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There now exist at least a half 
dozen computer programs that simulate 
some of the information processes that 
humans use to perform problem solving, 
learning, perceiving, and thinking tasks. 
These programs constitute theoretical 
explanations of the corresponding human 
behavior, and can be tested by comparing 
the computer traces they produce with 
the verbal behavior of subjects in the 
psychological laboratory. This paper 
surveys this new kind of theory building 
and theory testing in psychology, and 
relates it to other uses of simulation 
as a tool of psychological research. 

The use of computers to perform 
"humanoid" tasks—which provides the 
theme for this conference--falls into a 
number of distinguishable, though 
overlapping, categories. On the one 
hand, the goal may be to learn about 
human processes by simulating them; this 
has been the central motivation in 
simulating neural nets and a good part of 
the work on simulating human problem 
solving. On the other hand, the goal 
may be to find effective machine pro­
cesses for accomplishing complex tasks-
imitating the human processes only when 
this proves the most efficient way to do 
the job. This goal of "artificial 
intelligence" has been perhaps the 
primary motivation in the fields of 
information retrieval and language trans­
lation. The work to be described in 
this session falls in the former 
category: it is aimed at understanding 
the human mind by imitating it. 

Some Kinds of Simulation of Mind 

Computer simulations of human 
thinking can be classified along another 
dimension: the closeness of the simu­
lation to, or its remoteness from, under­
lying physiological processes. We can 
distinguish at least the following 
broad categories: 

-̂  Abstract simulation of adaptive, 
goal-seeking, learning mê hltnTsms.~ Here 
the primary g6"aTXs~To~"uhderstand the 
nature of organisms in general, rather 
than the human organism in particular. 
One set of examples were the "tortoises" 

of Grey Walter, mobile analogue compu­
ters that demonstrated "in the metal" 
that artifices can be constructed which 
will behave adaptively in an environment 
in response to drives, and will improve 
their adaptation through learning. 
Another example--also an analogue--is 
W. Ross Ashby's homeostat,2 that shows 
how learning can be implemented through 
"Darwinian' mechanisms that cause 
mutations in the individual organism's 
program of adaptation to his environment, 

2* Simulation of the sensory-
perceptual processes by which humans 
recognize visual"aricT aural "patterns and 
symbols. Mechanical reception and de­
coding of human speech is a long-time 
goal of fundamental and applied research 
that has not yet reached complete success. 
But much is now known of the cues that 
humans use to recognize the basic phonemic 
units of spoken language, and within 
the past two years some partial successes 
have been achieved in mechanizing that 
recognition.3^ Even greater progress 
has been made with the simpler task of 
recognizing and decoding hand-sent Morse 
Code.5>" The classical pattern-recog­
nition experiments of Selfridge and 
Dinneen? undertook to simulate some of 
the basic coding processes employed by 
the human retina. 

3• Simulation of the self-organ­
izing capabilities 6T~neurar~ne'ts. As 
in*TSn"e~ work mehTIb~nê d~ln"the previous 
category, the problem that has usually 
been posed is to explain the phenomenon 
of pattern recognition: how the nervous 
system, given its known gross char­
acteristics, can learn to classify, say, 
patterns of light that fall on the retina. 
The work falling in category 3 is concerned 
less with the rules by which patterns 
are classified, and more with the ways 
in which these rules are acquired by Q Q 
the nervous system. Parley and Clark 'y 

represented the nervous system as a net­
work of individual elements--schematized 
neurons--connected in a more or less 
random fashion, subsequent appropriate 
organization being induced by learning. 
A similar scheme, developed independently 
by Rochester, Holland, Haibt, and Duda,1^ 
was aimed at testing the particular 
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hypotheses about neural organization 
that had been put forth by the psycho­
logist Hebb-.H Rosenblatt's Percep-
trons^2 continue this general line of 
investigation. 

