
365
10.1

CURRENT PROBLEMS IN AUTOMATIC PROGRAMMING

Ascher Opler

Computer Usage Company, Inc.

18 East 41st Street

New York 17, New York

Summary

The proliferation of the number of appli­
cations to be programmed and the number of
types of computers available has created a
significant and challenging problem. This
survey will consider some of the more prom­
ising suggestions for enabling automatic pro­
gramming to keep pace with other developments
in the field. Among the prospects a re : stan­
dardization of source languages, development
of a standard universal intermediate language,
design of computers to operate directly in
source language, automatic translation of pro­
grams between computers, the automatic con­
struction of compilers and the standardization
and construction of common compiler modules.

Automatic programming has grown from
an interesting child to a troublesome adolescent
in the past few years . The number of publi­
cations and meetings devoted to its problems
has continued to increase. This presentation
will attempt to state the problems from a p rac ­
tical viewpoint and to survey a number of tech­
niques that have been proposed to handle some
of the current difficulties. The viewpoint taken
here is a practical one and considerations of
costs, staff, delivery time, competitive posi­
tion, e tc . , will not be foreign to the discussion.

The number of groups developing auto­
matic programming (and closely related sys­
tems) today is enormous and continually in­
creasing. Personnel so involved are primarily
(a) representatives of the computer manufact­
urer , (b) system programmers at the more
advanced computer installations and (c) those
involved in computer programming research
(most frequently at universities and large inde­
pendent research organizations).

With time, the responsibility for develop­
ing system programs has shifted from the user
to cooperative groups and now to the manufact­
urer . Computer manufacturers are expected
by their customers to supply with the machine

a complete set of automatic programming sys ­
tems. With the field becoming highly competi­
tive, each manufacturer is expected to deliver
the automatic programming package at the same
time the computer is delivered. Manufacturer's
representatives are asked questions concerning
the programming package and its availability
more often than they are asked questions regard­
ing the hardware and its availability.

Dependence upon the applied programming
staff of a manufacturer is not completely uni­
versal . A dozen or so highly experienced com­
puting equipment users have developed their
own systems either because they believe them
to be superior to those of the manufacturer,
more compatible with their own operating
methods or can be made operational months
before equivalent programming systems pro­
mised by the manufacturer. The achievements
of this group has been particularly impressive.

Most automatic programming systems
built by manufacturers have been based on fairly
solid concepts developed over the past few years .
Fortunately, there are a group of brilliant
energetic researchers in the automatic pro­
gramming area who have been making rapid
strides toward developing greatly improved
techniques. Some of these contributions will be
reviewed in the light of the overwhelming prob­
lems confronting the programming field today.

Mounting Pressures on Developers
of Automatic Programming Systems

Those who would develop automatic pro­
gramming systems for production purposes are
faced with many pressures . Some of the most
troublesome are outlined below.

A. Increased Requirements

At the present time, the automatic p ro­
gramming systems supplied by a manufacturer
(and expected by his customers), fall into two
categories: (1) compilers and (2) other systems

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1460690.1460732&domain=pdf&date_stamp=1961-05-09

(including assemblers,, operating and debugging
systems, sort generators, e tc .) . For most of
what follows, the discussion will center on the
compilers (defined as programs which translate
from a source language (usually problem
oriented) to a machine language). In the area of
automatic programming systems, the manufact­
urer is expected to supply compilers to t rans ­
late from one or more standard algebraic lan­
guages and from one or more standard commer­
cial languages. Furthermore, these compilers
should be able to operate effectively on any of
the numerous configurations of equipment that
one may order and install and to produce object
programs that a re also effectively operable on
any of this wide degree of equipment modularity.
It is not uncommon for the purchaser of equip­
ment to request assurance that the manufacturer
will supply compilers to translate the same lan­
guage for all successor machines that he may
market in the future. A large manufacturer
may very well have as many as ten compiler
projects going simultaneously to prepare t r ans ­
lators for several current, several announced
but undelivered and perhaps one or two unan­
nounced machines.

