345

v A PROGRAMMING LANGUAGE

Check for
Updates

Kenneth E. Iverson
Research Division, IBM Corporation
Yorktown Heights, New York

The paper describes a succinct problem-~oriented programming language.
The 1anguage is broad in scope, having been developed for, and applied
ALLa Ak lerals ~n o

eireciive.Lly .Lu, such diverse arecas as uu-...(.uprugl‘ai‘uuuug, >witchingtheory',

operations research, information retrieval, sorting theory, structure of

compilers, search procedures, and language translation. The language
It relies heavily on a syste=-
matrices,

permits a high degree of useful formalism.
matic extension of a small set of basic operations to vectors,
and on a family of flexible selection operations controlled by
Illustrations are drawn from a variety of applications.

and trees,
logical vectors.

The programming language outlinedlhere
has been designed for the succinct description of
algorithms. The intended range of algorithms is
broad; effective applications include micropro-

gramming, switching theory, operations research,

information retrieval, sorting theory, structure
of compilers, search procedures, and language
translation. The symbols used have been chosen
so as to be concise and mnemonic, and their
choice has not been restricted to the character
sets provided in contemporary printers and com-
puters. A high degree of formalism is provided.

Basic Operations

The language is based on a consistent uni~
fication and extension of existing mathematical
notations, and upon a systematic extension of a
small set of basic arithmetic and logical opera-~
tions to vectors, matrices, and trees, The
arithmetic operations include the four familiar
arithmetic operations and the absolute value
(denoted by the usual symbols) as well as the
floor, ceiling, and residue functions denoted and
defined as follows:

Name Symbol Definition
fioor Lx] ijf. x <]_x_} +1

ceiling rx-l rx] >x > rx-f

residuemodm m|n n=mq+m|n;0< m|n<m,

where |x], [x], m, n, and q are integers.

The logical operations and, or, and not are
defined upon the logical variables 0 and 1 and are
denoted by A, V, and an overbar. They are aug-
mented by the relational statement (proposition)
(xRy) defined as follows. If x and y are any

entities (e.g., numerals, alphabetic literals, or
logical variables) and R is any relation defined
upon them, then (xRy) is equalto 1l or 0 ac-
cording to whether the relation R does or does not
hold between x and y. Thus (i=j) is the familiar
Kronecker delta 5ij: (u}év) is the exclusive or
function of the logical variables u and v, and

sgn x = (x> 0) - (x<0)

is the familiar sign function, defined as +1, 0, or
-1 according as x is strictly positive, zero, or
strictly negative.

Vectors and Matrices

A vector is denoted by an underlined lower-
case letter (e.g., x), its i~th component by x.,
and its dimension by v(x). A matrix is denote
by an underlined uppercase letter (e.g., X), its
i-th row by X!, its j-th column by X,, its ij-th
element by 2_(1, its row dimension (i.e., the
common dimeénsion of its row vectors) by v(X),
and its column dimension by p(X).

All of the basic operations are extended
component -by ~component to vectors and matrices.
Thus,

ZExty & z,5x. +¥.
Z= XX Y &= Zl= X{ XY}
FeoAav o= ¥, 4.AYp
W= < > = <

w (x _X) Yi (il .Zl)

The symbol c {n) will denote a logical vec~
tor of dimension n “whose components are all unity,
and e(n) therefore denotes the zero vector. The

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1460833.1460872&domain=pdf&date_stamp=1962-05-01

346

dimension n will be elided whenever it is clear
from context.

The cyclic left shift of a vector x is called
left rotation. It is denoted by Kt x and defined

by the relation:
y= klx)ey, = X5

where j = 1 +v(x) l (i +k -1). Right rotation
is denoted by k) x x and is defined analogously.

Reduction

For each basic binary operator O, the O-
reduction of a vector x is denoted by O/x and
defined by

0/x = (+++((x,0x,)0 x)0---0x

—vix)
Thus +/x is the sum, and X/x is the product of
all components of x. Moreover, if u= (1,0,1),
then +/u— 2, +/u— 1, /\/u— 0, and V/u= 1.

Reduction is extended to matrices row=by-
row:

2= 0/X <>z = 0/X,

and column-by=column:
2=0//Xe>z = 0/X,

the column reduction being distinguished by the
double slash.

For example, if u= (u 1’ & is a logical
vector of dimension two, then DeZMorgan's law
may be expressed as:

Ma= VE.

Moreover, this is the valid generalization of
De Morgan's law to a vector u of arbitrary
dimension.

