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We generalize the classic dining philosophers problem to separate the conflict and

communication neighbors of each process. Communication neighbors may directly

exchange information while conflict neighbors compete for the access to the exclu-

sive critical section of code. This generalization is motivated by a number of practical

problems in distributed systems. We present a self-stabilizing deterministic algorithm

— KDP that solves a restricted version of the generalized problem where the con-

flict set for each process is limited to its k-hop neighborhood. We formally prove

KDP correct and evaluate its performance. We then extend KDP to handle fully

generalized problem. We further extend it to handle a similarly generalized drink-

ing philosophers problem. We describe how KDP can be implemented in wireless

sensor networks and demonstrate that this implementation does not jeopardize its

correctness or termination properties.
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Chapter 1

Introduction

Self-stabilization (or just stabilization) [17, 24] is an elegant approach to forward

recovery from transient faults as well as initializing a large-scale system. The topic of

Self-stabilization is described in more detail in Chapter 2. In this thesis we present a

stabilizing solution to our generalization of the dining philosophers problem.

The dining philosophers problem (diners for short) [14] is a fundamental resource

allocation problem. More information about the resource allocation problems is given

in Chapter 3. The diners, as well as its generalization — the drinking philosophers

problem [10], has a variety of applications. In diners, a set of processes (philosophers)

request access to the critical section (CS) of code. For each process there is a set of

neighbor processes. Each process has a conflict with its neighbors: it cannot share

the CS with any of them. In spite of the conflicts, each requesting process should

eventually execute the CS. To coordinate CS execution, the processes communicate.

In classic diners it is assumed that each process can directly communicate with its

conflict neighbors. In other words, for every process, the conflict neighbor set is a

subset of the communication neighbor set.
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However, there are applications where this assumption does not hold. Consider,

for example, wireless sensor networks. A number of problems in this area, such as

TDMA slot assignment, cluster formation and routing backbone maintenance can be

considered as instances of resource allocation problems. Yet, due to radio propagation

peculiarities, the signal’s interference range may exceed its effective communication

range. Moreover, radio networks have so called hidden terminal effect. The problem

is as follows. Let two transmitters t1 and t2 be mutually out of reception range,

while receiver r be in range of them both. If t1 and t2 broadcast simultaneously, due

to mutual radio interference, r is unable to receive either broadcast. The potential

interference pattern is especially intricate if the antennas used by the wireless sensor

nodes are directional (see for example [31]). Such transmitters can be modeled as

conflict neighbors that are not communication neighbors. To accommodate such

applications, we propose the following extension. Instead of one, each process has two

sets of neighbors: the conflict neighbors and the communication neighbors. These two

sets are not necessarily related. The only restriction is that each conflict-neighbor

has to be reachable through the communication neighbors.

Some solutions to classic diners can potentially be extended to this problem. Indeed, if

a separate communication channel is established to each conflict neighbor the classic

diners program can be applied to the generalized case. However, such a solution

may not be efficient. The channels to conflict neighbors go over the communication

topology of the system. The channels to multiple neighbors of the same process may

overlap. Moreover, the sparser the topology, the greater the potential overlap. Yet, in

a diners program, the communication between conflict neighbors is only of two kinds:
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a process either requests the permission to execute the CS from the neighbors, or

releases this permission. Due to channel overlap, communicating the same message

to each conflict neighbor separately leads to excessive overhead. This motivates our

search for an effective solution to the generalized diners.

Our contribution and thesis outline. In Chapter 2, we briefly discuss the topic of

self-stabilization and significant research work in this area. In Chapter 3 we describe

several resource allocation problems and the related work done in solving the diners.

In Chapter 4, we discuss some of the papers which consider separation between conflict

and communication neighbors. We generalize the diners problem to separate the

conflict and communication neighbor sets of each process. We formally state this

problem, as well as describe our notation and execution model in Chapter 5. In

Chapter 6, we present a self-stabilizing deterministic solution to a restricted version

of this problem where the conflict set comprises the set of processes that are at most

a fixed number of hops k away from the process. We call this program KDP . To our

knowledge, this algorithm is the first to solve the considered problem, even for the

non-stabilizing case. In the same Chapter we provide a formal correctness proof of

KDP and discuss its stabilization performance. We extend KDP to solve generalized

diners in Chapter 7. In Chapter 8, we describe how KDP can be implemented in

wireless sensor networks. We describe a number of further extensions to KDP in

Chapter 9. Specifically, we generalize KDP to handle arbitrary conflict neighbor

sets, as well as solve generalized drinking philosophers; we simplify our solution to

handle problems that do not require fairness of the CS access. We end our discussion

by explaining various applications of our KDP algorithm.
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Chapter 2

Self-Stabilization

Dijkstra was the first to propose the concept of self-stabilization. Dijkstra [16] pro-

posed that in distributed systems, independent of the initial global state, the local

behaviour of the processes in the system can guarantee that the system satisfies a

global predicate within a finite number of execution steps. In a distributed system

processes do not have access to common storage containing the current global system

state. Processes can exchange information only with their neighbors. However, the

local actions executed by each process should result in achieving the common task.

Hence, the property of self-stabilization is non-trivial to obtain.

Arora and Gouda [2] provide a foundation for self-stabilization program and define

two properties closure and convergence to tolerate a class of faults. The closure

property states that if a fault occurs when the system state is within the set of legal

states, the resulting state is within some larger set and, if faults continue to occur,

the system state remains within that larger set of states i.e, set of legitimate states

is closed under system execution. The convergence property states that if faults stop

occurring, the system eventually reaches a state within the legal set i.e starting from

any system state, every system computation eventually reaches a legitimate state.
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Dolev, Gouda and Schneider [18] propose a new class of self-stabilization called silent

self-stabilization. Self-stabilizing algorithms are said to be silent, if after stabilization

the values in the communication registers remain constant.

Herman [24] provides a comprehensive bibliography on self-stabilization. In his book

on self-stabilization, Dolev [19] presents the fundamentals of self-stabilization and

demonstrates the process of designing self-stabilizing distributed systems. He details

the algorithms that can be started in an arbitrary state, allowing the system to recover

from the faults that brought it to that state.
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Chapter 3

Resource Allocation Problems

A resource allocation problem deals with scheduling the use of a shared resource

between multiple competing processes in such a way that only one such process may

access the shared resource at a time but eventually every process is allowed to access

the resource. Below we describe the most well-known resource allocation problems.