These requirements for "general purpose"
languages for "general purpose" computers
also car ry over into the area of special purpose
languages (automatic programming for numeri­
cally controlled machine tools; natural language
translation; special military task programming,
e tc .) and into special purpose computers. At
the present time one might hazard a guess that
the amount of automatic programming effort in
the category of the "special purpose" areas is
approximately equal to that in the "general pur­
pose" a reas .

B. Shortage of System Programmers

The task of constructing automatic pro­
gramming systems is generally relegated to the
direction of those familiar with the ar t . Up to
the present t ime, it has been a highly special­
ized skill and those who practice it are much in
demand at premium sa lar ies . The number of
competent experienced system programmers is
very few while the demand is very high. There
is also at present very little concerted effort to
t ra in for this specialized programming area .

C. Mounting Costs of Automatic Programming

At the present t ime, the development of a
compiler will range from less than $100, 000 to
over $1, 000, 000. These costs include the man
months spent in programming and check-out,

large quantities of machine time, great documen­
tation efforts, education, training manuals, etc.

D. Developmental Time

The time to develop a compiler today will
vary from six months to better than two years
depending upon the type of compiler required,
its quality and its associated features (diagnos­
tic system, res ta r t s , compatibility, modularity,
e tc .) .

E. Simultaneous Development of Computer and
Compiler

Because of the demand by customers that
manufacturers deliver compilers starting with
the first machine, an added pressure is placed
upon the supplier. He must program and check
out the compiler during the period of construe -
tion and testing of the computer prototype.
Therefore, the compiler work is hampered by
the necessity of using large amounts of simu­
lation on another computer, working on an engi­
neering model and operating without the avail­
ability of programming and debugging systems
which are being concurrently developed. Con­
siderable difficulty will also ar ise because of
the large quantity of machine time required for
effective check-out and testing of a compiler.

It is easy to see, under the extreme p re s ­
sures created by the competitive marketing situ­
ation (which itself results from the rapid accept­
ance of automatic programming) and the contin­
ual spread of computer technology into new
areas , that the pressures on developers of auto­
matic programming systems are enormous. It
is little wonder that they are rapidly scanning
the horizon looking for developments that will
reduce their costs and enable them to deliver
new automatic programming systems rapidly
and with a limited staff of system programmers .

Let us turn our attention now to some of
the solutions that have been offered. These are
divided into three a reas : Elimination of the
necessity of writing compilers, minimization of
the number of compilers to be written, and
minimization of the effort of writing each com -
piler.

Elimination of the Necessity
of Writing Compilers

Recalling the well-known equivalence of
hardware and programming leads one to con­
sider the possibility of designing computers that
will accept and directly execute programs wri t­
ten in source languages. Thus, in effect, the

367
10.1

burden of translation would be eliminated and
the source language would be the machine lan­
guage.

From the fundamental nature of a Turing
machine, one may deduce that, while the crude
input could scarcely be executed directly, it is
feasible to automatically convert the input to
some directly useable form by programming.
To pursue this further, consider a program
available for the IBM 1620 that is called
"GOTRAN". This program accepts FORTRAN
statements and produces as output (in a single
manipulation) the results of executing the state­
ments. If one had this computer with the
"GOTRAN" program locked-in, then he could
consider it to be a machine that directly accepts
and executes source language. However, this is
really chimerical because the actual effort of
writing "GOTRAN" was certainly of the order of
magnitude of writing a compiler and thus we have
actually eliminated no programming effort. What
has been accomplished is the "conversion" of a
general purpose computer to a special purpose
device via programming.

For the achievement of the equivalent of
programmed source language operation but with
elimination of much of the programming, one
would have to move closer to hardware develop­
ments. Two approaches that offer promise are
the use of micro-programming and the design of
computers with compiling requirements as a
primary criterion.

The use of micro-programming has been
known and discussed for some t ime. We hear
much more today about the "customized" com­
puter that can be micro-programmed to order .
With a micro-programmed machine, it might
well be possible to build aggregates of micro-
steps that would car ry out compiler instructions.
Thus, one step toward the computer that would
process source statements directly is the avoid­
ance of construction of any logic higher than a
micro-program step. The same question now
appears - is the effort of micro-programming
the machine to accept source language any less
than that of constructing a compiler for a gener­
al purpose machine ?

