
ar
X

iv
:c

s/
06

03
07

9v
1

 [
cs

.P
L

]
 2

0
M

ar
 2

00
6

A compositional Semantics for CHR

Maurizio Gabbrielli

Università di Bologna

and

Maria Chiara Meo

Università “G. D’Annunzio” di Chieti-Pescara

Constraint Handling Rules (CHR) are a committed-choice declarative language which has been
designed for writing constraint solvers. A CHR program consists of multi-headed guarded rules
which allow one to rewrite constraints into simpler ones until a solved form is reached.

CHR has received a considerable attention, both from the practical and from the theoretical
side. Nevertheless, due the use of multi-headed clauses, there are several aspects of the CHR
semantics which have not been clarified yet. In particular, no compositional semantics for CHR
has been defined so far.

In this paper we introduce a fix-point semantics which characterizes the input/output behavior
of a CHR program and which is and-compositional, that is, which allows to retrieve the semantics
of a conjunctive query from the semantics of its components. Such a semantics can be used as a
basis to define incremental and modular analysis and verification tools.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; D.3.3 [Programming Languages]: Language Constructs and Features—
Constraints

General Terms: Languages, Theory, Semantics

1. INTRODUCTION

Constraint Handling Rules (CHR) [11; 12] are a committed-choice declarative lan-
guage which has been specifically designed for writing constraint solvers. The first
constraint logic languages used mainly built-in constraint solvers designed by fol-
lowing a “black box” approach. This made it hard to modify, debug, and analyze
a specific solver. Moreover, it was very difficult to adapt an existing solver to
the needs of some specific application, and this was soon recognized as a serious
limitation since often practical applications involve application specific constraints.
By using CHR one can easily introduce specific user-defined constraints and the

related solver into an host language. In fact, a CHR program consists of (a set of)
multi-headed guarded simplification and propagation rules which are specifically de-
signed to implement the two most important operations involved in the constraint
solving process: Simplification rules allow to replace constraints by simpler ones,
while preserving their meaning. Propagation rules are used to add new redundant
constraints which do not modify the meaning of the given constraint and which can

Author’s address:
Maurizio Gabbrielli, Dipartimento di Scienze dell’Informazione, Mura A. Zamboni 7, 40127
Bologna, Italy. gabbri@cs.unibo.it.
Maria Chiara Meo, Dipartimento di Scienze, Viale Pindaro 42, 65127 Pescara, Italy.
cmeo@unich.it.

http://arxiv.org/abs/cs/0603079v1

2 · Maurizio Gabbrielli and Maria Chiara Meo

be useful for further reductions. It is worth noting that the presence of multiple
heads in CHR is an essential feature which is needed in order to define reasonably
expressive constraint solvers (see the discussion in [12]). However, such a feature,
which differentiates this proposal from many existing committed choice logic lan-
guages, complicates considerably the semantics of CHR, in particular it makes very
difficult to obtain a compositional semantics, as we argue below. This is unfortu-
nate, as compositionality is an highly desirable property for a semantics. In fact, a
compositional semantics provides the basis to define incremental and modular tools
for software analysis and verification, and these features are essential in order to
deal with partially defined components. Moreover, in some cases, modularity allows
to reduce the complexity of verification of large systems by considering separately
smaller components.

In this paper we introduce a fix-point semantics for CHR which characterizes the
input/output behavior of a program and which is and-compositional, that is, which
allows to retrieve the semantics of a conjunctive query from the semantics of its
components.

In general, due to the presence of synchronization mechanisms, the input/ouput
semantics is not compositional for committed choice logic languages and for most
concurrent languages in general. Indeed, the need for more complicate semantic
structures based on traces was recognized very early as a necessary condition to
obtain a compositional model, first for dataflow languages [13] and then in the
case of many other paradigms, including imperative concurrent languages [8] and
concurrent constraint and logic languages [6].
When considering CHR this basic problem is further complicated: due to the

presence of multiple heads, the traces consisting of sequences of input/ouput pairs,
analogous to those used in the above mentioned works, are not sufficient to obtain a
compositional semantics. Intuitively the problem can be stated as follows. A CHR
rule r@ h, g ⇔ C | B cannot be used to rewrite a goal h, no matter how the variables
are constrained (that is, for any input constraint), because the goal consists of a
single atom h while the head of the rule contains two atoms h, g. Therefore, if we
considered a semantics based on input/ouput traces, we would obtain the empty
denotation for the goal h in the program consisting of the rule r plus some rules
defining B. Analogously for the goal g. On the other hand, the rule r can be used
to rewrite the goal h, g. Therefore, provided that the semantics of B is not empty,
the semantics of h, g is not empty and cannot be derived from the semantics of h
and g, that is, the semantics is not compositional. It is worth noting that even
restricting to a more simple notion of observable, such as the results of terminating
computations, does not simplify this problem. In fact, differently from the case
of ccp (concurrent constraint programming) languages, also the semantics based
on these observables (usually called resting points) is not compositional for CHR.
We have then to use some additional information which allows us to describe the
behavior of goals in any possible and-composition without, of course, considering
explicitly all the possible and-compositions.

Our solution to obtain a compositional model is to use an augmented semantics
based on traces which includes at each step two “assumptions” on the external
environment and two “outputs” of the current process: Similarly to the case of the
models for ccp, the first assumption is made on the constraints appearing in the

A compositional Semantics for CHR · 3

guards of the rules, in order to ensure that these are satisfied and the computation
can proceed. The second assumption is specific to our approach and contains atoms
which can appear in the heads of rules. This allows us to rewrite a goal G by
using a rule whose head H properly contains G: While this is not possible with the
standard CHR semantics, we allow that by assuming that the external environment
provides the “difference” H minus G and by memorizing such an assumption. The
first output element is the constraint produced by the process, as usual. We also
memorize at each step a second output element, consisting of those atoms which
are not rewritten in the current derivation and which could be used to satisfy some
assumptions (of the second type) when composing sequences representing different
computations. Thus our model is based on sequences of quadruples, rather than of
simple input/output pairs.
Our compositional semantics is obtained by a fixpoint construction which uses

an enhanced transitions system implementing the rules for assumptions described
above. We prove the correctness of the semantics w.r.t. a notion of observables
which characterizes the input/ouput behavior of terminating computations where
the original goal has been completely reduced to built-in constraints. We will discuss
later the extensions needed in order to characterize different notions of results, such
as the “qualified answers” used in [12].
The remaining of this paper is organized as follows. Next section introduces some

preliminaries about CHR and its operational semantics. Section 3 contains the defi-
nition of the compositional semantics, while section 4 presents the compositionality
and correctness results. Section 5 discuss briefly a possible extension of this work
while section 6 concludes by indicating directions for future work.

2. PRELIMINARIES

In this section we first introduce some preliminary notions and then define the CHR
syntax and operational semantics. Even though we try to provide a self-contained
exposition, some familiarity with constraint logic languages and first order logic
could be useful.
We first need to distinguish the constraints handled by an existing solver, called

built-in (or predefined) constraints, from those defined by the CHR program, user-
defined (or CHR) constraints. An atomic constraint is a first-order predicate
(atomic formula). By assuming to use two disjoint sorts of predicate symbols we
then distinguish built-in atomic constraints from CHR atomic constraints. A built-
in constraint c is defined by

c ::= a | c ∧ c | ∃xa

where a is an atomic built-in constraint 1. For built-in constraints we assume
given a theory CT which describes their meaning.
On the other hand, according to the usual CHR syntax, we assume that a user-

defined constraint is a conjunction of atomic user-defined constraints. We use c, d to
denote built-in constraints, g, h, k to denote CHR constraints and a, b to denote both

1We could consider more generally first order formulas as built-in constraints, as far as the results
presented here are concerned.

4 · Maurizio Gabbrielli and Maria Chiara Meo

built-in and user-defined constraints (we will call these generically constraints). The
capital versions of these notations will be used to denote multisets of constraints.
Furthermore we denote by U the set of user-defined constraints and by B the set of
built-in constraints.
We will often use “,” rather than ∧ to denote conjunction and we will often

consider a conjunction of atomic constraints as a multiset of atomic constraints. In
particular, we will use this notation based on multisets in the syntax of CHR. The
notation ∃−V φ, where V is a set of variables, denotes the existential closure of a
formula φ with the exception of the variables V which remain unquantified. Fv(φ)
denotes the free variables appearing in φ and we denote by · the concatenation
of sequences and by ε the empty sequence. Furthermore ⊎ denotes the multi-set
union, while we consider \ as an overloaded operator used both for set and multi-set
difference (the meaning depends on the type of the arguments).
We are now ready to introduce the CHR syntax as defined in [12].

Definition 2.1. [Syntax] A CHR simplification rule has the form

r@H ⇔ C | B

while a CHR propagation rule has the form

r@H ⇒ C | B,

where r is a unique identifier of a rule, H is a multiset of user-defined constraints, C
is a multiset of built-in constraints and B is a possibly empty multi-set of (built-in
and user-defined) constraints2. A CHR program is a finite set of CHR simplification
and propagation rules.

We prefer to use multisets rather than sequences (as in the original CHR papers)
since multisets appear to correspond more precisely to the nature of CHR rules.
Moreover in this paper we will not use the identifiers of the rules, which will then
be omitted.
A CHR goal is a multiset of (both user-defined an built-in) constraints. Goals is

the set of all goals.
We describe now the operational semantics of CHR as provided by [12] by using

a transition system Ts = (Confs ,−→s) (s here stands for “standard”, as opposed
to the semantics we will use later). Configurations in Confs are triples of the form
〈G,K, d〉 where G are the constraints that remain to be solved, K are the user-
defined constraints that have been accumulated and d are the built-in constraints
that have been simplified3.
An initial configuration has the form

〈G, ∅, ∅〉

2Some papers consider also simpagation rules, Since these are abbreviations for propagation and
simplification rules we do not need to introduce them.
3In [12] triples of the form 〈G,K, d〉V were used, where the annotation V , which is not changed
by the transition rules, is used to distinguish the variables appearing in the initial goal from the
variables which are introduced by the rules. We can avoid such an indexing by explicitly referring
to the original goal.