3.1 The Mutual Exclusion Problem

The mutual exclusion problem deals with providing a mutually exclusive access to a

single resource shared by multiple processes. The conditions that need to be satisfied

are safety and liveness. The safety property states that only one process can access

a shared resource at a time and the liveness property states that if a process requests

access to a shared resource it should eventually be given a chance to do so. The

process accessing the shared resource is said to be in the critical section (CS).

Several algorithms have been proposed earlier to solve the mutual exclusion problem.

Lamport [30] and Ricart and Agarwala [36] proposed lock-based solutions to the

distributed mutual exclusion problem where each process requesting to enter the CS

needs to obtain permission from the other competing processes. Suzuki and Kasami
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[37] propose a token-based solution to the same problem where a requesting process

possessing the token can enter the CS. Nesterenko and Mizuno [35] present a self-

stabilizing mutual exclusion algorithm based on Maekawa’s algorithm.

3.2 Dining Philosophers Problem

The classic dining philosophers problem is a multiple process synchronization prob-

lem. The dining philosophers problem was first stated by Dijkstra [15]. He first

proposed diners for a ring topology, in his example a group of philosophers sit around

a circular table and a single fork is placed between each pair of adjacent philosophers

as shown in the Figure 3.1. Each philosopher needs both forks: on his left and right

hand side. The problem is to allow each philosopher to eat viz. to avoid deadlock

and starvation. Deadlock is the condition where each philosopher cannot proceed as

he is waiting for the other philosopher to release the fork. Starvation is the condition

where a philosopher cannot have both the forks at the same time for an infinite time

period. Other condition which needs to be considered is fairness condition. A solu-

tion is considered to be fair if each process gets an opportunity to access a shared

resource as many times as its conflict neighbors. The diners problem was generalized

to arbitrary topology where two or more processes may wish to execute the CS based

on the conditions that only one requesting process among the competing processes

access the CS at a time and each requesting process eventually executes the CS.

There exist a number of deterministic self-stabilizing solutions to diners [1, 6, 7,

23, 26, 27, 33, 34]. Antonoiu and Srimani [1] propose a solution to the mutual

exclusion problem among neighboring nodes in a tree. They propose a serial model self
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Figure 3.1: Diners table with five philosophers

stabilizing mutual exclusion algorithm that can be run in a distributed environment.

No two nodes which are direct neighbors in the tree can execute the CS at the same

time but two nodes which are farther than distance-1 can execute simultaneously.

The proposed algorithm uses only bounded integers instead of the timestaps which

are unbounded integers.

Gouda and Haddix [23] propose a solution to diners they call it an alternator. An

alternator is a group of interacting processes that satisfy the conditions that neigh-

boring process do not enter the CS at the same time in an arbitrary topology and also

each action is executed infinitely often. Apart from this, the alternator is stabilizing

to states where maximal concurrent actions are enabled. They also describe how

alternators can be used in transforming a system stabilizing under serial execution

to one that is stabilizing under concurrent execution. The transformations that en-
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sure that conflicting actions are not executed simultaneously during any concurrent

execution are given in their paper and [33]. Gouda and Haddix used bounded num-

ber of variables for the transformation and is also applicable to arbitrary topology

where as in [33] Mizuno and Nesterenko used unbounded variables but it achieves the

silent stabilization property. Kulkarni et al [28] propose a solution to alternators in

read/write atomicity. Datta et al [13] solve a specific extension of diners.

3.3 Drinking Philosophers Problem

Chandy and Misra [10] genaralized diners to the drinking philosophers problem. Din-

ers model deals with static resource-allocation scenarios, because each process has

a fixed set of resources to acquire each time it becomes hungry whereas the drink-

ing philosophers problem (drinkers) relaxes this constraint so that the required set

of resources can change dynamically over the course of a computation. A drinking

philosopher shares a number of distinct bottles with each neighbor and cycles through

three states analogous to diners: tranquil, thirsty, and drinking. Each time a tranquil

process becomes thirsty, it attempts to acquire some dynamically-determined sub-

set of the bottles it shares with each neighbor. As such, diners is a special case of

drinkers where the subset of bottles needed is always the entire set of bottles shared.

An advantage of drinking philosophers is that unlike diners neighbors can drink simul-

taneously whenever they require disjoint subsets of bottles. This flexibility increases

potential concurrency and overall resource utilization. The drinkers has known al-

gorithms based on underlying dining solutions. Chandy and Misra [10] propose a

fair solution to drinking philosophers problem using forks mechanism and distributed

implementation of acyclic graphs. Cantarell et al [9] solve the drinking philosophers
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problem. Nesterenko and Arora [34] generalize their solution to drinkers.

3.4 Committee Coordination Problem

Chandy and Misra [11] generalized diners to committee coordination problem. The

problem is stated as follows: professors of some university organized themselves into

committees where each commmittee can have one or more professors and each profes-

sor can be in zero or more committees. A professor starts by waiting to attend some

committee meeting and remains waiting until a meeting of a committee of which he

is a member is convened. A committee meeting is convened only if all the members

of the committee are waiting and also no two committees can convene their meeting

at the same time if they have a common member. Assuming that all meetings ter-

minate in a finite time, the committeee coordination problem is to devise a protocol

such that if all members of a committee are waiting then a meeting involving some

member of this committee is convened. Bagrodia [5] presents a simple solution to this

problem and develops a group of algorithms which use message counts to solve the

synchronization problem and token circulation to solve the committee coordination

problem. He also provides simulation results of the algorithms considering variations

in topologies and conflicts in the system.
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Chapter 4

Other Related Work

Classic diners assume that the conflict neighbors of a process are a subset of its

communication neighbors. However, there are number of applications where the sep-

aration of conflict and communication sets will be useful.

TDMA slot assignment is the problem of assigning time slots to each process of a

network in such a way that message collisions do not occur when processes transmit

during their assigned time slots. Two processes a and b can transmit in the same

time slot if they do not interfere with each other’s communication: distance between

a and b is greater than two, otherwise hidden terminal effect can occur. Hence, these

transmitters can be modeled as conflict neighbors even though they may not directly

communicate with each other.