4. Simulation of the symbol-manipu­
lating or information processes employed 
in learning by~"rote ,"""ln attaining concepts, 
and in solving" proble"ms . This category 
is most closely related to category 2, 
but with less emphasis on perceptual 
processes involving the peripheral sense 
organs, more emphasis upon non-numerical 
processes, and more emphasis on the con­
struction of a formal information-pro­
cessing theory of human mental processes. 
The research that the other participants 
in this session will report falls in this 
category, but before I introduce it, I 
should like to say something about the 
methodology involved. 

Non-Numerical Computation 

Mathematics is the classical tool 
for formalizing theories, and arithmetic 
or numerical analysis the tool fpr 
testing theories by comparing them with 
data. Progress toward formal theory in 
psychology, and the behavioral sciences 
generally, has been much impeded by the 
difficulties that are encountered in 
finding mathematical formulations that 
capture the significant aspects of the 
phenomena under study. The difficulty 
lies not merely in the complexity of the 
relations among the phenomena; it is 
even more deeply rooted in the incor­
rigibly '"qualitative" character of the 
raw data. 

How shall vie, for example, charac­
terize the data from a laboratory study 
of human problem solving in order to make 
these data amenable to mathematical and 
numerical analysis? We can count the 
number of problems a subject solves in a 
given time, and assign scores to bat­
teries of problems on the basis of such 
counts. We can tally numbers of errors 
of various kinds. But the numbers we 
obtain in these ways are pale shadows 
of the subject's actual behavior—par­
ticularly his verbal behavior.if he thinks 
aloud while solving the problem. When 
we record such behavior, we get data like 
these: 

5. Well, one possibility right 
off the bat is when you have 
just a PvT like that [the 
problem expression] the last 
thing you might use is that 
rule 9« I can get every­
thing down to a P and just add 
a vT. So that's one thing to 

keep in mind ... I don't 
know if that's possible; 
but I think it is because I 
see that expressions (2) 
and (4) are somewhat similar. 

How do we build a mathematical model for 
such a verbal stream, or for the under­
lying thought processes that carry the 
stream along? How much of the process 
have we captured if we encode the verbal 
statements and make counts of the numbers 
of statements of one kind or another? 

Psychologists have commonly retreated 
from one or both horns of the dilemma. 
Some have steeled themselves against 
accusations of "softness1, from their 
fellow scientists, and have continued 
to deal with complex human behavior in 
all its qualitative, unmathematized, 
richness and vagueness. This strategy is 
most evident in clinical psychology, 
whose norms of clarity and testability 
are very far from the standards of the 
natural sciences. But the same char­
acteristics appear, to a milder degree, 
in the work of psychologists--notably 
the Gestaltists and the so-called 
Wurzburg School--who have continued to 
deal with complex human thinking and 
problem-solving behavior.J-3 From them 
we have had valuable insights, but little 
in the way of testable theory stated 
in operational terms. 

Other psychologists have preserved 
formal rigor by retreating to simple 
dichotomous button-pushing choice 
situations, to the study of reaction 
times, or to maze experiments with rats. 
For human and animal experiments involving 
elementary tasks of these kinds, a 
considerable body of experimental tech­
nique and data and even some formal 
theory (e.g., stochastic learning 
theory ) has developed, but at the cost 
of leaving a very wide gap between the 
phenomena that have been treated and the 
kinds of complex human thinking behavior 
that we should like to be able to explain. 

Computers now open up a third course 
of action that requires no compromise. 
We can continue to deal with complex 
verbal behavior, but use the computer 
to simulate it without first encoding it 
or forcing it into mathematical form. 
For computers, in addition to their 
arithmetic capabilities, have, of course, 
quite general capabilities for mani­
pulating symbols: reading symbols, 
writing symbols, copying symbols, erasing 
symbols, comparing symbols for identity 
or difference, behaving conditionally on 
the outcomes of such comparisons. 



