
UNIVERSITY OF OSLO
Department of Informatics

Programming
Wireless Sensor
Networks: From
Static to Adaptive
Models

PhD Thesis

Amirhosein
Taherkordi

© Amirhosein Taherkordi, 2011

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 1114

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AIT Oslo AS.

Produced in co-operation with Unipub.
The thesis is produced by Unipub merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

To my family

Abstract

Wireless Sensor Networks (WSNs) are a rapidly emerging research area because of their
vast application vistas in real-world environments, as well as their rapid deployments at
low cost and with high flexibility. In 2003, Technology Review ranked WSNs among 10
emerging technologies that will change the world. WSNs consist of tiny sensor nodes
that can be easily embedded in the environment, establish a wireless ad-hoc network, and
compose a distributed system to collaboratively sense physical phenomena and process
sensed data, or to react to the environment based on the sensed data. To practically
use this technology, WSNs must be able to operate unattended for long periods of time,
especially when deployed in inaccessible places. Moreover, their new applications in het-
erogeneous and ubiquitous settings make the autonomy of their operations very important.
This introduces several new requirements, such as reconfiguration of WSNs to meet future
unpredictable needs, remote maintenance of sensor software, adapting WSN functionality
against changes in heterogeneous environments, and remote patching of sensor software to
handle after-deployment faults.

To address these requirements, we need to study the fundamental issue of reprogram-
ming and software reconfiguration in WSNs and devise a framework that provides the
primitives required to enable dynamicity in sensor software. This thesis focuses on this
issue and presents a set of WSN programming frameworks that simplify application de-
velopment in a range of settings, from static deployments with pre-defined and constant
conditions to dynamic deployments with changing and unpredictable requirements. In
particular, the contributions of this thesis are mainly within the following four areas.

The first part presents a distributed middleware system, called WiSeKit, to enable
adaptation and reconfiguration of WSN applications in ubiquitous and context-aware en-
vironments. WiSeKit proposes a middleware software framework that formulates the
process of adaptive WSN application development and abstracts the underlying techno-
logical adaptation processes. The adaptation strategy is inspired by the main activities
of the feedback control loop, including context-awareness, adaptation reasoning, and soft-
ware reconfiguration. In particular, it introduces a novel context processing model to
monitor various context information (e.g., sensor resources and environmental changes)
in WSNs. The analyzed context data is delivered to a hierarchical adaptation reasoning
framework to make decisions about what adaptation to perform. Finally, WiSeKit pro-

iii

poses a component-based reconfiguration approach to implement the adaptation choices.
The second part of this thesis presents a new component-based programming model for

WSNs, called Remora. This programming abstraction is proposed not only to simplify
programming in WSNs, but also to address the third goal of WiSeKit—component-based
reconfiguration. Remora offers a well-structured programming paradigm that fits very
well with resource limitations of WSNs. Furthermore, the special attention to event han-
dling in Remora makes it more practical for WSN applications, which are inherently
event-driven. More importantly, the mutualism between Remora and underlying system
software promises a new direction towards separation of concerns in WSNs.

In the third part, we reconsider Remora in order to extend it with the capability
of compositional component reconfiguration and therefore meet the component-based re-
configuration requirement of WiSeKit. The dynamicity of Remora is achieved by the
principle of in-situ reconfigurability, referring to minimizing the overhead of component
reconfiguration through a set of in-situ updating guidelines. This is achieved within Re-

moWare, a run-time system leveraging on the concept of in-situ reconfigurability to allow
component-based reprogramming in WSNs. New binary update preparation, code dis-
tribution, run-time linking, dynamic memory allocation and loading, and system state
preservation are the main features supported by RemoWare.

The last contribution of this thesis is dedicated to providing a software framework for
WSNs that enables the development of distributed sensor services and their integration
with existing IT systems. This is achieved by extending Remora with an interaction
model inspired by the REST architectural style in order to facilitate interoperability of
sensor services with the Internet through Web service-enabled components. The provision
of such framework is very important in WiSeKit when processing context information
provided by heterogeneous nodes in the network.

To evaluate the different parts of the proposed framework, we always analyze our solu-
tions from two complementary perspectives. On one hand, we quantify the programming
effort in developing non-trivial reference test use-cases both using our solutions and with
mainstream programming tools. On the other hand, we explore the system performance
based on metrics such as network overhead, energy overhead, and resource usage.

Acknowledgments

Praise be to God, the most gracious and the most merciful. Without his blessing and
guidance my accomplishment would never have been possible.

I would like to acknowledge many people who helped me during the course of this
work. First, I wish to thank my PhD advisor Professor Frank Eliassen for giving me the
opportunity to be part of his research group and for providing me the right balance of
guidance and independence in my research. I am greatly indebted to his full support and
constant encouragement and advice both in technical and non-technical matters. I would
also like to thank my co-supervisor Professor Tor Skeie for his support and advice through
this research, especially during the first year.

My sincere appreciation is extended to Dr. Romain Rouvoy at INRIA-Lille, for his
encouragement, constructive suggestions and comments on my thesis work. During my
PhD studies, as well as four months visit at INRIA I had the great fortune and honor to
collaborate with his group on problems of common interests. Furthermore, I would like
to thank Dr. Frédéric Loiret from the same group for his very technical comments and
feedbacks during the last year of my study.

I extend my gratitude to my colleagues at Sonitor Technologies for their support and
cooperation over the past few months. I am also thankful to my former and current group-
mates: Dr. Mohsen Sharifi (my master’s thesis advisor), Dr. Rasool Jalili (my bachelor’s
thesis supervisor), Majid Alkaee Taleghan, Dr. Quan Le-Trung, and Hai Ngoc Pham.

Last, but certainly not the least, I would like to acknowledge the commitment, sacrifice
and support of my family, especially my parents and my wife Mahsa, who have always
motivated me. In reality this thesis is partly theirs too and eventually, I hope to have a
chance to return what they gave me.

Amirhosein Taherkordi
Oslo, September 9, 2011

v

Preface

This dissertation has been submitted to the Faculty of Mathematics and Natural Sci-
ences at the University of Oslo in partial fulfillment of the requirements for the degree of
Philosophiae Doctor (PhD). The studies were carried out over a period of three and half
years, from September 2007 to February 2011. The research was funded by the Research
Council of Norway through the project “Scalable Wireless Sensor Networks” (SWISNET),
grant number 176151. My supervisors have been Professor Frank Eliassen and Professor
Tor Skeie.

The SWISNET project was located at the Department of Informatics and initiated as a
research effort in order to investigate how to develop hierarchical, scalable and dynamically
reprogrammable WSNs, and evaluate the developed solutions through simulation studies
and experiments with real WSNs running the developed technology concepts.

The senior researchers involved in the project are Professor Frank Eliassen, Professor
Tor Skeie, Dr. Paal E. Engelstad and Dr. Quan Le-Trung. Eliassen has also been the
project leader. The project also financed two Dr. Scient. students, Hai Ngoc Pham
and Amirhosein Taherkordi. Pham focused on the networking issues in the SWISNET
project. In particular, his thesis addresses developing novel solutions for energy-efficient
networking in hierarchical WSNs to support multicast including node addressing schemes
and reliable delivery. The project has also attracted two external senior researchers, Dr.
Romain Rouvoy and Dr. Frédéric Loiret to receive their precious comments and feedbacks
on modeling, programming and reprogramming resource-constrained systems.

I spent the whole period of my PhD studies at the Department of Informatics, except
a four-month period in the middle of my studies for doing an internship under the super-
vision of Dr. Romain Rouvoy in the National Institute for Research in Computer Science
and Control (INRIA), Lille, France. The overall architecture presented in this thesis was
developed cooperatively by the researchers involved in the project.

vii

Contents

Abstract iii

Acknowledgments v

Preface vii

Abbreviations xx

I Overview 1

1 Introduction 3

1.1 Problem Statement and Thesis Motivation 4

1.2 Research Method . 7

1.3 Results and Implications . 8

1.3.1 Reference Motivation Scenario . 10

1.3.2 Engineering Self-Adaptive WSNs through Feedback Control Loops
(Chapter 7,8) . 11

1.3.3 Component-based Programming in WSNs (Chapter 9) 12

1.3.4 Component-based Reprogramming in WSNs (Chapter 10) 12

1.3.5 Sensor Service Distribution and Integration (Chapter 11,12) 12

1.4 Unaddressed Issues . 13

1.5 Structure of this Thesis . 13

2 Self-Adaptation in Embedded and Ubiqouitous Systems 15

2.1 Background . 15

2.2 Basic Concepts . 16

2.2.1 Self-* Properties . 16

2.2.2 Requirements . 17

2.2.3 Adaptation Policies . 18

2.3 Existing Adaptation Solutions . 19

ix

2.3.1 RoSES . 19

2.3.2 Robocop, Space4U and Trust4All . 20

2.3.3 CARISMA . 21

2.3.4 MADAM . 21

2.3.5 MUSIC . 22

2.3.6 Agilla . 23

2.4 Discussion . 24

3 Programming Wireless Sensor Networks 25

3.1 Background . 25

3.2 Requirements . 26

3.3 Taxonomy of Programming Models . 27

3.3.1 Agent-oriented . 27

3.3.2 Component-based Programming . 28

3.3.3 Event-driven Programming . 30

3.3.4 Imperative . 30

3.3.5 Functional Programming . 32

3.3.6 Object-oriented Programming . 33

3.3.7 Set-based Programming . 33

3.4 Discussion . 33

4 Sensor Network Reprogramming 35

4.1 Background . 35

4.2 Reprogramming Challenges . 36

4.3 WSN Reprogramming Models . 38

4.3.1 Full Software Image Upgrades . 38

4.3.2 Modular Upgrades . 39

4.3.3 Component-based Reconfiguration 39

4.3.4 Virtual Machines . 40

4.3.5 Reconfiguration Middleware . 41

4.4 Discussion . 41

5 Sensor Service Distribution 43

5.1 Background . 43

5.2 Distributed Callback Functions . 44

5.2.1 Active Message . 44

5.2.2 Chameleon Communication Model 45

5.3 RPC-type Invocation . 45

5.3.1 OpenCom . 46

5.3.2 TinyRPC . 46

5.4 Web Service Oriented Approach . 46

5.4.1 SOCRADES . 47

5.4.2 Tiny Web Services . 47

5.5 RESTful Integration . 48

5.5.1 TinyREST . 49

5.5.2 RESThing . 49

5.6 UPnP . 50

5.6.1 A UPnP-based SOA for WSNs . 50

5.7 Discussion . 51

6 Conclusions and Future Work 53

6.1 Major Contributions . 53

6.2 Future Work . 55

References 57

II Research Papers 67

7 A Self-Adaptive Context Processing Framework for Wireless Sensor Net-
works 69

7.1 Introduction . 70

7.2 Motivating Scenario . 71

7.3 Concepts Of A Context Middleware . 72

7.3.1 Architecture of a Context Node . 73

7.3.2 Composition of Context Nodes . 74

7.4 Implementation Of A Context Middleware 76

7.5 Sample Scenario Execution . 77

7.6 Related Work . 79

7.7 Conclusions And Future Work . 80

References . 81

8 WiSeKit: A Distributed Middleware to Support Application-level Adap-
tation in Sensor Networks 83

8.1 Introduction . 84

8.2 Motivating Application Scenario . 85

8.3 Basic Design Concepts . 86

8.4 WiSeKit Adaptation Middleware . 87

8.4.1 Sensor Side . 88

8.4.2 Cluster Head Side . 91

8.4.3 Sink Side . 92

8.5 Preliminary Evaluation . 93

8.6 Related Work . 95

8.7 Conclusions and Future Work . 96

References . 96

9 A Generic Component-based Approach for Programming, Composing
and Tuning Sensor Software 99

9.1 Introduction . 100

9.2 Remora Component Model . 103

9.2.1 Component Specification . 104

9.2.2 Component Instantiation . 107

9.2.3 Event Management . 108

9.2.4 Components Assembly and Deployment 111

9.2.5 Middleware Programming . 112

9.2.6 Automatic Tuning . 114

9.3 Implementation . 115

9.3.1 Remora Engine . 115

9.3.2 REMORA Framework . 118

9.3.3 REMORA Runtime . 119

9.4 Evaluation . 120

9.4.1 A Real Remora-based Deployment 120

9.4.2 Memory Footprint . 123

9.4.3 CPU Usage . 124

9.5 Existing Approaches . 126

9.6 Discussion: Extension Opportunities . 129

9.7 Conclusions . 130

References . 130

10 Optimizing Sensor Network Reprogramming via In-situ Reconfigurable Com-
ponents 135

10.1 Introduction . 136

10.2 Problem Statement and Motivation . 137

10.3 Overview of the Contribution . 140

10.4 The Remora Programming Model . 141

10.5 The RemoWare Reconfiguration Middleware 143

10.5.1 In-situ Reconfigurability . 143

10.5.2 Neighbor-aware Binding . 145

10.5.3 Component Addition and Removal 147

10.5.4 In-situ Program Memory Allocation 148

10.5.5 Retention of Component State . 149

10.5.6 Code Updates Management . 150

10.5.7 Non-functional Features . 151

10.6 Implementation and Evaluation . 152

10.6.1 Overall Implementation Scheme . 153

10.6.2 New Code Packaging . 154

10.6.3 Code Repository . 155

10.6.4 Component Linking . 156

10.6.5 Component Loading . 159

10.6.6 Putting It All Together . 161

10.6.7 Reinvestigation of Results . 164

10.6.8 RemoWare Beyond the State-of-the-art? 166

10.7 Related Work . 168

10.8 Conclusions and Future Work . 169

References . 170

11 A Component-based Approach for Service Distribution in Sensor Net-
works 175

11.1 Introduction . 176

11.2 Related Work . 177

11.3 Programming Model . 178

11.3.1 REMORA in a Nutshell . 179

11.4 Component-Based Service Distribution . 180

11.4.1 Basic Concepts . 181

11.4.2 REMORA Web Services . 182

11.4.3 A Concrete Use Case . 184

11.5 Implementation . 185

11.6 Preliminary Evaluation . 186

11.7 Conclusions and Future Work . 188

References . 188

12 The DigiHome Service-Oriented Platform 191

12.1 Introduction . 192

12.2 Motivating Scenario . 193

12.2.1 Key Challenges . 194

12.3 Background . 195

12.3.1 Service Component Architecture (SCA) Model 195

12.3.2 The FRASCATI platform . 196

12.3.3 Complex Event Processing . 196

12.4 The DigiHome Service-Oriented Platform 197

12.4.1 DigiHome Core . 197

12.4.2 DigiHome Objects . 199

12.4.3 CEP Engine . 199

12.4.4 Support for Wireless Sensor Networks 200

12.5 Empirical Validation . 201

12.5.1 Implementation Details . 201
12.5.2 Discovery and Communication Overhead 201

Test Bed Configuration . 201
Evaluation Results . 202

12.5.3 Event Processing Overhead . 202
12.6 Related Work . 203

12.6.1 Smart Home Solutions . 203
12.6.2 Context Dissemination . 204
12.6.3 Complex Event Processing . 205
12.6.4 Wireless Sensor Networks . 205

12.7 Conclusions and Future Work . 206
References . 207

List of Figures

1.1 Activities of the feedback control loop. 9

1.2 A general overview of the results of this thesis. 10

2.1 The generic architecture of RoSES framework. 20

2.2 MADAM’s approach to adaptation in mobile environments. 22

2.3 Architecture of the MUSIC adaptation platform. 23

2.4 The Agilla model to address self-adaptation in WSNs. 24

3.1 An ATaG program for environment monitoring. 32

4.1 Trade-off between flexibility and update cost in WSN reprogramming models. 37

5.1 Architecture of RESThing framework. 49

7.1 Description of the home monitoring system. 72

7.2 Architecture of a context management framework. 73

7.3 Architecture of a context node. 74

7.4 Context model of the monitoring system. 75

7.5 Mapping of the context model to the context components. 77

7.6 Context components composition for home monitoring. 78

8.1 Description of the home monitoring system. 86

8.2 WiSeKit in the hierarchical WSN architecture. 89

8.3 A sample component configuration for an adaptive home application. 89

8.4 WiSeKit services in the sensor node. 90

8.5 WiSeKit in the cluster head. 92

8.6 Sample configuration. 94

8.7 Number of saved communications for a sample home monitoring scenario. . 95

9.1 Development process of Remora-based applications. 104

9.2 The XML template for describing Remora components. 104

9.3 A simple Remora-based application. 105

9.4 XML description of Blink component. 105

xv

9.5 C-like implementation of Blink component. 106

9.6 A simplified description of ILeds interface. 106

9.7 Application events description. 110

9.8 Event management mechanism in Remora. 111

9.9 Blink application configuration. 112

9.10 Remora-based development process. 112

9.11 The overall architecture for composing the main application and ACMs. . . 114

9.12 The Remora engine tunes the operating system by tracing component de-
pendencies and finding orphan components. 114

9.13 Using depth-first search algorithm to discover the orphan nodes. 117

9.14 Remora event processing mechanism. 119

9.15 Integration of Contiki and Remora through the runtime layer. 120

9.16 Code propagation application architecture. 121

9.17 CPU usage for receiving new code by propagator application in Remora

and Contiki. 123

9.18 The Remora-based implementation does not impose additional CPU over-
head compared to the Contiki-based implementation. 126

9.19 As the number of producer components in the queue is increased, the number
of context switches is significantly decreased. 127

10.1 Remote maintenance of WSN-based home monitoring applications. 139

10.2 Overview of the RemoWare reconfiguration middleware. 140

10.3 A typical Remora component. 141

10.4 The XML template for describing Remora components. 142

10.5 Development process of Remora-based applications. 143

10.6 A close-up of a multiple-instances Remora component. 144

10.7 Different types of neighbor-aware binding between Remora components. . 145

10.8 Event processing scheme in Remora. 147

10.9 Simplified description of RuleAnalyzer component in home monitoring application.149

10.10The overall architecture of code repository and distribution server. 152

10.11RemoWare configuration within the code propagator. 154

10.12RemoWare configuration within nodes embedded in the environment. . . . 154

10.13An excerpt of the IRemoWareAPI interface. 155

10.14Energy cost for storing the Leds component (904 bytes) on the external
memory with respect to the chunk size. 157