A few studies [4, 25, 29] address the problem of self-stabilizing TDMA slot assignment.

Herman and Tixeuil [25] present a self-stabilizing probabilistic TDMA slot assignment

algorithm for wireless sensor networks. They deal with channel conflicts that may

arise between nodes that cannot communicate directly by assuming an underlying

probabilistic CSMA/CA mechanism that provides constant-time transmission with
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high probability. The authors assume that the network is tightly synchronized so

that the phases that use the CSMA/CA mechanism are clearly distinguished from

the phases that use TDMA mechanism.

Arumugam and Kulkarni [4, 29] propose deterministic solutions to the same prob-

lem. In [4], they proposed a self-stabilizing deterministic solution to TDMA problem

through a token passing mechanism. To avoid conflicts they propose to serialize chan-

nel assignments by circulating a single assignment token (privilege) throughout the

network. A spanning tree is maintained in the network and a token is circulated by

the root to all the processes in the network using existing graph traversal algorithms.

The proposed TDMA algorithm is based on a distance-two coloring algorithm. The

initial time slots are the colors assigned to the processes and their succesive time

slots depend on the maximum degree of the network. Arumugam and Kulkarni first

proposed a TDMA algorithm for a read/write model and then converted it to write

all with collision model (WAC). Some optimizations for token circulation and recov-

ery are proposed along with the improvement of bandwidth utilization. Addition or

removal of a process does not violate the normal operation until the maximal degree

of the tree is not increased by this addition. As the time slots are assigned serially in

the network this process may not be efficient. Arumugam and Kulkarni [29] consider

a regular grid topology where each node is aware of its position in the grid.

Gairing et al [20] propose an interesting stabilizing program for conflict neighbor sets

containing the communication neighbors of distance at most two. They propose a

mechanism that allows a node to act only on correct distance-two knowledge. They

first propose an algorithm for 2-packing problem assuming that each node can read
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the states of all nodes within distance two from it. A 2-packing algorithm gives a set

of nodes where no two nodes in the set are adjacent and have no common neighbor in

the given graph. Later Gairing et al [20] gave an algorithm to convert it to the model

where each node can instataneously read the states of its direct neighbors only. The

authors also showed how this algorithm can be applied to solve some graph-theoretical

problems such as distance-two coloring and {k}-domination. Their algorithm uses

process identifiers to give precedence and does not guarantee fairness and so it is not

applicable to diners. Goddard et al [21] propose a solution to the conflict neighbor

sets of communication neighbors at most k-hops away. Their solution recursively

extends Gairing’s algorithm. It is unfair as well.

Huang [26] proposes two protocols to solve the self-stabilizing diners problem. The

first one named as A-protocol has the self-stabilizing property only if the network

is acyclic. So, it assumes that a directed network exists in a given network which

is acyclic. In this protocol, each process maintains a single control bit which can

hold the value of 0 or 1. The later direction of the edge between two processes

depends on the XOR of control bits of those processes. The process with all the

edges directed towards it (sink) executes the CS. After executing the CS, process

changes its control bit value which results in reversing the directions of edges of this

process. This protocol assumes that the rules are non-interfering in the sense that

once the guard is true it remains true until the action part is executed. The second

protocol called B-protocol provides a self-stabilizing solution to diners for arbitrary

networks. This protocol assumes that all links in the network are colored from a color

set in such a way that all the sub-networks induced by links of each color (which can

13



be disjoint) are acyclic. Each process holds as many control bits as the number of

different colors of its edges. This protocol does not assume that directed links of the

complete network are acyclic. Each process executes the CS when it gets the sink

status of all the sub-networks of which it is part of. This B-protocol also supports

correct distributed execution of the serial correct self-stabiling protocols.

Mizuno and Nesterenko [33] present an algorithm for transforming self-stabilizing

serial model programs to a self-stabilizing program that runs in an asynchronous

shared memory parallel computing environment. This algorithm uses timestamps to

guarantee mutually exclusive execution of guarded commands among neighbors and

hence can be used as a weakly fair solution to the diners. This algorithm is applicable

to arbitrary topology and also preserves the silent stabilization property.

Nesterenko and Arora [34] present a stabilization preserving atomicity refinement

from a model where a neighbor can atomically access all the states of its neighbors

and update its own state, to a model where a process can atomically access only the

state of one of its neighbors or update its own state. A low atomicity, bounded space

solution is proposed to the self-stabiling diners. This solution can easily be extended

to solve drinkers problem and also can be refined to message passing model. Some

other characteristics of their proposed refinement are fixpoint-preserving, meaning

that terminating computations of high atomicity program correspond only to termi-

nating actions of low atomicity program and also fairness-preserving, i.e, weakly-fair

action execution of high-atomicity program is preserved in the refined low-atomicity

model.
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Chapter 5

Preliminaries

Program model. For the formal description of our program we use simplified

UNITY notation [11, 22]. A program consists of a set of processes. A process con-

tains a set of constants that it can read but not update. A process maintains a set

of variables. Each variable ranges over a fixed domain of values. We use small case

letters to denote singleton variables, and capital ones to denote sets. An action has

the form 〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a boolean predicate over the

variables of the process and its communication neighbors. A command is a sequence

of statements assigning new values to the variables of the process. We refer to a

variable var and an action ac of process p as var.p and ac.p respectively. A parameter

is used to define a set of actions as one parameterized action. For example, let j be

a parameter ranging over values 2, 5, and 9; then a parameterized action ac.j defines

the set of actions: ac.(j := 2) ][ ac.(j := 5) ][ ac.(j := 9).

A state of the program is the assignment of a value to every variable of each process

from the variable’s corresponding domain. Each process contains a set of actions. An

action is enabled in some state if its guard is true at this state. A computation is

a maximal fair sequence of states such that for each state si, the next state si+1 is
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obtained by executing the command of an action that is enabled in si. Maximality

of a computation means that the computation is infinite or it terminates in a state

where none of the actions are enabled.

In a computation the action execution is weakly fair. That is, if an action is enabled

in all but finitely many states of an infinite computation then this action is executed

infinitely often.

