
SMILE-JS, a SIP-based Middleware for J2ME Devices
Giovanni Bartolomeo

University of Rome “Tor Vergata”
Rome, Italy

+39 06 72597450

giovanni.bartolomeo@uniroma2.it

Stefano Salsano
University of Rome “Tor Vergata”

Rome, Italy
+39 06 72597770

stefano.salsano@uniroma2.it

Andrea Polidoro
University of Rome “Tor Vergata”

Rome, Italy
+39 06 72597769

andrea.polidoro@uniroma2.it

ABSTRACT

In this paper we report our two years experience in designing and
implementing a new middleware solution for distributed mobile
applications exploiting the Session Initiation Protocol (SIP) and
the JavaScript Object Notation (JSON). The proposed solution
has been designed to port the Simple Middleware Independent
LayEr (SMILE) framework to mobile devices running the limited
version of Java 2 Micro Edition (J2ME CLDC). It provides J2ME
developers with the very same abstraction layer offered by the
SMILE API under the J2SE environment, allowing seamless
interoperability between SMILE peers running on desktop
computers/servers and peers running on mobile devices. The
solution will be denoted as SMILE-JS, where JS stands for JSON
over SIP. We first describe the SMILE framework, explaining its
APIs for communication, addressing, lifecycle management and
service discovery. Afterwards we explain how truly peer to peer
communication among mobile devices has been achieved using
SIP, and which additions we implemented to turn the open source
MjSIP framework into the first SIP-based middleware for J2ME
CLDC enabled devices.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed applications

General Terms

Design, Experimentation

Keywords

Mobile Middleware, J2ME, SIP, JSON, SMILE

1. INTRODUCTION
The Simple Middleware Independent LayEr (SMILE) was
originally intended as a lightweight framework allowing to
decouple the functional model of a distributed Java application
from the underlying middleware platform used to run the
application itself. Its original motivation could be found in the

need for reducing time and costs in porting existing software to
different middleware platforms. According to [1] the SMILE
framework can be assimilated to an “abstract platform”, i.e. a
collection of characteristics assumed in the construction of an

application at some point of the design process. However, what
SMILE adds is the ability to seamlessly execute the designed
application on a real middleware platform, through its so called
“bindings”. In facts, SMILE definition of interfaces is inspired by
the Service Oriented Architecture (SOA) and uses WSDL as
interface description language (in [6] we give more details about
this choice). Borrowing concepts and the terminology from the
Web Service Definition Language (WSDL) [3], a “binding”
represents a link between the abstract definition of an application
in terms of SMILE API and a concrete technology to rely on for
the execution of the application itself. However, whereas
traditional WSDL bindings are limited to web technologies, in the
past we developed SMILE bindings for the most known
middleware platforms (such as OSGi, CORBA, JXTA and JADE).
All of them present similarities which have been used to define
the SMILE abstraction layer.

An early proof of concepts for SMILE was achieved in late 2005,
in the context of the IST-Simplicity project, where SMILE API
were used to port the project demonstrator (see [7]) to two well
known middleware platforms (JXTA and JADE). With the
beginning of the IST Simple Mobile Service (IST-SMS) project
[13] in middle 2006, we started exploring the porting of SMILE
API to mobile devices, having the J2ME CLDC platform as
target. Our first design goal was to achieve complete
interoperability: peers running on desktop/server should have
been allowed to seamlessly talk with peers running on mobiles,
and vice-versa. Also, we wanted to keep the very same abstraction
layer, i.e. having exactly the very same API for mobile version
and desktop/server version. A second design goal was to cope
with the typical networking conditions of mobile devices, which
show intermittent connectivity and NAT issues (mobile devices
often get private IP addresses behind a NAT). Incidentally we
note that NAT traversal issues does not only apply to mobile
devices and mobile middleware, but to any middleware solution
that wants to support universal connectivity of nodes irrespective
of their access network. Our third and fourth design goals were
respectively to have support for automatic generation of code
stubs and for automatic serialization of data structures also in the
mobile (J2ME CLDC) environment. The fifth design goal was to
keep our technology backward compatible with traditional
SOA/Web Services approach.