10.15Repository-related energy cost for resolving dynamic links and dynamic in-
vocations within a component. 157

10.16Binary code of a reconfigurable component before and after dynamic linking. 157

10.17Steps required to resolve invocations to reconfigurable components. 158

10.18The energy requirement of dynamic linking. G(x): number of global static
functions, L(x): number of static function calls within the component. . . . 159

10.19Comparison between the CPU overhead of dynamic invocation and equiva-
lent static invocation. 159

10.20Behavior of the in-situ memory allocation model. 161
10.21Memory allocation increase vs. average component size given that the size

of deployed software is: a) 38 KB, b) 40 KB, and c) 42 KB. 162

11.1 The XML template for describing Remora components. 180
11.2 Development process of Remora applications. 180
11.3 Architecture of the Remora distribution model. 182
11.4 RESTful service identification in Remora. 184
11.5 Mapping the REST verbs to equivalent Remora operations and identifying

content types. 185
11.6 Overall implementation architecture of Remora Web services. 186
11.7 An excerpt of the REST Wrapper API. 187

12.1 Interactions between the smart home devices. 194
12.2 Description of the DigiHome architecture. 198

List of Tables

3.1 Evaluation of programming paradigms for WSNs. 34

9.1 The memory requirement of code propagation application in Remora-based
and Contiki-based implementations. 122

9.2 Line of code for our main components. 123
9.3 The minimum memory requirement of Remora. 124
9.4 The memory requirement of different entities in Remora. 125
9.5 Overview of existing component-based approaches to WSN programming. . 128

10.1 A comparison between full-image update and modular update by measuring
the approximate energy required to update a 1 KB module using each of
these methods. The full software image is roughly 34 KB, composing of
Contiki (24 KB) and application code (10 KB). 139

10.2 The overhead of the CELF and SELF file formats in terms of bytes and
estimated reception energy for four Remora components. 156

10.3 Energy overhead of loading Leds component. 160
10.4 Minimum memory requirement of RemoWare. 163
10.5 Dynamic memory overhead of RemoWare. 163
10.6 Total energy overhead of reconfiguring four components with different sizes. 164
10.7 Indirect program memory requirements for three sample OS modules when

developed as dynamic Remora components. 165
10.8 Overview of existing component-based approaches to WSN reconfiguration. 167
10.9 A comparison between the processing and memory overheads of SOS and

RemoWare for different calling types. 167

11.1 The fixed memory requirement of Remora Web services framework. 187

12.1 Performance of the DigiHome Platform. 203

xix

Abbreviations

WSNs Wireless Sensor Networks
QoS Quality of Service
REST Representational State Transfer
SOA Service Oriented Architectures
FCL Feedback Control Loop
TCP Transmission Control Protocol
HTTP Hypertext Transfer Protocol
RPC Remote Procedure Call
SOAP Simple Object Access Protocol
WSDL Web Services Description Language
UPnP Universal Plug and Play
SCA Service Component Architecture
ELF Executable and Linkable Format
CBSE Component-Based Software Engineering
JVM Java Virtual Machine
RFID Radio-Frequency IDentification
RMI Remote Method Invocation
OS Operating System
IDL Interface Definition Language
URI Uniform Resource Identifier
HVAC Heating, Ventilation, and Air Conditioning
JSON JavaScript Object Notation

Part I

Overview

1

Chapter 1

Introduction

Advances in wireless communications and miniaturization of hardware components have
enabled the development of low-cost, low-power and multifunctional sensor nodes. These
devices are small in size and communicate in short distances over a radio frequency channel.
These tiny nodes, which consist of sensing, data processing and communicating compo-
nents, realize the objectives of sensor networks. The concept of Wireless Sensor Networks
(WSNs) was originally proposed in an article in 1999 about “smart dust”—computers that
can be sprayed on the wall, deployed anywhere throughout the environment, and collab-
orate to solve big problems [1]. Later on, WSNs found their way into a wide variety of
applications with vastly varying requirements and characteristics. According to a widely-
accepted definition, a WSN is composed of a large number of integrated sensor nodes
that are densely deployed either inside a phenomenon or very close to it, and collaborate
through a wireless network in collecting environmental information or reacting to specific
events [2, 3, 4].

Since the main mission of WSNs is to bridge the gap between the physical world and
the virtual world, applications for these types of networks are often characterized by close
coupling between the physical and computing disciplines. WSNs have been developed
for a wide range of applications such as habitat monitoring, object tracking, precision
agriculture, building monitoring, military systems, healthcare, etc. [5, 6, 7, 8, 9, 10, 11]
Whereas the earlier WSN applications were limited to a single function called “sense and
send” with trivial local data processing tasks, the new emerging applications for WSNs are
gradually moving towards ubiquitous computing environments, where sensor nodes tightly
interact with actuators and behave based on the information surrounding them [4, 12, 13].

WSNs differ from conventional distributed systems in many aspects. Resource scarce-
ness is the primary concern which should be carefully taken into account when designing
software systems for WSNs. Sensor nodes are often equipped with a limited and nonre-
newable energy source and a processing unit with a small memory capacity. Additionally,
the network bandwidth is much lower than for wired communications and radio operations
are relatively expensive compared to pure computation. The sensor nodes and network

3

Introduction

are less reliable than in common network systems: depending upon the configuration of
network and environment circumstances, wireless links may become degraded or unviable.
These factors make the design of WSN applications very special and different from other
networking technologies.

Among the major challenges in the development of WSNs, a primary one is program-
ming abstractions for developing sensor software at different levels, ranging from drivers and
operating systems, to network protocols, middleware services, and applications. Whereas
the first two levels are characterized by close coupling between software code and hard-
ware modules, the other upper layers are assumed to be programmed in some high-level
programming models which may be different from those used for the first group. There
have been several approaches to either address programming at a particular sensor soft-
ware level, or provide a generic model that can be exploited to develop both low-level and
high-level software functionalities [14].

A fundamental challenge in developing programming abstractions for WSNs is the
careful consideration of inherent constraints in such platforms. These constraints include
type of sensor applications (e.g., real-time, mobile and database), scope of programming
(node-level, group-level and network-level), and programming paradigms (e.g., functional,
imperative and event-driven). Indeed, the application type is the primary factor highly
influencing the model of programming for WSNs. Beyond the detailed classifications pre-
sented in the literature for WSN application types, two general types have been envisaged,
namely static applications and dynamic applications [15, 16]. In the static type, all appli-
cation requirements are identified before developing and deploying the software on sensor
nodes. In other words, the expected features from the sensor software never change during
the lifespan of static applications, while in dynamic use cases WSNs deal with dynamic
requirements and unpredictable future events and behave based on the context information
surrounding them. Therefore, programming abstractions proposed for such environments
should be enhanced with mechanisms that enable dynamic changes and modifications of
the sensor software.

Principally, sensor software that is able to evolve during its life-time is referred to as
adaptive and reconfigurable sensor software. Dynamic updating of sensor software can
be applied to different levels of software abstractions, from operating system modules
to application services. Bringing adaptivity to WSNs poses several major challenges to
the development of applications in these types of networks. Programming models, code
distribution, context information processing, adaptation reasoning, and reconfiguration
mechanisms are the main challenges in this area. The existing resource limitations, as well
as unreliability of wireless communications make addressing these issues quite difficult.

1.1 Problem Statement and Thesis Motivation

In many current WSN applications the nodes of the network are deployed in large number
and inaccessible places for long periods of time. This introduces two main requirements in

4

Problem Statement and Thesis Motivation

terms of sensor software maintenance: i) in order to maintain long-lived WSN applications,
we may need to remotely patch or upgrade software deployed on sensor nodes through the
wireless network, and ii) a deployed WSN may encounter sporadic faults that were not
observable prior to deployment, requiring a mechanism to detect failures and to remotely
repair faulty code [17, 18]. The second part of the problem is related to the emerging WSN
applications which deal with context-aware and ubiquitous environments. A sensor appli-
cation, in such environments, should observe various types of ambient context elements,
process them, and seamlessly adapt to the new conditions by reconfiguring the software
functionalities [19, 20]. Additionally, in such heterogeneous applications, the sensor needs
may require to communicate with different computing devices, thereby, the requirements
from network configurations and protocols may change along the application lifespan [21].
Manually and physically updating of sensor software is not a feasible way to address the
above concerns due to the scale and the embedded nature of the deployment environment,
in particular when sensor nodes are difficult to reach physically. The problem statement
of this thesis therefore is:

The existing limitations in WSNs such as sensor resources and network band-
width make dynamic software updates on sensor nodes quite difficult to address.
The main question is that how to enable remote update and reconfiguration of
sensor software in an efficient way with respect to the WSN restrictions and
various applications’ requirements.

The main goal of this thesis is to answer to the above question from WSN programming
perspective in the context of SWISNET project. The state-of-the-art in this area is focused
on low level reconfiguration issues and lacks a general framework supporting all essential
aspects of application adaptation in sensor networks, including context-awareness, adap-
tation reasoning, and software reconfiguration. Whereas the first two issues have not been
considered adequately, the third issue has drawn a considerable attention from the WSN
researcher community [15, 16, 22, 21, 23, 24, 25, 26]. However, the early reconfiguration
and reprogramming approaches were basically focused on reconfiguring the whole sensor
software image [27] and the recent modular reconfiguration models [15, 16, 28] suffer from
different drawbacks such as high resource usage and limitations in the range of use. To
address the thesis question, we need to investigate the problem from different dimensions
and explain how this thesis contributes to this research area of WSNs. A more precise
consideration to the problem results in the following two questions:

1. How to design an adaptation framework specialized for WSNs?

We define adaptation framework as changing the application behavior in a WSN sys-
tem according to changes in surrounding context such as end-user needs, sensor re-
sources and application logic. Therefore, the question is that what is the most efficient
adaptation model for WSNs so that it can observe context information, reason on re-
quired adaptations, and implement the needed software reconfigurations. In addition

5

Introduction

to adapting software behavior, the model should feature a resource-efficient technique
to enable direct software updates for purposes such as fixing bugs and patching sensor
software. As mentioned above, the existing approaches to WSN adaptation mostly
focus on the reconfiguration issue and do not address the whole lifecycle of adaptive
sensor applications. For instance, research on context information observation treats
sensor nodes as context data collectors, rather than considering them as adaptable
devices possessing their own contextual parameters [29, 30].

2. How to abstract the software adaptation framework from other parts of the system
(i.e., application and system software) in WSNs?

This question refers to the capability of proposing the software update mechanism as
a well-described framework that can be plugged and integrated to the different types
of software modules installed on sensor nodes, including low-level operating system
modules and high-level application-specific services.

Among the challenges posed by these questions, programming models for WSNs and
the associated software reconfiguration/reprogramming mechanisms are two fundamental
issues that highly affect the efficiency of an adaptation framework for WSNs. These raise
two new questions in this area, including:

3. What is the appropriate sensor programming abstraction that meets the reprogram-
ming requirements in WSNs?

Many programming paradigms have been proposed to develop static WSN applica-
tions. However, to support dynamic updates we need a modular programming model
that provides the primitives required to identify the portion of software that needs
to be updated, without affecting the other parts of the sensor software. Addition-
ally, the generality of programming model—the possibility of using it across different
hardware platforms and operating systems—is also an important issue as reconfigu-
ration is essentially posed for ubiquitous sensor applications hosting different types
of hardware and software products. The existing programming models that support
dynamic modular updates suffer from different kinds of constraints such as high re-
source demands [28, 31] on sensor nodes, and lack of fine-grained reconfiguration [16].

4. How to efficiently delimit and reprogram only the necessary portion of sensor soft-
ware?

Ideally, a reprogramming model should be able to minimize the amount of rewriting
in order to reduce the node-level and network level overheads. The latter refers to the
energy required to transmit and receive a new update between sensor nodes, while
the former concerns with the processing effort required to successfully reprogram a
portion of sensor software and load the new code. Obviously, network-level overhead
can be significantly mitigated by reducing the size of new code distributed across

6

Research Method

the network as wireless data transmission is the dominant energy consumer in sensor
platforms.

5. How to distribute code updates across the network?

One of the primary requirements of any dynamically updatable WSNs is the mech-
anism by which the new code is distributed from a sink node, connected to a code
repository machine, to other sensor nodes in a multi-hop network. The mechanism
to select the sensor nodes targeted for updates, as well as the algorithm to propagate
new code is a challenging issue.

Finally, the scope of our adaptation operation is not limited to only the sensor nodes in
a homogeneous setting. Rather, it exceeds to the boundaries of variant computing devices
in ubiquitous environments. Therefore, the last question of this thesis is:

6. How to collect context information in heterogeneous WSN applications?

In heterogeneous settings, a mechanism to integrate sensor nodes with other hetero-
geneous entities becomes very essential. Specially, the context-processing part of the
adaptation middleware needs this feature to be able to collect heterogeneous context
information. Thus, to practically use the adaptation services, we need a distribution
and integration middleware that provides a lightweight and yet general interaction
model to connect sensor nodes to co-existing computing devices and network sys-
tems. Although there have been some valuable efforts to distribute sensor services
and integrate them with common networks [32, 33, 34, 35], the state-of-the-art mostly
focuses on low-level APIs and fails to provide a unified distribution abstraction re-
lieving the programmer from dealing with the tedious and error-prone distribution
tasks in WSNs.

1.2 Research Method

Generally, there are three major paradigms for the discipline of computing, including the-
ory, abstraction, and design [36]. “modeling” and “experimentation” are two other sub-
stitutes for abstraction, however “abstraction” is more common for this paradigm in the
discipline. Each of these paradigms is an iterative process consisting of four stages.

The first paradigm, theory, is rooted in mathematics. To development a coherent, valid
theory the following four steps should be followed: i) definition: characterizing and defining
objects of study, ii) theorem: hypothesizing possible relationships among obtained objects,
iii) proof: determining whether the relationships are true; iv) interpreting results.

The second paradigm, abstraction, is rooted in the experimental scientific method and
consists of four steps that are followed in the investigation of a phenomenon: i) forming a
hypothesis, ii) constructing a model and making a prediction, iii) designing an experiment
and collecting data, and iv) analyzing results.

7

Introduction

The third paradigm, design, is rooted in engineering and consists of four steps that
are followed in the construction of a system to tackle a given problem: i) identifying
requirements, ii) stating specifications, iii) designing and implementing the system, and
iv) testing the developed system.

Based on the identified research topics and goals, we adopt the design paradigm for the
work presented in this thesis. We have first analyzed the requirements of the adaptation
framework in the context of WSNs. To do so, we have carried out a systematic and
exhaustive literature review on the dynamic aspects of WSN applications, then formulated
the requirements of the system based on the main goals of the SWISNET project, the
drawbacks of existing solutions, and future trends in the field of WSN adaptation.

At the second step, we have investigated the state-of-the-art in adaptation engineer-
ing and also adaptation management in other conventional network platforms. Then, we
have proposed a set of specifications and criteria, such as system architecture, appropriate
adaptation techniques for WSNs, programming models, and adaptation’s core modules, to
provide the prerequisites for developing the adaptation framework.

This step is dedicated to design the logical and physical models for each main part
of system, including context management, adaptation framework, programming model,
reprogramming model, and distribution framework. Afterwards, a real prototype (based
on third-party HW components) has been built to demonstrate the developed solutions
in the project. The results have also been compared to state-of-the-art solutions, and
developed prototypes have integrated the acquired and accumulated knowledge.

Finally, we have tested and evaluated the prototypes in terms of technical feasibility,
strengths, ease of use, resource efficiency, and network overheads, on our reference real
hardware platform. Testing and evaluating on real sensor platforms is very important since
the popular simulators and emulators are not mature enough to assess the programming
proposals for WSNs and most of valuable and referable research efforts in this area are
indeed developed based on a real prototype and even concrete application scenarios.

During the project period, research papers have been peer-reviewed by experts in the
field. Presentations of the research results at international conferences and journals have
also provided relevant feedback and opportunities for improving our proposals and exchang-
ing ideas with other researchers. As part of our research result, the developed software
modules have been made available as open source [37] in order to allow other researchers
to repeat experiments and validate our results.

1.3 Results and Implications

The main contributions presented in this thesis have been published in a number of research
papers [19, 38, 39, 40, 41] in relevant international workshops, conferences and journals.
The concept that underpins our contributions throughout the thesis is the principles of
Feedback Control Loop (FCL), as shown in Figure 1.1.

8

Results and Implications

�

�

�

Figure 1.1: Activities of the feedback control loop.

FCLs have been recognized as important factors in software process management, soft-
ware maintenance, and software evolution. A FCL typically involves four key activities:
collect, analyze, decide and act [42]. The feedback cycle starts with the collection of rele-
vant data from sensor nodes and other sources that reflect the current state of the system.
Next, the system analyzes the collected data. Afterwards, a decision must be made about
how to adapt the current system in order to reach a desirable state. Finally, to act against
the decision, the sensor software must be reconfigured based on some reconfiguration mech-
anism.

The main results of this thesis are illustrated in Figure 1.2, where the software on a given
sensor node is configured and communicate with other computing devices according to our
adaptation and distribution solutions. The first set of results, represented as Adaptation

Middleware, is aimed at addressing the basic adaptation requirements discussed in Question
1, Question 2 and Question 4 of the problem statement. In fact, these implement the main
activities of FCL, including context monitoring and analyzing (Context Processor), adap-
tation reasoning (Adaptation Reasoner), and software reconfiguration (Reconfigurator). To
implement this adaptation middleware, we need to answer Question 3 in the problem state-
ment, referring to a programming model well-suited for adaptive WSN applications. This
leads to the second result in Figure 1.2, where we propose a component-based Programming

Model for static and dynamic WSN applications. Finally, the adaptation middleware is
integrated to heterogeneous environments by the third set of results addressing a unified
Distribution Model for WSNs.