A state conforms to a predicate if this predicate is true in this state; otherwise the

state violates the predicate. By this definition every state conforms to predicate

true and none conforms to false. Let R and S be predicates over the state of the

program. Predicate R is closed with respect to the program actions if every state of

the computation that starts in a state conforming to R also conforms to R. Predicate

R converges to S if R and S are closed and any computation starting from a state

conforming to R contains a state conforming to S. The program stabilizes to R iff

true converges to R.

Problem statement. An instance of the generalized diners problem defines for each

process p a set of communication neighbors N.p and a set of conflict neighbors M.p.

Both relations are symmetric. That is for any two processes p and q if p ∈ N.q then

q ∈ N.p. Same applies to M.p. Throughout the computation each process requests

the CS access an arbitrary number of times: from zero to infinity. A program that

solves the generalized diners satisfies the following two properties for each process p:

safety — if the action that executes the CS is enabled in p, it is disabled in all

16



processes of M.p;

liveness — if p wishes to execute the CS, it is eventually allowed to do so.

A restriction of the generalized diners problem which we call k-hop diners [12] specifies

that M.p for each process p contains the processes whose distance to p in the graph

formed by the communication topology is no more than k.
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process p
const

M : k-hop conflict neighbors of p
N : communication neighbors of p
(∀q : q ∈ M : dad.p.q ∈ N, KIDS.p.q ⊂ N)

parent id and set of children ids for each k-hop neighbor
parameter

r : M
var

state.p.p : {idle, req},
(∀q : q ∈ M : state.p.q : {idle, req, rep}),
Y IELD : (∀q : q ∈ M : q > p) lower priority processes to wait for
needcs : boolean, application variable to request the CS

∗[
join: needcs ∧ state.p.p = idle ∧ Y IELD = ∅ ∧

(∀q : q ∈ KIDS.p.p : state.q.p = idle) −→
state.p.p := req

][
enter : state.p.p = req ∧

(∀q : q ∈ KIDS.p.p : state.q.p = rep) ∧
(∀q : q ∈ M ∧ q < p : state.p.q = idle) −→

/* CS */
Y IELD := (∀q : q ∈ M ∧ q > p : state.p.q = rep),
state.p.p := idle

][
forward : state.p.r = idle ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = idle)) −→
state.p.r := req

][
back : state.p.r = req ∧ state.(dad.p.r).r = req ∧

((KIDS.p.r = ∅) ∨ (∀q : q ∈ KIDS.p.r : state.q.r = rep)) ∨
state.p.r 6= rep ∧ state.(dad.p.r).r = rep −→

state.p.r := rep
][

stop: (state.p.r 6= idle ∨ r ∈ Y IELD) ∧
state.(dad.p.r).r = idle −→

Y IELD := Y IELD \ {r},
state.p.r := idle

]

Figure 5.1: Process of KDP
18



Chapter 6

KDP Algorithm

6.1 Description

Algorithm overview. The main idea of the algorithm is to coordinate the CS

request notifications between multiple conflict neighbors of the same process. We

assume that for each process p there is a tree that spans M.p. This tree is rooted

in p. A stabilizing breadth-first construction of a spanning tree is a relatively simple

task [17].

The processes in this tree propagate the CS request of its root. The request reflects

from the leaves and informs the root that its conflict neighbors are notified. This

mechanism resembles information propagation with feedback [8].

The access to the CS is granted on the basis of the priority of the requesting process.

Each process has an identifier that is unique throughout the system. A process with

lower identifier has higher priority. To ensure liveness, when executing the CS, each

process p records the identifiers of its lower priority conflict neighbors that also request

the CS. Process p then waits until all these processes access the CS before requesting

it again.
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Detailed description. Each process p has access to a number of constants. The set

of identifiers of its communication neighbors is N , and its conflict neighbors is M . For

each of its conflict neighbors r, p knows the appropriate spanning tree information:

the parent identifier — dad.p.r, and a set of ids of its children — KIDS.p.r.

Process p stores its own request state in variable state.p.p and the state of each of

its conflict neighbors in state.p.r. Notice that p’s own state can be only idle or req,

while for its conflict neighbors p also has rep. To simplify the description, depending

on the state, we refer to the process as being idle, requesting or replying. In Y IELD,

process p maintains the ids of its lower priority conflict neighbors that should be

allowed to enter the CS before p requests it again. Variable needcs is an external

boolean variable that indicates if the CS access is desired. Notice that the CS entry

is guaranteed only if needcs remains true until p requests the CS.

There are five actions in the algorithm. The first two: join and enter manage the

CS entry of p itself. The remaining three: forward, back and stop — propagate

the CS request information along the tree. Notice that the latter three actions are

parameterized over the set of p’s conflict neighbors.

Action join states that p requests the CS when the application variable needcs is

true, p itself, as well as its children in its own spanning tree, is idle and there are

no lower priority conflict neighbors to wait for. As action enter describes, p enters

the CS when its children reply and the the higher priority processes do not request

the CS themselves. To simplify the presentation, we describe the CS execution as a
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Figure 6.1: Phases of KDP operation

single action1.

Action forward describes the propagation of a request of a conflict neighbor r of

p along r’s tree. Process p propagates the request when p’s parent — dad.p.r is

requesting and p’s children are idle. Similarly, back describes the propagation of a

reply back to r. Process p propagates the reply either if its parent is requesting and

p is the leaf in r’s tree or all p’s children are replying. The second disjunct of back

is to expedite the stabilization of KDP . Action stop resets the state of p in r’s tree

to idle when its parent is idle. This action removes r from the set of lower-priority

processes to wait for before initiating another request.

1In Chapter 9, we demonstrate how to extend our algorithm to perform the CS entry and exit in
separate actions.
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Example operation. The operation of KDP in legitimate states is illustrated in

Figure 6.1. We focus on the conflict neighborhood M.a of a certain node a. We

consider representative nodes in the spanning tree of M.a. Specifically, we consider

one of a’s children — e, a descendant — b, b’s parent — c and one of b’s children —

d.