The research we are considering in 
this session exploits the non-numerical 
symbol-manipulating capacities of 
computers. Its basic strategy is to use 
these capacities to formulate programs 
that simulate, step by step, the non-
numerical symbol-manipulating processes 
that (if the hypothesis is correct) 
humans use when they memorize syllables, 
acquire new concepts, or solve problems. 
Such a program, once formulated, can be 
tested by comparing the stream of 
symbols it generates in a problem situ­
ation (the computer trace) with the 
stream of verbalizations of human subjects 
in the same problem situation in the 
psychological laboratory. 

Information Processing Theories 

The products of this kind of 
research are programs that purport to 
explain complex human activities in 
terms of organized systems of simple 
information processes--symbol-mani­
pulating processes. In what sense do 
such programs 'explain'1 the behavior? 
Clearly they say little about the under­
lying* neurophysiological and bio­
chemical processes that occur in the cen­
tral and peripheral nervous systems. 
How can we have an explanation of the 
behavior without understanding those 
underlying processes? 

Levels of Bxplanation 

We explain phenomena by reducing 
them to other phenomena that seem to us, 
somehow, simpler and more orderly. How 
did Kendel, for example, explain the 
relative frequencies of his different 
kinds of peas in successive generations? 
He postulated (without any direct 
observational evidence) underlying 
dominant and recessive factors passed 
on from parents to their progeny, whose 
interaction determined the physical 
type of the progeny. Only many years 
later was any direct evidence obtained 
of microscopic structures in the cell--
the chromosomes--that could provide the 
biological substrate for Mendel's 
factors.1' Again, Morgan's studies of 
fruit fly populations led him to 
postulate even tinier components of the 
chromosomes--the genes. These had to 
await the electron microscope before 
they could be shown, by direct obser­
vation, to exist; and even today, we 
are still far from an explanation of 
these biological structures at the next, 
biochemical level. 

The goal, then, in simulating com­
plex human behavior is the same as the 

goal in simulating neural nets: We 
wish to explain the behavior. But the 
information processing theories approach 
that explanation in stages. They first 
reduce the complex behavior to symbol 
manipulating processes that have not, 
as yet, been observed directly in the 
human brain. The hope, of course, is 
that when we know enough about these 
processes, it will be possible to explain 
them at a still more fundamental level 
by reducing them to systems of neural 
events. 

When this stage is reached, theories 
in psychology will begin to resemble 
theories in genetics and in the bio­
physical sciences in their hierarchical 
structure. At the highest (but least 
fundamental) level will be information 
processing theories of overt behavior. 
At the next level will be neurological 
theories explaining how elementary 
information processes are implemented 
in the brain. At a still more funda­
mental level will be biochemical theories 
reducing the neurological mechanisms 
to physical and chemical terms. Infor­
mation processing theories of thinking, 
neurological theories, and biochemical 
theories are complementary, not competi­
tive, scientific commodities. We shall 
need all three kinds, and perhaps others 
as well, before we shall understand the 
human mind. 

Finally, when we use computers to 
state and test information processing 
theories of thinking, we do not postulate 
any crude analogy between computer and 
brain. We use the computer because it 
is capable of simulating the elementary 
information processes that these theories 
postulate as the bases for thinking. 
We do not assert that there is any resem­
blance between the electronic means that 
realize these processes in the computer 
and the neurological means that realize 
the corresponding processes in the brain. 
We do assert that, at a grosser level, 
the computer can be organized to imitate 
the brain. 

Information Processing Languages 

There has been a strong, and not 
accidental, interaction between work on 
the computer simulation of human thinking 
and research on computer programming. 
The kinds of processes that computers 
are called upon to perform when they are 
simulating thinking tend to be quite 
different from the processes they perform 
when they are carrying out numerical 
analyses. A superficial difference is 
that the former processes involve little 
or no use of arithmetic operations. A 



more fundamental difference is that 
memory must be organized in quite 
distinct ways in the two situations. 