We investigated some legacy middleware solutions for mobile
device, including JXME [9], an implementation of JXTA for Java
2 Micro Edition (J2ME), and the agent oriented middleware

This work was supported in part by the EC in the context of IST project
Simple Mobile Services – IST-SMS (IST 2006-034620).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobMid’08, December 1-5, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-362-4/08/12…$5.00.

JADE in its version for mobile devices (LEAP, [10]). Both of the
aforementioned solutions are based on a connection oriented
protocol (HTTP or TCP) establishing a persistent connection with
a proxy server acting on behalf of the client. In JXME, for
example, a “relay” in the network takes care of almost all JXTA
functionalities, participating in the JXTA network on behalf of
one or more J2ME devices, freeing mobile devices from parsing
verbose XML messages, caching advertisements and, most
important, accept and handle incoming connections. JXME
“peers” uses a simplified protocol, and exchange HTTP-based
binary messages with the JXTA relay. A similar solution is
adopted in JADE LEAP for software agents running on J2ME
devices. In conclusion, despite these solutions claimed to be
“peer-to-peer”, they actually shift middleware functionalities from
mobile devices to network servers able to maintain the state of
several clients at the expense of a powerful but costly central
network infrastructure. Being not happy with existing solutions,
we decided to implement our own middleware solution, making
challenging choices to cope with specific constraints imposed by
mobile devices.

In June 2007, a first prototype of SMILE-JS for mobile device
was released and a demo application (an indoor tracking system
running on mobile devices) was presented at WWRF 18 in
Helsinki, Finland. The experience gained allowed us to refine
several details in the internals of our middleware solution which
was then definitively adopted in the IST-SMS project
demonstrator, presented in the first Workshop on “User Generated
Services” held in Madrid, Spain, June 2008.

This paper describes our two years experience in designing and
implementing SMILE-JS, the first SIP-based middleware for
J2ME CLDC enabled devices, exploiting the open source MjSIP
SIP stack [11]. In particular, section 2 provides details of SMILE
operations and APIs, section 3 deals with transport of messages in
SMILE-JS, section 4 discusses serialization of messages in J2ME.
SMILE and SMILE-JS are developed under an open source
license and can be downloaded from [12].

2. SMILE APIs
The details of SMILE operations and APIs provided in this
section show how we fulfilled the first design goal, i.e. to achieve
complete interoperability between peers running on desktop/
servers and peers running on mobile devices. What is described
hereafter applies without changes both to the J2SE and to the
J2ME CLDC implementation of SMILE-JS.

2.1 Communication Primitives
In SMILE, communications between peers rely on “operations”.
There are four kinds of operations, classified according to the
originator and the executor of the operation itself; the WSDL1
terminology refers to these latter entities as client and server, and
defines the first pair of operations as originated by the client:

1 At the time of writing, SMILE supports only the two basic patterns

defined in WSDL (unreliable oneway and synchronous twoway
messages). Future extensions will probably support more asynchronous
modes of operation.

- A “OneWay” operation consists in a message originated by the
client toward a server. The message is sent asynchronously, no
“session” is created between the client and the server.

- A “RequestResponse” operation consists in a request message
from the client to the server, followed by a reply message
(“response”). Alternatively, a “fault message” may come to the
client if something has gone wrong at the server side. There is a
logical correlation between the request and the response: the
execution environment creates a “session” and provides the
corresponding response or fault in an unambiguous way as reply
to a given request.

The second pair of operations is complementary to the first one,
the originating being the server as follow:

- A “Notification” operation is made of a message sent
asynchronously by the server to a client, no “session” is created
between the client and the server.

- A “SolicitResponse” operation consists in a solicitation message
sent from the server to the client, followed by a reply message in
the opposite direction. Solicitations may originate faults as well.
The same “session” concept explained for “RequestResponse”
applies.

Being based on a peer to peer paradigm, SMILE peers uses the
same primitives to generate and to receive “oneway” messages
and “notifications”. These primitives are, respectively, the send
method and the onReceived callback. The send method is not
blocking, therefore it realizes an “asynchronous” interaction
pattern. Instead, to implement “RequestResponse” and
“SolicitResponse” operations, the blocking doRequest method is
used. This method accepts the request message to be sent as a
parameter and returns the corresponding response or raises an
exception if a fault is received. SMILE takes care of correlation
between request and response, as explained below:

- Each message has a serial number that is automatically
generated whenever the message is instantiated.