The reduction operation can be extended to
any relation R by substituting R for O in the for-
mal definition above. The parentheses in the
definition now signify relational statements as
well as grouping, and thus the expression 7"‘-//2
denotes the application of the exclusive-or over
all components of the logical vector u. For
example, #/(1,0,1) = (1#0)#1) = (I#1) =

Induction can be used to show that

;!/2= 2'+/E’ and =/5 = 2[+/E .
Hence, ;’/2 = =/§, a useful companion to
De Morgan's law.

Matrix Product

The conventional matrix product A B may
be defined as:

PROGRAMMING AND CODING
i i
(AB); = +/(AXB).

Adopting the notation A ;E_]é for this product makes
explicit the roles of the basic operations + and X,
and suggests the following useful generalization:

Al g - 01 /(al o, B),
2= = Y23

where O, and ©_ are any operators or relations
with suitable domains.

Thus C = MA £ X is an "incidence matrix"
such that C{= 1 if and only if M and X. agree in
all componénts. If M is the memory of'a binary ,
computer (i.e., M is a logical matrix and row M
is the i-th word of memory), and if x is an
"argument register', then (treating x as a one-
column matrix) -

s=MA x

defines the sense vector s of an associative
memory such that s = 1 if and only if word M
agrees with x.

As further examples, R= P > Q glves the
number of places in which a component of P ex=
ceeds the corxesponding component of Q., “and
K= P A Q is a "covering matrix" whicH indicates
wh1ch rows of P cover (exceed in every component)
which rows of 9

De Morgan's law and the identity

{fa= =/
establish a duality with respect to negation be -
tween A and V , and between ¥ and =. This
duality is easily extended to matrices. For
example,

ALB = Ag3B.

Selection

The formation of a vector y from a vector
x by deleting certain components of x will be
denoted by

y= u/x,

where u is a logical vector (of dimension v(x)and
x. is deleted if and only if u, = 0., Thus u/x and
u}x provide a disjoint decomlposﬂ:lon of x, and
(x >¢) /x is the vector of all strictly positive
components of x.

The operation E/i is called compression
and is extended to matrices by row and by column
as follows:

Z=w/Xe> 2= u/X,
Z= _".1//.)_{ = Zi: E/Ei-

A PROGRAMMING LANGUAGE

The familiar identity concerning partitioned
matrices can now be generalized as follows:
X¥Y = /X% 6/D+w/ % /).
Since the identity depends only on the associativity
and commutativity of the operators + and X, it

holds also for all operators (and relations) pos-
sessing these properties. Moreover,

W= x¥% wy,
and

o/ ¥) = w/x X ¥.

To illustrate other uses of compression,
consider a bank ledger L so arranged that L'
represents the i-th account, and L‘l’ l"—Z’ and £3
represent the vector.of names, of account num-
bers, and of balances, respectively. Then the
preparation of a list P (in the same format) of all
accounts having a balance less than two dollars is
described by the statement:

P (L,<28)//L,
where the arrow denotes specification (in the
sense of the symbol = in Fortran and the symbol

;= in Algol).

Three useful operations converse to com-
pression are defined as follows:

/z=D

Mask: z= /a,u,b/e> §/2=0/2; w/z= u/b

Mesh: z = \a, u, b\e> T/z= a;

Expansion: z= E_‘t_; <> z= \E, u, E\ .
They may be extended to matrices in the estab~
lished manner and are related by the obvious
identities:

\&» 2.5\ = /Z\a. w, u\b/,

/a,u, b/ =

In addition to the full vector € (n) already
defined, it is convenient to define the prefix
vector EJ (n) as a logical vector of dimension n
whose first j components are unity. The suffix
vector wJ(n) is defined analogously. An infix
vector having i leading 0's followed by j 1's can
be denoted by il&-]. When used in compression
operations, these special vectors are very useful
in specifying fixed formats.

347

Mixed Base Value

If the components of the vector y specify the
radices of 2 mixed base number system and if x
is any numerical vector of the same dimension,
then the value of x in that number system is
called the base y value of %, is denoted by y | x,
and is defined formally by

ylz= wkx,
where w is the weighting vector defined by

=1 = i
Ev(w) and Wil T WX Y, For example, if

y = (24, 60, 60) and if x = (1, 2, 5) is the elapsed
time in hours, minutes, and seconds, then
y _]_ x = 3725 is the elapsed time in seconds.