A compositional Semantics for CHR · 5

Solve
CT |= c ∧ d ↔ d′ and c is a built-in constraint

〈(c,G),K, d〉 −→s 〈G,K, d′〉

Introduce h is a user-defined constraint
〈(h,G),K, d〉 −→s 〈G, (h,K), d〉

Simplify
H ⇔ C | B ∈ P x = Fv(H) CT |= d → ∃x((H = H ′) ∧C)

〈G,H ′ ∧K, d〉 −→s 〈B ∧G,K,H = H ′ ∧ d〉

Propagate
H ⇒ C | B ∈ P x = Fv(H) CT |= d → ∃x((H = H ′) ∧C)

〈G,H ′ ∧K, d〉 −→s 〈B ∧G,H ′ ∧K,H = H ′ ∧ d〉

Table I. The standard transition system for CHR

and consists of a goal G, an empty user-defined constraint and an empty built-in
constraint.
A final configuration has either the form

〈G,K, false〉,

when it is failed, i.e. when it contains an inconsistent built-in constraint store
represented by the unsatisfiable constraint false, or has the form

〈∅,K, d〉

when it is successfully terminated since there are no applicable rules.
Given a program P , the transition relation −→s⊆ Conf × Conf is the least

relation satisfying the rules in Table I (for the sake of simplicity, we omit indexing
the relation with the name of the program). The Solve transition allows to update
the constraint store by taking into account a built-in constraint contained in the
goal. Without loss of generality, we will assume that Fv(d′) ⊆ Fv(c) ∪ Fv(d).
The Introduce transition is used to move a user-defined constraint from the goal
to the CHR constraint store, where it can be handled by applying CHR rules.
The transitions Simplify and Propagate allow to rewrite user-defined constraints
(which are in the CHR constraint store) by using rules from the program. As usual,
in order to avoid variable names clashes, both these transitions assume that clauses
from the program are renamed apart, that is assume that all variables appearing
in a program clause are fresh ones. Both the Simplify and Propagate transitions
are applicable when the current store (d) is strong enough to entail the guard of
the rule (c), once the parameter passing has been performed (this is expressed by
the equation H = H ′). Note that, due to the existential quantification over the
variables x appearing in H , in such a parameter passing the information flow is
from the actual parameters (in H ′) to the formal parameters (in H), that is, it
is required that the constraints H ′ which have to be rewritten are an instance of
the head H . When applied, both these transitions add the body B of the rule
to the current goal and the equation H = H ′, expressing the parameter passing

6 · Maurizio Gabbrielli and Maria Chiara Meo

mechanism, to the built-in constraint store. The difference between Simplify and
Propagate is in the fact that while the former transition removes the constraints
H ′ which have been rewritten from the CHR constraint store, this is not the case
for the latter.
Given a goal G, the operational semantics that we consider observes the final

stores of computations terminating with an empty goal and an empty user-defined
constraint. We call these observables data sufficient answers following the thermi-
nology of [12].

Definition 2.2. [Data sufficient answers] Let P be a program and let G be a goal.
The set SAP (G) of data sufficient answers for the query G in the program P is
defined as follows

SAP (G) = {〈∃−Fv(G)d〉 | 〈G, ∅, ∅〉 −→∗
s 〈∅, ∅, d〉 6−→s}.

∪
{〈false〉 | 〈G, ∅, ∅〉 −→∗

s 〈G′,K, false〉}.

In [12] it is also considered the following different notion of answer, obtained by
computations terminating with a user-defined constraint which does not need to be
empty.

Definition 2.3. [Qualified answers] Let P be a program and let G be a goal. The
set QAP (G) of qualified answers for the query G in the program P is defined as
follows

QAP (G) = {〈∃−Fv(G)K ∧ d〉 | 〈G, ∅, ∅〉 −→∗
s 〈∅,K, d〉 6−→s}

∪
{〈false〉 | 〈G, ∅, ∅〉 −→∗

s 〈G′,K, false〉}.

We discuss in Section 6 the extensions needed to characterize also qualified an-
swers. Note that both previous notions of observables characterize an input/output
behavior, since the input constraint is implicitly considered in the goal.
In the remaining of this paper we will consider only simplification rules since

propagation rules can be mimicked by simplification rules, as far as the results
contained in this paper are concerned.
Note that in presence of propagation rules the “naive” operational semantics

that we consider in this paper introduces redundant infinite computations: Since
propagation rules do not remove user defined constraints (see rule Propagate in
Table I), when a propagate rule is applied it introduces an infinite computation
(obtained by subsequent applications of the same rule). Note however that this
does not imply that in presence of an active propagation rule the semantics that
we consider are empty. In fact, the application of a simplification rule after a
propagation rule can cause the termination of the computation, by removing the
atoms which are needed by the head of the propagation rule. It is also possible to
define a more refined operational semantics (see [1] and [10]) which avoids these
infinite computations by allowing to apply at most once a propagation rule to
the same constraints. We discuss in Section 5 the modifications needed in our
construction to take into account this more refined semantics.

A compositional Semantics for CHR · 7

3. A COMPOSITIONAL TRACE SEMANTICS

Given a program P , we say that a semantics SP is and-compositional if SP (A,B) =
C(SP (A),SP (B)) for a suitable composition operator C which does not depend on
the program P . As mentioned in the introduction, due to the presence of multiple
heads in CHR, the semantics which associates to a program P the function SAP

is not and-compositional, since goals which have the same input/ouput behavior
can behave differently when composed with other goals. Consider for example the
program P consisting of the single rule

g, h ⇔ true|c

(where c is a built-in constraint). According to Definition 2.3 we have that SAP (g) =
SAP (k) = ∅, while

SAP (g, h) = {〈∃−Fv(g,h)c〉} 6= ∅ = SAP (k, h).

An analogous example can be made to show that also the semantics QA is not
and-compositional.
The problem exemplified above is different from the classic problem of concurrent

languages where the interaction of non-determinism and synchronization makes the
input/output observables non-compositional. For this reason, considering simply
sequences of (input-output) built-in constraints is not sufficient to obtain a com-
positional semantics for CHR. We have to use some additional information which
allows us to describe the behavior of goals in any possible and-composition without,
of course, considering explicitly all the possible and-compositions.
The basic idea of our approach is to collect in the semantics also the “missing”

parts of heads which are needed in order to proceed with the computation. For
example, when considering the program P above, we should be able to state that
the goal g produces the constraint c, provided that the external environment (i.e.
a conjunctive goal) contains the user-defined constraint h. In other words, h is an
assumption which is made in the semantics describing the computation of g. When
composing (by using a suitable notion of composition) such a semantics with that
one of a goal which contains h we can verify that the “assumption” h is satisfied
and therefore obtain the correct semantics for g, h. In order to model correctly the
interaction of different processes we have to use sequences, analogously to what
happens with other concurrent paradigms.
This idea is developed by defining a new transition system which implements

this mechanism based on assumptions for dealing with the missing parts of heads.
The new transition system allows one to generate the sequences appearing in the
compositional model by using a standard fix-point construction. As a first step
in our construction we modify the notion of configuration used before: Since we
do not need to distinguish user-defined constraints which appear in the goal from
the user-defined constraints which have been already considered for reduction, we
merge the first and the second components of previous triples. Thus we do not need
anymore Introduce rule. On the other hand, we need the information on the new
assumptions, which is added as a label of the transitions.
Thus we define a transition system T = (Conf ,−→P) where configurations in

Conf are pairs: the first component is a multiset of indexed atoms (the goal)
and the second one is a built-in constraint (the store). Indexes are associated

8 · Maurizio Gabbrielli and Maria Chiara Meo

Solve’
CT |= c ∧ d ↔ d′

〈c ∧G, d〉 −→∅
P 〈G, d′〉

Simplify’
H ⇔ C | B ∈ P x = Fv(H) G 6= ∅ CT |= d → ∃x((H = (G,K)) ∧ C)

〈G ∧ A, d〉 −→K
P 〈Bi+1 ∧ A, d ∧ (H = (G,K))〉

where i is the maximal index occurring in the goal G ∧ A

Table II. The transition system for the compositional semantics

to atoms in order to denote the point in the derivation where they have been
introduced. Atoms in the original goals are indexed by 0, while atoms introduced
at the i-th derivation step are indexed by i. Given a program P , the transition
relation −→P⊆ Conf × Conf × ℘(U) is the least relation satisfying the rules in
Table II (where ℘(A) denotes the set consisting of all the subsets of A). Note
that we consider only Solve and Simplify rules, as the other rules as previously
mentioned are redundant in this context. Solve’ is the same rule as before, while
the Simplify’ rule is modified to consider assumptions: When reducing a goal G by
using a rule having head H , the multiset of assumptions K = H \G (with H 6= K)
is used to label the transition (\ here denotes multiset difference). Indexes allow us
to distinguish different occurrences of the same atom which have been introduced
in different derivation steps. We will use the notation Gi to indicate that all the
atoms in G are indexed by i.
When indexes are not needed we will simply omit them. As before, we assume

that program rules to be used in the new simplify rule use fresh variables to avoid
names clashes.
The semantics domain of our compositional semantics is based on sequences

which represent derivations obtained by the transition system in Table II. More
precisely, we first consider “concrete” sequences consisting of tuples of the form
〈G, c,K,G′, d〉: Such a tuple represents a derivation step 〈G, c〉 −→K

P 〈G′, d〉. The
sequences we consider are terminated by tuples of the form 〈G, c, ∅, G, c〉, which
represent a terminating step (see the precise definition below). Since a sequence
represents a derivation, we assume that the “output” goal G′ at step i is equal to
the “input” goal G at step i+ 1, that is, we assume that if

. . . 〈Gi, ci,Ki, G
′
i, di〉〈Gi+1, ci+1,Ki+1, G

′
i+1, di+1〉 . . .

appears in a sequence, then G′
i = Gi+1 holds.

On the other hand, the input store ci+1 can be different from the output store di
produced at previous step, since we need to perform all the possible assumptions
on the constraint ci+1 produced by the external environment in order to obtain a
compositional semantics. However, we assume that if

. . . 〈Gi, ci,Ki, G
′
i, di〉〈Gi+1, ci+1,Ki+1, G

′
i+1, di+1〉 . . .

appears in a sequence then CT |= ci+1 → di holds: This means that the assumption
made on the external environment cannot be weaker than the constraint store

A compositional Semantics for CHR · 9

produced at the previous step. This reflects the monotonic nature of computations,
where information can be added to the constraint store and cannot be deleted from
it. Finally note that assumptions on user-defined constraints (label K) are made
only for the atoms which are needed to “complete” the current goal in order to
apply a clause. In other words, no assumption can be made in order to apply
clauses whose heads do not share any predicate with the current goal.
The set of the above described “concrete” sequences, which represent derivation

steps performed by using the new transition system, is denoted by Seq.
From these concrete sequences we extract some more abstract sequences which are
the objects of our semantic domain: From each tuple 〈G, c,K,G′, d〉 in a sequence
δ ∈ Seq we extract a tuple of the form 〈c,K,H, d〉 where we consider as before the
input and output store (c and d, respectively) and the assumptions (K), while we
do not consider anymore the output goal G′. Furthermore, we restrict the input
goal G to that part H consisting of all those user-defined constraints which will
not be rewritten in the (derivation represented by the) sequence δ. Intuitively H

contains those atoms which are available for satisfying assumptions of other goals,
when composing two different sequences (representing two derivations of different
goals). We also assume that if

〈ci,Ki, Hi, di〉〈ci+1,Ki+1, Hi+1, di+1〉

is in a sequence then Hi ⊆ Hi+1 holds, since these atoms which will not be rewritten
in the derivation can only augment. Finally, indexes are not used in the abstract
sequences (they are only needed to define stable atoms, see Definition 3.2).
We then define formally the semantic domain as follows.