Within the past five years there 
have been a number of reports to these 
conferences on the general character­
istics and specific structure of infor­
mation processing languages specially 
designed to facilitate non-numerical 
simulation.1^16 j shall not go over 
this familiar ground again, except to 
point out that when such languages are 
used to build psychological theories the 
languages themselves contain implicit 
postulates—although rather weak ones — 
about the way in which the central 
nervous system organizes its work. 

One of the common characteristics 
of all of these languages is their 
organization of memory in lists and list 
structures. By this means there can be 
associated with any symbol in memory a 
"next" symbol--the symbol that follows 
it on the list to which they both belong. 
By the use of a slightly more complicated 
device, the description list, there can 
be associated with any symbol in 
memory a list of its attributes and 
their values. If the symbol, for example, 
represents an apple, we can store on its 
description list the fact that its color 
is red, its printed name is APPLE, and 
its spoken name, APUL. The incorpor­
ation of these two forms of association— 
the serial order of simple lists and 
the partial ordering of description 
lists—in information processing 
languages permits one to represent many 
of the associative properties of human 
memory in a quite simple and direct 
way. We can use simple lists to simulate 
serial memory--e.g., remembering the 
alphabet—and description lists to 
simulate paired associations—e.g., the 
association between an object as recog­
nized visually and its name. 

A characteristic of the list 
processing languages, which they share 
with most other compiling and inter­
pretive languages, is that they organize 
behavior in hierarchical fashion. 
Routines use subroutines, which have 
their own subroutines, and so on. This 
characteristic of the languages again 
facilitates the construction of programs 
to simulate human behavior, which 
appears to be organized in a highly 
similar hierarchical manner. The fact 
that most investigators have found it 
easier to write simulation programs in 
interpretive list languages than in 
machine language derives, in all like­
lihood, from the fact that the former 

languages have already taken the first 
steps in the direction of organizing the 
computer processes to mirror the organ­
ization of the human mind. 

Heuristic Problem Solving Programs 

The Program of Selfridge and Dinneen 

The work of Selfridge and Dinneen 
on pattern recognition,? which I 
earlier assigned to the se.cond category 
of simulation programs—simulation of 
sensory-perceptual processes—really 
marks a transition to information 
processing simulations. The Selfridge-
Dinneen program specified a set of 
processes to enable a computer to learn 
to discriminate among classes of patterns 
presented on a two-dimensional "retina." 
The patterns could represent, for example, 
English letters like ,!A" and "0" of 
varying shape, size, and orientation. 

In the Selfridge-Dinneen program, 
recognition was accomplished by using 
various operators to transform the 
retinal stimuli—in general to simplify 
and ''stylize'' them—and then searching 
for characteristics of the transformed 
stimuli that grouped the various exemplars 
of a given alphabetic letter together, 
but separated the exemplars of different 
letters. Although the program made use 
of the arithmetic instructions of the 
computer, the operations were basically 
topological and non-numerical in nature. 
Appropriate organization rather than 
rapid arithmetic was at the heart of the 
program. 

The Selfridge-Dinneen program fore­
shadowed subsequent work in this area in 
another important respect also. The 
characteristics used to distinguish pat­
terns were heuristic. They amounted to 
rules of thumb, selected by the computer 
over a series of learning trials on the 
sole basis that they usually worked — 
that is, made the desired discriminations. 
In more traditional uses of computers it 
is usually required that the programs be 
algorithms--that they be systematic 
procedures which guarantee'solution of 
the problem to a desired degree of accu­
racy. The heuristics generated by the 
pattern recognizing program provided no 
,such guarantees. Since there are vast 
ranges of tasks, handled every day by 
human beings, for which no algorithms in 
the sense just indicated are known to 
exist, the admission of heuristics as 
program components opened the way to 
simulating the less systematic, but often 
effective, processes that characterize 
much garden-variety, everyday human 
thinking. 