The value of x in a decimal system is de-
noted by (10 ¢) | x, and in a binary system by
either (2 E_) 1 x, or _L %x. Moreover, if y is any
real number, then (y €) _L x denotes the poly~
nomial in y with coefficients x.

Application to Microprogramming

To illustrate the use of the notation in de=~
scribing the operation of a computer, consider the
IBM 7090 with 2 memory M of dimension 215 X 36,
a command vector c¢ of dimension 36 representing
the instruction next to be executed, a sequence
vector s of dimension 15 representing the instruc-
tion counter, and a 3X 15 index matrix I repre-
senting the three index registers. The instruction
fetch phase of operation (excluding the channel
trap) can then be described as in Figure 1. 0-
origin indexing will be used for all vectors and
matrices,

_Jg‘_Mli

Le=2"10+1s)

t—(8}a’/c
1315/5_‘— 215](1215/2__]_&/\(1))
a : 0

15
08/ — o'/l £7/e

\Lu

a<20

Instruction Fetch of IBM 7090

Figure 1

348

Step 1 shows the selection of the next in-
struction from the memory word specified by the
instruction counter s and its transfer to the
command register c. Step 2 shows the incre-
mentation (reduced modulo 2 5) of the counter s.
The logical function k™ (c) of step 3 determines
whether the instruction just fetched belongs to the
class of instructions which are subject to indirect
addressing, the bits c;, and ¢} 3 determine
whether this particular instruction is to be
indexed, and a is therefore set to unity only if
indirect addressing is to be performed.

The function kz(g) determines whether the
instruction is indexable. If kz(g) = 0, the branch
from step 4 to step 7 skips the potential indexing
of steps 5 and 6. As shown by step 6, indexing
proceeds by oring together the index registers
(i.e., rows of I} selected by the three tag bits
t= (181 23)/2, subtracting the base two value of

‘the resulting vector from the address portion of

Or to storage ORS
Or to accumulator ORA
And to storage ANS

And to accumulator ANA
Exclusive or to accumulator ERA
Complement magnitude COM
Clear magnitude CLM
Change sign CHS

Set sign plus sSSP

Set sign minus SSM
Store logical word SLW
Clear and add logical CAL
Add and carry logical ACL

PROGRAMMING AND CODING

the instruction ¢, reducing the result modulo 215,

and respecifying the address portion of ¢
accordingly.

The fetch terminates immediately from
step 7 if neo indirect addressing is indicated;
otherwise step 8 performs the indirect addressing
and the indexing phase is repeated. Step 9 limits
the indirect addressing to a single level. It may
be noted that all format information is presented
directly in the microprogram.

The description of the execution phase of
computer operation will be illustrated by the
family of instructions for logical functions in the
7090. Representing the 38-bit accumulator by
the logical vector u (with v(u) = 38, and with
Ygr Upo andu ., representing the sign, q and p bits,
respectively), these instructions may be de=
scribed as in Figure 2.

L4l

L]

a M —>
15
u—uv (EZ\\I_/I'Lw /S) —>
1 5
M_Lw /E'—(EZ/E)IAM'LE /E. —
e uA@AMtE 9 N

oaf/u-z —
a /E.‘—a u >
1 -
/et —>
EO‘_EO ——
u +—0 —>>
=0
Eo‘-l —>

15
5

w—zhwle /e .
y L@+ | ule e

2 36 6
La%u— @y + > 2% BN

Instructions in IBM 7090

Figure 2

A PROGRAMMING LANGUAGE

Ordered Trees

A tree can be represented graphically as in
Figure 3(a) and, since it is a special case of a
directed graph, it can also be represented by a
node vector n and connection matrix C as in
Figure 3(b).

Defining an ordered tree as a tree in which
the set of branches emanating from each node has

rimay oerata

Inde}sxus Sysiem

a specified ordering, a simple
for ordered trees can be defined in the manner
indicated by Figure 4(a). The dimension of the
vector index i assigned to each node is equal to
the number of the level on which it occurs, If T
is an ordered tree, then T, will denote the sub-
tree rooted in the node witl‘%’index i. Thus T(1 1)
is the subtree enclosed in broken lines in ’
Figure 4(a). Moreover, T— will denote the
(unique) path vector comprising all nodes from
the root to node i. Thus T (1,2) = (a, b). The
maximum dimension occurring among the index
vectors is called the height of the tree and is
denoted by v(T).