Definition 3.1. [Abstract sequences] The semantic domain D containing all the
possible (abstract) sequences is defined as the set

D = {〈c1,K1, H1, d1〉 . . . 〈cn, ∅, Hn, cn〉 |
for each j, 1 ≤ j ≤ n and for each i, 1 ≤ i ≤ n− 1,
Hj and Ki are multisets of CHR (non indexed) constraints,
cj , di are built-in constraints and CT |= di → ci,

Hi ⊆ Hi+1 and CT |= ci+1 → di holds }.

In order to define our semantics we need three more notions. First, we define
an abstraction operator α which extracts from the concrete sequences in Seq (rep-
resenting exactly derivation steps) the abstract sequences used in our semantic
domain.

Definition 3.2. [Abstraction and Stable atoms] Let

δ = 〈G1, c1,K1, G2, d1〉 . . . 〈Gn, cn, ∅, Gn, cn〉

be a sequence of derivation steps where we assume that atoms are indexed as
previously specified. We say that an indexed atom Aj is stable in δ if Aj appears
in Gi, for each 1 ≤ i ≤ n. The abstraction operator α : Seq → D is then defined
inductively as

α(ε) = ε

α(〈G, c,K,G′, d〉 · δ′) = β(〈c,K,H, d〉) · α(δ′)

10 · Maurizio Gabbrielli and Maria Chiara Meo

where H is the multiset consisting of all the atoms in G which are stable in
〈G, c,K,G′, d〉 · δ′ and the function β simply removes the indexes from the atoms
in H .

Then we need the notion of “compatibility” of a tuple w.r.t. a sequence. To this
aim we first provide some further notation: Given a sequence δ of derivation steps

〈G1, c1,K1, G2, d1〉〈G2, c2,K2, G3, d2〉 . . . 〈Gn, cn, ∅, Gn, cn〉

we denote by length(δ) the length of the derivation δ (i.e. the number of tuples in
the sequence). Moreover using t as a shorthand for the tuple 〈G1, c1,K1, G2, d1〉
we define

. Vloc(t) = Fv(G2, d1) \ Fv(G1, c1,K1),

. Vass(δ) =
⋃n−1

i=1 Fv(Ki) (the variables in the assumptions of δ),

. Vstable(δ) = Fv(Gn) (the variables in all the stable multisets of δ),

. Vconstr(δ) =
⋃n−1

i=1 Fv(di) \ Fv(ci) (the variables in the output constraints of δ
which are not in the corresponding input constraints) and

. Vloc(δ) =
⋃n−1

i=1 Fv(Gi+1, di) \ Fv(Gi, ci,Ki) (the local variables of δ, namely
the variables in the clauses used in the derivation δ).

We then define the notion of compatibility as follows.

Definition 3.3. Let t = 〈G1, c1,K1, G2, d1〉 a tuple representing a derivation step
for the goal G1 and let δ = 〈G2, c2,K2, G3, d2〉 . . . 〈Gn, cn, ∅, Gn, cn〉 be a sequence
of derivation steps for G2. We say that t is compatible with δ if the following hold:

(1) CT |= c2 → d1,

(2) Vloc(δ) ∩ Fv(t) = ∅,

(3) Vloc(t) ∩ Vass(δ) = ∅ and

(4) for i ∈ [2, n], Vloc(t) ∩ Fv(ci) ⊆
⋃i−1

j=1 Fv(dj) ∪ Vstable(δ).

The first three condition reflect the monotonic nature of computations, that the
clauses in a derivation are renamed apart and that the variables in the assumptions
are disjoint from the variables in the clauses used in a derivation. The last condition
ensure that the local variables in a derivation δ and in the abstraction of δ are the
same (see Lemma 4.3). Note that if t is compatible with δ then, by using the
notation above, t · δ is a sequence of derivation steps for G1. We can now define
the compositional semantics.

Definition 3.4. [Compositional semantics] Let P be a program and let G be a
goal. The compositional semantics of G in the program P , SP : Goals → ℘(D), is
defined as

SP (G) = α(S ′
P (G))

where α is the pointwise extension to sets of the operator given in Definition 3.2

A compositional Semantics for CHR · 11

and S ′
P : Goals → ℘(Seq) is defined as follows:

S ′
P (G) = {〈G, c,K,G′, d〉 · δ ∈ Seq | CT 6|= c ↔ false, 〈G, c〉 −→K

P 〈G′, d〉
and δ ∈ S ′

P (G
′) for some δ such that

〈G, c,K,G′, d〉 is compatible with δ}
∪
{〈G, c, ∅, G, c〉 ∈ Seq}.

Formally S ′
P (G) is defined as the least fixed-point of the corresponding operator

Φ ∈ (Goals → ℘(Seq)) → Goals → ℘(Seq) defined by

Φ(I)(G) = {〈G, c,K,G′, d〉 · δ ∈ Seq | CT 6|= c ↔ false, 〈G, c〉 −→K
P 〈G′, d〉

and δ ∈ I(G′) for some δ such that
〈G, c,K,G′, d〉 is compatible with δ}

∪
{〈G, c, ∅, G, c〉 ∈ Seq}.

In the above definition, I : Goals → ℘(Seq) stands for a generic interpretation
assigning to a goal a set of sequences, and the ordering on the set of interpretations
Goals → ℘(Seq) is that of (point-wise extended) set-inclusion. It is straightforward
to check that Φ is continuous (on a CPO), thus standard results ensure that the
fixpoint can be calculated by ⊔n≥0φ

n(⊥), where φ0 is the identity map and for
n > 0, φn = φ ◦ φn−1 (see for example [9]).

4. COMPOSITIONALITY AND CORRECTNESS

In this section we prove that the semantics defined above is and-compositional and
correct w.r.t. the observables SAP .
In order to prove the compositionality result we first need to define how two

sequences describing a computation of A and B, respectively, can be composed
in order to obtain a computation of A,B. Such a composition is defined by the
(semantic) operator ‖ which performs an interleaving of the actions described by
the two sequences and then eliminates the assumptions which are satisfied in the
resulting sequence. For technical reasons, rather than modifying the existing se-
quences, the elimination of satisfied assumptions is performed on new sequences
which are generated by a closure operator η defined as follows.

Definition 4.1. Let W be a multiset of indexed atoms, σ be a sequence in D of
the form

〈c1,K1, H1, d1〉 〈c2,K2, H2, d2〉 . . . 〈cn,Kn, Hn, dn〉

and let

H̃1 = H1
1 and for i ∈ [2, n] H̃i = H̃i−1 ⊎ (Hi \Hi−1)

i,

where we use the notation Hi to indicate that all the atoms in H are indexed by i

and \ denotes the multisets difference.
We denote by σ \W the sequence

β(〈c1,K1, H̃1 \W,d1〉 〈c2,K2, H̃2 \W,d2〉 . . . 〈cn,Kn, H̃n \W,dn〉)

where the multisets difference H̃i \W considers indexes and, as in Definition 3.2,
the function β simply removes the indexes from the stable atoms.

12 · Maurizio Gabbrielli and Maria Chiara Meo

The operator η : ℘(D) → ℘(D) is defined as follows. Given S ∈ ℘(D), η(S) is
the least set satisfying the following conditions:

(1) S ⊆ η(S);

(2) if σ′ · 〈c,K,H, d〉 · σ′′ ∈ η(S) then (σ′ · 〈c,K \K ′, H, d〉 · σ′′) \W ∈ η(S)

where K ′ = {A1, . . . , An} ⊆ K is a multiset such that there exists a multiset of
indexed atoms W = {Bj1

1 , . . . , Bjn
n } ⊆ H̃ such that CT |= c∧Bl ↔ c∧Al, for each

l ∈ [1, n].

A few explanations are in order. The operator η is an upper closure operator4

which saturates a set of sequences S by adding new sequences where redundant as-
sumptions can be removed: an assumptions a (in Ki) can be removed if aj appears
as a stable atom (in H̃i). Once a stable atom is “consumed” for satisfying an as-
sumption it is removed from (the multiset of stable atoms of) all the tuples appear-
ing in the sequence, to avoid multiple uses of the same atom. Note that stable atoms
are considered without the index in the condition CT |= c∧Bl ↔ c∧Al, while they
are considered as indexed atoms in the removal operation H̃i\W . The reason for this
slight complication is explained by the following example. Assume that we have the
set S consisting of the only sequence 〈c, ∅, {a}, d〉〈c′, {a}, {a, a}, d′〉〈c′′, ∅, {a, a}, c′′〉.
From this sequence, we construct a new one, where the stable atoms are indexed
as follows:

〈c, ∅, {a1}, d〉〈c′, {a}, {a1, a2}, d′〉〈c′′, ∅, {a1, a2}, c′′〉.

Such a new sequence indicates that at the second step we have an assumption a,
while both at the first and at the second step we have produced a stable atom a,
which has been indexed by 1 and 2, respectively. In order to satisfy the assumption
a we can use either a1 or a2.
However, depending on what indexed atom we use, we obtain two different simpli-
fied sequences in η(S), namely
〈c, ∅, ∅, d〉〈c′, ∅, {a}, d′〉〈c′′, ∅, {a}, c′′〉 and 〈c, ∅, {a}, d〉〈c′, ∅, {a}, d′〉〈c′′, ∅, {a}, c′′〉,
which describe correctly the two different situations. It is also worth noting that it
is possible to disregard indexes in the result of the normalization operator
Before defining the composition operator ‖ on sequences we need a notation for

the sequences in D analogous to that one introduced for sequences of derivation
steps:
Let σ = 〈c1,K1, H1, d1〉〈c2,K2, H2, d2〉 · · · 〈cn, ∅, Hn, dn〉 ∈ D be a sequence for the
goal G. We define

. Vass(σ) =
⋃n−1

i=1 Fv(Ki) (the variables in the assumptions of σ),

. Vstable(σ) = Fv(Hn) =
⋃n

i=1 Fv(Hi) (the variables in the stable multisets of
σ),

. Vconstr(σ) =
⋃n−1

i=1 Fv(di) \Fv(ci) (the variables in the output constraints of σ
which are not in the corresponding input constraints),

. Vloc(σ) = (Vconstr(σ)∪ Vstable(σ)) \ (Vass(σ)∪Fv(G)) (by using Condition 4 of
Definition 3.3 and by Lemma 4.3, the local variables of a sequence σ are the local
variables of the derivations δ such α(δ) = σ).

4S ⊆ η(S) holds by definition, and it is easy to see that η(η(S)) = η(S) holds and that S ⊆ S′

implies η(S) ⊆ η(S′).

A compositional Semantics for CHR · 13

We can now define the composition operator ‖ on sequences. To simplify the
notation we denote by ‖ both the operator acting on sequences and that one acting
on sets of sequences.

Definition 4.2. The operator ‖: D×D → ℘(D) is defined inductively as follows.
Assume that σ1 = 〈c1,K1, H1, d1〉 · σ′

1 and σ2 = 〈c2,K2, H2, d2〉 · σ′
2 are sequences

for the goals G1 and G2, respectively. If

(Vloc(σ1) ∪ Fv(G1)) ∩ (Vloc(σ2) ∪ Fv(G2)) = Fv(G1) ∩ Fv(G2) (1)

then σ1 ‖ σ2 is defined by cases as follows:

(1) If both σ1 and σ2 have length 1 and have the same store, say σ1 = 〈c, ∅, H1, c〉
and σ2 = 〈c, ∅, H2, c〉, then

σ1 ‖ σ2 = {〈c, ∅, H1 ⊎H2, c〉}.