- Each response message has a refSerial field keeping the serial
number of the request it answers.

- A boolean query method refersTo tells if a reply refers to a
given sent request.

- A internal method expectMessage allows to register the reply
number to expect.

- After sending the request, the sender peer performs message
cleanup and then wait for a given a timeout. This blocks the
flow execution and makes the call synchronous.

- Incoming messages that do not refer to the outstanding one are
ignored and discarded.

- Once the right message arrived, the expectingMessage state is
cleared, and the doRequest method returns the response message
to the application.

- Timeout expiration throws an exception and clears the
expectingMessage state as well.

Thus, “requests” are synchronous, and implicitly confirmed as
soon as a response message is received. Remote Procedure Call
(RPC) is implemented using the request/response pattern as
described in section 2.5.

A second use case for the request/response pattern is receiving
confirmation of message delivery. As with asynchronous
messages there is no guarantee for the sender that the issued
message comes to the recipient, whenever a confirmation is

needed, it is possible to use the response message of a request to
get confirmation of message delivery.

2.2 SMILE-JS Peers, Processes, Identifiers
An application built on an abstraction layer like SMILE will be
“abstract” as well. In order to make it actually work, the
application needs a “binding” to a concrete runtime. A binding is
intended to bind each abstract SMILE peer to at least one running
“process”. A process (later on sometimes referred itself as
“binding”) is an implementation of SMILE abstract primitives in a
middleware specific platform. Each process has its own address,
which is an instance of a class inheriting from SMILE ProcessID
class. In this sub-section we only focus on the JSON/SIP binding
(SMILE-JS).

In SMILE-JS, processes are mapped into SIP “user agents”, which
are identified through their “Address of Record” (AoR), in form
of an URI like sip:alice@iptel.uroma2.it. This URI
is used in each SIP message exchanged between agents to identify
the sender and the recipient. Like email addresses, traditionally
SIP AoR are assigned by a SIP provider to SIP users to enable
them to receive and initiate communication sessions. A one-to-
one mapping between processes and SIP agents would result in an
inefficient use of resources, requiring a new SIP AoR to be
assigned to each new SMILE process created in the local
execution environment. A many to one mapping is more efficient.
To fit this goal, we defined two new fields to be used,
additionally, in the “From” and “To” headers of SIP messages in
order to distinguish among different SMILE processes exploiting
the same SIP agent.

- pType, containing information about the “kind” of service
implemented by the process. This field could be assimilated to
the concept of class name in an Object Oriented programming
language.

- pName, unique “address” of a specific process, can be used to
distinguish between more instance of the same “kind” of service
described by pType. It could be assimilated to the concept of
instance identifier in an Object Oriented programming language.

An example of “From” header used in messages generated by our
JSON/SIP binding could be the following:

From:<sip:alice@iptel.uroma2.it;pType=
org.istsms.mem.MemPeer,pName=0a87f4>

The object taking care of delivering SIP messages to the right
process is called Dispatcher (Figure 1).

DISPATCHER
sip:alice@iptel.uroma2.it

SIP STACK
192.168.1.15:5060

Process
pName=ab271a

pType=PageBrowser

Process
pName=94fa72

pType=MeteoClient

Process
pName=0f83a7

pType=MemPeer

Figure 1. A Dispatcher serving several SMILE processes using

the same SIP agent.

The dispatcher is assigned an AoR and acts as a SIP agent for the
SIP stack, thus receiving any SIP message sent to its SIP AoR.
Whenever a message arrives, the dispatcher extracts the specific
process identifier from the pName and pType fields contained into
the “To” header and forwards the message to the corresponding
process. Viceversa, whenever a process wants to send a message
to another one, it specifies its own identification parameters
(sender’s pName and pType), the recipient’s identifications
parameters (recipient’s SIP AoR and recipient’s pName and
pType) and delivers the outgoing message to the Dispatcher. The
Dispatcher prepares a corresponding SIP message and sends it to
the network through the SIP Stack.

2.3 SMILE API for Lifecycle Management
Other than responding to events originated whenever messages
are received, each SMILE peer may execute proactively a
business logic. Each peer implements three callback methods
which are inherited by the ProcessLifecycle interface and are
called in sequence, in a thread different than the one used to
notify peers about incoming messages. These callbacks are
hereafter described:

- setup, called as soon as the peer starts, is usually implemented
to perform start up operations.