It should be noted that the key results of this thesis along with extensive evaluation
experiments are dedicated to the fundamental challenges—programming model, reconfig-
uration model, and distribution model. However, the results reported for context manage-

9

Introduction

���������	
��������

���������	

����	��

��	����

�������

��������
����	���������

��� ����������	
��������
���������	�

�����

����������	

�����

������	�
�����

�	��� �������

Figure 1.2: A general overview of the results of this thesis.

ment and adaptation reasoning are mainly focused on design models and the corresponding
evaluation results are preliminary. It should be also stressed that the usefulness of results
achieved by this thesis is not limited to a particular WSN application domain. On the con-
trary, we believe that the presented results are useful in most of WSN platforms requiring
dynamic reconfiguration of sensor software.

In the rest of this section, we give a brief description of main contributions in this
thesis, while the corresponding details are available in the mentioned published papers.

1.3.1 Reference Motivation Scenario

There are many different types of WSN applications that need to be dynamically adapted
and maintained. As mentioned before, large-scale sensor applications as well as context-
aware environments are in general subject to dynamic updates. This thesis focuses on home
monitoring systems [43, 44]. The recent home surveillance systems are shifting from ex-
pensive cable-based infrastructures to easily deployable wireless systems, including WSNs.
Sensor nodes in such environments can observe various types of ambient context elements
such as temperature, smoke, occupancy, and also health conditions of inhabitant. Dynam-
icity in home monitoring scenarios is considered from two different perspectives. Firstly,
such applications are characterized as long-lived applications, which may be deployed in
a large number of dwellings by a vendor. To easily maintain (fixing bugs, patching secu-
rity holes, and upgrading system and application software) the deployed sensor software
in each home, the solution vender needs a central reconfiguration tools through which all
monitored homes can be remotely maintained, instead of imposing the cost of physical
maintenance to owners. Secondly, a wide range of sensors and actuators are needed in
home systems to implement heating, ventilation, and air conditioning (HVAC) control.
Since different sensor nodes are likely to run different application code and interact with

10

Results and Implications

actuators, software reconfiguration may be needed to satisfy the dynamic requirements of
owners.

1.3.2 Engineering Self-Adaptive WSNs through Feedback Control Loops
(Chapter 7,8)

This thesis demonstrates that FCL is well suited for the domain of dynamic WSN applica-
tions, as argued in [19, 38]. To this end, we present a novel distributed middleware system,
called WiSeKit, for addressing the dynamicity of WSN applications. WiSeKit’s architec-
ture reflects the main activities of FCL, including context-awareness (collect), adaptation
reasoning (analyze and decide), and software reconfiguration (act).

To address the first and second activities, we propose a context management framework
in the middleware layer of WSNs to process context information and provide the necessary
analyzed data for adaptation and reconfiguration. This framework is inspired partially
from the COSMOS framework—a comprehensive model for processing context information
in ubiquitous computing environments [29]. In the proposed model, each piece of context
information is defined as a context node. Context nodes can be considered as virtual sensor
nodes that are distributed over the physical sensor nodes in the network with respect to
the type of information provided by the context node and its role in the context model.
The context processing framework consists of two main parts: i) a context information
processing architecture for modeling the sensor context elements and their interactions, and
ii) a middleware framework for executing the context model. To implement the context
model, context nodes are mapped to the software components proposed specifically for
context data processing in WSN applications.

The adaptation decision logic of WiSeKit is also inspired from the hierarchical ar-
chitecture of typical WSNs. WiSeKit proposes three observation levels for adaptation
reasoning: local, intermediate and remote. This is in accordance with the typical organiza-
tion of nodes in sensor networks. In the lowest level nodes attempt to perform reasoning
(local) on their own. At one higher level, cluster head (a more powerful node that transmits
an aggregated sensor data to the distant base station) decides on an adaptation based on
the data received from sensor nodes in its own cluster. Finally, the sink node, governing
the whole sensor network, takes the action of reasoning concerned with the whole sensor
network. At the last stage, WiSeKit addresses the software reconfiguration (act) through
a component-oriented approach. It identifies two adaptation scopes to handle reconfigu-
ration requests: parameter adaptation and component adaptation. Parameter adaptation
supports fine tuning of applications through the modification of application variables and
deployment parameters, while the latter allows the modification of service implementation
(replacement of component), adding new components, and removing running components.
WiSeKit is designed as a general adaptation solution for WSNs so that it can be used in
a wide range of sensor applications, regardless of their domain. As mentioned before, these
results reflect the overall design of our adaptation framework with preliminary evaluation,

11

Introduction

while the rest of this section presents the key results.

1.3.3 Component-based Programming in WSNs (Chapter 9)

To meet the requirements of component-based reconfiguration within WiSeKit, we first
propose a novel component-based programming for WSNs, then implement the reconfig-
uration goals over this component model. Our component model, called Remora, is a
lightweight and event-driven component model designed for resource-constraint embedded
systems, including WSNs. The philosophy behind Remora design is to: i) allow a wide
range of embedded systems to exploit it at different software levels from operating system
to application, and ii) to reify the concept of event as a first-class architectural element
simplifying the development of event-oriented scenarios. The latter is one of the key fea-
tures of Remora as a programming model for sensor networks that is expected to support
exhaustively event-driven design. Reducing software development effort is the other ob-
jective of Remora. Remora components are described in XML as an extension of the
Service Component Architecture (SCA) model [45] in order to make WSN applications
compliant with the state-of-the-art componentization standards. It also features a C-like
language to implement Remora components, attracting both embedded system program-
mers and PC-based developers to programming for WSNs. Remora has been successfully
implemented and evaluated on the Contiki operating system [46].

1.3.4 Component-based Reprogramming in WSNs (Chapter 10)

To address component-based reconfiguration in WSNs, we reconsider the Remora compo-
nent model in order to extend it with the capability of compositional component reconfigu-
ration. The dynamicity of Remora is achieved by the principle of in-situ reconfigurability,
which refers to minimizing the overhead of component reconfiguration through a set of
in-situ updating guidelines. The run-time system that implements in-situ reconfigura-
tion model is a middleware framework, called RemoWare. In particular, RemoWare

supports the main features of our reconfiguration model, including new binary update
preparation, wireless code propagation, run-time linking, dynamic memory allocation and
loading, and component state retention. The middleware itself has been developed by the
Remora component model on Contiki and the evaluation results show that RemoWare

imposes a very low energy overhead in code distribution and component reconfiguration,
and consumes approximately 6% of the total code memory on a TelosB sensor platform.

1.3.5 Sensor Service Distribution and Integration (Chapter 11,12)

The last contribution of this thesis is dedicated to providing a software framework for
WSNs that enables programmers to develop distributed sensor services and integrate them
with other conventional network systems at a high-level programming abstraction. In do-
ing so, we leverage the concepts of component-based programming to design, describe and

12

Unaddressed Issues

implement distributed and interoperable WSN services. In particular, we reconsider the
Remora component model to extend it with the capability of distributing a component’s
services across the network. We also propose the integration of above component-based
solution to a uniform interaction model in order to facilitate interoperability of sensor ser-
vices with the Internet through Web service-enabled components. This interaction model
is inspired by REST—an architectural style for distributed systems emphasizing scalability
of component interactions, generality of interfaces, and independent deployment of com-
ponents [47]. As mentioned before, the provision of such framework can be significantly
useful in processing context information provided by heterogeneous nodes in the network.

1.4 Unaddressed Issues

Although this thesis attempts to address the main challenges identified earlier in this
chapter, there are still some issues that are not considered or adequately addressed.

Concerning the questions posed from the problem statement, code distribution models
(Question 5) are not investigated in detail as this issue has been extensively investigated
by the WSN research community [27, 48, 49, 50]. However, prior to formulating a relevant
code distribution model for a certain use-case, we need to establish a code propagation
substructure that is designed specially for efficient distribution of code chunks to all or a
subset of the sensor nodes. The thesis will contribute to this part of the problem.

Additionally, the implications of the research with respect to the privacy and security
issues have not been considered. For example, in a military application, the sensor software
may function improperly and insecurely when it is updated with unauthorized code sent
by unknown users.

1.5 Structure of this Thesis

This thesis consists of an introductory part and six research papers. The role of the
introductory part in a thesis based on a collection of papers is to provide a framework in
which the work presented in the papers appears as parts of a whole.

The introductory part of this thesis is structured as follows. First, Chapter 2, 3, 4
and 5 describe related work within the four main areas addressed in this thesis, i.e., self-
adaptation in WSNs, programming paradigms for WSNs, sensor software reprogramming,
and sensor service distribution. At the end of each of these four chapters we discuss some
open issues which have been addressed by the work presented herein. Finally, in the
concluding Chapter 6 we summarize the thesis, provide some critical remarks, and present
some ideas and opportunities for further work.

Part II of the thesis contains the research papers. The papers appear according to the
order of the results discussed in previous section, but depending on the familiarity with the
different topics the reader may choose a different reading order. The reader is encouraged

13

Introduction

to read the whole of Part I, which puts the papers into perspective.

14

Chapter 2

Self-Adaptation in Embedded and
Ubiqouitous Systems

Growth in the usage of sensor nodes in ubiquitous computing environments, in the dy-
namism of the environments they operate in, and the need for timely adaptations as en-
vironmental conditions change, arise significant challenges for manual reconfiguration of
sensor behavior. Therefore, there is increasing interest in adaptive WSNs that sense rel-
evant contextual conditions and adapt automatically as they change. In this chapter, we
first discuss the basic concepts of self-adaptive software systems and then study the state-
of-the-art models proposed to incorporate adaptation to embedded and sensor systems in
ubiquitous settings.

2.1 Background

The complexity of existing software development technologies and uncertainty in software
systems have led the software engineering community to consider inspiration in diverse
related fields, such as artificial intelligence, control theory, and robotics, in order to address
design and management of software systems [51]. One of the most promising research topics
in this area has been the capability to accommodate software system’s behaviors in the
form of self-adaptation—systems that are able to adjust their behavior in response to
their perception of the environment and the system itself. The “self” prefix indicates that
software systems decide autonomously how to adapt in their contexts and environments,
without or with minimal human interference. While some self-adaptive systems may be able
to run without any human intervention, feeding adaptation frameworks with information
about higher-level objectives is useful in many dynamic systems.

The concept of self-adaptivity applies to the research in several application areas and
technologies such as autonomic computing, dependable computing, embedded systems,
mobile networks, multi-agent systems, peer-to-peer applications, sensor networks, service-

15

Self-Adaptation in Embedded and Ubiqouitous Systems

oriented architectures, and ubiquitous computing. The proper realization of the self-
adaptation functionality is a significant challenge and it is very important to take into
the consideration all characteristics and limitations of the target computing platform when
studying self-adaptation.

The emergence of highly distributed embedded systems, which are often long-lived, has
made it highly infeasible to manually manage and control software systems installed on
such systems. For instance, embedded systems play an important role in many mission-
critical applications such as NASA Apollo mission. Many embedded systems either lack
the interfaces to enable software upgrade, or their missions inherently require autonomous
adaptivity as the latency induced by the communications makes human intervention not
applicable [52]. There are growing interests in self-adaptive software for embedded appli-
cation areas such as automotive systems, smart phones, and sensor and actuator networks.
Despite of its benefits, developing self-adaptive embedded software turns out to be quite
difficult. Self-adaption incurs more dimensions of complexity to system design such as
dependability and fault-tolerance, which makes it much harder to implement and validate
a self-adaptive embedded software. Lack of a formal process also contributes to difficulty
in developing high quality self-adaptive embedded systems.

In a higher level of abstraction, ubiquitous computing, encompassing embedded sys-
tems, is an exciting paradigm shift towards information technology that is invisibly woven
into our surroundings. It promises ubiquitous access to information and services seamlessly
integrated into our daily life activities. This arises the need for context-aware, adaptive
applications that can be adjusted at run-time in order to make use of the changing execu-
tion context. In addition to conventional context dimensions such as resource availability,
physical location, network connectivity, and battery status, in ubiquitous computing envi-
ronments services may appear and disappear while the user is moving. Thus, ubiquitous
applications are assumed to dynamically adapt their behavior in order to improve their
functionality and quality of service.

2.2 Basic Concepts

This section presents a general review of the basic concepts and principles in self-adaptive
software. It also discusses a classification of existing adaptation mechanisms and policies.

2.2.1 Self-* Properties

Adaptivity properties are often known as self-* properties in the literature. One of the
most well-known set of self-* properties, identified by IBM, include eight properties [53].
This section discusses these properties, along with some other related issues, which have
been considered by the research community in this area.

The hierarchy of adaptation self-* properties can be organized in three levels, including
general, major, and primitive levels.

16

Basic Concepts

General Level. This level contains global properties of self-adaptive software, including
self-managing, self-governing, self-maintenance, self-control and self-evaluating.
Major Level. A set of four properties is defined at this level. These properties have
been specified in accordance to biological self-adaptation mechanisms, e.g., the human
body adapts itself to changes in its surrounding context (e.g., changing temperature in the
environment) with the similar properties. The main properties in this category include:

− Self-configuring refers to the capability of reconfiguring automatically and dynam-
ically in response to changes by installing, updating, unloading, integrating, and
composing/decomposing software entities.

− Self-healing indicates the capability of discovering, diagnosing, and reacting to dis-
ruptions. This includes two detailed properties: self-diagnosing and self-repairing.
The former refers to diagnosing errors, faults and failures, while self-repairing fo-
cuses on recovery from them. Self-healing can also anticipate potential problems,
and accordingly take proper actions to prevent a failure.

− Self-optimizing, which is equivalent to self-tuning or Self-adjusting, is the capability
of managing performance and resource allocation in order to satisfy the performance
requirements of end-user. Important concerns related to this property are end-to-end
response time, throughput, utilization, and workload.

− Self-protecting is the capability of detecting security threats and recovering from their
effects. It has two aspects, namely defending the system against malicious attacks,
and anticipating security-related problems and taking actions to avoid them or to
reduce their effects.

Primitive Level. The primitive properties are self-awareness, self-situated, and context-
awareness. Self-Awareness is used for systems that are aware of their self states and
behaviors, while a self-situated system must be aware of its current external operating
conditions. Context-Awareness means that the system is aware of the current contextual
situation and changing circumstances.

2.2.2 Requirements

To make a software system adaptive, there are six questions that should be answered [54].
These questions are considered during the requirement analysis phase of engineering adap-
tive software.
Where: This question is concerned with where changes are needed. In particular, the
question is that which artifacts of system at which software layer (e.g., system or middle-
ware) and level of granularity need to be changed. To answer the question, we need to
investigate attributes of adaptable software, its software architecture, and coupling between
its modules and layers.

17

Self-Adaptation in Embedded and Ubiqouitous Systems

When: Temporal aspects of adaptation are addressed by this set of questions. When does
a change need to be applied, and when it is feasible to perform that? Can a change be
made once the system requires, or are there constraints that limit temporal changes? How
often does the system need to adapt? Is there any temporal rule for the changes happening
continuously, or do they occur only as needed? Is it enough to perform adaptation actions
reactively, or do we need to predict some changes and act proactively?

What: Answers to this set of questions identify what attributes or portions of the software
system are subject to change. There is a wide range in terms of change granularity,
from parameters and methods to components, architecture style, and system resources.
It may be also important to identify the range of changes (e.g., parameter values). It is
also important to specify what artifacts and attributes should be monitored to follow-up
on the changes, and what resources are essential for adaptation actions? Regarding the
distinction between the what and where, Where identifies which part of the system caused
the problem, while what specifies the attributes and artifacts that need to be changed to
resolve the problem, e.g., in a WSN application, it is essential to know which part caused
energy performance degradation (e.g., the radio due to transmitting too much data) and
after that, what needs to be changed (e.g., changing the sensing sample rate).

Why: This question refers to what is the main objectives of carrying out adaptation, e.g.,
robustness or resource-efficiency.

Who: This question identifies the level of automation and human intervention in self-
adaptive software. Although in a self-adaptive system it is expected that there will be
minimum human involvement, having an effective interaction with end-users may be re-
quired to inject adaptation policies to the system and therefore improve the efficiency of
adaptation decision system.

How: The last but not the least, the mechanisms, and strategies by which the adaptable
artifacts can be changed is of vital importance. There are many technical issues that should
be considered in answering this question based on the architecture of adaptive system, its
characteristics and limitations.

Prior to developing self-adaptive software, the developer needs to find proper answers
for the above questions in order to identify mechanisms and alternatives used in imple-
mentation. Some of these questions may be answered by end-users and managers through
adaptation policies, and the rest should be determined by the adaptive system itself.

2.2.3 Adaptation Policies

One of the intrinsic problems in self-adaptivity is the selection, the calculation or the deriva-
tion of the new configuration that fits the current state of the system actors. Depending
on the system and the targeted application, this process may be realized in different forms
by adopting different adaptation policies. We distinguish between three kinds of policies,
namely action-based, goal-based, and utility function based policies.

Situation-action Adaptation. Action-based policies [55] are the most popular form

18

Existing Adaptation Solutions

and are used in different domains related to networks and distributed systems such as
computer networks, active databases and expert systems. An action policy consists of
situation-action rules which specify exactly what to do in certain situations.

Goal-oriented Adaptation. Goal-based adaptations [56] are a higher-level form of be-
havioral specification that specifies performance objectives, leaving the system to take
the actions required to achieve those objectives. This is similar to dynamic systems in
which mechanisms are needed to allocate and control computational resources to guaran-
tee promised levels of QoS. Since goals provide only a binary classification into desirable
and undesirable performance, goal-based adaptation models mostly focus on maximizing
the probability of achieving goals or minimizing the degree to which goals are not met.

Utility Function-based Adaptation. This policy description model is an extension
of goal-oriented approaches. Utility functions [57] describe a real-value scalar desirability
to system states. Therefore, utility functions express the rationale for adaptation deci-
sions in a precise way, and are therefore more accurate than goal policies when adaptation
triggers, or when goals are in conflict. Although utility-based approaches provide precise
decision making, they force developers to specify in detail the properties of the application
variants. The utility function computes the utility of an application variant based on the
given properties of the different variants and the current context. The result is the appli-
cation variant that maximizes the utility of the application while satisfying the resource
constraints provided by the underlying environment.