(2) If σ2 has length 1 and σ1 has length > 1 then

σ1 ‖ σ2 = {〈c1,K1, H1 ⊎H2, d1〉 · σ ∈ D | σ ∈ σ′
1 ‖ σ2}.

The symmetric case is analogous and therefore omitted.

(3) If both σ1 and σ2 have length > 1 then

σ1 ‖ σ2 = {〈c1,K1, H1 ⊎H2, d1〉 · σ ∈ D | σ ∈ σ′
1 ‖ σ2}

∪
{〈c2,K2, H1 ⊎H2, d2〉 · σ ∈ D | σ ∈ σ1 ‖ σ′

2}

Finally the composition of sets of sequences ‖: ℘(D) × ℘(D) → ℘(D) is defined
by

S1 ‖ S2 = {σ ∈ D | there exist σ1 ∈ S1 and σ2 ∈ S2 such that
σ = 〈c1,K1, H1, d1〉 · · · 〈cn, ∅, Hn, cn〉 ∈ η(σ1 ‖ σ2),
(Vloc(σ1) ∪ Vloc(σ2)) ∩ Vass(σ) = ∅ and for i ∈ [1, n]

(Vloc(σ1) ∪ Vloc(σ2)) ∩ Fv(ci) ⊆
⋃i−1

j=1 Fv(dj) ∪ Fv(Hi)}.

Let us briefly illustrate some points in previous definition.
Condition (1) ensures that the rules used to construct the (derivations abstracted

by the) sequences σ1 and σ2 have been renamed apart (that is, they do not share
variables). Moreover, the local variables of each sequence are different from those
which appear in the initial goal for the other sequence.
Moreover, in the definition of the composition of sets of sequences ‖: ℘(D) ×

℘(D) → ℘(D), the first condition ensures that the variables appearing in the rules
used to construct the sequences σ1 and σ2 are distinct from the variables appear-
ing in the assumptions. The second condition is needed to ensure that σ is the
abstraction of a sequence satisfying condition 4 in Definition 3.3 (compatibility).

Using this notion of composition of sequences we can show that the semantics
SP is compositional. Before proving the compositionality theorem we need some
technical lemmas.

Lemma 4.3. Let G be a goal, δ ∈ S ′
P (G) and let σ = α(δ). Then Vr(δ) = Vr(σ)

holds, where r ∈ { ass, stable, constr, loc }.

14 · Maurizio Gabbrielli and Maria Chiara Meo

Lemma 4.4. Let P be a program, H and G be two goals and assume that δ ∈
S ′
P (H,G). Then there exists δ1 ∈ S ′

P (H) and δ2 ∈ S ′
P (G), such that for i = 1, 2,

Vloc(δi) ⊆ Vloc(δ) and α(δ) ∈ η(α(δ1) ‖ α(δ2)).

Lemma 4.5. Let P be a program, let H and G be two goals and assume that
δ1 ∈ S ′

P (H) and δ2 ∈ S ′
P (G) are two sequences such that the following hold:

(1) α(δ1) ‖ α(δ2) is defined,

(2) σ = 〈c1,K1,W1, d1〉 · · · 〈cn, ∅,Wn, cn〉 ∈ η(α(δ1) ‖ α(δ2)),

(3) (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅,

(4) for i ∈ [1, n], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
⋃i−1

j=1 Fv(dj) ∪ Fv(Wi).

Then there exists δ ∈ S ′
P (H,G) such that σ = α(δ).

By using the above results we can prove the following theorem.

Theorem 4.6. [Compositionality] Let P be a program and let H and G be two
goals. Then

SP (H,G) = SP (H) ‖ SP (G).

Proof We prove the two inclusions separately.

(SP (H,G) ⊆ SP (H) ‖ SP (G)). Let σ ∈ SP (H,G). By definition of SP , there
exists δ ∈ S ′

P (H,G) such that σ = α(δ). By Lemma 4.4 there exist δ1 ∈ S ′
P (H)

and δ2 ∈ S ′
P (G) such that for i = 1, 2, Vloc(δi) ⊆ Vloc(δ) and σ ∈ η(α(δ1) ‖ α(δ2)).

Let

δ = 〈(H,G), c1,K1, B2, d1〉 · · · 〈Bn, cn, ∅, Bn, cn〉

and let σ = 〈c1,K1, H1, d1〉 · · · 〈cn, ∅, Hn, cn〉, where Hn = Bn. Then in order to
prove the thesis we have only to show that

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅ and for i ∈ [1, n],

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
⋃i−1

j=1 Fv(dj) ∪ Fv(Hi).

First observe that by Lemma 4.3 and by hypothesis, we have that Vass(σ) = Vass(δ)
and for i = 1, 2, Vloc(α(δi)) = Vloc(δi) ⊆ Vloc(δ). Then by the previous results and
by the properties of the derivations

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) ⊆ Vloc(δ) ∩ Vass(δ) = ∅.

Moreover by condition 4 of Definition 3.3 (compatibility), for i ∈ [1,m],

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆ Vloc(δ) ∩ Fv(ci) ⊆
i−1⋃

j=1

Fv(dj) ∪ Vstable(δ)

holds. Now, observe that if x ∈ Vloc(δ)∩Fv(ci)∩Vstable(δ), then x ∈
⋃i

j=1 Vloc(δ)∩
Fv(Bj) ∩ Vstable(δ) and then x ∈ Fv(Hi) and this completes the proof of the first
inclusion.

(SP (H,G) ⊇ SP (H) ‖ SP (G)). Let σ ∈ SP (H) ‖ SP (G). By definition of
SP and of ‖ there exist δ1 ∈ S ′

P (H) and δ2 ∈ S ′
P (G), such that σ1 = α(δ1),

A compositional Semantics for CHR · 15

σ2 = α(δ2), σ1 ‖ σ2 is defined, σ = 〈c1,K1, H1, d1〉 · · · 〈cn, ∅, Hn, cn〉 ∈ η(σ1 ‖ σ2),
(Vloc(σ1)∪Vloc(σ2))∩Vass(σ) = ∅ and for i ∈ [1, n], (Vloc(σ1)∪Vloc(σ2))∩Fv(ci) ⊆⋃i−1

j=1 Fv(dj) ∪ Fv(Hi). The proof is then straightforward by using Lemma 4.5.

4.1 Correctness

In order to show the correctness of the semantics SP w.r.t. the (input/output)
observables SAP , we first introduce a different characterization of SAP obtained
by using the new transition system defined in Table II.

Definition 4.7. Let P be a program and let G be a goal and let −→P be (the
least relation) defined by the rules in Table II. We define

SA′
P (G) = {∃−Fv(G)c | 〈G, ∅〉 −→∅

P · · · −→∅
P 〈∅, c〉 6−→K

P }.

The correspondence of SA′ with the original notion SA is stated by the following
proposition, whose proof is immediate.

Proposition 4.8. Let P be a program and let G be a goal. Then

SAP (G) = SA′
P (G).

The observables SA′
P , and therefore SAP , describing answers of “data sufficient”

computations can be obtained from S by considering suitable sequences, namely
those sequences which do not perform assumptions neither on CHR constraints nor
on built-in constraints. The first condition means that the second components of
tuples must be empty, while the second one means that the assumed constraint at
step i must be equal to the produced constraint at step i-1. We call “connected”
those sequences which satisfy these requirements:

Definition 4.9. [Connected sequences] Assume that

σ = 〈c1,K1, H1, d1〉 . . . 〈cn,Kn, Hn, cn〉

is a sequence in D. We say that σ is connected if

(1) Ki = ∅ for each i, 1 ≤ i ≤ n,

(2) dj = cj+1 for each j, 1 ≤ j ≤ n− 1 and

(3) either Hn = ∅ or cn = false.

The proof of the following result derives from the definition of connected sequence
and an easy inductive argument.
Given a sequence σ = 〈c1,K1, H1, d1〉 . . . 〈cn,Kn, Hn, dn〉, we denote by instore(σ)
and store(σ) the built-in constraint c1 and the built-in constraint dn, respectively.

Proposition 4.10. Let P be a program and let G be a goal. Then

SA′
P (G) = {∃−Fv(G)c | there exists σ ∈ SP (G) such that instore(σ) = ∅

σ is connected and c = store(σ)}.

The following corollary is immediate from Proposition 4.8.

Corollary 4.11. [Correctness] Let P be a program and let G be a goal. Then

SAP (G) = {∃−Fv(G)c | there exists σ ∈ SP (G) such that instore(σ) = ∅
σ is connected and c = store(σ)}.

16 · Maurizio Gabbrielli and Maria Chiara Meo

5. A MORE REFINED SEMANTICS

As previously mentioned, the operational semantics that we have considered in this
paper is somehow naive: In fact, since propagation rules do not remove user defined
constraints (see rule Propagate in Table I), when a propagate rule is applied it in-
troduces an additional infinite computation (obtained by subsequent applications of
the same rule). Of course, as previously mentioned, the terminating computations
are not affected, as the application of a simplification rule after a propagation rule
can cause the termination of the computation.

A more refined operational semantics which avoid these infinite computations
has been defined in [1]. Essentially the idea is to memorize in a token store, to
be added to the global state, some tokens containing the information about which
propagation rules can be applied to a given multiset of user-defined constraints.
Each token consists of a propagation rule name and of the multiset of candidate
constraints for that rule. A propagation rule can then be applied only if the store
contains the appropriate token and therefore it can be applied at most once to the
same constraint.

We could take into account this refined operational semantics by using a slight
extension of our semantic construction. More precisely, we first consider “concrete”
sequences consisting of tuples of the form 〈G, c, T,K,G′, T ′, d〉, where T and T ′ are
token stores as defined in [1]. Such a tuple represents exactly a derivation step
〈G, c, T 〉 −→K

P 〈G′, d, T ′〉, according to the operational semantics in [1]. The se-
quences we consider are terminated by tuples of the form 〈G, c, T, ∅, G, c, T 〉, which
represent a terminating step. Since a sequence represents a derivation, we assume
that the “output” goal G′ and token store T ′ at step i are equal to the “input”
goal G and to the token store T at step i + 1, respectively. From these concrete
sequences we extract the same abstract sequences which are the objects of our se-
mantic domain: From each tuple 〈G, c, T,K,G′, d, T ′〉 in a concrete sequence δ we
extract a tuple of the form 〈c,K, T,H, d〉 where we consider as before the input and
output store (c and d, respectively), the input token store and the assumptions (K),
while we do not consider anymore the output goal G′ and the token store T ′. The
abstraction operator which extracts from the concrete sequences the sequences used
in the semantic domain is a simple extension to that one given in Definition 3.2.
In order to obtain a compositionality result we then define how two sequences de-
scribing a computation of A and B according to this refined operational semantics,
respectively, can be composed in order to obtain a computation of A,B. Such a
composition is defined by a (semantic) operator, which performs an interleaving of
the actions described by the two sequences. This new operator is similar to that
one defined in Definition 4.2 even though the technicalities are different.