Subsequent work has tended to 
confirm this initial hunch, and to dem­
onstrate that heuristics, or rules of 
thumb, form the integral core of human 
problem-solving processes. As we begin 
to understand the nature of the 
heuristics that people use in thinking, 
the mystery begins to dissolve from such 
(heretofore) vaguely understood processes 
as ''intuition" and "judgment." 

Some Other Problem-Solving Programs 

In the period 1956 to 1958 there 
came into existence a number of other 
computer programs that accomplished 
complex tasks with a "humanoid" flavor: 
composing music,17 playing checkers,18 
discovering proofs for theorems in 
logic,19 and geometry,20 designing 
electric motors and transformers,21 play­
ing chess,22,23,24 and balancing an 
assembly line.25 The primary goal in 
constructing most of these programs was 
to enable the computer to perform an 
interesting or significant task. 
Detailed simulation of the ways in which 
humans perform the same task was only a 
secondary objective—or was not 
considered at all. 

Nevertheless, it was discovered 
that often the best program for doing 
the job was a program that incorporated 
some of the heuristics that humans used 
in doing such jobs. Thus, the music 
composition program of Hiller and 
Isaacson made use of some of the rules 
of classical counterpoint; the motor 
design programs and line balancing 
program were generally organized in much 
the same ways as the procedures of 
experienced engineers, and so on. Hence, 
to a greater or lesser degree, all of 
these programs have taught us something 
about the ways in which people handle 
such tasks—especially about some of the 
kinds of heuristics they use. 

Among these programs Samuel's 
checker program and the Los Alamos chess 
program place the least emphasis on 
heuristics, and hence provide valuable 
yardsticks for comparison with heuristic 
programs handling the same, or similar 
tasks. These two programs make essential 
use of the computer's capabilities for 
extremely rapid arithmetic, for their 
basic strategy is to look at all possible 
(legal) continuations of the game for 
several moves ahead, and then to choose 
that move which appears most favorable 
(in a rninimax sense) in terms of the 
possible outcomes. In contrast, 
Bernstein's and the NSS chess programs 
examine a small, highly selective subset 
of all possible continuations of the 

game and choose a move that appears good 
in the light of this selective analysis. 

Thus, the Los Alamos program, look­
ing two moves ahead, will typically 
examine a little less than a million 
possible continuations, Bernstein's 
program approximately 2,500, and the NSS 
program almost never more than one hundred 
and more usually only a handful. All 
three programs play roughly the same 
q_uality of chess (mediocre) with roughly 
the same amount of computing time. The 
effort saved by the heuristic programs 
in looking at fewer continuations, is 
expended in selecting more carefully 
those to be examined and subjecting them 
to more thorough examination. Thus, the 
more systematic, arithmetic programs 
provide benchmarks against which the pro­
gress in developing heuristics can be 
measured. 

The General Problem Solver 

All of the programs we have 
mentioned fell short of human simulation 
in one very fundamental respect--apart 
from failures of detail. They were all 
special-purpose programs. They enabled 
the computer to perform one kind of 
complex task, and one kind only. Only 
in a fev; cases (the Checker Player 18 and 
the Logic Theorist26) (X±& they enable 
the computer to improve its performance 
through learning. Yet we know that the 
human mind is fa) a general-purpose 
mechanism and (b) a learning mechanism. 
A person who is brought into a relatively 
novel task situation may not handle the 
situation with skill but, unless it is 
inordinately difficult, will not find 
himself at a complete loss. Whether he 
succeeds in solving the problem that is 
posed him, or not, he is able, at least, 
to think about it. 

We must conclude that if a computer 
program is to simulate the program that 
a human brings to a problem situation, 
it must contain two components: (a) a 
general-purpose thinking and learning 
program that makes no direct reference 
to any particular task or subject 
matter; and (b) heuristics that embody 
the specific techniques and procedures 
which make possible the skilled and 
efficient performance of particular 
classes of tasks. The program must 
incorporate both general intelligence 
and special skills. 