2.3 Existing Adaptation Solutions

Self-adaptation of embedded and ubiquitous software systems is still a young research area.
The main hurdle in addressing adaptivity in embedded systems is perhaps the high resource
demand of traditional adaptation solutions. In fact, the complexity of typical adaptation
models needs a careful reconsideration to tailor them for resource-poor embedded plat-
forms. In this section, we present research works making significant contribution to this
area, while most of the proposed approaches have been devoted to mobile platforms as
contextual changes in mobile applications are quite frequent and unexpected.

2.3.1 RoSES

The Robust Self-Configuring Embedded Systems (RoSES) project [58] is an early endeavor
to bring adaptivity to embedded systems. The main goal of the RoSES project is to
create robust, flexible, maintainable, distributed embedded systems that support graceful
degradation via in-service software reconfiguration. Using RoSES framework, an embedded
system would be able to automatically reconfigure to accommodate failed, upgraded, or
inexact spare components. The RoSES project envisions a system of “smart” sensors
and actuators connected to an embedded real-time network, where every sensor acts as
a “server” to any node desiring its functionality, as shown in Figure 2.1. The core of

19

Self-Adaptation in Embedded and Ubiqouitous Systems

the framework in a sensor node is a software adapter to translate between architected
state variables on the system network and the sensing capabilities of various sensors and
actuators. A customization manager is also designed to maximize system-level functionality
by addressing an optimization problem of allocating a subset of possible functionality to
maximize overall utility.

�������	
���
���������������
��
�������������

�����	
�	���
��
��	����	�����

��	����
�	�����
��
� !��
���

��
������ ���
���"
#$�

#������
�	�����

��
������ ���
���"
#$�

#������
�	�����

�

�����
�	���
�$��

�����
�� �!��

�����	
��������
��
��	����	�����

��	����
�	�����
��
� !�� ���

��
������ ���
���"
#$�

#������
�	�����

������
%�������� &�'��"����	�
(
������	�
)���

��
������
���
���" #$�

#������
�	�����

�

�����
��������
�$��

����� ���"��!��

�"��!�#$��#!
�� �%��

Figure 2.1: The generic architecture of RoSES framework.

However, the RoSES project fails to consider the modeling of dynamic adaptation.
Rather, it addresses dynamic adaptation by leaving all configuration decisions to the sys-
tem. Therefore, the developer does not need to care about the reconfiguration process, but
the adaptation behavior can hardly be analyzed. Additionally, dynamic adaptation model
in the RoSES framework is essentially restricted to the software architectural level.

2.3.2 Robocop, Space4U and Trust4All

The goal of these projects, which followed up each other, is to propose a component-based
software architecture for the middleware layer of high volume embedded appliances. The
building blocks of the middleware software is the Robocop component model inspired by
COM [59], CORBA [60] and Koala [61]. A Robocop component is a set of possibly related
models. Each model provides a particular type of information about the component.

The aim of the Robocop project [62], in particular, is to develop a middleware archi-
tecture and component model for high volume consumer electronics, e.g. mobile devices
and PDAs. The proposed architecture supports robustness, real-time applications, secure

20

Existing Adaptation Solutions

component downloading and upgrading. Space4U [63] aims at consolidating and extend-
ing on the results of the Robocop project by investigating a number of research issues
that are considered extremely important for the embedded application domain, but have
not been covered by Robocop. The Space4U project extends the middleware architecture
proposed in the Robocop project with fault prevention, power management, and terminal
management. Finally, the main goal of the Trust4All project [64] is how to establish and
maintain correct operation of a system, while the software embedded in the system is able
to be upgraded and extended dynamically while the system is in use by a customer. All
together, these projects provide a core architecture comprising adaptive mechanisms for
the management of the above characteristics and support the Robocop component model.

2.3.3 CARISMA

CARISMA [65] is a mobile computing peer-to-peer middleware solution leveraging the
principle of reflection to support the construction of context-aware adaptive applications.
Specifically, CARSIMA offers applications a middleware framework as a dynamically cus-
tomizable service provider. Customization takes place through metadata, which change
middleware behavior to answer application service requests in various contexts and trig-
ger the adaptation of the deployed applications by detecting execution context changes.
CARISMA uses utility functions to select application profiles, which is used to select the
appropriate action for a particular context event, with the risk, however, of incurring con-
flicts. To tackle conflicts, CARISMA features a micro-economic approach that relies on a
particular type of sealed-bid auction. It treats a distributed mobile system as an “econ-
omy” where applications compete to receive the quality-of-service they desire. In this
economy, the middleware plays the role of an auctioneer, collecting bids from applications
and selecting the policy that maximizes social welfare. This approach is particularly ap-
propriate for the mobile setting as it meets the requirements of dynamicity, simplicity and
customizability that are typical of this environment.

2.3.4 MADAM

The Mobility and Adaptation-enabling Middleware (MADAM) project [66] aims at pro-
viding software developers with reusable models and tools, assisting them in the design
and implementation of adaptive, mobile applications. The MADAM project follows an
architecture centric approach where dynamic adaptation is realized in an application in-
dependent middleware. The core idea in MADAM is to transfer software product line
concepts, usually used for design-time variability management, into run-time. The result
is a run-time representation of the applications’ architectural models which serves as a
basis for an adaptation manager component to reason about and to control adaptation.
To enable the reusability of adaptation strategies, MADAM proposes a middleware layer
which can be used to encapsulate context monitoring, adaptation reasoning logic and re-
configuration tasks.

21

Self-Adaptation in Embedded and Ubiqouitous Systems

Figure 2.2 shows the main ideas of the MADAM adaptation approach. The adaptation
middleware realizes three main adaptation functions: context management, adaptation
management, and configuration management. To accomplish these functions, the adap-
tation middleware requires knowledge about the application structure and constraints, as
well as the various context and resource dependencies. This means that the middleware
can be used in dynamic applications in which all adaptation variants and constraints can
be specified at run-time through the application architecture model. Applications’ modules
are also modeled as component frameworks where functionality defined by a component
framework can be dynamically configured with conforming component implementations.

architecture
model

adaptation
middleware

used to derive
application variant

noise
position

light

context

monitors

mobile user

preferred
quality

provided
quality

adaptable
application

describes
dependency

used to derive
application variant

noisenoise
positionposition

lightlight

adapts

monitors

mobile user

provided
quality

user
needs

architecture
model

adaptation
middleware

used to derive
application variant

noise
position

light

monitors

mobile user

preferred
quality

provided
quality

adaptable
application

describes
dependency

used to derive
application variant

noisenoise
positionposition

lightlight

adapts

monitors

mobile user

provided
quality

user
needs

batterybattery computing
resources
computing
resources

QoS
network
QoS
network

architecture
model

adaptation
middleware

used to derive
application variant

noise
position

light

context

monitors

mobile user

preferred
quality

provided
quality

adaptable
application

describes
dependency

used to derive
application variant

noisenoise
positionposition

lightlight

adapts

monitors

mobile user

provided
quality

user
needs

architecture
model

adaptation
middleware

used to derive
application variant

noise
position

light

monitors

mobile user

preferred
quality

provided
quality

adaptable
application

describes
dependency

used to derive
application variant

noisenoise
positionposition

lightlight

adapts

monitors

mobile user

provided
quality

user
needs

batterybatterybatterybattery computing
resources
computing
resources

QoS
network
QoS
network
QoS
network
QoS
network

Figure 2.2: MADAM’s approach to adaptation in mobile environments.

2.3.5 MUSIC

The MUSIC planning framework introduced is an extension of the MADAM planning
framework, which supports the adaptation of component-based architectures [67]. The
main goal of MUSIC is to maintain Quality of Service (QoS) in mobile environments
through an application independent middleware approach. MUSIC aims at separating the
self-adaptation concern from the business logic concern and therefore delegates the added
complexity related to self-adaptation to generic middleware. The adaptation process, in
MUSIC, relies on the architecture model of the application, which specifies its adaptation
capabilities and its dependencies to context available at run-time. Similar to MADAM, the
application development model is a component framework, which defines the functionalities
that can be dynamically configured with conforming component implementations. MUSIC
features an adaptation-planning framework to evaluate the utility of alternative configu-
rations in response to context changes, to select a feasible one for the current context and
to adapt the application accordingly. Thanks to its enhancements in supporting service-
oriented architecture, the planning middleware is capable of exploiting remote services as
well as local components and services to maximize the overall utility of the applications.

22

Existing Adaptation Solutions

Figure 2.3 depicts the component-based architecture of the MUSIC platform. Adap-
tation manager as the heart of MUSIC consists of Adaptation Reasoner (to support the
execution of the planning heuristics, which is driven by metadata included in the plans),
Adaptation Controller (to coordinate the adaptation process) and Configuration Executor
(to reconfigure the application based on the set of plans selected by the planner).

�������	
����

�����	��
��
�����
�
���

��
��
���
����		��

��
��
���
��
����

��

��

��
�
�
���

��

��

������
���
���������

��� ���
!������

��

��� ���
"
���#

��

�	
�
�������#�	

��

��

�	�	

�

������
�
�
���

��

�

�� ��

��

�
�
�

��

��

��

�������	
�������

�����	�	�
������ ����������

�������
����

�������	���

��
	��	���	���

��
	��	�����
�������	
�

��
�����	
�

������

����
��
	��	������ ����

�����
�� �

�	

��

��

��

�

��

��
��

��
����	
��

Figure 2.3: Architecture of the MUSIC adaptation platform.

2.3.6 Agilla

Agilla [68] is a mobile agent middleware designed to support self-adaptive applications
in sensor networks. Agilla builds up applications out of mobile agents, which are special
processes that can explicitly migrate or clone from node to node while carrying their
state. Agilla is particularly suited to handle situations in which local decisions would
significantly reduce the amount of data wirelessly transmitted. For example, in a fire
tracking application, to prevent having to coordinate the application from a sink node,
mobile agents can be employed to autonomously and locally adapt to the changing location
of the fire. Therefore, it relieves the application installer from needing to deploy a service
on every node in the network.

The overall adaptation solution of Agilla is presented in Figure 2.4. Each node supports
multiple autonomous mobile agents and interactions among them are provided by two basic
data abstractions on each node: a neighbor list and a tuple space. A tuple space is a type
of shared memory in which data is structured as tuples accessible via pattern-matching.
Proposing tuple spaces in Agilla enables agents to function autonomously and migrate
while still being able to communicate. Tuple spaces can be accessed by agents residing on
the same node, as well as to agents residing on different nodes.

Agilla proposes two forms of migration, strong and weak, to support the variant self-
adaptation needs of WSN applications. Strong migration is useful when performing compu-
tations that span multiple nodes. It transfers both the code and state, allowing the agent

23

Self-Adaptation in Embedded and Ubiqouitous Systems

Figure 2.4: The Agilla model to address self-adaptation in WSNs.

to resume execution at the destination. Contrary to strong form, weak migration only
migrates the code, imposing less overhead since the state does not need to be transferred,
but implies to reset the agent.

2.4 Discussion

Our focus in this chapter has been on the efforts made to enable self-adaptation in embed-
ded, mobile and ubiquitous systems. WSNs as a resource-constrained member of ubiqui-
tous systems pose their own challenges when the software deployed on nodes are subject
to changes. In other words, to systematically address the adaptation concerns in WSNs,
we need to revisit the principles of FCL from a different perspective and study how they
should be properly described and tackled. Unfortunately, the state-of-the-art has hitherto
fallen short of providing a comprehensive adaptation model for sensornets.

The first shortcoming occurs in the first activity of FCL, where we need a context
management framework to not only monitor the contextual parameters of the environment,
but also observe the proprietary context elements of sensor nodes. Most of frameworks
discussed in this chapter consider sensor nodes as a context collector entity. In WSNs, the
context management framework should be able to model different types of context data,
ranging from sensor resources to environmental changes. To address adaptation policy,
we can rely on the de facto solutions available in the literature such as situation-action.
Basically, adopting the appropriate adaptation policy is largely dependent on the nature
of application, even though we believe the majority of WSN applications can follow the
simple situation-action fashion. However, the critical issue in this context is consideration
of WSN architecture. In particular, the distributed and hierarchical organization of sensor
nodes in typical sensor applications should be utilized to make more accurate adaptation
decisions. These issues have motivated us to propose a generic adaptation solution for
WSNs that takes into account their special characteristics when addressing FCL activities.

24

Chapter 3

Programming Wireless Sensor
Networks

Ease of programming has long been recognized as a major hurdle to the wide-spread adop-
tion of WSNs. WSN programming has been quite difficult due to not only its inherently
distributed nature, but also the presence of severe operating conditions such as highly con-
strained resources, unreliable network communications, and faulty nodes. In this chapter
we, therefore, present some background information regarding programming in sensor net-
works. First, we briefly discuss principles of WSN programming, as well as taxonomy of
programming abstractions for sensor platforms. Then, the existing high-level programming
approaches for sensor systems are reviewed.

3.1 Background

Most of early WSN applications were developed in an ad-hoc manner such that the sensor
software was designed in a rather unstructured way and the application logic was inter-
twined to the underlying system interfaces. This forces programmers to deal with low-level
system libraries, as well as with programming low-level networking interfaces. Moreover,
developers’ expertise in state-of-the-art programming models becomes useless when sen-
sor nodes are programmed without any well-established discipline of program specification.
This has drawn much attention in the WSN research community and motivated researchers
to study sensor programming models as a hot topic in this area.

In this endeavor, a significant number of programming approaches have been proposed
for the development of applications with different characteristics and requirements. There-
fore, to choose an appropriate programming model and platform for a particular applica-
tion, we need to investigate the application requirements, as well as the basic differences
between programming abstractions. Generally, the approaches to programming sensor
networks can be classified into low-level programming models and high-level programming

25

Programming Wireless Sensor Networks

models. The former is focused on abstracting hardware and providing a set of basic libraries
required to develop applications. For example, programming models for sensor operating
systems fall in this category, e.g., NesC language for TinyOS operating system [69]. Such
programming models are often promoted to be utilized for developing application modules
as well. High-level models address the programming issues from application point of view
instead of low-level system concerns. They essentially focus on simplifying the development
of application logics, relieving the programmer from the burden of dealing with low-level
issues. High-level programming models are either an extension of a particular low-level
programming model, or completely different from low-level languages with a new set of
abstractions, as well as with mechanisms to integrate to system software.

3.2 Requirements

In addition to the constriants identified by a particular application, there are basic require-
ments for programming in sensor networks which are common for most WSN application
domains. In this section, we highlight the main requirements of WSNs from programming
point of view.

Similar to all other research challenges in WSNs, resource-efficiency is the primary
concern when proposing a new programming model. By resource, we mean the memory
requirements (code memory and data memory) of a programming model, as well as the
energy required to run an application written by a particular programming abstraction.
The latter makes sense when programming models aim to address network-level issues,
such as distributed communication and group-level programming. The former, instead,
focuses on node-level memory resources consumed by the constructs and run-time system
of programming models. As such types of resources are extremely limited, the structure
of programming models are often sacrificed to preserve the resource-efficiency. Thus, ad-
dressing this issue becomes very important when designing a high-level development model
for sensor networks.

The other concern is related to the scalability of sensor networks, where an application
may run over hundreds or thousands of sensor nodes. Due to bandwidth constraints, the
amount of communications among nodes should be reduced in order to use efficiently the
limited bandwidth and therefore improve the scalability of network. Programming models
play an important role in this problem. They should provide programmers with scalable
programming constructs to avoid transmitting large size program data across the network.

Supporting asynchronous and event-driven programming is also a critical requirement
for WSN applications and embedded applications which are inherently event-driven. Sen-
sor nodes are essentially reactive systems which are mainly driven by events. Specifically,
their progress as a software system depends on external and internal events, which may
occur unpredictably and unexpectedly at any time and at any rate. Sensor nodes need to
be able to sense events in the physical environment and to react to them appropriately.
They also require reacting to network messages from other nodes due to the tight collab-

26

Taxonomy of Programming Models

oration of nodes within WSNs. Finally, sensor nodes should observe a variety of internal
events, such as interrupts generated by sensors, or low battery indications. Therefore,
sensor programming models should feature a robust and reliable technique to enable the
programmer to easily implement the event-related logic of the system. In some program-
ming approaches, events are considered as high-level programming constructs, providing a
simpler way to control and process application events. In contrary, many other models do
not specifically propose an event-driven approach of programming, but events are hidden
from the programmer’s view and handled implicitly by the programming model’s run-time
system.

Sensor software is error-prone and repairing the faulty nodes is a cumbersome task.
Beside the fault recovery mechanisms devised in operating system and hardware, the pro-
gramming model should also provide the primitives to avoid generating errors and handle
the unexpected faults during application run-time. Making application failure-resistant
needs support from programming models as it is very difficult and time-consuming for the
programmer to take care of all error-prone code and handle failures that are unexpected
and unknown before the deployment.

3.3 Taxonomy of Programming Models

In this section, we briefly discuss the prominent programming paradigms for sensor net-
works, categorized into agent-oriented, component-based, event-driven, imperative, and
functional. We organize these models based on a few surveys reported in the literature
on classifying WSN programming models [14, 70], as well as the main concerns of this
thesis. Specifically, the main focus on this section is on structure of programming models
for WSNs, rather than considering the high-level programming techniques proposed for a
particular concern, such as network, storage-centric, and group-based programming.

3.3.1 Agent-oriented

The term Agent-oriented Programming (AOP) was coined in 1989 by Yoav Shoham [71] to
describe a new programming paradigm. An agent oriented view of a software system con-
sists of an implementation problem requiring multiple agents to represent the decentralized
nature of the problem. In the agent-oriented programming model, agents as autonomous
problem-solving entities interact with other agents through a high-level communication
model. Whereas objects in object-oriented programming communicate through simple
method invocations or method calls with limited range of variation in parameters, agents
communicate through a declarative high-level agent communication language. From the
network point of view, agents can migrate from one node to another node in a network
(i.e., mobile agents). To preserve program consistency, the state of the running program is
saved, transported to the new node, and restored, allowing the program to continue where
it left off.