- doBusiness, invoked as soon as setup returns, is exploited by the
programmer to implement the application’s main loop. As
described in 2.4, an expiration is associated to each service
description published by the peer, thus an example of
implementation for this callback is the periodic re-publication of
service descriptions. Other example may include periodic
operations specific to the peer’s logic, like polling a resource to
obtain a fresh information or periodically notify other peers
subscribed to a service the peer provides.

- Whenever the doBusiness method ends, the takedown callback
is called. Typical usage for takedown includes release of
resources and un-publishing of service descriptios (if any).

2.4 SMILE API for Publishing and

Discovering Services
The service discovery API is related to the functional features
provided by each peer. These features are called “services”.
Services provided by SMILE peers are described using a
Descriptor object which contains details related to the service
type and the operations the service does support. The field
identifying the service type is mandatory, whereas the list of
supported operations may be empty. Each peer is provided with
the following set of primitives:

- publish, used to publish a service description; the publication is
limited in time by an expiration time which could be specified
whenever this method is called. A maximum expiration time can
be defined by the platform administrator.

- search is used to find peers providing a given service; This
method returns an array of ProcessID objects identifying all the
peers which have published a matching service description. In
order to match against a list of Descriptor objects, a service
DescriptorFilter object is used. The DescriptorFilter object
specifies the following fields: service type (mandatory),
supported operations, maximum number of services to be
returned, “matching ProcessID”. The optional “matching
ProcessID” field may contain a regular expression which is

evaluated against the identifiers of the peers providing one or
more services matching the specified type and the specified
operations.

- delete, used to remove a published Descriptor object.

Normally one single service publication is made at the beginning
of the peer lifecycle, repeated periodically at regular time intervals
to overcome expiration, and deleted once the peer ends. More
complex patterns are possible, e.g. to cope with temporary service
unavailability or publication of new services made dynamically
available during the peer’s lifecycle. The programmer should take
care that no more valid service publications are removed, in order
to prevent client requests to fail.

2.5 RPC in SMILE
Remote Procedure Calls (RPC) is implemented in SMILE using
the doRequest primitive. The example hereafter discussed is
related to a “Music Lovers Service” and shows two parts of the
code, corresponding to the client stub code, Figure 2 and to the
skeleton implemented on server side, Figure 3. It exploits the
request/response operation “getTopArtists”.

 public com.ftrd.om.ws.dto.xsd.User[]

 getTopArtists(int limit){

 GetTopArtistsRequest req=

 new GetTopArtistsRequest();

 req.setLimit(limit);

 req.setOperation(GT_TOP_ARTSTS);

 try {

 GetTopArtistsResponse res=

 (GetTopArtistsResponse)

 doRequest(req,provider);

 return res.getArtists();

 } catch (Fault e) {

 log("Fault: "+e);

 } catch (InvalidReceiverException e) {

 log("Receiver is offline");

 }

 return null;

 }

}

Figure 2. Stub code running in the client.

 public Message onRequestReceived(ProcessID

sender,Message request){

 if(running){
 if

(request.getOperation().equals(GT_TOP_ARTSTS)

&& request instanceof GetTopArtistsRequest) {

 GetTopArtistsRequest req=

 (GetTopArtistsRequest)request;

 GetTopArtistsResponse res =

 new GetTopArtistsResponse();

 res.setArtists(

 getTopArtists(req.getLimit())

);

 return res;

 } // else if ...

 }

}

com.ftrd.om.ws.dto.xsd.User[]

getTopArtists(int limit) {
 //server code here...

Figure 3. Skeleton code in the server.

As soon as the client’s method getTopArtists is invoked, the stub
sends a corresponding request message to the service provider
(which may have been discovered at startup using the search
method described in section 2.4). The getTopArtists method
blocks until a response is received, a fault is generated or the
request’s timeout expires. The server implements the
onRequestReceived callback in a way that whenever a
“GetTopArtistsRequest” message is received and the message is
related to a “getTopArtists” operation, the corresponding skeleton
method getTopArtists is called. The returned value is transported
inside the related response message which is eventually returned
to the client.