The General Problem Solver (GPS) 
was the first computer program aimed at 
describing the problem solving techniques 
used by humans that are independent^ of 
the subject matter of the problem.27 



Since GPS has been described elsewhere, 
I shall say only a word about its struc­
ture . It is a program for achieving 
the goal of transforming a particular 
symbolic object (representing the "given" 
problem situation) into a different 
symbolic object (the "desired" situation 
or goal situation). It does this by 
discovering differences between pairs 
of objects, and by searching for 
operators that are relevant to reducing 
these differences. In the form in 
which it has thus far been realized on 
a computer, GPS is not a learning pro­
gram, hence still falls far short of 
simulating all aspects of what we would 
call general intelligence. 

In its current computer realization, 
GPS has solved some simple problems of 
finding proofs for theorems In symbolic 
logic (substantially the same task as 
that handled by the special-purpose 
Logic Theorist). It has solved the well-
known puzzle of Missionaries and 
Cannibals--finding a plan for trans­
porting three missionaries and three 
cannibals across a river without any of 
the missionaries being eaten. Hand 
simulation has demonstrated that it can 
handle trigonometric and algebraic 
identities. On the basis of other in­
vestigations that have not fully reached 
the programming stage, it appears highly 
likely that GPS will be able to solve 
certain tactical problems in chess (e.g., 
to find a move leading to a fork of a 
pair of enemy pieces), do formal 
differentiation and integration, and 
write codes for simple computer programs 
in IPL V. Several possibilities for in­
corporating learning processes in GPS, 
one of them using GPS in the learning 
mechanism itself,28 have also been 
explored. 

The adequacy of GPS as a simulation 
of human problem solving has been 
examined, primarily in the task domain 
of symbolic logic, by comparing the 
computer trace with the thinking-aloud 
protocols of college students solving 
identical problems.29 The evidence to 
date suggests that GPS does indeed capture 
the principal problem-solving methods 
used by the human subjects. The 
detailed comparison of its behavior with 
the protocols has cast considerable light 
on the processes of abstraction and on 
the nature and uses of imagery in 
problem solving. 

Recent Advances in the 
Simulation of Thinking 

The remaining papers to be presented 
In this session will describe a number of 

heuristic programs that have been written 
in the past two years, and which extend 
very substantially the range of human 
mental processes that have been simu­
lated with these techniques. I shall 
not anticipate the content of these 
programs, beyond indicating what their 
relation is to those I have already 
mentioned. 

Areas of Psychological Experimentation 

The simulations mentioned so far 
all fall in the area that psychologists 
call "higher mental processes." As I 
Indicated earlier, these processes have 
tended to be underemphasized in American 
experimental psychology until quite 
recently because we did not have tools 
for Investigating them in an objective 
and rigorous way. If computer simulation 
has shown itself to be a powerful tool 
of research in an area as difficult 
as the study of higher mental processes, 
we might expect this tool to prove even 
more powerful if applied to the simpler 
phenomena with which experimental 
psychologists have been largely con­
cerned. The papers of this session 
report some of the first evidence that 
this expectation is justified. 

What are the kinds of tasks and 
processes that have been most thor­
oughly studied by psychologists? Per­
ception—the interaction of sensory 
organs and central nervous system in 
the discrimination and recognition of 
stimuli--has been the subject of exten­
sive investigation. A second, very 
active, research area has been learning, 
and particularly the rote learning of 
serial material and of stimulus-response 
pairs. A third area has been simple 
choice behavior, especially choice among 
a small number (usually two) of alter­
natives with systematic or intermittent 
reward. Animal and human maze learning 
experiments have been used to study 
both rote learning and simple choice 
behavior. Finally, there is a rather 
varied assortment of work that is 
usually classified under the heading of 
"concept formation" or "concept attain­
ment ." 