Initially, the states of all processes in M.a are idle. Then, a executes join and sets

state.a.a to req (see Figure 6.1, i). This request propagates to process b, which

executes forward and sets state.b.a to req as well (Figure 6.1, ii). The request reaches

the leaves and bounces back as the leaves change their state to rep. Process b then

executes back and changes its state to rep as well (Figure 6.1, iii). After the reply

reaches a and if none of the higher priority processes are requesting the CS, a executes

enter. This action resets state.a.a to idle. This reset propagates to b which executes

stop and also changes state.b.a to idle (Figure 6.1, iv).

6.2 Proof of Correctness

Proof outline. We present KDP correctness proof as follows. We first state a

predicate we call InvK and demonstrate that KDP stabilizes to it in Theorem 1. We

then proceed to show that if InvK holds, then KDP satisfies the safety and liveness

properties of the k-hop diners in Theorems 2 and 3 respectively.

Proof notation. Throughout this section, unless otherwise specified, we consider

the conflict neighbors of a certain node a (see Figure 6.1). That is, we implicitly
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assume that a is universally quantified over all processes in the system. We focus on

the following nodes: e ∈ KIDS.a.a, b ∈ M.a, c ≡ dad.b.a and d ∈ KIDS.b.a.

Since we discuss the states of e, b, c and d in the spanning tree of a, when it is clear

from the context, we omit the specifier of the conflict neighborhood. For example,

we use state.b for state.b.a. Also, for clarity, we attach the identifier of the process

to the actions it contains. For example, forward.b is the forward action of process b.

Our global predicate consists of the following predicates that constrain the states of

each individual process and the states of its communication neighbors. The predicate

below relates the states of the root of the tree a to the states of its children.

(state.a = idle) ⇒ (∀e : e ∈ KIDS.a : state.e 6= req) (Inv.a)

The following sequence of predicates relates the state of b to the state of its neighbors.

state.b = idle ∧ state.c 6= rep ∧ (∀d : d ∈ KIDS.b : state.d 6= req) (I.b.a)

state.b = req ∧ state.c = req (R.b.a)

state.b = rep ∧ (∀d : d ∈ KIDS.b : state.d = rep) (P.b.a)

We denote the disjunction of the above three predicates as follows:

I.b.a ∨R.b.a ∨ P.b.a (Inv.b.a)
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Figure 6.2: State transitions for an individual process

The following predicate relates the states of all processes in M.a.

(∀a :: Inv.a ∧ (∀b : b ∈ M.a : Inv.b.a)) (InvK)

To aid in exposition, we mapped the states and transitions for individual processes in

Figure 6.2. Note that to simplify the picture, for the intermediate process b we only

show the states and transitions if Inv holds for each ancestor of b. For b, the I.b, R.b

and P.b denote the states conforming to the respective predicates. While the primed

versions I ′.b and P ′.b signify the states where b is respectively idle and replying but

Inv.b.a does not hold. Notice that the primed version of R does not exist if Inv.c

holds for b’s parent c. Indeed, to violate R, b should be requesting while c is either

idle or replying. However, if Inv.c holds and c is in either of these two states, b cannot

be requesting.
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For a, IR.a and RR.a denote the states where a is respectively idle and requesting

while Inv.a holds. In states IR′.a, a is idle while Inv.a does not hold. Notice that

since state = req falsifies the antecedent of Inv.a, the predicate always holds if a is

requesting. The state transitions in Figure 6.2 are labeled by actions whose execution

effects them. Loopback transitions are not shown.

Theorem 1 (Stabilization) Program KDP stabilizes to InvK.

Proof: By the definition of stabilization, InvK should be closed with respect to

the execution of the actions of KDP , and KDP should converge to InvK. We prove

the closure first.

Closure. To aid in the subsequent convergence proof, we show a property that is

stronger than just the closure of InvK. We demonstrate the closure of the following

conjunction of predicates: Inv.a and Inv.b.a for a set of descendants of a up to a

certain depth of the tree. To put another way, in showing the closure of Inv.b.a for

b we assume that the appropriate predicates hold for all its ancestors. Naturally, the

closure of InvK follows.

By definition of a closure of a predicate, we need to demonstrate that if the predicate

holds in a certain state, the execution of any action in this state does not violate the

predicate.

Let us consider Inv.a and a root process a first. Notice that the only two actions that

can potentially violate Inv.a are enter.a and forward.e. Let us examine each action.

If enter.a is enabled, each child of a is replying. Hence, when it is executed and it
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changes the state of a to idle, Inv.a holds. If forward.e is enabled, a is requesting.

Thus, executing the action and setting the state of e to req does not violate Inv.a.

Let us now consider Inv.b.a for an intermediate process b ∈ M.a. We examine the

effect of the actions of b, b’s parent — c, and one of b’s children — d in this sequence.

We start with the actions of b. If I.b holds, forward.b is the only action that can

be enabled. If it is enabled, c is requesting. Thus, if it is executed, R.b holds and

Inv.b.a is not violated. If R.b holds then back.b is the only action that can be enabled.

However, if back.b is enabled and R.b holds, then all children of b are replying. If

back.b is executed, the resultant state conforms to P.b. If P.b holds, then stop.b

can exclusively be enabled. If P.b holds and stop.b is enabled, then c is idle and all

children of b are replying. The execution of back.b sets the state of b to idle. The

resulting state conforms to I.b and Inv.b.a is not violated.

Let us examine the actions of c. Recall that we are assuming that Inv.c and the

respective invariants of all of b’s ancestors hold. If I.b holds, forward.c and join.c

(in case b is a child of a) are the actions that can possibly be enabled. If either is

enabled, b is idle. The execution of either action changes the state of c to req. I.b

and Inv.b.a still hold. If R.b holds, none of the actions of c are enabled. Indeed,

actions forward.c, back.c, join.c and enter.c are disabled. Moreover, if R.b holds, c is

requesting: since Inv.c holds, c must be in R.c. Which means that c’s parent is not

idle. Hence, stop.c is also disabled. Since P.b does not mention the state of c, the

execution of c’s actions does not affect the validity of P.b.
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Let us now examine the actions of d. If I.b holds, the only possibly enabled action

is stop.d. The execution of this action changes the state of d to idle, which does not

violate I.b. R.b does not mention the state of d. Hence, its action execution does not

affect R.b. If P.b holds, all actions of d are disabled.