27

Programming Wireless Sensor Networks

Agilla. Agilla is a middleware for WSNs that provides a mobile-agent style of program-
ming [68]. Agilla applications are composed of one or more software agents that can
proactively migrate their code and state across the network. Agilla programming model
provides two forms of migration, strong and weak. The former transfers both the code and
state (for computations spanning multiple nodes), allowing the agent to resume execution
at the destination, while weak migration only migrates the code. It is useful for performing
computations that span multiple nodes. Local coordination among agents is accomplished
using tuple spaces—a type of shared memory in which data is structured as tuples that
are accessed via pattern-matching. This enables loosely-coupled communications between
sensor nodes since sender and receiver do not need to agree on a shared memory ad-
dress. Agilla therefore provides a powerful mechanism to implement applications requiring
adaptation of some functionality in response to external phenomena, as mentioned in the
previous chapter. As a motivation application, in a fire monitoring application, when tem-
perature value exceeds the given threshold, fire-detection agents spawn fire-tracking agents
that swarm around to collect information about the exact location of the fire.

3.3.2 Component-based Programming

Component-Based Software Engineering (CBSE) [72] has been recognized as a well-structured
programming model to develop software systems. Component-based programming provides
a high-level programming abstraction by enforcing interface-based interactions between sys-
tem modules and therefore avoiding any hidden interaction via direct function call, variable
access, or inheritance relationships. This abstraction rather offers the capability of black-
box integration of modules in order to simplify configuration and maintenance of software
systems. Module reusability and provision of standard API are some other advantages of
adopting component-based software development [72, 73]. There have been a few signifi-
cant efforts to enable CBSE in WSN applications. Whereas a very few of them have been
successful and used for developing many real applications, some other approaches have
not been promising due to reasons such as inducing high resource usage on typical sensor
nodes.

nesC. nesC is perhaps the most popular programming model in this category and cer-
tainly the most successful one [69]. nesC is an event-driven programming language for
WSNs derived from the C language. It was originally proposed to develop the TinyOS
operating system—the most popular system software for sensor nodes. nesC is a struc-
tured component-based dialect of C designed for building embedded systems, specially for
sensor networks applications. An application in nesC consists of a set of components linked
together with bidirectional interfaces that serves as access point to the component. This
makes program structure considerably more readable and helps to enforce good program-
ming practices. Two types of components can be defined in nesC, namely configuration
and module. A configuration indentifies the assembly of application components, while
modules represent the component implementation. A nesC-based application is described

28

Taxonomy of Programming Models

by a top-level configuration that wires components. The nesC language also defines a con-
currency model based on tasks and hardware event handlers. In nesC, code can be run
one of two ways: asynchronously from an interrupt handler, or synchronously as part of a
scheduled ‘task’. The creators of nesC are particularly concerned about ‘data races’ result-
ing from concurrent attempts to access a single variable. If it is necessary to ensure that
particular block of code cannot be interrupted, we can declare a section of code “atomic.”

OpenCom. OpenCom [28] is a generic component-based programming model for build-
ing system applications without dependency on any target-specific platform environment.
This is achieved by splitting the programming model into a simple, minimal kernel, and
then providing on top of this a principled set of extension mechanisms that allow the
necessary tailoring. OpenCom components interact with other components exclusively
through “interfaces” (provided behavior) and “receptacles” (interfaces that make explicit
the dependencies of a component on other components). Connections between interfaces
and receptacles are established through bindings. Since OpenCOM is constructed upon a
minimal microkernel, it has the capability to be used as a programming model for WSN
applications. Moreover, the C implementation of OpenCom is designed as a minimal im-
plementation for resource-constrained devices. As a real application, Gridkit [74] is an
OpenCom-based framework for sensor networks, realizing co-ordinated distributed recon-
figurations based on policies and context information provided by a context engine. This
system was deployed on Gumstix-based [75] sensor platforms (a resource-rich node type)
for a flood-monitoring scenario.

Think. Think is an implementation of the Fractal component model [76] that aims to con-
sider the specific constraints of embedded systems, including WSNs. The Fractal specifica-
tions define a hierarchical, reflective and general-purpose component model. A component
definition exports functional interfaces (provided or required), configuration attributes,
and may also provide non-functional interfaces implementing introspection and architec-
tural reconfiguration services at run-time. The Think framework [31, 77] allows developers
to build embedded systems and WSN applications made out of Fractal components. A sys-
tem architecture is described using an Architecture Description Language (ADL), interfaces
are defined using an Interface Description Language (IDL). The code that implements the
method of server interfaces is written in regular C where ADL symbols are represented by
convenient C symbols. The choice of the Think framework is motivated by the fact that it
allows fine-grained reconfiguration of components.

LooCI. LooCI [78] introduces a loosely-coupled component infrastructure, which features
an event-based binding model inspired by event-driven programming models, Service-
Oriented Architectures (SOA), publish/subscribe interaction models and pluggable net-
working support. LooCI offers support for two component types, macrocomponents and
microcomponents. The former refers to coarse-grained and service-like, building upon the
notion of Isolates inherent in the SQUAWK [79] virtual machines. Isolates are process-
like units of encapsulation and provide varying levels of control (depending on the specific
JVM) over their execution. Each macrocomponent runs in a separate isolate and com-

29

Programming Wireless Sensor Networks

municates with the run-time middleware via Inter Isolate RPC (IIRPC), which is offered
by the underlying VM. Microcomponents are instead fine-grained and self-contained unit
of functionality. All microcomponents run in the master Isolate alongside the LooCI run-
time. LooCI component model also offers run-time reconfiguration, interface definitions,
introspection and support for the re-wiring of bindings.

3.3.3 Event-driven Programming

The event-driven programming model can be considered as a conceptualization of the
control-loop approach. This programming model can also be described as an application
architecture technique in which the application has a main loop which is clearly divided
down to two sections: the first is event detection, and the second is event handling. In
particular, it enforces the separation of event detection and event handling by making
the control loop an integral part of its run-time environment. The event-driven model is
the most popular programming approach for WSN applications today. Most of program-
ming models we discussed above are essentially event-driven, such as TinyOS and nesC,
LooCI, Agilla, and Regiment. In this section we investigate other existing event-driven
programming models for WSNs.
Contiki-ProtoThreads. Protothreads [80] are originally conditional blocks inside C
functions which represent lightweight stackless threads. They provide a blocking context
on top of an event-driven system, without the overhead of per-thread stacks. The main
objective of Protothreads is to implement sequential flow of control without using complex
state machines. In fact, Protothread is designed to reduce the memory cost of thread
in traditional multi-threading system in which a thread requires its own stack with high
memory requirements. A Protothread runs within a single C function and cannot span
over other functions. It may call normal C functions, but cannot block inside a called
function. In principle, Protothreads are similar to asymmetric co-routines. However, each
co-routine has its own separate stack, while Protothreads are stackless.
DS-Ware. DS-Ware [81] is a message passing programming model whose focus is the real-
time detection of sporadic events. It uses a form of publish/subscribe in which users specify
subscriptions based on the attributes of the phenomena of interest. A higher-level of event
handling is provided that programmers can use to infer the occurrence of specific events
from the raw sensor observations, e.g., an event can be defined as the composition of two
physical sub-events occurring within specific time interval one from the other. Subscriptions
are expressed using a dialect of SQL from the user machine.

3.3.4 Imperative

Imperative programming paradigm describes computation in terms of a program state and
statements that change the program state. In imperative programming, a variable may be
assigned to a value and later reassigned to another value. The collection of variables and
the associated values and the location of control in the program constitute the state. The

30

Taxonomy of Programming Models

state is a logical representation of storage which is an association between memory loca-
tions and values. A program in execution generates a sequence of states and the transition
from one state to the next is determined by assignment operations and sequencing com-
mands. Using imperative programming model, the programmer writes code that describes
the exact steps the computer must take to accomplish the goal which is sometimes referred
to as algorithmic programming. This paradigm is used in opposition to declarative pro-
gramming, which expresses what the program should accomplish without specifying how
to do it in terms of sequences of actions to be taken.

Abstract Task Graph. The Abstract Task Graph (ATaG) [82] is a mixed imperative-
declarative programming model for application development on sensor networks. In par-
ticular, ATaG builds upon the core data driven concepts and incorporates novel extensions
for distributed sense-and-respond applications. The application functionalities in the sys-
tem are modeled as a set of abstract tasks with well-defined input/output interfaces. In
addition, a set of abstract data items are defined to represent types of information ex-
changed between abstract tasks. Input and output relationships between abstract tasks
and data items are explicitly described as channels. Each abstract task is associated with
code developed by the user, implementing the actual information processing functions in
the system. An ATaG program is called ’abstract’ because the number and final placement
of tasks and the coordination mechanisms are determined at compile-time and/or run-time
depending on the characteristics of the target application.

An ATaG program represents an architecture-independent specification of the applica-
tion functionality. In this way, the developer has the ability to specify application behavior
for a generic, parameterized network architecture, thereby, the same application may be
automatically assembled for different network deployments, or adapted as nodes fail or are
added to the system. This also allows development of the application to proceed at the
edge of deployment prior to decisions being made about the final configuration of the nodes
and network.

Figure 3.1 shows an ATaG program for an environment monitoring application. The ap-
plication is deployed on a network of sensor nodes, each equipped with a temperature and a
pressure sensor. The application is designed to periodically compute and log the maximum
pressure in the system, as well as to periodically monitor the environment temperature. If
the temperature gradient between a node and its neighbors exceeds a threshold, the node
is required to investigate the anomaly by surveying a larger area and then trigger an alarm.

Pleiades. Pleiades [83] enables a centralized programming approach in sensor network so
that the central application has access to the entire network. Pleiades employs a program
analysis for partitioning central programs into node-level programs and for migrating pro-
gram control flow across the nodes. Pleiades also provides a simple construct, called cfor,
to allow a programmer to introduce concurrent executions at multiple nodes. Whenever
required, the Pleiades run-time system guarantees serializable execution of cfor statements.

31

Programming Wireless Sensor Networks

Temperature

Monitor

[nodes-per-instance:1]

[periodic:10 || any-data]

1-hop &&

local

local

LocalAlarm GlobalAlarm

Corroborator

[nodes-per-instance:1]

[any-data]

local 10m:pull

local

local

Pressure

Aggregator

[nodes-per-instance:1]

[any-data]

parent

children
local

Sampler

[nodes-per-instance:1]

[periodic:30]

Maximum

local

Figure 3.1: An ATaG program for environment monitoring.

3.3.5 Functional Programming

Functional programming is a model of programming in which the primary method of com-
putation is the application composed of functions. In particular, functional programming
involves creating and manipulating functions to build up larger programs. This requires
a language that allows functions to be used as input and return data to other functions.
One of the motivations for using a functional language is to hide the direct manipulation
of program states from the programmers. The main advantage of the functional programs
in the context of WSN is that it is straightforward to extract parallelism from their manip-
ulation of data. For instance, a function that combines data streams from multiple sensor
nodes can be compiled into a form that efficiently aggregates each data stream within the
network.

Regiment. Regiment [84] is a functional macroprogramming language for sensor networks.
The goal of Regiment is to reduce the programming effort in complex sensor network
applications. In Regiment, the principal constructs that the programmer manipulates are
signals, e.g., a temperature sensor on a given node, which returns a floating-point value,
has type Signal (float). A signal can carry primitive values such as integers, byte, etc. or
tuples, such as records containing both the light and temperature sensor readings on a given
node. The concept of a region is central to Regiment, representing a collection of signals.
The programmer uses regions to express interest in a group of nodes with some geographic,
logical, or topological relationship, such as all nodes within k radio hops of some anchor
node. The operations permitted on region streams include fold, which aggregates values
across nodes in the region to a particular anchor, and map, which applies a function over
all values within a region. Specifically, map requires no interaction between elements, while
fold needs to collapse of data to a single physical point. Regiment programs are compiled
into TML [85], an intermediate language, and then to nesC code. The main reason for
using TML is to bridge between Regiment and nesC/TinyOS with big semantic gap.

32

Discussion

3.3.6 Object-oriented Programming

EnviroSuite. EnviroSuite [86] is an object-based programming model for WSNs. This
programming abstraction is based on maintaining a unique mapping between object in-
stances and the corresponding environmental elements. Objects are units that encapsu-
late program data, computation, communication, sensing and actuation. Dynamic object
instances are created automatically by the EnviroSuite run-time system when the cor-
responding external elements are detected and are destroyed when these elements leave
the environment. This also leads to the execution of object code at the location of the
corresponding physical entity which is ideal for sensing and actuation tasks.

3.3.7 Set-based Programming

This model of programming is based on the mathematical theory of sets. The choice of
set-based programming for WSNs is motivated by the fact that a set is a natural way to
think about resource abstraction in a WSN, e.g., using phrases such as “a set of sensor
nodes” or “a set of sensor readings”.
μSETL. μSETL [87] is a programming abstraction for sensor networks based on set theory.
Being a node-level programming model, the scope of a set in μSETL is local to the node
where the set is defined, and each set is operated on from a node-level perspective. μSETL
implements a compiler that translates μSETL programs to node-specific application code,
and a run-time system that provides methods for μSETL programs to perform various set
operations such as union, intersection and iterating over the members of a set. It also
features two special programming constructs, a periodic block and a monitor block, to
support event-driven programming in WSNs. The periodic and monitor constructs allow
the programmer to trigger execution of handler functions based on timer events.

3.4 Discussion

In this chapter, we have presented the prominent programming paradigms for sensor net-
works. Table 3.1 compares the programming models discussed in this chapter from different
aspects. Principally, all those models are focused on offering a set of programming con-
structs to simplify and hasten programming in WSNs, and abstract low-level complexities
of layers below the application. Some of them target one or more particular application
types and design the programming model based on the common requirements in those
applications, e.g., DS-Ware is essentially designed for real-time applications. In contrast,
nesC is a general-purpose programming model exploitable in various types of applications.
This language is also used as a basis for proposing new special-purpose programming mod-
els for WSNs, e.g., Regiment and Agila for functional and agent-oriented programming,
respectively.

Programming models such as nesC, Protothread and Think are primarily proposed to
develop system-level modules, and at the same time they are use to develop application

33

Programming Wireless Sensor Networks

Table 3.1: Evaluation of programming paradigms for WSNs.
Programming Programming Execution Programming Reconf.
Abstraction Paradigm Platform Target Support

Agilla Agent-oriented TinyOS Middleware Yes

NesC Component-based TinyOS All Layers No

OpenCom Component-based Indep. Application Yes

THINK Component-based Indep. All Layers Yes

LooCi Component-based Indep. Application Yes

ProtoThreads Event-based Contiki All Layers Yes

DS-WARE Event-based GlomoSim Application No

ATaG Imperative SunSPOT Application No

Pleiades Imperative TinyOS Application No

Regiment Functional TinyOS Application No

EnviroSuite Object-oriented TinyOS Application No

μSETL Set-based Contiki Application Yes

modules and third-party libraries. Although this may lead to an efficient integration of
application and low-level system libraries, applications become tightly bound to the un-
derlying programming models. Therefore, in heterogeneous settings the programmer is
enforced to deal with different programming technologies to assemble the target applica-
tion. One efficient solution to tackle this problem is to provide a generic programming
technique that is able to abstract different types of system software through a platform-
specific run-time system.

The other critical issue, in the context of this thesis, is considering the programming
model from a dynamic reprogramming viewpoint. Most of the presented approaches such
as nesC, Regiment and ATaG rely on the static programming model and the developed
modules are firmly bound together. Contiki’s run-time system is perhaps the most popu-
lar mechanism that supports dynamic reprogramming of applications written by the Pro-
tothread programming model. However, in this model the whole application image must
be rewritten when updating one module of the application. Component-based program-
ming models such as OpenCom and Think tackle this problem by enabling fine-grained
reconfiguration of software components, event though they impose high memory overhead
to the sensor nodes.

Consequently, none of these models seem to promise a generic programming solution
for WSNs that can be used across a wide range of hardware and software platforms and
efficiently support fine-grained modular reconfiguration. This investigation has motivated
us to consider a new programming paradigm that supports the primitives required for
reprogramming in WSNs and at the same time is not limited to a particular hardware and
software setting.

34

Chapter 4

Sensor Network Reprogramming

Software deployed on WSNs often need to be updated after deployment for various reasons,
such as upgrading node software, fixing software bugs, changing network functionality, tun-
ing module parameters, and patching security holes. However, typical WSNs are deployed
in environments where physical access to deployed nodes is very difficult and infeasible.
Therefore, besides taking care of programming models for WSNs, there is the vital need
of enabling over-the-air reprogramming in sensor platforms. With a WSN-specific re-
programming framework, applications can be remotely maintained rather than collecting
nodes from the environment and carrying out the reprogramming operation manually. In
this chapter we present the main challenges behind realizing reprogramming in WSNs and
discuss the main techniques proposed for updating sensor software over-the-air.

4.1 Background

Beyond static deployments in WSNs, applications may be deployed for long periods of time
during which the end-user, network, and environment requirements may change. To main-
tain such deployments, we need to modify or retask the current deployed application with
different sets of configuration parameters and/or modules. The need for sensor software
updates may originate from a variety of reasons.

Firstly, a deployed WSN may face sporadic faults that were not observable prior to
deployment [18]. This is particularly true in an error-prone harsh WSN deployment where
sensor nodes are subject to unexpected and unforeseeable events, making it more difficult
to observe and fix failures. A debugging mechanism for WSNs not only concerns with
detecting bugs, but also requires to carefully address how new patches should be distributed
to target nodes and replaced by faulty code.

Second, software deployed on sensor nodes are becoming larger in size at different levels,
from low-level hardware drivers, to operating system, middleware services, and application
modules. The evolution in WSN software system has been brought about by employing

35

Sensor Network Reprogramming

sophisticated networking algorithms, implementing intricate use cases, and proposing high-
level programming models for WSNs. As the size and the number of software modules
become larger, the maintenance task also becomes more important. The maintenance
includes upgrading operating system libraries, middleware tools, and application services.
In order to maintain long-lived and heavy sensor software, we need a reliable mechanism to
remotely patch or upgrade software deployed on sensor nodes through the wireless network.