No one supposes that the topics 
I have mentioned--perception, rote 
learning, simple choice behavior, maze 
learning, and concept formation--are 
mutually exclusive and exhaustive 
categories. They are simply pigeon 
holes that psychologists have found 
convenient for classifying experiments. 
It Is almost certain that the mechanisms 
required to perform tasks in one of 
these areas are called into play in some 
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of the others. Hence, we would have 
reason to hope that as heuristic programs 
are constructed to handle one or another 
of these tasks, the mechanisms employed 
in the several programs will begin to 
show distinct resemblances--and resem­
blances also to the mechanisms used in 
problem-solving simulations. Such 
resemblances and common mechanisms are 
already beginning to appear. 

Long-Range Goals of Simulation 

The long-term research strategy 
would again be gradually to replace a 
multitude of special-purpose programs 
with a more general program aimed at 
simulating the whole man--or at least 
the cognitive aspects of his behavior. 
Although enormous gaps of ignorance still 
separate us from that goal, the goal 
itself no longer seems entirely Utopian 
to the active researchers in the field. 

Perhaps the largest single gap at 
present—and one that is not filled by 
any of the work to be reported today—is 
in programs to explain long-range human 
memory phenomena. I will venture the 
personal prediction that filling this 
gap will soon become crucial to progress 
in the whole field of information 
retrieval. 

Another important gap that also has 
significant practical implications lies 
in the area of simulation of natural 
language processes. Here, interest in 
language translation and in the improve­
ment of computer programming languages 
has already led to exciting progress--as 
illustrated, for example, by the work 
of Chomsky^ and Yngve.31 

Heuristic Programs in New Areas 

The areas of rote learning, simple 
choice behavior, and concept attainment 
are represented in the programs to be 
described by Mssrs. Feigenbaum, Feldman, 
and Hunt, respectively. 

Binary Choice. In the so-called 
partial "Reinforcement or binary choice 
experiment, the subject is instructed 
to guess which of two events will occur 
next. In variants of the experiment, 
the actual event sequence may be 
patterned, or it may be a random sequence. 
The binary choice experiment has been 
one of the principal situations used to 
test the stochastic learning models 
that have been developed in psychology 
over the last decade.±^>32 Mr. Feldman's 
Binary Choice program offers an alter­
native theory to explain these phenomena, 
hence provides an interesting example 
for comparing and contrasting heuristic 
programs with more traditional mathe­
matical models. 

Concept Formation. In the simplest 
form of the' concept formation task, a 
rat is given a choice of two gates, 
one of which is labelled, say, with a 
large triangle, the other with a small 
circle. If the experimenter's aim is 
to test the rat's attainment of the 
concept ''triangle," he places a reward 
behind the gate labelled with the 
triangle. On succeeding trials, the 
symbols change in shape, size, or color, 
but the gate labelled with a triangle 
always leads to the reward. Within the 
past year, several computer programs 
have been written that simulate slightly 
more complex concept learning behavior 
in humans. One of these programs, the 
Concept Learner, will be described 
by Hovland and Hunt. 

Conelusion 

I have tried to outline the devel­
opment over the past decade of the use 
of computers to construct and test non-
numerical information-processing 
explanations for human thinking and 
learning. Such programs, which are 
beginning to be validated by behavioral 
evidence, are providing embryonic 
theories for these phenomena in terms 
of underlying information processes. 
Hopefully, the elementary information 
processes that are postulated in the 
theories will, in turn, find their 
explanation in neurological processes 
and mechanisms. The papers in this 
session describe a few of the programs 
of this kind that have been constructed 
to date, and provide some basis for 
judging the prospects for this approach 
to understanding the human mind. 

Rote Learning. The Elementary 
Perceiver and Memorizer (EPAM) is a 
theory to explain how human subjects 
store in memory symbolic materials that 
are inherently 'meaningless." The 
typical learning materials are "nonsense 
syllables"—spoken or printed syllables 
that do not correspond to English words. 
By studying rote learning, we hope to 
understand, for example, how humans 
learn to associate names with objects, 
and learn to read by associating printed 
words with their oral counterparts. 
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