This concludes the closure proof of InvK.

Convergence. We prove convergence by induction on the depth of the tree rooted

in a.

Let us show convergence of a. The only illegitimate set of states is IR′.a. When a

conforms to IR′.a, a is idle and at least one child e is requesting. In such state, all

actions of a that affect its state are disabled. Moreover, for every child of a that is

idle, all relevant actions are disabled as well. For the child of a that is not idle, the

only enabled action is stop.e. After this action is executed, e is idle. Thus, eventually

IR.a holds.

Let a conform to Inv.a. Let also every descendant process f of a up to depth i confirm

to Inv.f . Let the distance from a to b be i+1. We shall show that Inv.b.a eventually

holds. Notice that according to the preceding closure proof, the conjunction of Inv.a

and Inv.f for each process f in the distance no more than i is closed.

Note that according to Figure 6.2, there is no loop in the state transitions containing

primed states. Hence, to prove that b eventually satisfies Inv.b.a we need to show

that b does not remain in a single primed state indefinitely. Process b can satisfy
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either I ′.b or P ′.b. Let us examine these cases individually.

Let b ∈ I ′.b. Since Inv.c holds, if b is idle, c cannot satisfy P.c. Thus, for b to satisfy

I ′.b, at least one child d of b must be requesting. However, if b is idle then stop.d is

enabled. Notice that when b is idle, none of its non-requesting children can start to

request. Thus, when this stop is executed for every requesting child of b, b leaves I ′.b.

Suppose b ∈ P ′.b. This means that there exists at least one child d of b that is not

replying. However, for every such process d, back.d is enabled. Notice that when b is

replying, none of its replying children can change state. Thus, when back is executed

for every non-replying child of b, b leaves P ′.b.

Hence, KDP converges to InvK. 2

Theorem 2 (Safety) If InvK holds and enter.a is enabled, then for every process

b ∈ M.a, enter.b is disabled.

Proof: If enter.a is enabled, every child of a is replying. Due to InvK, this means

that every descendant of a is also replying. Thus, for every process x whose priority

is lower than a’s priority, enter.x is disabled. Note also, that since enter.a is enabled,

for every process y whose priority is higher than a’s, state.a.y is idle. According

to InvK, none of the ancestors of a in y’s tree, including y’s children, are replying.

Thus, enter.y is disabled. In short, when enter.a is enabled, neither higher nor lower

priority processes of M.a have enter enabled. The theorem follows. 2

Lemma 1 If InvK holds, and some process a is requesting, then eventually either a

stops requesting or none of its descendants are idle.
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Proof: Notice that the lemma trivially holds if a stops requesting. Thus, we focus

on proving the second claim of the lemma. We prove it by induction on the depth of

a’s tree. Process a is requesting and so it is not idle. By the assumption of the lemma,

a will not be idle. Now let us assume that this lemma holds for all its descendants

up to distance i. Let b be a descendant of a whose distance from a is i + 1. And let

b be idle.

By inductive assumption, b’s parent c is not idle. Due to InvK, if b is idle, c is not

replying. Hence, c is requesting. If there exists a child d of b that is not idle, then

stop.d is enabled at d. When stop.d is executed, d is idle. Notice that when b and d

are idle, all actions of d are disabled. Thus, d continues to be idle. When all children

of b are idle and its parent is requesting, forward.b is enabled. When it is executed, b

is not idle. Notice, that the only way for b to become idle again is to execute stop.b.

However, by inductive assumption c is not idle. This means that stop.b is disabled.

The lemma follows. 2

Lemma 2 If InvK holds and some process a is requesting, then eventually all its

children in M.a are replying.

Proof: Notice that when a is requesting, the conditions of Lemma 1 are satisfied.

Thus, eventually, none of the descendants of a are idle. Notice that if a process is

replying, it does not start requesting without being idle first (see Figure 6.2). Thus,

we have to prove that each individual process is eventually replying. We prove it by

induction on the height of a’s tree.

If a leaf node b is requesting and its parent is not idle, back.b is enabled. When it is
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executed, b is replying. Assume that each node whose longest distance to a leaf of a’s

tree is i is replying. Let b’s longest distance to a leaf be i + 1. By assumption, all its

children are replying. Due to Lemma 1, its parent is not idle. In this case back.b is

enabled. After it is executed, b is replying. By induction, the lemma holds. 2

Lemma 3 If InvK holds and the computation contains infinitely many states where

a is idle, then for every descendant there are infinitely many states where it is idle as

well.

Proof: We first consider the case where the computation contains a suffix where a

is idle in every state. In this case we prove the lemma by induction on the depth of a’s

tree with a itself as a base case. Assume that there is a suffix where all descendants

of a up to depth i are idle. Let us consider process b whose distance to a is i + 1 and

this suffix. Notice that this means that c remains idle in every state of this suffix. If

b is not idle, stop.b is enabled. Once it is executed, no relevant actions are enabled at

b and it remains idle afterwards. By induction, the lemma holds.

Let us now consider the case where no computation suffix of continuously idle a

exists. Yet, there are infinitely many states where a is idle. Thus, a leaves the idle

state and returns to it infinitely often. We prove by induction on the depth of the

tree that every descendant of a behaves similarly. Assume that this claim holds for

the descendants up to depth i. Let b’s distance to a be i + 1.

When InvK holds, the only way for b’s parent c to leave idle is to execute forward.c

(see Figure 6.2). Similarly, the only way for c to return to idle is to execute stop.c
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while c is replying 2. However, forward.c is enabled only when b is idle. Also, according

to InvK when c is requesting, b is not idle. Thus, b leaves idle and returns to it

infinitely many times as well. By induction, the lemma follows. 2

Lemma 4 If InvK holds and process a is requesting such that and a’s priority is

the highest among the processes that ever request the CS in M.a, then a eventually

executes the CS.

Proof: If a is requesting, then, by Lemma 2, all its children are eventually replying.

Therefore, the first and second conjuncts of the guard of enter.a are true. If a’s

priority is the highest among all the requesting processes in M.a, then each process

z, whose priority is higher than that of a is idle. According to Lemma 3, state.a.z is

eventually idle. Thus, the third and last conjunct of enter.a is enabled. This allows

a to execute the CS. 2

Lemma 5 If InvK holds and process a is requesting, a eventually executes the CS.