3. SIP transport for SMILE-JS:
It is well known that NATs and firewalls do not allow peer to peer
communication among mobile devices: a peer behind a NAT is
usually not reachable from the outside world. In past years, SIP
[5] has emerged as a signalling protocol to establish calls and
multimedia sessions between user agents on end user equipments,
even behind NATs and firewalls. With 3GPP mandating the use
of SIP for the future evolution of 3G networks, SIP will be largely
supported in operator’s network in next years. Thus, to fulfil our
second design goal, (i.e. to overcome “natted” network limitations
and to cope with frequent network disconnections) we decided to
use SIP messages transported over UDP datagrams and to resort
to a known NAT traversal solution for SIP, based on the so called
“Session Border Controller” (SBC) element. This approach allows
to run “full” SMILE peers keeping all of their functionalities even
on devices which do not own a public IP address2.

The SIP infrastructure elements and the SIP stack for both mobile
devices and server side are based on the open source MjSip
project [11]. The overall architecture for the JSON/SIP binding of
SMILE over SIP is shown in Figure 4: the SIP infrastructure is
composed of a Registrar and Proxy server, which maintains the
mapping between SIP user agent identifiers (SIP addresses) and
their IP addresses, and routes SIP messages to recipients, and by a
SBC able to route incoming SIP messages to peers behind NATs.
Although very simple, this infrastructure allows the exchange of
SIP messages among mobile devices and between mobile devices
and server side elements.

SIP

SBC

SIP

Registrar
and Proxy

Server side

elements

SMILE
library

Communication

middleware

Mobile Terminal

Yellow
page

SMILE

library

SMILE
library

SMILE
library

Figure 4. SMILE and SIP elements.

2 We also report that, in principle, other SIP based solution for

NAT traversal might be used as well.

Figure 4 also shows the “Yellow Pages” discovery proxy, which
allows SMILE peers to register/deregister their service
descriptions and to look for services offered by other peers, using
the API described in section 2.4.

3.1 A Support for Large SIP Messages
Unfortunately, SIP messages keep one drawback. In fact, given its
nature of application-level “signalling protocol”, independent
from the underlying transport, the original SIP specifications do
not mandate any form of reliable delivery for messages of large
size. Whenever SIP is transported using a connection oriented
protocol such as TCP, fragmentation is handled by the transport
level, which ensures reliability. This solution, however, is less
suitable for mobile devices which experience frequent
disconnections, being more appropriate, in this case, transporting
SIP messages in UDP datagrams. This way, unfortunately, SIP
messages are subject to IP message fragmentation, whose
behaviour may vary from network to network, depending on the
Maximum Transmission Unit (MTU) allowed.

To alleviate this problem, the JSON/SIP binding implements a
simple, sliding windows based fragmentation/defragmentation
mechanism. Application level messages are fragmented and
transported in SIP messages over UDP datagrams (Figure 5).
Confirmation of reception of a single fragment is implicitly given
by the SIP response, sent back by the SIP receiver agent as soon
as a SIP message arrives. If a fragment is not acknowledged, then
it is retransmitted using the exponential backoffs strategy
described in [5]. Purpose of this application level fragmentation
mechanism is neither to replace IP fragmentation, nor to reinvent
TCP flow and congestion control algorithms. Rather, by giving
control on the maximum size of each message payload, this
solution should be only intended as an enabler to send relatively
large amount of data over conventional SIP messages. More
details can be found in section 3.2.

 MESSAGE sip:stefano@stefano:5070 SIP/2.0

[some headers removed for clarity’s sake]

Max-Forwards: 68

To:

<sip:stefano@sipdev.netgroup.uniroma2.it;pNam

e=c5da66;pType=MemPeer>

From:

<sip:yellowpages1.0@sipdev.netgroup.uniroma2.

it>;tag=681452288432

Content-Length: 225

Content-Type: application/text

{"Req":"false","__class":"it.uniroma2.smile.s

ipbinding.sipmessage.MessageEnvelope","FNo":"

0","Frag":"{\"Name\":\"it.uniroma2.smile.core
.Message\",\"Fault\":\"false\",\"__class\":\"

it.unir","SNo":"10135","RefS":"1","FTot":"4"}

Figure 5. A SIP message containing a fragment to be delivered

to a SMILE peer.