The other approach, to be described in the
paper by R. S. Barton later in this session, lies
closer to computer design. Ultimately, logical
designers and automatic programming experts
will be forced to work together.

Minimization of the Number
of Compilers Required

A. Standardization of Source Languages

One effort that has been proceeding for the
last few years and apparently producing con­
siderable success is the cooperative movement
to standardize source languages. There has been
considerable international effort in the develop­
ment of ALGOL and considerable national coop­
eration in standardizing on COBOL. Standardi­
zation will certainly continue in these a reas .
Ultimately, the fate of standardized languages
will depend upon their acceptance. No matter
how many agencies endorse a standard language,
if the user finds a non-standard language com­
piler available which meets his needs, he will
make no effort to use the standard language.
Perhaps standard langauges cannot be accepted
until non-standard languages are banned or plans
a re made to phase them out over a period of t ime.
An interesting paper will be presented by Miss
J. Sammet at this session suggesting even fur­
ther reduction in the number of standard source
languages.

B. Use of a Standard Intermediate Language

A proposal was made several years ago to
interpose between the problem oriented languages
and the computer oriented languages a universal
computer oriented language (UNCOL). In a
greatly oversimplified manner, if there are n
problem oriented languages and m computer
oriented languages, it requires (n x m) t r ans ­
lators to translate from each POL to each COL.
If one goes through the intermediate step and
writes n translators from POL to UNCOL and m
translators from UNCOL to each COL, then one
replaces (n x m) translators with (n + m) t r ans ­
lators . The present status of this development
will be reported in a paper in this session by
Mr. Thomas Steel.

C. Solutions to the Component Modularity
Problem

With modern computers available as a
collection of modules (of internal memories of
various sizes, various input/output, buffering
and control systems, magnetic drums, tape,
discs, etc.) , it becomes increasingly difficult to
handle the two configuration problems, the com­
piling and the object complement of equipment.
Thus far solutions offered to this general prob­
lem have not been common. Holt and Turanski
have discussed an Allocation Interpreter for the
object configuration problem. The general

solution for the compiling configuration problem
has been the simple change of table sizes and
buffer sizes (thus speeding and expanding com­
pilation) to adjust to the internal storage require­
ments during compilation. The answer to this
problem when dealing with hierarchical memo­
r ies with different access methods and speeds is
sorely needed. The answer frequently offered
by the manufacturer is to arbitrari ly waive all
but one or two compiling and object configurations.
It is hoped that techniques will be forthcoming
in the next few years that will allow each instal­
lation to make optimum use of whatever com­
puting equipment is available to them.

D. Automatic Translation Between Source
Languages

This is a possibility only in the special
case where one source language is (or can be
converted to) a subset of another. Fortunately,
the FORTRAN language (which has become so
common on many existing computers) is ame­
nable to translation to ALGOL. At the present
time, several FORTRAN-to-ALGOL translators
are being written. This may also appear to be
the relation between several data processing
languages and COBOL.

E. Automatic Translation Between Object
Languages

This is an area that is now being quite
actively investigated. At one time, it was
believed that the only method of source language
to source language translation was by means of
interpretive simulation. A considerable amount
of research has been carried out recently in r e ­
examining the possibility of machine language to
machine language translation at a higher level
and preliminary reports are encouraging.

Minimization of the Effort
of Compiler Writing

A. Compilers Capable of Writing Other
Compilers

This has been the subj'ect of a tremendous
effort in the past few years . When the idea of
automatic programming was first proposed, one
of the various suggestions was that, by "boot­
strapping" with one operating compiler, one
would be able to construct compilers for other
machines, for other languages, and in fact even
better compilers than the original one. While it
is perhaps not universally agreed upon, this has
been, in general, a disappointment. It has been

repeatedly demonstrated that one can use a com­
piler to write a compiler, but the quality of the
compilers so produced, either in t e rms of the
time required to compile, the memory space
requirements or the quality of the object program
has been such that these demonstrations have
been primarily of academic interest . There has
been a tendency to design special purpose source
languages whose primary function is the descrip­
tion of the manipulations used in compiling.
These have been somewhat more successful.
Furthermore, the efforts of the compilers in
automatically writing compilers have been pr i ­
marily limited to the writing of algebraic com­
pilers . It will appear that in the next few years ,
there will be more need of compilers for the pro­
duction of data processing compilers than for
algebraic compilers. There is every reason to
believe that continuing developments in this area,
particularly in that of improving the language of
a compiler writing compiler will bear fruit be­
fore too long.