Proof: Notice that by Lemma 2, for every requesting process, the children are

eventually replying. According to InvK, this implies that all the descendants of the

requesting process are also replying. For the remainder of the proof we assume that

this condition holds.

We prove this lemma by induction on the priority of the requesting processes. Accord-

ing to Lemma 4, the requesting process with the highest priority eventually executes

the CS. Thus, if process a is requesting and there is no higher priority process b ∈ M.a

which is also requesting then, by Lemma 4, a eventually enters the CS.

2The argument is slightly different for c = a as it executes join.a and enter.a instead.
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Suppose, on the contrary, that there exists a requesting process b ∈ M.a whose

priority is higher than a’s. If every such process b enters the CS finitely many times,

then, by repeated application of Lemma 4, there is a suffix of the computation where

all processes with priority higher than a’s are idle. Then, by Lemma 4, a enters

the CS. Suppose there exists a higher priority process b that enters the CS infinitely

often. Since a is requesting, state.b.a = rep. When b executes the CS, it enters a into

YIELD.b. We assume that b enters the CS infinitely often. However, b can request

the CS again only if YIELD.b is empty. The only action that takes a out of YIELD.b

is stop.b. However, this action is enabled if state.b.a is idle. Notice that, if InvK

holds, the only way for the descendants of a to move from replying to idle is if a itself

moves from requesting to idle. That is a executes the CS.

Thus, each process a requesting the CS eventually executes it. 2

Lemma 6 If InvK holds and process a wishes to enter the CS, a eventually requests.

Proof: We show that a wishing to enter the CS eventually executes join.a. We

assume that a is idle and needcs.a is true. Then, join.a is enabled if Y IELD.a is

empty. a adds a process to Y IELD only when it executes the CS. Thus, as a remains

idle, processes can only be removed from Y IELD.a.

Let us consider a process b ∈ Y IELD.a. If b executes the CS finitely many times,

then there is a suffix of the computation where b is idle. According to Lemma 3, for

all descendants of b, including a, state.a.b is idle. If this is the case stop.a is enabled.

When it is executed b is removed from Y IELD.a.

Let us consider the case, where b executes the CS infinitely often. In this case,
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b enters and leaves idle infinitely often. According to Lemma 3, state.a.b is idle

infinitely often. Moreover, a moves to idle by executing stop.a, which removes b from

Y IELD.a. The lemma follows. 2

The theorem below follows from Lemmas 5 and 6.

Theorem 3 (Liveness) If InvK holds, a process wishing to enter the CS is even-

tually allowed to do so.

We draw the following corollary from Theorems 1, 2 and 3.

Corollary 1 Program KDP is a self-stabilizing solution to the k-hop diners problem.

6.3 Stabilization Efficiency Evaluation

Observe (see Figure 6.2) that each process executes at most two of its own actions

before satisfying the stabilization predicate. Each of these action executions may only

be interleaved by the action execution of the process neighbors. Let δ be the maximum

degree of a process. Since stabilization proceeds from the root, there could be at most

2(δ +1)k executions of actions in the conflict neighborhood before it stabilizes. If δ is

not related to the number of processes in the system, the stabilization time of KDP
depends only on k and thus independent of the system size.

Notice that the stabilization of one conflict neighborhood is independent of stabi-

lization of another. Thus, the spacial extent of the state corruption is at most 2k.

Notice also that the locality extends to the trees used by KDP . The individual tree
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construction is independent of construction of other trees. Thus, these trees can be

built or stabilized in parallel.
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Chapter 7

Solution to

Generalized Dining Philosophers

Notice that we presented KDP for the case of a rather strictly defined conflict neigh-

borhood. However, KDP can be extended to handle an arbitrary symmetric conflict

neighborhood relation.

In this case, each process p still has to have a spanning tree to all its conflict neighbors.

Notice that, unlike KDP , it is possible that some conflict neighbor q is only reachable

through a process r that is not a conflict neighbor of p. In this case, r is included in

p’s spanning tree. Process r still propagates the requests and replies along p’s tree.

However, r ignores the state of p for its own CS access. For instance, r never enters

p in Y IELD.r.

Notice, that it may happen that some branches of the constructed tree for some

process of p do not contain its conflict neighbors at all. The CS request propagation

from p to such a branch is not necessary. To avoid such propagation our program can

be further optimized as follows. If a leaf of a tree is not a conflict neighbor of p, it

so informs its parent. If process q does not have conflict neighbors of p in a certain
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branch, q does not forward p’s requests to that branch. If process q does not have

any conflict neighbors of p at all among its descendants and q itself is not a conflict

neighbor of p, q informs its parent about it. Thus, the tree is pruned to contain only

p’s conflict neighbors and their ancestors which further improves the efficiency of our

program.
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Chapter 8

Implementation in Wireless Sensor Networks

As we motivated KDP by the problems arising in wireless sensor networks, we would

like to discuss implementing our algorithm in this environment. From algorithm

correctness standpoint, this environment is a variant of a message-passing system with

lossy channels. The broadcast nature of the radio signal allows certain performance

gains.

In implementing KDP in this environment the concern is to preserve its correctness

and termination properties. We discuss the modifications to preserve the algorithm’s

correctness first. Note that in order to satisfy non-trivial liveness properties we assume

that our environment conforms to transmission fairness : if a process attempts to send

infinitely many messages, all of its communication neighbors will receive infinitely

many of them. Note that this assumption is weaker than used previously for self-

stabilizing algorithms in sensor networks [25, 32]: it is usually assumed that the

expected message transmission time for one hop neighbors is constant. Our idea is

to use the timeouts such that the lost messages are recovered. There are two phases

where the message recovery is important: request and release propagation. In case of

request propagation, when the parent changes its state to req, it sends a message to
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its children and starts a timeout. When the timeout expires, the parent resubmits the

request. Upon the receipt of the request, the child’s actions differ depending on its

state. As in the original algorithm, in case the child is in idle, it switches to req and

further propagates the request; similarly, if the child is in req, it ignores the request.

In case the child is in rep, it sends back the message informing the parent of its state.