3.2 Binary Objects over SIP
SMILE-JS supports the transport of binary object within
messages, but at the expense of performances. Since JSON is a
text format, binary objects are text-coded before being sent on the
wire. The chosen encoding is the widely known MIME Base64
encoding, which increases the original data length of about 30%.
In our tests, we transmitted JPEG images of about 20 Kb, turned

into 25 Kb text streams. Using a maximum payload less than 1500
Kb per SIP message, about 20 SIP messages were needed to
delivery this binary object, using the above described
fragmentation mechanism. This took up to 5.5 seconds on an
UMTS network (tests performed on working days, in the
morning).

We concluded that this simple mechanism is suitable to transfer
relatively small/medium size binary files (e.g. icons, thumbnails,
small images) whereas transmission of larger binary objects
should preferably rely either directly on optimized TCP based
transport protocols, or on more sophisticated SIP based solutions,
similar to those described in IETF MSRP protocol [2].

4. Seamless Serialization for J2ME
A serialization mechanism is needed to transform the internal
representation of an object into a stream of bytes that can be
transported on the wire, interpreted and reconverted to a copy of
the original object at destination. The specific serialization format
could be binary or text based. In Java 2 Standard Edition, a binary
serialization mechanism is built in and text based serialization
(e.g. XML serialization) is provided in form of API. On the
contrary, J2ME-CLDC does not support any automatic
serialization, thus the application developer has to implement her
own serialization mechanism for each application. In order to free
developers from this tedious task, which reduces interoperability
and limits the development of distributed applications for mobile
devices, we integrated a general, seamless serialization
mechanism into SMILE-JS, thus fulfilling our fourth goal.

Even if, in principle, any serialization format could have been
used, for its compactness (compared to XML) and human
readability (contrary to binary formats), we have chosen to relay
on the JavaScript Object Notation (JSON) [8]. JSON is a simple
text format, based on a subset of the JavaScript Programming
Language. Other than primitive values, it supports only two basic
structures: a collection of key/value pairs and an ordered list of
values. These data structures are implemented in almost all
modern programming languages, this makes it easier to achieve
portability for application written in different programming
languages. In particular, Java implementations of JSON typically
map the two basic JSON structures into, respectively, hash tables
and vectors, providing objects named JSONObject and
JSONArray, which are java specific runtime representation of a
JSON stream.

Despite it is possible to use JSON API directly into Java
applications, the challenge for our JSON/SIP binding has been to
provide a general mechanism to allow any Java bean to be
seamlessly serialized into and de-serialized from JSON streams.
Some existing tools allow such a translation, but, unfortunately,
they mostly rely on class introspection, not available on J2ME.
Thus we decided to implement our own translator for SMILE-JS.
As a first step, we defined how arbitrary Java beans and arrays
should have been mapped into corresponding JSONObjects and
JSONArrays. Java objects which are beans are mapped to
JSONObjects. Each object’s field accessible through a public
getter method is serialized into a corresponding field into the
target JSONObject. Figure 6 illustrates a thus produced JSON
stream. The field’s name is taken as key whereas the actual value
depends on the specific type returned by the getter method, as
hereafter described.

- There may be four cases: a primitive value, a Java array, another
Java bean or a null.

- Primitive values and wrapper classes are mapped into strings.
- Arrays are turned into JSONArrays and serialization is

recursive: for each element in the array, a corresponding entry in
the JSONArray is created, and the procedure described in this
paragraph is recursively applied to the element, according to its
actual type.

- Java beans are recursively serialized.
- Serialization of null fields does not produce any entry.
- Serialization of empty array produces an empty JSONArray.
- To cope with inheritance, annotation is used in the produced

JSONObject: whenever an actual parameter in a field is of a
type inherited from the type declared in the corresponding
formal parameter, a special entry is added in the corresponding
JSONObject to remember the actual parameter’s type and allow
proper deserialization.

 { "Req":"false",

 "Fault":"false",

"__class":"it.uniroma2.smile.sipbinding.sipme

ssage.MessageEnvelope",

 "FNo":"0",

 "Frag":{

 "ContactList":{

 "Contacts":[

"sip:andrea@iptel.uniroma2.it;pName=a6f087;pT

ype=MemPeer",

"sip:stefano@iptel.uniroma2.it;pName=c5da66;p

Type=MemPeer"]},

 }

"__class":"sms.contactlist.message.ContactLis
tResponseMessage",

 "SNo":"1047",

 "RefS":"1",

 "FTot":"1"

}

Figure 6. The bean ContactListResponseMessage serialized as a

JSON stream.