Third, the requirements from network configurations and protocols may change along
the application lifespan because of the heterogeneity and distributed nature of most WSN
applications [21]. Therefore, due to resource constraints, it is infeasible to proactively
load all services supporting heterogeneity into nodes and hence requirement variations are
basically satisfied through updating the sensor software. Such heterogeneous applications
require the system to be capable of dynamically reconfiguring itself along several differ-
ent dimensions such as reconfiguring the network routing, loading new functionality onto
devices, and offloading functionality as resources dwindle.

Finally, the increasing number of WSN deployments in pervasive environments makes
reconfiguration and self-adaptation two vital capabilities, where a sensor application de-
tects internal and external changes to the system, analyzes them, and seamlessly adapts
to the new conditions by updating the software functionalities. Reliable and flexible re-
programming techniques become the central part of any self-adaptation framework when
the reconfiguration component undergoes replacing an existing software module with an
updated one.

The most relevant form of updating sensor software is remote multi-hop reprogramming
using wireless medium and forwarding the new code wirelessly to the target nodes [48].
From a performance viewpoint, energy consumption during reprogramming should also be
minimized. Reprogramming is typically done multiple times during the application lifetime
and transfers much larger volume of data than that transmitted during regular communi-
cation of the sensed data. Thus minimizing resource consumption in reprogramming is of
vital importance.

4.2 Reprogramming Challenges

Reprogramming sensor networks as a resource-constrained platform poses several new chal-
lenges. First, sensor nodes have limited power supply and the amount of energy consumed
to accomplish reprogramming may affect the network lifetime. Update cost is defined as the
energy required to reprogram the sensor network, including the energy consumed to receive
new updates, as well as overhead imposed by loading the updates on sensor nodes. Some of
the dominant energy consumer functions include new code transmission, reading from and
writing to external memory, and idle listening. Paying much attention to mitigating energy
consumption may result in flexibility degradation. Sensor networks reprogramming makes
a trade-off in update cost versus flexibility as shown in Figure 4.1. The flexibility refers
to the capability of selecting the most appropriate level of reconfiguration and allowing

36

Reprogramming Challenges

arbitrary changes to the functionality.

&���������'

"
��

��
�

�
�

�
(�

��
	

�
��)

��
��

�)
*�

��
��

�

&���
#����
*+�+
����,
-�./

�����	�	�+����
*+�+
��	&��,
)���0/

�������
*+�+
���,
&�	��1�/

,������
���-�	�
*+�+
����/

����	�.
����������
*+�+
����	�/

Figure 4.1: Trade-off between flexibility and update cost in WSN reprogramming models.

Second, wireless reprogramming requires 100 percent delivery, which comprises two
parts: every node in the network must receive the program code, and the code update
image must be received in its entirety. This is in contrast to traditional requirements in
sensor network applications, in which, occasional loss of data is tolerable. Moreover, an
efficient reprogramming model requires a high communication bandwidth. Unlike sensed
data which is small, delivering the entire program image, of the order of kilobytes over low-
bandwidth wireless radio, as required in network reprogramming, needs high bandwidth
and can lead to energy overconsumption due to packet retransmission.

Third, memory requirements of network reprogramming should be efficiently mini-
mized. Since network reprogramming is supposed to be a service resident on every node of
the network, high memory usage would limit the available space for behavior of system-level
libraries and application logic. Apart from that, in modular-based reprogramming models
memory management becomes more critical as it is required to allocate dynamic memory
to the updated modules. This may lead to memory fragmentation and code memory may
become divided into many small pieces over several reprogramming.

Finally, the dominant energy consumption happens during new code transmission.
Thus, the reprogramming mechanism should minimize the amount of information that
needs to be wirelessly transmitted during reprogramming. It means that we need to
efficiently delimit and reprogram the necessary portion of sensor software, rather than
updating the full binary image.

37

Sensor Network Reprogramming

4.3 WSN Reprogramming Models

WSN reprogramming approaches are distinguished based on above performance challenges.
An efficient reprogramming mechanism should be flexible enough to accommodate the new
requirements, and at the same time respecting the severe resource constraints imposed
during reprogramming. In the rest of this section we report on the prominent frameworks
addressing reprogramming in WSNs at different levels, including full software image up-
grade, modular upgrades, fine-grained component-based reconfiguration, virtual machines,
and parameter updates.

4.3.1 Full Software Image Upgrades

The most popular way to update software in sensor networks is to compile a complete
new binary image of the application software together with the system code and overwrite
the existing system image of the sensor node. Although full image binary upgrades pro-
vide maximum flexibility by allowing arbitrary changes to the functionality, they incur
unacceptable update cost by transmitting and uploading large binary images.

Deluge [27] as the most cited approach in this category is a networked bootloader and
dissemination protocol that performs full image upgrades of TinyOS applications. Deluge
is empowered with an epidemic protocol and operates as a state machine where each
node follows a set of local rules to achieve a desired global behavior: the quick, reliable
dissemination of large binary objects to many nodes. In order to manage the large size,
Deluge divides the binary object into fixed-size pages. Having all pages of a binary image
received by a given node, the TOSBoot bootloader reprograms the node by transferring a
Deluge object from external flash into program flash. TOSBoot is a static piece of code
that executes each time the node exits the reset state. MNP [49] is very similar to Deluge
using a sender selection mechanism that attempts to explicitly limit the number of nodes
which are transmitting data in a particular broadcast neighborhood. In contrast to the
MNP protocol, Deluge requires that radio is always on during reprogramming.

XNP [88] is also a mechanism that implements over-the-air reprogramming of the sensor
nodes running TinyOS. It supports basic functions of code distribution and reprogramming,
while it does not support multi-hop code delivery. XNP consists of three main components:
the network programming module, the bootloader, and the network programming host
tool. It stores a new image for the node into an external flash memory, then reads into
program memory, and finally reboots the node. MOAP [89] supports multi-hop network
reprogramming by disseminating code in a hop-by-hop fashion, that is, a node has to
receive the entire program image before starting advertising. To reduce the number of
senders MOAP uses a simple publish-subscribe interface.

The above approaches generally come with two main drawbacks: i) the large size of the
monolithic binary image incurs a high energy overhead for code transmission, ii) reinstalling
the full application disrupts the running application. Additionally, often a small update
in the code, such as a bug fixing, will cause only minor differences between the new and

38

WSN Reprogramming Models

old system image. Therefore, difference-based approaches are proposed to overcome above
issues. These are based on sending a diff of the new image into the network as proposed
in [90] and [91]. This reduces the amount of data that needs to be transferred. The main
drawback of such approaches is that complex algorithms to patch the diff images needs to
execute on the sensor nodes.

4.3.2 Modular Upgrades

Systems that support modular upgrades consist of a run-time loader and linker. The
loader is responsible for tracking the storage of the binary modules in the code memory
and allocating appropriate resources for them to execute. The linker is in charge of resolving
any references made by the modules to the kernel, common libraries, or other modules in
the system.

SOS [15] and Contiki [16] are the operating systems allowing modular binary upgrades
at run-time. SOS consists of a thin kernel that is statically installed on all the nodes
in the network. The rest of the system, including system functionality and application
components are implemented as modules. The kernel provides support for loading and
unloading modules at run-time, in addition to a rich set of services such as dynamic memory
allocation, software timers, sensor manager and high-level I/O interface. SOS uses position
independent code to link and load new modules. Position independent code is a type of
machine code which does not contain any absolute addresses to itself, but only relative
references.

Contiki enables modular updates through in-place dynamic run-time linking and load-
ing of native code using the Executable and Linkable Format (ELF) file format. ELF is
not only a standard binary object format on many operating systems for PC computers
and workstations, but also feasible even for resource-constrained embedded systems. Us-
ing standard ELF format, dynamic linker in the Contiki can dynamically link, relocate,
and load updated modules. Compared to SOS, Conitiki’s mechanism is independent of
microprocessor architectures on the sensor nodes.

4.3.3 Component-based Reconfiguration

Componentization offers the capability of black-box integration of system modules in order
to simplify modification and reconfigurability of dynamic systems. This abstraction simpli-
fies reconfiguration realization by formulating the way through which software modules can
interact. In particular, software components interact with their environment (i.e., other
components) exclusively through interfaces and receptacles. Therefore, to reconfigure a
component, we need to maintain the dynamic representation of components topology at
run-time and update a component based on meta-data specifying rules and constraints for
reconfiguration execution. In general, four types of reconfigurations are likely to happen
during the application run-time: i) replacing a component with a new one, ii) adding a new
component, iii) component removal, and iv) changing the values of component member

39

Sensor Network Reprogramming

variables. In the rest of this chapter we review the existing component-based reprogram-
ming approaches in WSNs.

FlexCup [22] is a code update mechanism that enables on-the-fly reinstallation of soft-
ware components in TinyOS-based sensor nodes in an efficient way. FlexCup proposes two
main phases to reconfigure nesC components: the code generation phase, where relevant
information is generated at compile time; and the linking phase, where the modified com-
ponents are combined with other components at run-time. Specifically, during the code
generation process, FlexCup generates meta-data that describes the compiled components.
Next, it uses this meta-data during a code update to place the new component inside the
running application, relink function calls to the appropriate locations and perform address
binding of data objects.

OpenCom [28] also provides run-time reconfiguration programming platform as it is
a reflective component model. A reflective model in general presents the internals of the
system and provides the means for modifying them [92]. In the case of OpenCom, the
internals of the system are represented by the component graph which holds all information
about deployed components and how they are connected. By modifying the system graph
we can modify the application represented by the graph. Component reconfiguration in
OpenCom is supported by the OpenCom run-time. Gridkit [74] is an OpenCom-based
middleware for sensor networks, realizing co-ordinated distributed reconfigurations based
on policies and context information provided by a context engine.

FiGaRo [25] is a WSN-specific reconfiguration solution, addressing what and where
should be reconfigured. FiGaRo mainly focuses on a code distribution algorithm for WSNs.
LooCI [78] is a WSN-specific component model providing a loosely-coupled component in-
frastructure focusing on an event-based binding model for WSNs. LooCI has been success-
fully implemented on the SunSPOT sensor node. Finally, Think [31] is a C implementation
of Fractal [76] whose main goal is to provide fine-grained reconfiguration at architecture-
level. Think allows to finely control the overhead induced by meta-data generation required
only by the reconfigurable artefacts [77].

4.3.4 Virtual Machines

Virtual machines provide a run-time environment that isolates the execution of applica-
tions from the underlying platform. The execution engine proposes a set of high level
instruction set, enabling a compact representation of the application code. Therefore, size
of applications is reduced in this way and software updates can be distributed more easily.
However, since execution takes place within a virtual machine, execution cost is higher
compared to native code.

Maté [93] is perhaps the first virtual machine architecture proposed for the resource
constrained sensor nodes. Maté runs on top of TinyOS operating system, allowing adding
and removing of applications. In Maté and other VM-based approaches, the implementa-
tion of the VM is strongly bound to application specifications.

40

Discussion

4.3.5 Reconfiguration Middleware

In this approach, dedicated middleware platforms are designed for networked sensor sys-
tems, with abstractions that can offer consistent and general mechanisms to configure,
deploy, and dynamically reconfigure both system and application level software. The gen-
erality of middleware models makes it possible to reuse the reconfiguration functionality
on a divers set of dynamic sensor applications.

Impala [94], built as part of the ZebraNet project [95], is a middleware architecture that
enables application modularity, adaptively, and reparability in WSNs. Impala proposes a
run-time system that acts as a lightweight event and device manager for each mobile
wireless sensor node in the system. Moreover, Impala provides an interface for on-the-
fly application reconfiguration in order to improve the performance, energy-efficiency, and
reliability of the software system. This middleware solution is also potentially able to
be exploited in a range of distributed and “grid” computing environments, with broad
applicability.

Costa et al. in [21] propose RUNES to provide primary services needed in a typical
resource-limited node. Specifically, their work supports customizable component-based
middleware services that can be tailored for particular embedded systems. RUNES mainly
focuses on Unix-based and Java-based platform, and its implementation on WSNs basi-
cally relies on the OS’s dynamic facilities, e.g., in [21] Contiki’s module update model is
exploited.

4.4 Discussion

In this chapter, we have discussed approaches to enable dynamic update of sensor software.
The presented models are basically different in the reprogramming scope, which is either
whole software image or some portion of software. The former ensures a high level of
flexibility, while the latter emphasizes on the efficiency of reprogramming. In the full-
image technique, the main concern is to devise an energy-efficient code distribution model
to successfully deliver all pieces of code to all nodes in the network. This technique can be
an appropriate solution for applications in which reconfiguration rarely happens. In the
case of frequent reprogramming, the full-image update model may impose a high energy
overhead as it requires to propagate a high volume of new code across the network. The
other drawback of this approach is that the context of application (e.g., value of modules’
parameters) cannot be preserved during the transition of old image to the updated image.

Modular- or component-based reprogramming imposes a different set of challenges,
while they are focused on minimizing the reprogramming cost. Dynamic memory allocation
is one of the main shortcomings of approaches discussed in this chapter. For example,
Contiki allocates a given space in the memory to load the new module, while component-
based models like OpenCom rely on the underlying memory management model of the
operating system. The meta-data required to retain information such as functions’ address

41

Sensor Network Reprogramming

and bindings between modules (to perform dynamic linking and loading) are the other
important issues in this context. Most of existing approaches such as Contiki and SOS
maintain a high volume of such data in the data memory. The applicability of approaches in
this category over different CPU architectures is the other challenging issue. For example,
SOS can be applied on platforms supporting position independent code. The above issues
have motivated our research on a component-based reprogramming model for WSNs, while
the existing approaches in this area are immature and/or suffer from the extensive use of
WSN resources.

42

Chapter 5

Sensor Service Distribution

Application environments, hosting WSNs, are becoming increasingly heterogeneous at two
levels. At a primary level, the sensor nodes in the network may possess varying sensing,
processing and communications capabilities due to the efficiency reasons or the nature
of applications. At one higher level, WSNs are characterized as a primary element of
distributed applications in ubiquitous environments, where sensor nodes populate with ac-
tuators, embedded devices, appliances, RFID readers, and mobile devices for monitoring
ambient environments and reacting to the external stimuli gathered by different devices.
These heterogeneity models require a flexible and simple solution that supports multi-
ple interaction mechanisms and considers the restricted capabilities of sensor devices. In
particular, the immaturity of high-level communication protocols and resource scarceness
in WSNs bring a critical challenge to the system: how to connect sensor nodes to other
computing devices (e.g., mobile devices and actuators) through a standard high-level dis-
tribution model. In this chapter, we study this issue by providing an overall background on
sensor service integration and distribution, and presenting the state-of-the-art techniques
in this area.

5.1 Background

Today, WSN applications are neither able to be developed only on homogeneous construc-
tions, nor focused on carrying out only trivial, limited sensing logics. Sensor network are
becoming increasingly heterogeneous due to two primary reasons. First, to have a better
throughput with a high deployment density, WSNs are typically organized as a mix of pow-
erful, expensive devices (to perform complex operations) and regular resource-constrained,
cheap sensor nodes enabling higher deployment densities and increasing network lifetime.
Moreover, during the lifetime of a long-lived WSN, new devices may be developed and
integrated to the network, resulting in network heterogeneity. Second, a higher level of
nonuniformity occurs when sensor network platforms are integrated with different types
of network systems and computing devices in order to realize use cases of ubiquitous ap-

43

Sensor Service Distribution

plications. Especially, in context-aware application scenarios, sensor nodes as a primary
context data provider element tightly interact with actuators, mobile devices, and other
embedded devices.

In such environments, the main focus is on how to abstract the low-level distribution
issues and create a uniform interaction model that can be applied for different degrees of
heterogeneity, from communications between incongruous sensor nodes, to integration of
WSN with modern IT systems, such as the Internet. In this way, sensor nodes become
service-enabled devices abstracting their low-level functionality and exposing themselves
as a set of well-defined services accessible by other nodes in the network. In the rest of
this chapter, we investigate the existing approaches on providing high-level distribution
and integration models for WSNs.

5.2 Distributed Callback Functions

This approach is focused on providing low-level APIs to enable implementation of callback-
like functions within sensor networks for exchanging raw sensed data among nodes and
therefore simplify interaction between distributed modules. The callback function is a
reference to an application level function that is passed as an argument to communication
libraries within the operating system. This allows the lower-level communication layer to
call a function defined in the application layer and pass the data sent by the caller to the
function. The communication libraries also consist of a set of proprietary interfaces in
order to unicast or multicast plain text messages across the network.

Using callback distribution model, the pure data-oriented nature of interactions in
WSNs is promoted to a function-oriented model in which modules running on different
nodes can request services from each other through their callback functions. Although
this communication model can improve the way to design and implement service-based use
cases, the programmer still needs to deal with some low-level issues (e.g., routing protocol)
and the applicability of this model is limited to a homogeneous setting over a given network
protocol.

5.2.1 Active Message

Active Message [96] essentially refers to the concept of integrating communication and
computation, as well as matching communication primitives to hardware capabilities. It
is basically proposed to abstract the underlying radio communications services in TinyOS.
Active Messages is a simple paradigm for message-based communication extensively used
in parallel and distributed systems. Each Active Message contains the name of a user-level
handler to be called on a target sensor node upon arrival and a data payload to pass in
as arguments. The handler function is designed to extract the message from the network,
as well as either to integrate the data into the computation or to send a response message.
The key strengh point of Active Message is that invocation model in handler is inspired

44

RPC-type Invocation

from the event-driven architecture. This allows the programmer to avoid busy-waiting for
data to arrive and enables the system to handle communication simultaneously with other
activities such as interacting with sensors or executing other application logics.

Active Message takes into consideration the setting in which a large variety of devices
with different physical communication capabilities may be deployed. It addresses this
issue by building the communication kernel as three separate TinyOS components, then
developers can choose which implementations of the basic components is appropriate. Nev-
ertheless, it is still only exploitable for applications that are fully written in the TinyOS
programming model and falls short of expectations in heterogeneous deployments.