These actions ensure that the request will be propagated along the routing tree and

the reply will be collected. As an efficiency optimization, a child may acknowledge

the request message from its parent. This acknowledgment is done either explicitly

or by broadcasting the its own request to its children. The parent then resubmits

its request only to the children that have not acknowledged it yet. Recall that for

release propagation, the parent needs to ascertain that its children are idle before

switching to req and starting to propagate the next request. Similar to the case of

request propagation, the parent has to keep the list of its non-idle children and keep

informing its children of its idle state until all of its children acknowledge (explicitly

or implicitly) that they also switched to idle. When all its children are idle the

parent can turn of its notification timeout.

Let us now address termination preservation of KDP . Note that co-satisfaction of

stabilization and termination in message-passing systems is a rather difficult objec-

tive. However, Arora and Nesterenko [3] demonstrated that mutual exclusion and,

by extension, diners admits a solution with both of these properties. Notice that,

as described, it is possible that the algorithm refined to operate in wireless sensor

networks starts in an illegitimate terminal state where some child is in rep and its

parent is in idle. This state is illegitimate: if there is a further request and the parent
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switches to req, then the parent may mistake the child’s reply as the answer to its

new request. This mistake may result in a safety violation (see [3] for a detailed

discussion of this issue). A stabilizing algorithm cannot terminate in an illegitimate

state. Thus, this particular terminal state has to be eliminated. The mechanism is

as follows. If a process is in req, it periodically informs its parent about its state.

If parent is in idle, it messages back with its state and forces the child to switch to

idle as well. With this modification, the only terminal state is the one where every

process is in idle. This is a legitimate state and our algorithm remains terminating

and stabilizing.
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Chapter 9

Further Extensions

Implementation considerations. In our KDP algorithm, the CS execution is

shown as a single step in action enter. However, the CS entry and exit can be

separated into two actions without compromising the properties of KDP .

To simplify the exposition, we presented KDP in a rather abstract execution model.

In our algorithm, we assumed that a process can atomically read the variables of

all its communication neighbors and update its own. However, this may not be

practical in reality. Nesterenko and Arora [34] described a self-stabilizing mechanism

for atomicity refinement to a model where a process may read variables of a single

neighbor or update its own. A similar refinement mechanism can be applied to KDP .

Notice that Nesterenko and Arora propose a further refinement to message-passing

model. This refinement is applicable to KDP as well.

Extension to generic drinking philosophers. In the classic drinking philosophers

problem, the set of conflict neighbors for each process p may vary with each CS

access. This problem can be extended to the generic case of conflict neighbors in a

straightforward manner.
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KDP can be extended to solve the generalized drinking philosophers problem as well.

In this case, p has to construct a spanning tree to the union of all of its possible conflict

neighbors. Each process q in the tree has the list of all its descendants. Thus, p has

the list of all its potential conflict neighbors. When p requests the CS, it advertises

the list of the actual conflict neighbors for this request. The child of p propagates the

request only if it has a descendant in this set. The process repeats at each node.

Simplification to unfair case. Notice that some problems, such as distance-k

vertex coloring, do not require fairness of CS access specified by the diners: in any

computation of such a problem there are only finitely many CS accesses. If KDP is

to be used for such a problem, it can be simplified. In the unfair case, an idle higher

priority process does not have to wait for a lower priority neighbor. This obviates

the need for YIELD and simplifies actions stop, enter and join. Moreover, the

computations of such program are finite. Thus, this program is capable of operating

without the weak fairness assumption about action execution.
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Chapter 10

Applications

There are several applications of our algorithm besides the solution to generalized

dining philosophers.

Distance k-coloring: distance k-coloring problem is to assign colors to each node

in a graph such that no two nodes within distance k of each other have same color

assigned to them using minimum number of colors possible. Our algorithm can be

modified to make it applicable to distance k-coloring. Each process p maintains

a set of colors that all distance k neighbors selected. This set can be read by its

communication neighbors. Once the enter action is enabled p selects a minimum

color available excluding the colors in its used color set. Another disjunct such as,

if color of p matches with any of its used colors needs to be added to join.p. The

actions forward.p and stop.p also needs to be modified. Along with the changes in

state they also need to update the color variables if they differ from its parents color

variables.

TDMA slot assignment: As discussed earlier, TDMA slot assignment requires

distance-2 information of a network to avoid hidden terminal effect. Our KDP algo-
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rithm can be applied to solve this problem by setting k to 2. From the safety property,

only one process in the distance-2 neighborhood can enter the CS to avoid collisions.

Arumugam and Kulkarni [4] propose a self-stabiling solution for TDMA in sensor

networks where time slot assigned to each process is based on color associated to that

process. The colors are assigned to every process by passing a single token through

out the network in such a way that no two processes within distance-2 neighborhood

get the same color. In our algorithm, a process which wants to transmit can request

a time slot by changing its state to req. Moreover our algorithm provides partial

fairness.

Minimal {k} domination: A {k} dominating set S is a subset of V of a graph

G(V, E) where every node in V-S is atmost k-hops away from atleast one node in

S. This dominating set is minimal when removal of any single node from S makes

it a non dominating set. Our algorithm can be modified to find S. Each process

maintains a variable indicating if a process in its k-hop neighborhood entered into S.

A disjunct needs to be added to the guard of action enter.p as follows, check for the

condition if no k-hop distance neighbor of p is in S. If the action enter.p is enabled

then enter p into S. The actions forward.p and stop.p should be modified in such a

way that neighbors update and propagate the information of p’s entry into S upto

k-hop neighbors of process p. Moreover the resulting dominating set is a Minimal.

2-packing: A 2-packing in a graph is a set S of nodes such that no two nodes in S

are adjacent and no two nodes in S have a common neighbor. A 2-packing can be

attained from our KDP algorithm by modifying it as discussed in the above Minimal

43



{k} domination and setting value of k to 2.

Future research directions. It is unclear if KDP is an optimal solution to general-

ized diners with respect to space complexity. If the communication topology is dense,

statically maintaining spanning trees may be expensive. Hence, the construction of

a more space-efficient algorithm is an attractive area of future research. An other

interesting work is to extend our solution to committee coordination problem.
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