Recently a more refined semantics has been defined in [10] in order to describe
precisely the operational semantics implicitly used by (Prolog) implementations
of CHR. Although this refined operational semantics is still non-deterministic, the
order in which transitions are applied and the order in which occurrences are visited
are decided. This semantics is therefore substantially different from the one we
consider and apparently it is difficult to give a compositional characterization for
it.

A compositional Semantics for CHR · 17

6. CONCLUSIONS

In this paper we have introduced a semantics for CHR which is compositional w.r.t.
the and-composition of goals and which is correct w.r.t “data sufficient answers”,
a notion of observable which considers the results of (finitely) failed computations
and of successful computations where all the user-defined constraints have been
rewritten into built-in constraints. We are not aware of other compositional char-
acterizations of CHR answers and only [14] addresses compositionality of CHR rules
(but only for a subset of CHR). Our work can be considered as a first step which
can be extended along several different lines.
Firstly, it would be desirable to obtain a compositional characterization also for

“qualified answers” obtained by considering computations terminating with a user-
defined constraint which does not need to be empty (see Definition 2.3). This could
be done by a slight extension of our model: The problem here is that, given a tuple
〈G, c,K,G′, d〉, in order to reconstruct correctly the qualified answers we need to
know whether the configuration 〈G′, d〉 is terminating or not (that is, if 〈G′, d〉 6→K′

P

holds). This could be solved by introducing some termination modes, at the price
of a further complication of the traces used in our semantics. Also, as previously
mentioned, we are currently extending our semantics in order do describe the more
refined operational semantics given in [1].
A second possible extension is the investigation of the full abstraction issue. For

obvious reasons it would be desirable to introduce in the semantics the minimum
amount of information needed to obtain compositionality, while preserving correct-
ness. In other terms, one would like to obtain a results of this kind: SP (G) = SP (G

′)
if and only if, for any H , SAP (G,H) = SAP (G

′, H) (our Corollary 4.11 only en-
sures that the “only if” part holds). Such a full abstraction result could be difficult
to achieve, however techniques similar to those used in [6; 3] for analogous results
in the context of ccp could be considered
It would be interesting also to study further notions of compositionality, for

example that one which considers union of program rules rather than conjunctions
of goals, analogously to what has been done in [7]. However, due to the presence of
synchronization, the simple model based on clauses defined in [7] cannot be used
for CHR.
As mentioned in the introduction, the main interest related to a compositional

semantics is the possibility to provide a basis to define compositional analysis and
verification tools. In our case, it would be interesting to investigate to what extent
the compositional proof systems à la Hoare defined in [2; 4] for timed ccp languages,
based on resting points and trace semantics, can be adapted to the case of CHR.
Also, it would be interesting to apply the semantics to reconstruct the confluence
analysis of CHR.
Acknowledgments We thank Michael Maher for having initially suggested the
problem of compositionality for CHR semantics.

REFERENCES

S. Abdennadher. Operational semantics and confluence of constraint propagation rules. In G.
Smolka. editor, Proc. Third Int’l Conf. on Principles and Practice of Constraint Programming
(CP 97), Lecture Notes in Computer Science 1330. Springer-Verlag, 1997.

F.S. de Boer, M. Gabbrielli, E. Marchiori and C. Palamidessi. Proving Concurrent Constraint

18 · Maurizio Gabbrielli and Maria Chiara Meo

Programs Correct. Transactions on Programming Languages and Systems (TOPLAS), 19(5):

685-725. ACM Press, 1997.

F.S. de Boer, M. Gabbrielli, and M.C. Meo. Semantics and expressive power of a timed con-
current constraint language. In G. Smolka. editor, Proc. Third Int’l Conf. on Principles and
Practice of Constraint Programming (CP 97), Lecture Notes in Computer Science. Springer-
Verlag, 1997.

F.S. de Boer, M. Gabbrielli and M.C. Meo. Proving correctness of Timed Concurrent Constraint
Programs. ACM Transactions on Computational Logic. Vol. 5 n 4, October 2004.

F.S. de Boer, J.N. Kok, C. Palamidessi, and J.J.M.M. Rutten. The failure of failures in a
paradigm for asynchronous communication. In J.C.M. Baeten and J.F. Groote, editors, Pro-
ceedings of CONCUR’91, vol. 527 of LNCS, pages 111–126. Springer-Verlag, 1991.

F.S. de Boer and C. Palamidessi. A Fully Abstract Model for Concurrent Constraint Program-
ming. In S. Abramsky and T.S.E. Maibaum, editors, Proc. of TAPSOFT/CAAP, vol. 493 of
LNCS, pages 296–319. Springer-Verlag, 1991.

A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics for Logic Programs.
Theoretical Computer Science 122(1-2): 3–47, 1994.

S. Brookes. A fully abstract semantics of a shared variable parallel language. In Proc. Eighth
IEEE Symposium on Logic In Computer Science. IEEE Computer Society Press, 1993.

B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990.

Gregory J. Duck, Maria Garcia de la Banda, Peter J. Stuckey. The Refined Operational Se-
mantics of Constraint Handling Rules. in Proc. of the 20th International Conference on Logic
Programming, (ICLP’04), 2004.

T. Früwirth. Introducing simplification rules. TR ECRC-LP-63, ECRC Munich. October 1991.

T. Früwirth. Theory and practice of Constraint Handling Rules. Journal of Logic Programming,
1994:19, 20:1-679.

B. Jonsson. A model and a proof system for asynchronous processes. In Proc. of the 4th ACM
Symp. on Principles of Distributed Computing, pages 49–58. ACM Press, 1985.

M. Maher. Propagation Completeness of Reactive Constraints. In Proc. International Confer-
ence on Logic Programming (ICLP), 148 - 162, 2002.

A compositional Semantics for CHR · 19

7. APPENDIX

In this appendix we provide the proofs of some lemmas used in the paper.
In the following, given a sequence γ, where γ ∈ Seq ∪ D, we will denote by

instore(γ) and by Inc(γ) the first input constraint and the set of input constraints
of γ, respectively. Moreover, we will denote by Ass(γ) and Stable(γ) the set (cor-
responding to the multiset) of assumptions of γ and the set (corresponding to the
multiset) of atoms in the last goal of γ, respectively.

Lemma 7.1. (Lemma 4.3) Let G be a goal, δ ∈ S ′
P (G) and let σ = α(δ). Then

Vr(δ) = Vr(σ), where r ∈ { ass, stable, constr, loc }.

Proof If r ∈ { ass, stable, constr } then the proof is straightforward by definition
of α and of Vr. Then we have only to prove that Vloc(δ) = Vloc(σ).
The proof is by induction on n = lenght(δ).

n = 1). In this case δ = 〈G, c, ∅, G, c〉, σ = 〈c, ∅, G, c〉, and therefore, by definition
Vloc(δ) = Vloc(σ) = ∅.

n ≥ 1). Let δ = 〈G1, c1,K1, G2, d1〉〈G2, c2,K2, G3, d3〉 · · · 〈Gn, cn, ∅, Gn, cn〉, where
G = G1.
By definition of S ′

P (G), there exists δ′ ∈ S ′
P (G2) such that t = 〈G1, c1,K1, G2, d1〉

is compatible with δ′ and δ = t · δ′ ∈ Seq.
By inductive hypothesis, we have that Vloc(δ

′) = Vloc(σ
′), where σ′ = α(δ′).

Moreover, by definition of α, σ = 〈c1,K1, H1, d1〉 · σ′, where H1 is the multiset
consisting of all the atoms in G1 which are stable in δ.

By definition of Vloc and by inductive hypothesis

Vloc(δ) =

n−1⋃

i=1

Fv(Gi+1, di) \ Fv(Gi, ci,Ki)

= Vloc(δ
′) ∪ (Fv(G2, d1) \ Fv(G1, c1,K1))

= Vloc(σ
′) ∪ (Fv(G2, d1) \ Fv(G1, c1,K1)). (2)

Moreover, by definition of Vloc and since Vstable(σ) = Vstable(σ
′), we have that

Vloc(σ
′) = (Vconstr(σ

′) ∪ Vstable(σ)) \ (Vass(σ
′) ∪ Fv(G2)). (3)

Therefore by (2), by properties of ∪ and since Fv(G2)∩Fv(G1, c1,K1) ⊆ Fv(G2)∩
Fv(G1), we have that

Vloc(δ) = ((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ

′) ∪ Fv(G2))) ∪

(Fv(G2) \ Fv(G1)) ∪ (Fv(d1) \ Fv(G1, c1,K1)). (4)

Now, let x ∈ Fv(K1) ∩ (Vconstr(σ
′) ∪ Vstable(σ)). By definition x ∈ Fv(t), since t

is compatible with δ′ and by condition 2 of Definition 3.3 (compatibility), we have
that x 6∈ Vloc(δ

′) = Vloc(σ
′) and therefore by (3) x ∈ Vass(σ

′) ∪ Fv(G2). Then by
(4)

Vloc(δ) = ((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G2)))

∪ (Fv(G2) \ Fv(G1,K1)) ∪ (Fv(d1) \ Fv(G1, c1,K1)). (5)

20 · Maurizio Gabbrielli and Maria Chiara Meo

By properties of ∪, we have that

((Vconstr(σ
′) ∪ Vstable(σ)) \ Vass(σ) ∪ Fv(G2))) ∪

(Fv(G2) \ Fv(G1)) =

((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ (Fv(G2) ∩ Fv(G1)))) ∪

(Fv(G2) \ Fv(G1)). (6)

Now let x ∈ Fv(G1)\ Fv(G2) and let us assume that x ∈ Vconstr(σ
′)∪Vstable(σ) =

Vconstr(δ
′) ∪ Vstable(δ

′). By definition x ∈ Fv(t), since t is compatible with δ′ and
by condition 2 of Definition 3.3 (compatibility), we have that x 6∈ Vloc(δ

′). Then
since x 6∈ Fv(G2) we have that there exists i ∈ [2, n− 1] such that x ∈ Fv(Ki) and
therefore x ∈ Vass(δ

′) = Vass(σ
′). Therefore, by the previous results and by (5)

and (6), we have that

Vloc(δ) = ((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1))) ∪

(Fv(G2) \ Fv(G1)) ∪ (Fv(d1) \ Fv(G1, c1,K1)). (7)

Now let x ∈ (Fv(d1) \ Fv(c1)) ∩ Vass(σ
′). Since by point 3 of Definition 3.3 (om-

patibility) Vloc(t) ∩ Vass(σ
′) = ∅, we have that x ∈ Fv(G1,K1). Then

Fv(d1) \ Fv(G1, c1,K1) =
(Fv(d1) \ Fv(c1)) \ Fv(G1,K1) =
(Fv(d1) \ Fv(c1)) \ (Fv(G1,K1) ∪ Vass(σ

′)) =
(Fv(d1) \ Fv(c1)) \ (Fv(G1) ∪ Vass(σ)).