B. Develop Special Compiler Writing Systems

When one wants to produce a compiler
automatically, the circumstances are generally
such that no compiler of the type required a l ­
ready exists for the machine in question. Thus
the compiler of compilers mentioned above usu­
ally operates on a machine foreign to the one for
which a compiler is needed and must go through
a complicated conversion and bootstrapping
routine after compilation of the compiler. A
proposal has been to develop a large system in
which the inputs are the desired language for the
compiler to be produced and the description of
the machine on which the compiler is to operate.
This is the concept of the SLANG system under
development by R. A. Sibley of IBM.

C. Develop Techniques to Facilitate Compiler
Writing

At the present time, the writing of a first
class compiler is entirely dependent upon the
careful fashioning of all sections of the compiler
by manual programming symbolic language,
instruction-by-instruction. The quality compiler
of today will require from 25, 000 to 50, 000
machine instructions each of which must be hand
written and debugged. It has been obvious for
some time that, if techniques are available to
reduce the amount of coding to be done, it will
greatly reduce the compiler writing effort. That
i s , since the complete elimination of hand coding
by using a compiler of compilers is not sa t i s ­
factory, what is needed is a collection of tech-

niques for minimizing the effort. Let us con­
sider what programming aids have been offered.

1. List and String Processors

Since the nature of most source languages
is a rather free running string of meaningful
symbols loosely resembling English or mathe­
matical notation, one important task in com­
piling is the analysis'of these strings into suit­
able origins, delimiters, and terminators and
the isolation of the included identifiers resulting
(after recognition of their contents) in construc­
tion of tables or codes. This suggests that an
improved scanning and recognition process would
be extremely useful. Among available tech­
niques are the threaded list system of Per l is
and associates, the Newell-Sim on-Shaw list-
processing approach and others.

2. Generalized Analyzers and Generators

Following the scanning and decoding of the
raw input, the scanned input is analyzed for its
meaning in terms of the whole source program.
Holt and Turanski have pointed out that, for a
given language, the programming of both the
scanning and the analysis is virtually identical
no matter what the object machine and the nature
of the object program will be. They have there­
fore suggested the stockpiling of either entire
analysis sections or of the logic of analysis
sections and making effective use of these in all
compilers originating from the same source lan­
guage. For the actual synthesis or generation
of object program, a number of algorithms for
producing code from algebraic languages have
been developed and published. For the data
processing compilers like COBOL, it is cus­
tomary to use "generators" which produce the
desired object program sections. Currently
there is fruitful development in the area of gen­
eralizing these generators so that they can be
tailored to produce desired object coding with­
out re-developing the whole generator for each
compiler.

3. Macro Instruction Systems

Another aid to the compiler builder is the
use of the most advanced type of macro instruc­
tions. It is well known that as assembly pro­
grams become more sophisticated and compre­
hensive, the requirements of the compiler writer
become less and less . This may be seen in the
ease with which compilers may be written where
highly sophisticated assemblers are available.
The ALTAC compiler (from FORTRAN language
to TAC (assembly) language) for the Philco

S-2000 is a good example of this use. Even
more advanced macro systems are MICA devel­
oped by Owen Mock of North American Aviation
and MACROSAP developed by M. D. Mcllroy of
Bell Telephone Laboratories. An ultimate
extension of this concept has been in the develop­
ment of MOBL by North American Aviation which
is a data processing language built entirely of
macro instructions which are processed by the
MICA system. Using the macro instructions
concept, they were able to produce a compiler
with a minimum of time and manpower that is
capable of translating an excellent data process­
ing language into 7090 symbolic language.

As we have seen, the pressures placed
upon those with responsibility in the automatic
programming area are enormous. With necess­
ity the mother of invention, it is sincerely hoped
that at least some of the many solutions current­
ly being proffered will bring the chaotic situation
in automatic programming under control by
1963 or 1964.