5.2.2 Chameleon Communication Model

Chameleon [97] is a communication architecture for wireless sensor networks that aims
at providing a set of communication primitives that map well onto the communication
primitives used by typical sensor network protocols. In particular, it is focused on a com-
munication model that adapts to a wide range of underlying communication mechanisms
without requiring any changes to applications or protocols. Chameleon addresses the com-
munications issue in the Contiki operating system. Contiki features a callback invocation
mechanism that lies over the Chameleon and provides the primitives to enable easily dis-
tributed programming in sensor networks. According to Contiki’s callback mechanism,
when Chameleon successfully sends a packet (containing data sent by other nodes), it
notifies the sending application via a callback. Correspondingly, Chameleon on the data
receiving node notifies the associated callback function of application when the data is
successfully arrived to the node. Although Chameleon attempts to break the limited com-
munication boundaries to a more diverse set of WSN protocols, it is applicable only in
Contiki-based applications.

5.3 RPC-type Invocation

The concept of a Remote Procedure Call (RPC) dates back several decades. A RPC can be
described as a mechanism in which applications are able to make calls on remote machines
transparently, while for users it appears as local procedure calls. The framework supporting
RPCs is in charge of handling underlying RPC complexities, such as converting the calls to
a TCP connection between client proxy and server stubs and marshalling/demarshalling
the parameters and return values.

The recent implementations of RPC in conventional network platforms include Java
RMI [98], CORBA [60], and .NET Remoting [99]. These implementations are designed
to support object-oriented and component-based programming models, and to execute on
distributed architectures. In the context of WSNs, RPC emphasizes on the need for high-
level programming abstractions that hide the complexities of internode communications
both within and across single-hop neighborhoods. A number of lightweight component

45

Sensor Service Distribution

models have been proposed to provide RPC-like service invocations in sensor networks.
We discuss them in this section.

5.3.1 OpenCom

OpenCom [28] is a general purpose component model for building system software without
dependency on any platform environment. OpenCOM offers a higher level of abstraction,
known as Component Frameworks (CFs), which are used to model interactions between co-
operating components. Component bindings in CFs may be local or distributed. OpenCom
offers the concept of a distributed component framework to handle interactions between
distributed components. Each distributed framework contains a set of local frameworks
(local composite components) of the same type. Distributed CPs can be composed of hi-
erarchical local component frameworks and the design of the distributed framework model
follows the same basic principles as for local frameworks. The main issue regarding the use
of OpenCom in sensor system is its high resource demands. OpenCom has been tried to
build components with negligible overhead for supporting features specific to a development
area, however it is a generic model and basically developed for resource-rich platforms.

5.3.2 TinyRPC

May et al. in [100] present an RPC extension to nesC [69] which allows RPCs with similar
semantics to local calls in nesC. Using TinyRPC, a nesC component can bind to some
interface that is actually implemented in a remote node in its neighborhood. This approach
consists of three parts. At the high level, it contains a set of nesC language extensions
that allow designers to specify module dependencies that span hardware boundaries. It is
designed to enable programmers to invoke remote operations, regardless of the underlying
communication details. At the middle level, Remote nesC features a set of compiler tools
that automate the generation of the communication infrastructure, and transform the
language extensions to semantically equivalent nesC code. Finally, Remote nesC provides
an operating system service for TinyOS that manages the interactions between remote
modules. In this model, developers require to model component interactions on a mote-
by-mote basis.

5.4 Web Service Oriented Approach

Service-Oriented Architecture (SOA) offers the potential to provide the necessary system
visibility and device interoperability in complex and highly distributed IT systems. It is
basically an architectural paradigm that identifies mechanisms to publish, find and com-
pose distributed services. To achieve the above goals, Web Services offer standardized
interfaces for loosely coupled software components based on mainly two languages: the
Web Service Definition Language (WSDL) and Simple Object Access Protocol (SOAP).

46

Web Service Oriented Approach

The former is used to define the syntax of the interfaces, and the latter defines the for-
mat of messages that are exchanged when invoking services. The Web Services paradigm
was initially designed to address a form of distribution that could be used to integrate
and combine different computer systems, with a concrete concentration on business ar-
chitectures. This concentration resulted in relatively heavy standards: both the interface
definition (WSDL) and the messages (SOAP) are rather complicated instances of XML
documents. Web Services expands the use of the SOA paradigm, implemented through
Web Services technologies, in ubiquitous environments, enabling the adoption of a unifying
integration technology for all levels of the enterprise, from low-level real-time embedded
sensors and actuators devices to enterprise business processes. However, this approach is
quite demanding in terms of required computing power, bandwidth and memory usage. In
this section, we discuss two initiatives attempted to apply the Web Services paradigm in
resource-constrained systems.

5.4.1 SOCRADES

SOCRADES (Service-Oriented Cross-layer Infrastructure for Distributed smart Embed-
ded devices) [32] is a European research project addressing SOA-based manufacturing
paradigm. It primarily aims at developing a design, execution and management platform
for next-generation industrial automation systems, exploiting SOA paradigm both at the
device and at the application level. In particular, it aims at making embedded devices
directly accessible across IP-enabled networks with Web Service technologies by installing
an adopted Web Service stack.

In SOCRADES, Web service standards are implemented on the physical device level
so that all the actors such as sensors, machines, and actuators can exhibit their services
through a common interfacing language. The Device Profile for Web Services (DPWS
standards) [101] can be used to enable Web service messaging, discovery, description and
eventing on resource-constrained devices. However, DPWS is still too heavyweight for the
common sensor nodes and needs to be further developed in order to meet the needs of
WSNs. Hence, the current SOCRADES framework is only deployable on gateway devices.

5.4.2 Tiny Web Services

The goal of Tiny Web Services [35] is to quantify the resource costs of providing program-
matic access to sensor nodes using SOAP-based Web Services. In particular, this approach
is focused on implementing web services directly on resource-constrained devices such as
sensor nodes using WSDL specification. Tiny Web Services, therefore, eliminates the need
for gateway devices that may get tied to a custom format between the gateways and sensor
nodes. To this end, the Web Services framework proposes several important guidelines for
efficient use of TCP/IP and web services on sensor networks, including the use of persis-
tent TCP connections, disabling delayed acknowledgments in TCP, and using link layer
retransmissions. In contrary to traditional web service models assuming an always-on web

47

Sensor Service Distribution

services server, Tiny Web Services enables Web Services hosting efficiently on duty cycled
nodes that must enter a low power disconnected state for long periods of time.

5.5 RESTful Integration

This model of service distribution is inspired from the principles building the Internet as
a scalable global network of computers that interoperate smoothly across heterogeneous
hardware and software platforms. These architectural principles as the heart of the Web
share a similar goal with the Web Services standards: increase interoperability for a looser
coupling between parts of distributed applications. This scalable architectural style is
termed as Representational State Transfer (REST), defined by Roy Fielding in his doctoral
dissertation [47]. REST emphasizes on scalability of component interactions, generality of
interfaces, and independent deployment of components. Moreover, it proposes interme-
diary components to reduce interaction latency, enforce security, and interoperate with
legacy systems. The REST triangle defines the principles for encoding (content types),
addressing (nouns), and accessing (verbs) a collection of resources using the Internet stan-
dards. System, which follows REST principles, is called RESTful, e.g., the World Wide
Web is the key example of RESTful design.

Resources, which are central to REST, are uniquely addressable using a universal syntax
(e.g., a URL in HTTP) and share a uniform interface for the transfer of application states
between client and server (e.g., GET/POST/PUT/DELETE in HTTP). REST resources
may typically exhibit multiple typed representations using, for example, XML, JSON,
YAML, or plain text documents. Thus, RESTful systems are loosely-coupled systems
which follow these principles to exchange application states as resource representations.
This kind of stateless interactions improves the resources consumption and the scalability
of the system.

In a RESTful system, a component can interact with other distributed components by
knowing two things: i) the unique identifier of the representative resource of component,
and ii) the predefined standard actions to invoke. Therefore, in this mechanism the ap-
plication model is transformed from operation-centric into a data-centric one and every
data that offers services becomes a resource which is accessible through four standard op-
erations: GET, POST, PUT, and DELETE. In this model of interaction, the client-server
separation of concerns can simplify component implementation, reduce the complexity of
connector semantics, and increase the scalability of server components.

REST-based Web Services development brings some unique advantages to system, com-
pared to SOAP-based distribution model. Besides the fact that using web patterns makes
it more lightweight and simpler, REST uses the Web as an application platform and fully
leverages all the inherent features of HTTP such as authentication, authorization, en-
cryption, compression and caching. Traditionally, REST has been used to integrate web
systems together. However, the lightweight and simple aspect of REST makes it an ideal
candidate for resource-constrained embedded devices to offer services to the digital world.

48

RESTful Integration

In this section, we explain the prominent approaches in this area.

5.5.1 TinyREST

TinyREST is one of early attempts to integrate WSNs into the Internet [33]. It uses the
HTTP-based REST architecture to obtain/change the state of sensors/actuators. TinyREST
assigns a URL address to all resources and uses the POST method to command an actuator
to take some action and the GET method to query the current state of a sensor. TinyREST
gateway maps a set of HTTP-requests to TinyOS messages in order to link MICA motes
to any Internet client. In particular, TinyREST proposes a gateway for communication
between WSNs and the Internet through the POST method, GET method, and the REST
extensions to HTTP for event subscriptions. Beside the fact that in TinyREST only the
access point is able to interact with the Internet (not any individual sensor node), this
approach fails to follow all standard HTTP methods.

5.5.2 RESThing

This framework [102] presents an IP-based sensor network system where nodes can directly
integrate to modern IT systems through RESTful Web services. This approach relies on
the IP protocol stack implemented in the Contiki operating system. Contiki has made a
considerable effort on the provision of IPv4 and IPv6 protocols on the common types of
sensor nodes. As shown in Figure 5.1, RESThing consists of HTTP Server, REST Engine,
SAX based XML parser and Logger modules. Developers can add their own RESTful Web
services on the REST engine as symbolized by RWS. RESThing offers an interface to create
resources since they are the main abstractions of RESTful Web services.

Figure 5.1: Architecture of RESThing framework.

HTTP server is a small footprinted server to handle the incoming and outgoing HTTP
requests. It provides an interface to perform certain HTTP related tasks such as accessing
request details (headers, entity body, URL path), constructing an HTTP response, etc.

49

Sensor Service Distribution

Both REST Engine and SOAP Engine work on top of the HTTP server. The REST
framework also includes a XML parser, developed by a third-party [103], to parse requests
in XML format. It is very small in code size and being a non-validating SAX based parser
makes it memory efficient. A minimal SOAP processing engine is also provided to fulfill
SOAP-based Web service invocations. Engine parses the SOAP message using the XML
parser, extract the method information and execute it, finally the response SOAP message
is built using the XML parser.

5.6 UPnP

The Universal Plug and Play (UPnP) Architecture [104] uses open and standardized pro-
tocols based on XML allowing devices to connect seamlessly in corporate environments. In
UPnP, all communications are peer-to-peer and transferred over TCP/IP, UDP and HTTP.
As all interactions are done atop the IP layer, it is thus completely hardware-independent.
In UPnP-based integration, mechanisms for addressing, discovery, description, control,
eventing and presentation are defined. Communication in UPnP follows a peer-to-peer
philosophy so that no central component is needed to deal with managing interaction
among the participants of a UPnP network. This motivates the wide adoption of UPnP as
a simple and robust standard for ad hoc and unmanaged networks. UPnP facilitates the
integration of new platforms via simple standardized mechanisms because of the capability
of zero-configuration and automatic discovery in heterogeneous settings.

5.6.1 A UPnP-based SOA for WSNs

In [34], a UPnP-based approach is presented to enable the integration of WSN platforms
in large-scale enterprise environments through a three-layer SOA. This three-layer SOA
has been used to integrate with RFID and monitor hazardous chemicals for a petroleum
company. The layers of the architecture consist of the backend, gateway, and front-end.
The back-end (application) layer consists of Service repository (a database of all avail-
able services in WSN), System state manager (keeping track of the states of the sensor
nodes), Service mapper (mapping the services to different nodes), Service invocation man-
ager (contacting all the nodes running a given service and returning the results of service
invocations to the application), and Notification manager (using a web service to distribute
event messages). To exhibit the functionality of a given WSN to the business applications
in a uniform way, UPnP gateway is designed to distribute sensor services using the UPnP
standard. The gateway takes care of translating between packet-level proprietary sensor
network messages and UPnP arguments and assisting in the deployment of services to
the sensor network. The front-end (device) layer encompasses the multitude of WSN and
radio-frequency identification (RFID) technologies.

50

Discussion

5.7 Discussion

Whereas the RPC-based approaches limit the distribution of sensor data and services to
homogeneous sensor networks, the Web-service based techniques aim at extending the
distribution scope of sensor services to pervasive environments over the IP protocol stack.
Although this class of approaches is suitable for a certain range of devices, there is always
a class of very small and lightweight devices which will not be able to bear the additional
overhead imposed by the Web Service technologies, and therefore sensor networks require a
more efficient SOA-based distribution model. Other than that, Web Services development
in this approach requires significant expert knowledge and tools that average users do
not possess. It makes this framework appropriate for well-defined integration scenarios,
but remains quite complicated for ad-hoc integration scenarios by end-users. Although
UPnP has mitigated this problem via simple standardized mechanisms, it makes use of
some unstandardized protocols like HTTPU. UPnP discovery and control protocols are
also heavyweight for a typical sensor node and there is a very limited range of sensor nodes
supporting UPnP-based communications. Furthermore, using UPnP in this framework
imposes many new hardware and new software set-up for integration support.

REST-based solutions come to tackle the aforementioned problems in SOAP-based
Web services. Since most of WSN applications usually offer rather simple and atomic
functionalities (e.g., reading sensor values), modeling them using REST is often straight-
forward. RESThing is an efficient framework to enable REST-based communications in
WSNs. However, this framework provides only the primitives required to RESTifying sen-
sor networks. In other words, the programming model to develop web services is missing
in RESThing. This motivates our research on proposing a high-level programming model
to facilitate REST-based Web service development in WSNs.

51

Sensor Service Distribution

52

Chapter 6

Conclusions and Future Work

This chapter first presents a summary of main results and contributions of this thesis, then
some opportunities and ideas for further research are discussed.

6.1 Major Contributions

The main goal of the work presented in this thesis has been to provide support for adap-
tation and reconfiguration in WSN applications. To achieve that, we have revisited the
principles of FCL to devise a reference model addressing adaptation in WSNs. This model
is designed to meet all requirements in the lifecycle of a typical dynamic WSN application.
These requirements include: i) monitoring contextual changes in the environment, ii) rea-
soning about the required adaptation according to the processed context information, and
iii) reconfiguring the application software based on the decided adaptation. This thesis
has contributed in the five main following areas to meet the above requirements:

1. Context-awareness. We have proposed an approach for context management in WSN
applications. The main idea behind the proposed framework is to provide a high-level
abstraction that facilitates observing, modeling and processing WSN-specific context
information with respect to the special characteristics of WSNs, e.g., network archi-
tecture and context data types. The building block of our proposal is the notion
of context node. A context node is context information modeled by a context com-
ponent performing context execution tasks (context processing, context reasoning,
and context configuration). Context components are distributed across the network
according to the context model description. The associated run-time middleware
system maintains the model and implements a container for context execution.

2. Adaptation Reasoning. We have proposed a middleware solution, called WiSeKit,
to make an abstraction layer that formalizes and simplifies adaptation reasoning in
dynamic WSN applications. The middleware framework is aimed at distributing

53

Conclusions and Future Work

the reasoning process across different node types in the network according to the
typical hierarchical architecture of WSNs and identifying reasoning models for each
hierarchy. The hierarchical adaptation decision is designed based on the resource
availability in a node, as well as the portion of the network spanned by a node. In
particular, Local-observation happens within sensor nodes to identify local adapta-
tion policies. Intermediate-observation is introduced for gateway nodes and focused
on more complicated reasoning required for a region of the network, e.g., a floor or
a room in a building. Finally, by Remote-observation, the end-user or sink node
would be able to remotely observe the sensor application and decide on the required
adaptation for the whole sensor network.

3. A Programming Model for Adaptive WSNs. We have proposed a new component-
based programming model to simplify application development in WSNs, as well as to
support the component-based reconfiguration mechanism proposed in the WiSeKit

middleware. This component model, called Remora, addresses high-level event-
driven programming in WSNs through a component-based approach. As a SCA-
compliant component model, Remora introduces a widely-accepted component pro-
gramming approach which is specialized for WSNs and embedded systems, and at
the same time it attracts PC-based developers to programming in WSNs. To ensure
portability of Remora components towards different OSs, the Remora component
framework is integrated with the underlying operating system through a well-defined
OS-abstraction layer. Since WSN software is inherently event-driven, Remora in-
troduces an efficient way for describing and implementing event-based interactions
between software components. This abstraction also aims at simplifying OS-level
events processing by translating them to event entities that can be easily integrated
to the proposed component model. This component model has been successfully
deployed and tested on the TelosB sensor nodes with the Contiki operating system.

4. Component-based Reprogramming. This thesis has presented a middleware system,
called RemoWare, to address component-based reconfiguration in WSNs. Re-

moWare includes a set of optimized reconfiguration services deployed on the sensor
nodes, which consistently update the required pieces of code. The core contribution
of the middleware is to achieve fine-grained reconfiguration in WSNs by revisiting
the Remora component model and enhancing it with the principles of in-situ recon-
figurability. This refers to fine-grained delimitation of static and dynamic parts of
sensor software at design-time in order to minimize the overhead of post-deployment
updates. To achieve that, RemoWare proposes novel techniques for linking dy-
namic modules to the system (neighbor-aware binding) and loading the reconfigured
components to the memory (in-situ memory allocation). Retaining the state of a
component during reconfiguration is the other concern considered by the proposed
framework. It also devises an efficient technique for compressing updated compo-
nents in order to minimize the overhead of radio communications for transmitting

54

Future Work

new updates. The RemoWare middleware has been successfully implemented and
deployed on the TesloB mote.

5. Unified Distribution Models. Distributing WSN services through standard and widely
accepted communication protocols is of high importance. Especially, addressing this
issue is very critical for the context processing framework in WiSeKit, where sensor
nodes may require to communicate with different computing devices to collect con-
text information. This thesis demonstrates a high-level programming abstraction,
based on the Remora component model, in order to enable service distribution in
WSN applications. This component-based approach promises a new abstraction to-
wards the integration of sensor software modules to the Internet through upgrading
component-level services to Web services over a lightweight RESTful architecture.
This flexible framework is also potentially able to exhibit sensor services to other
types of network protocols by implementing platform-specific bindings.