Then by (7),

Vloc(δ) = ((Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1))) ∪

(Fv(G2) \ Fv(G1)). (8)

Finally let x ∈ Fv(G2) \ Fv(G1). We prove that x ∈ ((Vconstr(σ) ∪ Vstable(σ)) \
Vass(σ). First of all, observe that x ∈ Vloc(t) and therefore, by definition of com-
patibility, x 6∈ Vass(σ). Now, let A ∈ G2 such that x ∈ Fv(A) and let us to assume
that A 6∈ Stable(σ) = Stable(δ). Then, by definition of derivation, there exists
j ∈ [1, n − 1] such that x ∈ Fv(dj). Let h the least index j ∈ [1, n − 1] such
that x ∈ Fv(dh). By condition 4 of Definition 3.3 (compatibility), we have that
x 6∈ Fv(ch) and then x ∈ Vconstr(δ) = Vconstr(σ). Then by (8), by the previous
result and by definition of Vloc,

Vloc(δ) = (Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1)) = Vloc(σ)

and then the thesis holds.

In the following, given a sequence of derivation steps

δ = 〈B1, c1,K1, B2, d1〉 . . . 〈Bn, cn, ∅, Bn, cn〉

and a goal W , we denote by δ ⊕W the sequence

〈(B1,W), c1,K1, (B2,W), d1〉 . . . 〈(Bn,W), cn, ∅, (Bn,W), cn〉

and by δ ⊖W the sequence

〈B1 \W, c1,K1, B2 \W,d1〉 . . . 〈Bn \W, cn, ∅, Bn \W, cn〉.

A compositional Semantics for CHR · 21

The proof of the following two lemma is straightforward by definition of deriva-
tion.

Lemma 7.2. Let H,G be goals and let δ ∈ S ′
P (H,G) such that

δ = 〈(H,G), c1,K1, R2, d1〉〈R2, c2,K2, R3, d2〉 · · · 〈Rn, cn, ∅, Rn, cn〉

where H = (H ′, H ′′), H ′′ 6= ∅ and the first tuple of the sequence δ represents a
derivation step s, which uses the Apply’ rule and rewrites only and all the atoms
in (H ′′, G). Then there exists a derivation δ′ ∈ S ′

P (H) such that

δ′ = 〈H, c1,K1 ⊎G,R2, d1〉〈R2, c2,K2, R3, d2〉 · · · 〈Rn, cn∅, Rn, cn〉.

Lemma 7.3. Let G be a goal, W be a multiset of atoms and let δ ∈ S ′
P (G) such

that Fv(W) ∩ Vloc(δ) = ∅. Then δ ⊕W ∈ S ′
P (G,W).

Lemma 7.4. Let P be a program and let H and G be two goals such that there
exists a derivation step

s = 〈(H,G), c1〉 −→
K1

P 〈(B,G), d1〉,

where only the atoms in H are rewritten in s.
Assume that there exists δ ∈ S ′

P (H,G) such that δ = t · δ′, where

t = 〈(H,G), c1,K1, (B,G), d1〉,

δ′ ∈ S ′
P (B,G) and t is compatible with δ′. Moreover assume that there exists

δ′1 ∈ S ′
P (B) and δ′2 ∈ S ′

P (G), such that

(1) for i = 1, 2, Vloc(δ
′
i) ⊆ Vloc(δ

′) and Inc(δ′i) ⊆ Inc(δ′).

(2) Ass(δ′1) ⊆ Ass(δ′) ∪ Stable(δ′2) and Ass(δ′2) ⊆ Ass(δ′) ∪ Stable(δ′1),

(3) α(δ′1) ‖ α(δ′2) is defined and α(δ′) ∈ η(α(δ′1) ‖ α(δ′2)).

Then δ1 = t′ · δ′1 ∈ S ′
P (H), where t′ = 〈H, c1,K1, B, d1〉, α(δ1) ‖ α(δ′2) is defined

and α(δ) ∈ η(α(δ1) ‖ α(δ′2)).

Proof In the following, assume that

δ′1 = 〈B1, e1,M1, B2, f1〉〈B2, e2,M2, B3, f2〉 · · · 〈Bl, el, ∅, Bl, el, 〉
δ′2 = 〈G1, r1, N1, G2, s1〉〈G2, r2, N2, G3, s2〉 · · · 〈Gp, rp, ∅, Gp, rp〉
δ′ = 〈R1, c2,K2, R2, d2〉〈R2, c3,K3, R3, d3〉 · · · 〈Rn−1, cn, ∅, Rn−1, cn〉,

where B1 = B, G1 = G, R1 = (B,G) and el = rp = cn. The following holds.

(a) δ1 ∈ S ′
P (H). By construction, we have only to prove that t′ is compatible

with δ′1. The following holds.
(1) By hypothesis Inc(δ′1) ⊆ Inc(δ′) and then CT |= instore(δ′1) → instore(δ′).

Moreover since t is compatible with δ′, we have that CT |= instore(δ′) → d1
and therefore CT |= instore(δ′1) → d1.

(2) By hypothesis Vloc(δ
′
1) ⊆ Vloc(δ

′) and by construction Fv(t′) ⊆ Fv(t). Then
Vloc(δ

′
1) ∩ Fv(t′) ⊆ Vloc(δ

′) ∩ Fv(t) = ∅, where the last equality follows since t

is compatible with δ′.
(3) First of all observe that given a derivation δ̃, we have that

VStable(δ̃) ⊆ Fv(G̃) ∪ Vloc(δ̃), (9)

22 · Maurizio Gabbrielli and Maria Chiara Meo

where G̃ is the initial goal of the derivation δ̃. Then have that

Vloc(t
′) ∩ Vass(δ

′
1) ⊆

(since Vloc(t
′) = Vloc(t) and since by hypothesis

Ass(δ′1) ⊆ Ass(δ′) ∪ Stable(δ′2))
Vloc(t) ∩ (Vass(δ

′) ∪ VStable(δ
′
2)) ⊆

(by (9))
Vloc(t) ∩ (Vass(δ

′) ∪ Fv(G) ∪ Vloc(δ
′
2)) ⊆

(since by hypothesis Vloc(δ
′
2) ⊆ Vloc(δ

′))
Vloc(t) ∩ (Vass(δ

′) ∪ Fv(G) ∪ Vloc(δ
′)) =

(since t is compatible with δ′ and by definition of Vloc)
∅

(4) We have to prove that for i ∈ [1, l], Vloc(t
′)∩Fv(ei) ⊆

⋃i−1
j=1 Fv(fj)∪Fv(d1)∪

Vstable(δ
′
1). Let i ∈ [1, l] and let x ∈ Vloc(t

′) ∩ Fv(ei).
Since by inductive hypothesis Inc(δ′1) ⊆ Inc(δ′), there exists a least index h ∈
[2, n] such that ei = ch. Therefore, since Vloc(t

′) = Vloc(t) and t is compatible
with δ′, we have that

x ∈
h−1⋃

j=1

Fv(dj) ∪ Vstable(δ
′). (10)

Moreover, since x ∈ Vloc(t
′) = Vloc(t), t is compatible with δ′ and by hypothesis

Vloc(δ
′
2) ⊆ Vloc(δ

′)

x 6∈ Fv(G) ∪ Vloc(δ
′
2). (11)

Now, observe that

Vstable(δ
′) ⊆ (by definition of ‖ and since by hypothesis

α(δ′) ∈ η(α(δ′1) ‖ α(δ′2)))
Vstable(δ

′
1) ∪ Vstable(δ

′
2) ⊆ (by (9))

Vstable(δ
′
1) ∪ Fv(G) ∪ Vloc(δ

′
2).

Then by (10) and (11), we have that x ∈
⋃h−1

j=1 Fv(dj) ∪ Vstable(δ
′
1). Then to

prove the thesis, we have to prove that
if x ∈

⋃h−1
j=1 Fv(dj) ∪ Vstable(δ

′
1) then x ∈

⋃i−1
j=1 Fv(fj) ∪ Fv(d1) ∪ Vstable(δ

′
1).

Let us to assume that x ∈
⋃h−1

j=2 Fv(dj) and let k the least index j ∈ [2, h− 1]
such that x ∈ Fv(dj).
If dk is an output constraint of δ′1, i.e. there exists j ∈ [1, i − 1] such that
dk = fj , the proof is terminated.
Now assume that dk is an output constraint of δ′2, i.e. there exists w ∈ [1,m]
such that dk = sw and for each j ∈ [1, w − 1], we have that x 6∈ Fv(sj). Since
k is the least index j such that x ∈ Fv(dj) and since t is compatible with δ′,
we have that x 6∈ Fv(ck) and therefore x 6∈ Fv(rw).
Moreover, since by (11), x 6∈ Fv(G) ∪ Vloc(δ

′
2), we have that x 6∈ Fv(Gw).

Then by definition of derivation step, since x ∈ Fv(sw) \ (Fv(rw) ∪ Fv(Gw)),
we have that x ∈ Fv(Nw) and therefore x ∈ Vass(δ

′
2). By hypothesis x ∈

Vass(δ
′) ∪ Vstable(δ

′
1). Then since t is compatible with δ′ and x ∈ Vloc(t), we

have that x 6∈ Vass(δ
′) and therefore x ∈ Vstable(δ

′
1) and then the proof.

A compositional Semantics for CHR · 23

(b) α(δ1) ‖ α(δ′2) is defined. We have to prove that

(Vloc(α(δ1)) ∪ Fv(H)) ∩ (Vloc(α(δ
′
2)) ∪ Fv(G)) ⊆ Fv(H) ∩ Fv(G).

By Lemma 4.3

Vloc(α(δ1)) = Vloc(α(δ
′
1)) ∪ Vloc(t

′) (12)

and since α(δ′1) ‖ α(δ′2) is defined , we have that

Vloc(α(δ
′
1)) ∩ (Vloc(α(δ

′
2)) ∪ Fv(G)) = ∅. (13)

Now observe that, since t is compatible with δ′, Vloc(t
′) = Vloc(t) and by Lemma 4.3,

we have that Vloc(t
′) ∩ Vloc(α(δ

′)) = ∅. Moreover, by hypothesis for Vloc(α(δ
′
2)) ⊆

Vloc(α(δ
′)) and by definition of t, we have that Fv(G)∩Vloc(t

′) = Fv(G)∩Vloc(t) =
∅. Then

Vloc(α(δ1)) ∩ (Vloc(α(δ
′
2)) ∪ Fv(G)) =

(Vloc(α(δ
′
1)) ∪ Vloc(t

′)) ∩ (Vloc(α(δ
′
2)) ∪ Fv(G)) = ∅.

Moreover, since t is compatible with δ′, Fv(H) ⊆ Fv(t) and by hypothesis Vloc(α(δ
′
2)) ⊆

Vloc(α(δ
′))

Fv(H) ∩ Vloc(α(δ
′
2)) ⊆ Fv(H) ∩ Vloc(α(δ

′)) = ∅

and then the thesis holds.