Using the above rules we implemented a serialization/
deserialization library for J2SE platforms, using introspection. A
straightforward way to port this approach to J2ME platform is to
replace the class introspection mechanism provided by J2SE with
pieces of code enumerating the different beans to
serialize/deserialize. This does not change the internals of the
serialization mechanism, it just substitutes introspection with
enumeration. The drawback is that for any class that has to be
serialized a corresponding code enumerating every public class’
field should be written. This task however can be easily done
automatically importing the classes to be serialized into a J2SE
environment and using a tool which introspects them and
automatically produces the enumeration code needed for
serialization in J2ME. We actually implemented such a tool, and
called it “JavaBean2JSON StubGenerator”. This tool is an open
source software included in the SMILE-JS distribution [12].

5. CONCLUSIONS
In this paper we described some features of SMILE-JS, a new
truly peer-to-peer middleware solution for distributed mobile
applications running on J2ME CLDC devices. We have discussed
how SMILE-JS meets a set of design goals including identical
APIs and protocols in J2SE and J2ME implementation, seamless
NAT traversal, seamless serialization of messages in J2ME. Due

to space constraints, we do not describe our approach to automatic
code generation from SMILE interface descriptions. We just
mention that we make available a syntax for SMILE interface
description simpler than WSDL, more human readable and
allowing inline Javadoc-like comments. A corresponding model-
to-code transformation tool converting interface description into
SMILE code has been released. We do not even discuss the
interoperability between SMILE and SOAP based Web Services;
we only mention that gateways to map SMILE messages into
SOAP messages and vice versa have been implemented [6].

Finally we would like to mention that recently a SMILE-JS
implementation for IMS has been released [4] and that SMILE-JS
is currently under beta testing in an ongoing trial at University of
Rome Tor Vergata, involving about 100 participants [1].

6. ACKNOWLEDGMENTS

Authors would like to thank MiNEMA - Middleware for Network
Eccentric and Mobile Applications - for funding the presentation
of this work.

7. REFERENCES
The links below are last accessed on the 2nd of October 2008.

[1] J. P. Almeida, R. Dijkman, M. van Sinderen, L. F. Pires, "On
the Notion of Abstract Platform in MDA Development",
IEEE International Enterprise Distributed Object Computing
Conference (Monterey, California, USA, 2004)

[2] B. Campbell, R. Mahy, C. Jennings (eds.), The Message
Session Relay Protocol (MSRP), IETF RFC 4975

[3] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana,
Web Services Description Language (WSDL) 1.1, W3C Note
15 March 2001, http://www.w3.org/TR/wsdl

[4] A. Polidoro, S. Salsano, G. Bartolomeo: “Simple Mobile
Services for IMS”, IEEE Conference and Exhibition on Next
Generation Mobile Application, Service and Technologies
(Cardiff, Wales, United Kingdom, 2008)

[5] J. Rosenberg, H. Schulzrinne et Al., SIP: Session Initiation
Protocol, IETF RFC 3261

[6] S. Salsano, G. Bartolomeo, R. Glaschick, “SMILE (Simple
Middleware Independent LayEr) and SMILE-JS (JSON over
SIP binding) documentation”, available at http://netgroup.
uniroma2.it/twiki/bin/view.cgi/SMS/TechnicalReports

[7] S. Salsano, G. Bartolomeo, C. Trubiani, N. Blefari Melazzi:
“SMILE, a Simple Middleware Independent LayEr for
distributed mobile applications”, IEEE Wireless
Communications and Networking Conference (Las Vegas,
USA, 2008).

[8] JavaScript Object Notation (JSON), http://www.json.org

[9] JXTA-JXME Project, https://jxta-jxme.dev.java.net/

[10] LEAP libraries for JADE, http://jade.tilab.com/

[11] MjSIP Java SIP stack, http://mjsip.org/

[12] SMILE Home Page http://netgroup.uniroma2.it/smile

[13] Simple Mobile Service project http://www.ist-sms.org/

[14] Simple Mobile Service project, trial platform,
http://netgroup.uniroma2.it/SmsPlatform

