machine 
mediates between them. 

The general operation of the machine is 
as follows: The Input-output area contains ex­
pressions in the external language, generated 
by both outside users and internal processes. 
The expressions are analysed by a process in 
the Interpretive area, which builds up a pro­
cess in the Factory that will take the action 
appropriate to them. The Program Store pro­
vides the parts from which these action pro­
cesses are constructed, ranging from small 
parts, like multiplication, to entire programs, 
like matrix inversion. These parts are forms; 
they are identical to the final process except 
for certain variable units and paths, which 
must be specified to make an actual process. 
They are moved out of the Program Store along 
unoccupied planes and copies of them deposited 
in the Factory. Then the various unspecified 
units and paths are identified and brought 
together. For this purpose, the variable parts 
of the forms carry descriptions of their func­
tion. For example, the form for the process 
in Figure 7 might be xe 3* and would look ident­
ical to Figure 7 except for an x and an a in 
place of the K and -2, and an expression xe3-*, 
in place of the print. 

Once a complete process is assembled, and 
the interpreter decides the interpretation is 
correct, it is executed. The interpreter re­
mains intact during execution to handle dif­
ficulties, to remove the action process at the 
end, and to decide if anything should be sal­
vaged for later use. 

The behavior of the machine is a collec­
tion of such efforts, each composed of an 
action process governed by expressions in the 
external language and mediated by an inter­
pretive process. Some are built up in response 
to simple external requests and are concluded 
almost immediately and some involve long 
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production runs. Others constitute strategies of 
internal operation, such as the allocation of 
effort between production and improvement. The 
rate at which the machine processes information 
is determined by whatever limit is reached first: 
production time, Factory space, input-output 
equipment, interpretive time, and so on. 

Productive Efficiency 

Little study has been given to the theory 
of efficient computation,8 However, certain 
general features of the machine permit efficient 
programming. 

One source of inefficiency is excessive in­
terpretation. This generally occurs in repeti­
tive processing, where interpretation of the 
same procedure occurs over and over again. It 
is avoided by using the first interpretation to 
set up an efficient procedure, so that subse­
quent interpretation isn't needed. The division 
of labor between the Factory and the Interpreter 
permits this efficiency. A more subtle version 
of interpretive inefficiency is the use of sym­
bols and other indirect forms of designation. 
The use of direct paths in the Factory permits 
the elimination of most of these costs. 

The machine operates through the use of 
standard building blocks, which it puts together 
in various standardized ways to construct yet 
bigger building blocks. Often a process so 
built up can be made more efficient, both space-
wise and timewise, by reconstructing it out of 
more microscopic processing units. One of the 
continual activities of the machine is to invent 
more efficient units for processes that are im­
portant to it. Independent of immediate demands, 
it takes program forms from the Program Store, 
attempts to improve them, and returns them to 
the Store. The discrete nature of the machine 
allows the problem of improving a program to 
be phrased in terms similar to the problem of 
playing chess or proving theorems.' 

Interpretation as Problem Solving 

The only acceptable dictum for designing 
the external language is that it cover the full 
range of expressive devices. It is easy to 
state some of these. We want the ability to sub­
stitute expressions for terms; to add new terms 
and abbreviations; to express new language con­
ventions; to make ambiguous and vague statements; 
to state problems as well as procedures; to mix 
syntax and semantics; and so on. Each of these 
is needed, not only for communication, but be­
cause the machine uses this language for all 
its internal control and problem solving. Con­
sider the possibility for ambiguity, which may 
seem an odd property to desire. If the machine 
cannot state an ambiguous notion, it can never 
get started on a series of successive approxi­
mations to achieve an exact notion. And if the 
man must be unambiguous in communicating to the 
machine, he can never get it to help him formu­
late a difficult computation. 