(c) α(δ) ∈ η(α(δ1) ‖ α(δ′2)). By hypothesis α(δ′) ∈ η(α(δ′1) ‖ α(δ′2)), α(δ) =
〈c1,K1,W1, d1〉·α(δ′) and α(δ1) = 〈c1,K1, J1, d1〉·α(δ′1), whereW1 is is the multiset
of atoms in (H,G) which are not rewritten in δ and J1 is the multiset of atoms in
H which are not rewritten in δ1. Moreover let us to denote by
—J2 the set of atoms in B which are not rewritten in δ′1, by
—Y1 the set of atoms in G which are not rewritten in δ′2 and by
—W2 the set of atoms in (B,G) which are not rewritten in δ′.
Since α(δ′) ∈ η(α(δ′1) ‖ α(δ′2)) there exists σ′ ∈ D such that

σ′ ∈ α(δ′1) ‖ α(δ′2) and α(δ′) ∈ η({σ′}).

By our assumptions, σ′ = 〈c2, A1, J2 ⊎ Y1, d2〉 · σ
′′ and by definition of ‖,

σ = 〈c1,K1, J1 ⊎ Y1, d1〉 · σ
′ ∈ α(δ1) ‖ α(δ′2).

By definition of η and since α(δ′) ∈ η({σ′}),

〈c1,K1, (J1 ⊎ Y1) \ S, d1〉 · α(δ
′) ∈ η(α(δ1) ‖ α(δ′2)), (14)

where the multisets difference (J1 ⊎ Y1) \ S considers indexes and S is such that
(J2 ⊎ Y1) \ S = W2. Then we can choose S in such a way that S restricted to
the atoms with index equal to 1 is the set of (non-indexed) atoms (J1 ⊎ Y1) \W1

and S restricted to the atoms with index equal to 2 is the set of (non-indexed)
atoms (J2 \ J1) \ (W2 \ W1). It is easy to check that S satisfies the condition
(J2 ⊎ Y1) \ S = W2. Moreover, by construction (J1 ⊎ Y1) \ S = W1. Therefore by
(14)

α(δ) = 〈c1,K1,W1, d1〉 · α(δ
′) ∈ η(α(δ1) ‖ α(δ′2))

and this completes the proof.

24 · Maurizio Gabbrielli and Maria Chiara Meo

Lemma 7.5. (Lemma 4.4) Let P be a program, H and G be two goals and assume
that δ ∈ S ′

P (H,G). Then there exists δ1 ∈ S ′
P (H) and δ2 ∈ S ′

P (G), such that
α(δ) ∈ η(α(δ1) ‖ α(δ2)).

Proof We construct, by induction on the l = length(δ) two sequences δ ↑(H,G)=
(δ1, δ2), where

(1) for i = 1, 2, Vloc(δi) ⊆ Vloc(δ) and Inc(δi) ⊆ Inc(δ) (and therefore CT |=
instore(δi) → instore(δ)).

(2) Ass(δ1) ⊆ Ass(δ) ∪ Stable(δ2) and Ass(δ2) ⊆ Ass(δ) ∪ Stable(δ1),

(3) δ1 ∈ S ′
P (H), δ2 ∈ S ′

P (G), α(δ1) ‖ α(δ2) is defined and α(δ) ∈ η(α(δ1) ‖ α(δ2)).

(l = 1). In this case δ = 〈(H,G), c, ∅, (H,G), c〉. We define

δ ↑(H,G)= (〈H, c, ∅, H, c〉, 〈G, c, ∅, G, c〉) = (δ1, δ2),

where δ1 ∈ S ′
P (H) and δ2 ∈ S ′

P (G). By definition for i = 1, 2, Vloc(δi) = ∅,
Inc(δi) = {c} = Inc(δ) and Ass(δi) = ∅.
Moreover α(δ1) = 〈c, ∅, H, c〉 and α(δ2) = 〈c, ∅, G, c〉 and then α(δ1) ‖ α(δ2) is
defined. Now the proof is straightforward by definition of ‖.

(l > 1). Assume that δ ∈ S ′
P (H,G). By definition

δ = 〈(H,G), c1,K1, B2, d1〉 · δ
′,

where δ′ ∈ S ′
P (B2) and t = 〈(H,G), c1,K1, B2, d1〉 is compatible with δ′. Recall

that, by definition, the tuple t represents a derivation step

s = 〈(H,G), c1〉 −→
K1

P 〈B2, d1〉.

Now we distinguish various cases according to the structure of the derivation step
s.
—In the derivation step s, we use the Solve’ rule. In this case, without loss of
generality, we can assume that H = (c,H ′),

s = 〈(H,G), c1〉 −→
∅
P 〈(H ′, G), d1〉,

CT |= c1 ∧ c ↔ d1, t = 〈(H,G), c1, ∅, (H
′, G), d1〉 and δ′ ∈ S ′

P (H
′, G). Moreover

α(δ) = 〈c1, ∅,W, d1〉 · α(δ′), where W is the first stable multiset of α(δ′).
By inductive hypothesis there exist δ′1 ∈ S ′

P (H
′) and δ2 ∈ S ′

P (G) such that
δ′ ↑(H′,G)= (δ′1, δ2), α(δ

′
1) ‖ α(δ2) is defined and α(δ′) ∈ η(α(δ′1) ‖ α(δ2)). Then,

we define

δ ↑(H,G)= (δ1, δ2) where δ1 = 〈H, c1, ∅, H
′, d1〉 · δ

′
1.

By definition 〈H, c1〉 −→
∅
P 〈H ′, d1〉, t

′ = 〈H, c1, ∅, H
′, d1〉 represents a derivation

step for H , Fv(d1) ⊆ Fv(H) ∪ Fv(c1) and therefore Vloc(t
′) = ∅. Then the

following holds.
(1) Let i ∈ [1, 2]. By the inductive hypothesis, by construction and by the

previous observation Vloc(δi) ⊆ Vloc(δ
′) = Vloc(δ) and Inc(δi) ⊆ Inc(δ′) ∪

{c1} = Inc(δ).
(2) By inductive hypothesis and by construction,

Ass(δ1) = Ass(δ′1) ⊆ Ass(δ′) ∪ Stable(δ2) = Ass(δ) ∪ Stable(δ2) and
Ass(δ2) ⊆ Ass(δ′) ∪ Stable(δ′1) = Ass(δ) ∪ Stable(δ1).

A compositional Semantics for CHR · 25

(3) By inductive hypothesis δ2 ∈ S ′
P (G). The proof of the other statements

follows by Lemma 7.4 and by inductive hypothesis.
—In the derivation step s, we use the Simplify’ rule and let us to assume that in
the derivation step s atoms deriving from H only are rewritten.
In this case, we can assume that s = 〈(H,G), c1〉 −→K1

P 〈(B,G), d1〉, δ′ ∈
S ′
P (B,G) and t = 〈(H,G), c1,K1, (B,G), d1〉. By inductive hypothesis there

exist δ′1 ∈ S ′
P (B) and δ2 ∈ S ′

P (G) such that δ′ ↑(B,G)= (δ′1, δ2), α(δ
′
1) ‖ α(δ2) is

defined and α(δ′) ∈ η(α(δ′1) ‖ α(δ2)). Then, we define

δ ↑(H,G)= (δ1, δ2) where δ1 = 〈H, c1,K1, B, d1〉 · δ′1.

By definition 〈H, c1〉 −→
K1

P 〈B, d1〉, t′ = 〈H, c1,K1, B, d1〉 represents a derivation
step for H and Vloc(t

′) = Vloc(t).
Now the following holds.
(1) Let i ∈ [1, 2]. By the inductive hypothesis, by construction and by the

previous observation Vloc(δi) ⊆ Vloc(δ
′) ∪ Vloc(t) = Vloc(δ) and Inc(δi) ⊆

Inc(δ′) ∪ {c1} = Inc(δ).
(2) By inductive hypothesis and by construction,

Ass(δ1) = Ass(δ′1) ∪ {K1}
⊆ Ass(δ′) ∪ Stable(δ2) ∪ {K1} = Ass(δ) ∪ Stable(δ2)

and
Ass(δ2) ⊆ Ass(δ′) ∪ Stable(δ′1) ⊆ Ass(δ) ∪ Stable(δ1).

(3) By inductive hypothesis δ2 ∈ S ′
P (G). The proof of the other statements

follows by Lemma 7.4 and by inductive hypothesis.
—In the derivation step s, we use the Simplify’ rule and let us to assume that in
the derivation step s atoms deriving both from H and G are rewritten.
In this case, we can assume that H = (H ′, H ′′), G = (G′, G′′), H ′′ 6= ∅, G′′ 6= ∅,
s = 〈(H,G), c1〉 −→

K1

P 〈(H ′, G′, B), d1〉, δ′ ∈ S ′
P (H

′, G′, B) and
t = 〈(H,G), c1,K1, (H

′, G′, B), d1〉.
By using the same arguments of the previous point there exist δ′1 ∈ S ′

P (H,G′′)
and δ′2 ∈ S ′

P (G
′) such that δ ↑((H,G′′),G′)= (δ′1, δ

′
2).

Now, observe that, by Lemma 7.2 and by definition of ↑, there exists δ1 ∈ S ′
P (H)

such that Ass(δ1) = Ass(δ′1) ∪ {G′′}, α(δ′1) = 〈c1,K1,W1, d1〉 · σ1, α(δ1) =
〈c1,K1 ⊎ {G′′},W1, d1〉 · σ1 and V (δ1) = V (δ′1) for V ∈ {Vloc, Inc, Stable}.
Moreover, since δ ∈ S ′

P (H,G) and Vloc(δ
′
2) ⊆ Vloc(δ), we have that Fv(G′′) ∩

Vloc(δ
′
2) = ∅. Then by Lemma 7.3, we have that δ2 = δ′2 ⊕ G̃′′ ∈ S ′

P (G).
By construction Stable(δ2) = Stable(δ′2) ∪ {G′′} and V (δ2) = V (δ′2) for V ∈
{Vloc, Inc, Ass}.
Then, we define

δ ↑(H,G)= (δ1, δ2).

Now the following holds.
(1) Let i ∈ [1, 2]. By definition of ↑ and by the previous observation Vloc(δi) =

Vloc(δ
′
i) ⊆ Vloc(δ) and Inc(δi) = Inc(δ′i) ⊆ Inc(δ).

(2) By definition of ↑ and by construction Ass(δ1) = Ass(δ′1)∪{G′′} ⊆ Ass(δ)∪
Stable(δ′2) ∪ {G′′} = Ass(δ) ∪ Stable(δ2) and Ass(δ2) = Ass(δ′2) ⊆ Ass(δ) ∪
Stable(δ′1) = Ass(δ) ∪ Stable(δ1).

26 · Maurizio Gabbrielli and Maria Chiara Meo

(3) The proof that α(δ1) ‖ α(δ2) is defined follows by observing that, by def-
inition of derivation, Vloc(δ

′
1) ∩ Fv(G′′) = ∅, by construction for i ∈ [1, 2],

Vloc(δi) = Vloc(δ
′
i) and by definition of ↑, α(δ′1) ‖ α(δ′2) is defined. Finally,

the proof that α(δ) ∈ η(α(δ1) ‖ α(δ2)) follows by observing that by defini-
tion of ↑, α(δ) ∈ η(α(δ′1) ‖ α(δ′2)) and by construction η(α(δ′1) ‖ α(δ′2)) ⊆
η(α(δ1) ‖ α(δ2)).