The index vector notation proves very con-
venient in describing algorithms involving tree
operands. Moreover, it provides a simple for-
malization of the two important representations
of a tree, the Lukasiewicz representation and the
level=-by-level list,

(a)

349

If each index vector is augmented by
sufficient null components (denoted by 0) to bring
all to 2 common dimension equal to the height of
the tree, then they may all be arrayed in an
index matrix I as in Figure 4(b). If, as in
Figure 4(b), the node vector n is defined such
that n, is the value of the node indicated by (the
signifi'l:ant part of) the index vector IJ, then the
matrix obtained by appending n to _I_pi‘ovidés an
unambiguous representation of the tree T, It is
convenient to also append the degree vector d
such that d. is the degree of (i.e., the number of
branches ernanating from) node lj. The resulting
matrix of v(T) + 2 columns is called a full list
matrix of T,

Any matrix obtained by interchanging rows
of a full list matrix is also a full list matrix and
is again an unequivocal representation of the tree.
If, as in Figure 4(c), the index vectors are right
justified and arranged in increasing order on
their value as integers (in a positional number
system), the resulting list matrix is called a full
right list matrix and is denoted by 1T. If, as
in Figure 4(b), the index vectors are left justified
and arranged in increasing order as fractions,
the list matrix is called a full left list matrix

and is denoted by T.
n= (a2, ¢, £, k, e d, h, 8 bl)
o 1 o 0 o 0O 0 o0 1
o o 1 1 o O O 0 O
o o0 o o O O O O O
o o 0 o O O o0 o0 O
¢c={0 0 0 0 0O O 0 0 O

FIGURE

(b)

350

The right list groups nodes by levels, and
the left list by subtrees. Moreover, in both
cases_the degree and node vector together (that
is, 22/(1T) or 2_2/(E£T) can be shown to pro-

vide an unequivocal representation of the tree

without the index matrix. If, as in the case of a
tree representing a compound statement in-
volving operators of known degree, the degree
vector d is a known function of the node vector
n, then the tree may be represented by the node
vector n alone. Inthe case of the left list, this
leads to the familiar Lukasiewicz™ notation for
compound statements,

Applications of Tree Notation

The tree notation and the right and left list
matrices are useful in many areas* ., These in-
clude sorting aigorithms such as the repeated
selection sort?, the analysis of compound state-
ments and their transformation to optimal form
as required in a compiler, and the construction
of an optimal variable-length code of the
Huffman® prefix type. The sorting algorithm
proceeds level by level and the right list

o

2
* First introduced by J. Lukasiewicz , and first analyzed by Burks et al”.

PROGRAMMING AND CODING

representation of the tree is therefore most
suitable. The analysis of a compound statement
proceeds by subtrees and the left list (i.e.,
Lukasiewicz) form is therefore appropriate. The
index vectors of the leaves of any tree clearly
form a legitimate Huffman prefix code and the
construction of such a code proceeds by com-
bining subtrees in a manner dictated by the fre-
quencies of the characters to be encoded, and
therefore employs a left list. However, the
characters are finally assigned in order of
decreasing frequency to the leaves in right list
order, and the index matrix produced must
therefore be brought to right list order.

3

#%* For detailed treatments of the applications mentioned, see Reference 1.

r————————-

111

m
[
Ra

alnl 2 a2l I

2 la 1 0 0 2 |la}l|lo 0 1
2 [1 1 0 3 d 0 0 2
0 |k 1 1 1 2 [0 1 1
0 f 1 1 2 0 |b 0 1 2
o|bfil|z]o o fgllo]z2]1
3 d 2 0 0 0 e 0 2 2
olglhz |1 o 0 |hfjo]2]3
0 e 2 2 0 0 k 1 1 1
0 h 2 3 0 0 f 1 1 2

LT 1T

(b) (c)

FIGURE ¢4

A PROGRAMMING LANGUAGE

REFERENCES

1. Iverson, K. E., "A Programming Language', Wiley, 1962.

2. Lukasiewicz, Jan, Aristotle's Syllogistic From the Standpoint of
Modern Formal Logic, Clarendon Press, Oxford, 1951,
p. 78

3. Burks, A. W., D. W, Warren, and J. B. Wright, An Analysis
of a Logical Machine Using Parenthesis-free Notation",
Mathematical Tables and Other Aids to Computation,
Vol. VIII (1954), pp 53 =~ 57

4. Friend, E. H., "Sorting on Electronic Computer Systems",
J. Assoc., Comp. Mach. 3, pp 134 - 168 (March 1956)

5. Huffman, D. A., "A Method for the Construction of Minimum
Redundancy Codes', Proc. IRE, Vol., 40 (1952)
pp 1098 - 1101