A discussion of the mechanisms required 
to interpret these features is beyond the bounds 
of this paper. However, one general mechanism 
is relevant to all of them—the treatment of 
interpretation as problem solving. The inter­
preter in the machine for a given expression is a 
branching tree of processes. Each node of the 
tree represents a set of hypotheses about the 
meaning of the expression (more precisely, about 
the implication of the expression for current 
action). Each branch represents an additional 
hypothesis about the meaning, so that different 
branches at a node represent alternative inter­
pretations of the expression. The processes at 
the nodes carry out the analysis of the expres­
sion. Each is specialized to the hypotheses at 
the node, and operationally represents these 
hypotheses. These processes detect information 
that would confirm or reject the hypotheses, and 
if the latter, terminate interpretation along 
their branch. They find new information that 
leads to additional hypotheses, and create pro­
cesses to continue the interpretation within 
these more restrictive bounds. They also take 
direct action in building up the action process 
in the Factory. 

Viewed this way, interpretation is the 
process of discovering by a series of inter­
pretive acts a final action process that is 
consistent with all the information extracted 
from the expression. The search goes on in 
parallel with all alternative interpretations 
being carried forward. If the expression is 
clear, then one line emerges cleanly and im­
mediately. If the expression is full of little 
errors, then many short branches occur at each 
node, all but one of which prove false. If the 
expression is ambiguous, more than one line of 
interpretation continues through to a complete 
action program, and information from more dis­
tant sources must be sought. 

To give one simple example of this pro­
cess, consider the interpretation of the re­
quest "Compte Ke~2K for K = 1 and 2." Assuming 
that nothing is known about the expression, 
interpretation starts with a standard process. 
"Compte" is recognized as not corresponding to 
a word, and the interpretive hypothesis is taken 
that the user meant "Compute." On this basis 
a new interpretive process is set up that assumes 
some formula for numerical computation will 
follow. When Ke""2^ is found this is confirmed. 
This action is dependent on the first. If the 
initial word had been "Differentiate," then a 
form for numerical computation would be wrong. 
Also, the hypotheses needn't have been confirmed. 
If the original expression had been "Compte is 
to mean the same as Compute," then a numerical 
computation was not desired and an alternative 
hypothesis is needed, say that "Compte" is being 
used as a name for itself. Getting the form con­
stitutes a second interpretive act and another 
interpretive process is created which matches 
the form to the expression. This results in ad­
ditional interpretive acts as x is identified with 
K and a is identified with -2. The final inter-
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pretive act occurs when the print process is put 
in. Since no indication is given for'what the 
machine is to do with the computation, this is 
a hypothesis that the user wants the information 
given to him immediately. Its confirmation must 
Wait until after the action process has been ex­
ecuted, and the user reacts to the result. 

Although this mechanism does not solve the 
problems of interpreting the devices mentioned 
earlier, it seems to be a necessary feature of an 
intelligent interpreter. 

Last Thoughts 

Speculation stops here. The problems of 
making an intelligent technician from a Holland 
machine form an expanding tree which could be 
explored both broader and deeper. 

Each of the topics touched on in the paper 
was left incomplete: the nature of the modules 
that can achieve the properties stipulated; the 
nature of the telephone exchange; the mechanisms 
for interpreting the external language; and so 
on. Major aspects were not even mentioned: the 
problem of going from an object to its symbol; 
the problem of organizing the machine's knowledge; 
the problem of context; and so on. But at this 
stage of development, with the microelectronic 
techniques still a little ways distant, it is ap­
propriate to end with a sense of incompleteness 
and need for further exploration. 
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Figure 5 Outline Form for Information St ructures 

Before 

Split 

1 

After 

Split 

Figure 6 Splitting Operation 

V. 
print' 

TV, 

+ 
L-J/ x-y 

A 
/K 

T 
X 

Figure 7 Definitional Control 



282 
9.3 

Symbol 
Module 

Link 
Module 

Association 

1 

J 

Association 

Figure 8 Associative Store 

Supervisor # 

Action Proces 

data 
^ p a t h 

command 
paths 

.token 
register 

wa 
wal 

Figure 9 Supervision 