Lemma 7.6. (Lemma 4.5) Let P be a program, let H and G be two goals and
assume that δ1 ∈ S ′

P (H) and δ2 ∈ S ′
P (G) are two sequences such that the following

hold:

(1) α(δ1) ‖ α(δ2) is defined,

(2) σ = 〈c1,K1,W1, d1〉 · · · 〈cn, ∅,Wn, cn〉 ∈ η(α(δ1) ‖ α(δ2)),

(3) (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅,

(4) for i ∈ [1, n], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
⋃i−1

j=1 Fv(dj) ∪ Fv(Wi).

Then there exists δ ∈ S ′
P (H,G) such that σ = α(δ).

Proof In the following, given two derivations δ1 ∈ S ′
P (H) and δ2 ∈ S ′

P (G), which
verify the previous conditions, we construct by induction on the l = length(σ) a
derivation δ ∈ S ′

P (H,G) such that Vloc(δ) ⊆ Vloc(δ1) ∪ Vloc(δ2) and σ = α(δ).

(l = 1). In this case δ1 = 〈H, c, ∅, H, c〉, δ2 = 〈G, c, ∅, G, c〉, α(δ1) = 〈c, ∅, H, c〉,
α(δ2) = 〈c, ∅, G, c〉, σ = 〈c, ∅, (H,G), c〉 and δ = 〈(H,G), c, ∅, (H,G), c〉.

(l > 1). Without loss of generality, we can assume that

δ1 = t′ · δ′1, δ2 = 〈G, e1, J1, G2, f1〉 · δ′2,
σ1 = α(δ1) = 〈c1, L1, N1, d1〉 · α(δ′1) and
σ2 = α(δ2) = 〈e1, J1,M1, f1〉 · σ

′
2,

where t′ = 〈H, c1, L1, H2, d1〉, δ
′
1 ∈ S ′

P (H2), σ ∈ η(〈c1, L1, N1 ⊎ M1, d1〉 · σ̄) and
σ̄ ∈ α(δ′1) ‖ σ2.
By definition of η, there exist the multisets of atoms L′, L̄, L and the sequence

σ′ such that

σ = 〈c1, L1 \ L, ((N1 ⊎M1) \ L̄) \ L
′, d1〉 · (σ

′ \ L′),

where σ′ ∈ η(σ̄) ⊆ η(α(δ′1) ‖ σ2), K1 = L1 \L and W1 = ((N1 ⊎M1) \ L̄) \L′. Now
the following holds
(1) α(δ′1) ‖ α(δ2) is defined. By definition, we have to prove that

(Vloc(α(δ
′
1)) ∪ Fv(H2)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) = Fv(H2) ∩ Fv(G).

First of all, observe that since Vloc(α(δ
′
1)) ⊆ Vloc(α(δ1)) and α(δ1) ‖ α(δ2) is

defined, we have that Vloc(α(δ
′
1)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) = ∅ and (Fv(H) ∪

Vloc(α(δ1)) ∩ (Vloc(α(δ2)) = ∅.
Now, observe that by definition of derivation, Fv(H2) ⊆ Fv(H) ∪ Vloc(α(δ1)).
Therefore, by previous observations, Fv(H2) ∩ Vloc(α(δ2)) = ∅ and then the
thesis.

(2) σ′ = 〈c2,K2,W2 ⊎ L′, d2〉 · · · 〈cn, ∅,Wn ⊎ L′, cn〉 ∈ η(α(δ′1) ‖ α(δ2)). The proof
is straightforward, by definition of ‖.

A compositional Semantics for CHR · 27

(3) By definition, by the hypothesis and by Lemma 4.3, we have that

(Vloc(α(δ
′
1)) ∪ Vloc(α(δ2))) ∩ Vass(σ

′) ⊆
(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅.

(4) For i ∈ [2, n],

(Vloc(α(δ
′
1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆

⋃i−1
j=2 Fv(dj) ∪ Fv(Wi ⊎ L′).

To prove this statement observe that by hypothesis and by Lemma 4.3, for
i ∈ [2, n],

(Vloc(α(δ
′
1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
i−1⋃

j=1

Fv(dj) ∪ Fv(Wi). (15)

Let i ∈ [2, n], such that there exists x ∈ (Vloc(α(δ
′
1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ∩

Fv(d1).We have to prove that x ∈ Fv(Wi) and then the thesis.
First of all, observe that since x ∈ Fv(d1), by definition of derivation, we have
that x 6∈ Vloc(α(δ

′
1)) and therefore x ∈ Vloc(α(δ2)) ∩ Fv(ci) ∩ Fv(d1).

Moreover, since by hypothesis α(δ1) ‖ α(δ2) is defined, we have that x 6∈
Fv(H) ∪ Vloc(t

′). Therefore, since x ∈ Fv(d1) and by definition of derivation,
we have that x ∈ Fv(L1) ∪ Fv(c1). Now we have two possibilities

—x ∈ Fv(c1). In this case, since x ∈ Vloc(α(δ2)) and by point 4 of the hypoth-
esis, we have that x ∈ Fv(Wi).

—x ∈ Fv(L1). In this case there exists A ∈ L1 such that x ∈ Fv(A). Since by
hypothesis (Vloc(α(δ1))∪Vloc(α(δ2)))∩Vass(σ) = ∅, we have that A 6∈ Ass(σ)
(i.e. A 6∈ K1) and therefore, by definition of ‖, there exists A′ ∈ G such
that CT |= c1 ∧ A ↔ c1 ∧ A′. Note that, since x ∈ Vloc(α(δ2)), we have
that x 6∈ Fv(G) ⊇ Fv(A′). Then x ∈ Fv(c1) and then analogously to the
previous case, x ∈ Fv(Wi).

Then, by (15),

(Vloc(α(δ
′
1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆

i−1⋃

j=2

Fv(dj) ∪ Fv(Wi)

and then the thesis.

By previous results and by inductive hypothesis, we have that there exists δ̄ ∈
S ′
P (H2, G) such that Vloc(δ̄) ⊆ Vloc(δ

′
1) ∪ Vloc(δ2) and σ′ = α(δ̄). Moreover by

definition of η, L′ ⊆ (H2, G) is a multiset of atoms which are stable in δ̄. Then
δ′ = δ̄⊖L′ ∈ S ′

P (B), where the goal B is obtained from the goal (H2, G) by deleting
the atoms in L′. By construction

Vloc(δ
′) = Vloc(δ̄) and Vass(δ

′) = Vass(δ̄). (16)

Now observe that since t′ = 〈H, c1, L1, H2, d1〉 represents a derivation step for H ,
we have that t = 〈(H,G), c1,K1, B, d1〉 represents a derivation step for (H,G). Let
us denote by δ the sequence t · δ′.

28 · Maurizio Gabbrielli and Maria Chiara Meo

Then, to prove the thesis, we have to prove that Vloc(δ) ⊆ Vloc(δ1)∪ Vloc(δ2), t is
compatible with δ′ (and therefore δ ∈ S ′

P (H,G)) and σ = α(δ).

(Vloc(δ) ⊆ Vloc(δ1) ∪ Vloc(δ2))..

Vloc(δ) = by construction
Vloc(t) ∪ Vloc(δ

′) = by (16)
Vloc(t

′) ∪ Vloc(δ̄) ⊆ by inductive hypothesis
Vloc(t

′) ∪ Vloc(δ
′
1) ∪ Vloc(δ2) = by construction

Vloc(δ1) ∪ Vloc(δ2)

and then the thesis.
(t is compatible with δ′).. The following holds.

(1) CT |= instore(δ′) → d1. The proof is straightforward, since by construction
either instore(δ′) = instore(δ′1) or instore(δ

′) = instore(δ2).
(2) Vloc(δ

′) ∩ Fv(t) = ∅. By construction, (16) and by inductive hypothesis

Vloc(t) = Vloc(t
′), Fv(t) = Fv(t′) ∪ Fv(G) and

Vloc(δ
′) ⊆ Vloc(δ

′
1) ∪ Vloc(δ2). (17)

By definition of derivation and since α(δ′1) ‖ α(δ2) is defined, we have that
Vloc(δ

′
1) ∩ (Fv(t′) ∪ Fv(G)) = ∅ and therefore by the second statement in (17)

Vloc(δ
′
1) ∩ Fv(t) = ∅. (18)

By point 3 of the hypothesis Fv(K1)∩ Vloc(δ2) = ∅. Moreover, since by defini-
tion of α and ‖, W1 ⊆ (H,G), we have that

Fv(c1) ∩ Vloc(δ2) ⊆ (by point 4 of the hypothesis)
Fv(W1) ∩ Vloc(δ2) ⊆ (by the previous observation)
Fv(H,G) ∩ Vloc(δ2) = (by definition of derivation and

since α(δ1) ‖ α(δ2) is defined)
∅

Finally, since α(δ1) ‖ α(δ2) is defined we have that (Fv(H)∪Vloc(t
′))∩Vloc(δ2) =

∅. Then by definition and by (17)

Fv(t) ∩ Vloc(δ2) = (Fv(c1, H,K1) ∪ Vloc(t
′)) ∩ Vloc(δ2) = ∅. (19)

Then

Vloc(δ
′) ∩ Fv(t) ⊆ (by the last statement in (17))

(Vloc(δ
′
1) ∪ Vloc(δ2)) ∩ Fv(t) ⊆ (by (18))

Vloc(δ2) ∩ Fv(t) = (by (19))
∅.

(3) Vloc(t) ∩ Vass(δ
′) = ∅. The proof is immediate by the second statement of

(16), since σ′ = α(δ̄), Vass(σ
′) ⊆ Vass(σ), by the first statement in (17), since

Vloc(t
′) ⊆ Vloc(δ1) and by point 3 of the hypothesis.

(4) for i ∈ [2, n], Vloc(t)∩Fv(ci) ⊆
⋃i−1

j=1 Fv(dj)∪Vstable(δ
′). By construction, since

δ′ = δ̄⊖L′, σ′ = α(δ̄) and Stable(σ′) = Wn⊎L′, we have that Stable(δ′) = Wn.
Then the proof is immediate by observing that Vloc(t) = Vloc(t

′) ⊆ Vloc(δ1), for
i ∈ [2, n], Wi ⊆ Wn and by point 4 of the hypothesis.

A compositional Semantics for CHR · 29

(σ = α(δ)).. By inductive hypothesis σ′ = α(δ̄) and then by construction σ′\L′ =
α(δ′). Then

σ = 〈c1,K1,W1, d1〉 · (σ
′ \ L′) = 〈c1,K1,W1, d1〉 · α(δ

′) = α(δ),

where the last equality follows by observing that δ = t · δ′, where

t = 〈(H,G), c1,K1, B, d1〉

and W1 is the multiset of all the atoms in (H,G), which are stable in δ.

	Introduction
	Preliminaries
	A compositional trace semantics
	Compositionality and correctness
	Correctness

	A more refined semantics
	Conclusions
	Appendix