The Remora component model along with the RemoWare reconfiguration middle-
ware have been made available as open source from the SWISNET project web pages [37].
The intention is to allow others in WSN research community to use these products to
develop adaptive applications and validate our results. By allowing others to modify the
software, the opportunities for building on our work in future research are also significantly
improved.

6.2 Future Work

During the work on this thesis, we have touched on many different problem areas. Although
we do not assert the results achieved by this thesis provide a conclusive answer to most of
the identified challenges, we believe in the contributions this thesis has made with respect to
the state-of-the-art. Therefore, our short-term plan is to further consolidate our solutions
by receiving feedback from users of our solutions, and by deploying and evaluating the
performance of our framework in real-world scenarios. Additionally, we identify a number
of unaddressed issues and potential research directions. In the following, we present open
problems and future work for the research challenges discussed in this thesis.

The programming framework we proposed in this thesis is mainly focused on sensor
platforms, while it is theoretically portable to other embedded devices used in different ap-
plication domains, like the ones used in home appliances. Thus, one potential direction for
future is to enhance and tailor the Remora component model in order to expand its usage
area. Additionally, the current goal of Remora is to be exploited only in application-level
programming, while we believe that the efficient support of event processing in Remora

potentially enables it to componentize operating systems for WSNs and embedded systems.
Such componentization can be even beneficial for developing driver modules for embedded
hardware systems.

55

Conclusions and Future Work

The code memory allocation model is central to the efficiency of reprogramming model
in WSNs as the code memory in most sensor platforms is scarce. Although we have carefully
considered this issue in RemoWare, code memory allocation models are considered as an
important future research topic for dynamic sensor applications. In particular, avoiding
memory fragmentation and improving the reliability during flashing new code are some
important research problems in this area. From a network perspective, code distribution is
the other interesting issue in WSN reprogramming. Selective code dissemination is a recent
technique to select target nodes for reprogramming based on various constraints such as
sensor node’s physical properties or application parameters. We plan to investigate this
problem in our future work.

Component-based distributed programming in homogeneous sensor networks is the
other open problem. In this thesis, we have studied distribution for heterogeneous networks
that are able to accommodate TCP/IP protocol stack, while in a homogeneous setting the
distribution model can rely on simple proprietary WSN protocols and reduce the cost of
distributed programming by identifying a remote service call to send the required service
data from one node to the other node (like Java RMI). Using the concept of component-
based programming, the low-level complexities of remote calls can be abstracted by the
component run-time system.

In the long term, we foresee that WSN programming and adaption will require stronger
abstractions for large-scale distributed applications, in contrast to the existing models (ei-
ther node-level or network-level approaches) that do not provide a high-level representation
of programming and reprogramming features. In particular, in large-scale and heteroge-
neous applications programmers expect novel programming techniques that enable them
to design and implement the target application over a set of virtual nodes that abstract the
dense physical deployment. The virtual nodes are represented based on some application-
driven logic (e.g., social or physical properties of nodes) and they become the target of
programming for the developer, rather than the physical individual nodes.

56

References

References

[1] B. Warneke, M. Last, B. Liebowitz, and K. Pister, “Smart dust: communicating with
a cubic-millimeter computer,” Computer, vol. 34, no. 1, pp. 44–51, 2001.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor
networks,” Communications Magazine, IEEE, vol. 40, no. 8, pp. 102–114, 2002.

[3] K. Romer and F. Mattern, “The design space of wireless sensor networks,” Wireless
Communications, IEEE, vol. 11, no. 6, pp. 54–61, 2004.

[4] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: research
challenges,” Ad Hoc Networks, vol. 2, no. 4, pp. 351–367, 2004.

[5] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin,
“Habitat monitoring with sensor networks,” Commun. ACM, vol. 47, pp. 34–40, June
2004.

[6] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and S. Madden, “Task: sensor
network in a box,” in Wireless Sensor Networks, 2005. Proceeedings of the Second
European Workshop on, 2005, pp. 133 – 144.

[7] J. Burrell, T. Brooke, and R. Beckwith, “Vineyard computing: Sensor networks in
agricultural production,” IEEE Pervasive Computing, vol. 3, pp. 38–45, January
2004.

[8] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and M. Parlange,
“Sensorscope: Out-of-the-box environmental monitoring,” in IPSN ’08: Proc. of the
7th Int. Conf. on Information processing in sensor networks. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 332–343.

[9] T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan,
L. Gu, J. Hui, and B. Krogh, “Energy-efficient surveillance system using wireless
sensor networks,” in MobiSys ’04: Proc. of the 2nd Int. Conf. on Mobile systems,
applications, and services. New York, NY, USA: ACM, 2004, pp. 270–283.

[10] A. Milenković, C. Otto, and E. Jovanov, “Wireless sensor networks for personal
health monitoring: Issues and an implementation,” Computer Communications (Spe-
cial issue: Wireless Sensor Networks: Performance, Reliability, Security, and Be-
yond), vol. 29, pp. 2521–2533, 2006.

[11] K. Lorincz, D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder,
G. Mainland, M. Welsh, and S. Moulton, “Sensor networks for emergency response:
Challenges and opportunities,” IEEE Pervasive Computing, vol. 3, pp. 16–23, Octo-
ber 2004.

57

References

[12] T. Wark, C. Crossman, W. Hu, Y. Guo, P. Valencia, P. Sikka, P. Corke, C. Lee,
J. Henshall, K. Prayaga, J. O’Grady, M. Reed, and A. Fisher, “The design and
evaluation of a mobile sensor/actuator network for autonomous animal control,” in
IPSN ’07: Proc. of the 6th Int. Conf. on Information processing in sensor networks.
New York, NY, USA: ACM, 2007, pp. 206–215.

[13] L. Zhang and Z. Wang, “Integration of rfid into wireless sensor networks:
Architectures, opportunities and challenging problems,” in GCCW ’06: Proc. of
the Fifth Int. Conf. on Grid and Cooperative Computing Workshops. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 463–469. [Online]. Available:
http://dx.doi.org/10.1109/GCCW.2006.58

[14] R. Sugihara and R. K. Gupta, “Programming models for sensor networks: A survey,”
ACM Transactions on Sensor Networks (TOSN), vol. 4, no. 2, pp. 1–29, 2008.

[15] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic operating
system for sensor nodes,” in MobiSys ’05: Proc. of the 3rd Int. Conf. on Mobile
systems, applications, and services. Seattle, Washington: ACM, 2005, pp. 163–176.

[16] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic linking for
reprogramming wireless sensor networks,” in SenSys ’06: Proc. of the 4th Int. Conf.
on Embedded networked sensor systems. Colorado, USA: ACM, 2006, pp. 15–28.

[17] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse, “Clairvoyant: a comprehensive
source-level debugger for wireless sensor networks,” in SenSys ’07: Proc. of the 5th
Int. Conf. on Embedded networked sensor systems. Sydney, Australia: ACM, 2007,
pp. 189–203.

[18] Q. Cao, T. Abdelzaher, J. Stankovic, K. Whitehouse, and L. Luo, “Declarative trace-
points: a programmable and application independent debugging system for wireless
sensor networks,” in SenSys ’08: Proc. of the 6th ACM Conf. on Embedded network
sensor systems. Raleigh, NC, USA: ACM, 2008, pp. 85–98.

[19] A. Taherkordi, R. Rouvoy, Q. Le-Trung, and F. Eliassen, “A self-adaptive context
processing framework for wireless sensor networks,” in MidSens ’08: Proc. of the 3rd
Int. Workshop on Middleware for WSNs. Leuven, Belgium: ACM, 2008, pp. 7–12.

[20] A. Ranganathan and R. H. Campbell, “A middleware for context-aware agents
in ubiquitous computing environments,” in Middleware ’03: Proc. of the ACM/I-
FIP/USENIX 2003 Int. Conf. on Middleware. Rio de Janeiro, Brazil: Springer-
Verlag, 2003, pp. 143–161.

[21] P. e. a. Costa, “The runes middleware for networked embedded systems and its
application in a disaster management scenario,” in PERCOM ’07: Proc. of the Fifth

58

References

IEEE Int. Conf. on Pervasive Computing and Communications. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 69–78.

[22] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and K. Rothermel,
“Flexcup: A flexible and efficient code update mechanism for sensor networks,” in
EWSN ’06: Proc. of the third European Conf. on Wireless Sensor Networks. Zurich,
Switzerland: Springer-Verlag, 2006, pp. 212–227.

[23] R. Balani, C.-C. Han, R. K. Rengaswamy, I. Tsigkogiannis, and M. Srivastava,
“Multi-level software reconfiguration for sensor networks,” in EMSOFT ’06: Proc.
of the 6th ACM & IEEE Int. Conf. on Embedded software. Seoul, Korea: ACM,
2006, pp. 112–121.

[24] W. Horré, S. Michiels, W. Joosen, and P. Verbaeten, “Davim: Adaptable middleware
for sensor networks,” IEEE Distributed Systems Online, vol. 9, no. 1, p. 1, 2008.

[25] L. Mottola, G. P. Picco, and A. A. Sheikh, “Figaro: fine-grained software reconfigu-
ration for wireless sensor networks,” in EWSN ’08: Proc. of the 5th European Conf.
on WSNs. Bologna, Italy: Springer-Verlag, 2008, pp. 286–304.

[26] B. Porter and G. Coulson, “Lorien: a pure dynamic component-based operating
system for wireless sensor networks,” in MidSens ’09: Proc. of the 4th Int. Workshop
on Middleware Tools, Services and Run-Time Support for WSNs. Illinois: ACM,
2009, pp. 7–12.

[27] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination protocol
for network programming at scale,” in SenSys ’04: Proc. of the 2nd Int. Conf. on
Embedded networked sensor systems. Baltimore, MD, USA: ACM, 2004, pp. 81–94.

[28] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and T. Siva-
haran, “A generic component model for building systems software,” ACM Trans.
Comput. Syst., vol. 26, no. 1, pp. 1–42, 2008.

[29] D. Conan, R. Rouvoy, and L. Seinturier, “Scalable processing of context information
with cosmos,” in DAIS ’07: Proc. of the 7th IFIP WG 6.1 Int. Conf. on Distributed
applications and interoperable systems. Paphos, Cyprus: Springer-Verlag, 2007, pp.
210–224.

[30] A. Schmidt, Ubiquitous Computing - Computing in Context, University of Lancaster,
UK, 2002, PhD thesis.

[31] J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller, “Think: A software frame-
work for component-based operating system kernels,” in ATEC ’02: Proc. of the
General Track of the USENIX Annual Technical Conf. Berkeley, CA, USA: USENIX
Association, 2002, pp. 73–86.

59

References

[32] L. de Souza, P. Spiess, D. Guinard, M. Khler, S. Karnouskos, and D. Savio, “Socrades:
A web service based shop floor integration infrastructure,” in The Internet of Things,
ser. LNCS, vol. 4952. Springer, 2008, pp. 50–67.

[33] T. Luckenbach, P. Gober, K. Kotsopoulos, Andreas Kim, and S. Arbanowski,
“Tinyrest: a protocol for integrating sensor networks into the internet,” in REAL-
WSN ’05: Proc. of the Workshop on Real-World WSNs, Stockholm, Sweden, 2005.

[34] M. Marin-Perianu et al., “Decentralized enterprise systems: a multi-platform wireless
sensor network approach,” Wireless Communications, IEEE, vol. 14, no. 6, pp. 57–
66, 2007.

[35] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web services: Design
and implementation of interoperable and evolvable sensor networks,” in SenSys ’08:
Proc. of the 6th ACM Conf. on Embedded Network Sensor Systems. Raleigh, NC,
USA: ACM, 2008, pp. 253–266.

[36] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young,
“Computing as a discipline,” Commun. ACM, vol. 32, pp. 9–23, 1989.

[37] University of Oslo, “The Remora Component Model,” 2010, http://folk.uio.no/
amirhost/remora.

[38] A. Taherkordi, Q. Le-Trung, R. Rouvoy, and F. Eliassen, “WiSeKit: A distributed
middleware to support application-level adaptation in sensor networks,” in DAIS ’09:
Proc. of the 9th IFIP WG 6.1 Int. Conf. on Distributed Applications and Interoperable
Systems. Lisbon, Portugal: Springer-Verlag, 2009, pp. 44–58.

[39] A. Taherkordi, F. Loiret, A. Abdolrazaghi, R. Rouvoy, Q. L. Trung, and F. Eliassen,
“Programming sensor networks using Remora component model,” in DCOSS ’10:
Proc. of the 6th Int. Conf. on Distributed Computing in Sensor Systems. Santa
Barbara, CA, USA: Springer, 2010, pp. 45–62.

[40] A. Taherkordi, R. Rouvoy, and F. Eliassen, “A component-based approach for service
distribution in sensor networks,” in MidSens ’10: Proc. of the 5th Int. Workshop on
Middleware Tools, Services and Run-Time Support for Sensor Networks. Bangalore,
India: ACM, 2010, pp. 22–28.

[41] D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and F. Eliassen,
“The digihome service-oriented platform,” Soft. Pract. and Exp., 2011.

[42] S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of autonomic communications,”
ACM Trans. Auton. Adapt. Syst., vol. 1, pp. 223–259, 2006.

60

References

[43] A. e. a. Wood, “Alarm-net: Wireless sensor networks for assisted-living and resi-
dential monitoring,” University of Virginia Computer Science Department Technical
Report, 2006.

[44] J. Nehmer, M. Becker, A. Karshmer, and R. Lamm, “Living assistance systems: an
ambient intelligence approach,” in ICSE ’06: Proc. of the 28th Int. Conf. on Software
engineering. Shanghai, China: ACM, 2006, pp. 43–50.

[45] OSOA, “The service component architecture,” http://www.oasis-opencsa.org/sca.

[46] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in LCN ’04: Proc. of the 29th Annual IEEE Int.
Conf. on Local Computer Networks. Tampa, Florida, USA: IEEE Computer Society,
2004, pp. 455–462.

[47] R. Fielding, Architectural Styles and the Design of Network-based Software Architec-
tures, University of California, Irvine, USA, 2000, PhD thesis.

[48] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks,” in NSDI ’04: Proc.
of the 1st Conf. on Symposium on Networked Systems Design and Implementation.
San Francisco, California: USENIX Association, 2004, pp. 2–2.

[49] S. S. Kulkarni and L. Wang, “Mnp: Multihop network reprogramming service for
sensor networks,” in ICDCS ’05: Proc. of the Distributed Computing Systems, Int.
Conf. on. Los Alamitos, CA, USA: IEEE Computer Society, 2005, pp. 7–16.

[50] B. Pasztor, L. Mottola, C. Mascolo, G. Picco, S. Ellwood, and D. Macdonald, “Selec-
tive reprogramming of mobile sensor networks through social community detection,”
in EWSN ’10: Proc. of the 7th European Conf. on WSNs, ser. Lecture Notes in Com-
puter Science. Coimbra, Portugal: Springer Berlin / Heidelberg, 2010, vol. 5970,
pp. 178–193.

[51] Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G. Kaiser, and D. Phung, “A control
theory foundation for self-managing computing systems,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 23, no. 12, pp. 2213–2222, 2005.

[52] P. Oreizy et al., “An architecture-based approach to self-adaptive software,” IEEE
Intelligent Systems, vol. 14, pp. 54–62, 1999.

[53] IBM Autonomic Computing, “Autonomic computing 8 elements.” 2001,
http://www.research.ibm.com/autonomic/overview/elements.html.

[54] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research chal-
lenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, pp. 14:1–14:42, 2009.

61

References

[55] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow:
Architecture-based self-adaptation with reusable infrastructure,” Computer, vol. 37,
pp. 46–54, 2004.

[56] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer,
vol. 36, pp. 41–50, 2003.

[57] J. O. Kephart and R. Das, “Achieving self-management via utility functions,” IEEE
Internet Computing, vol. 11, pp. 40–48, 2007.

[58] C. Shelton, P. Koopman, and W. Nace, “A framework for scalable analysis and design
of system-wide graceful degradation in distributed embedded systems,” in Proc. of the
Eighth Int. Workshop on Object-Oriented Real-Time Dependable Systems(WORDS
2003), Los Alamitos, CA, 2003, pp. 156–163.

[59] MICROSOFT COM, 1993, www.microsoft.com/com.

[60] CORBA, “Corba component model specifications,” 2006, http://www.omg.org/
spec/CCM/4.0.

[61] R. Van Ommering, F. Van der Linden, J. Kramer, and J. Magee, “The koala compo-
nent model for consumer electronics software,” Computer, vol. 33, no. 3, pp. 78–85,
2000.

[62] J. Muskens, M. Chaudron, and J. Lukkien, “A component framework for consumer
electronics middleware,” in Component-Based Software Development for Embedded
Systems, ser. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2005, vol. 3778, pp. 164–184.

[63] E. Bondarev, J. Muskens, P. d. With, M. Chaudron, and J. Lukkien, “Predicting
real-time properties of component assemblies: A scenario-simulation approach,” in
Proc. of the 30th EUROMICRO Conf. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 40–47.

[64] G. Lenzini, A. Tokmakoff, and J. Muskens, “Managing trustworthiness in component-
based embedded systems,” Electron. Notes Theor. Comput. Sci., vol. 179, pp. 143–
155, 2007.

[65] L. Capra, W. Emmerich, and C. Mascolo, “Carisma: Context-aware reflective middle-
ware system for mobile applications,” IEEE Trans. Softw. Eng., vol. 29, pp. 929–945,
2003.

[66] K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjorven, S. Hallsteinsen,
G. Horn, M. U. Khan, A. Mamelli, G. A. Papadopoulos, N. Paspallis, R. Reichle, and
E. Stav, “A comprehensive solution for application-level adaptation,” Softw. Pract.
Exper., vol. 39, pp. 385–422, 2009.

62

References

[67] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli,
and U. Scholz, “Software engineering for self-adaptive systems.” Berlin, Heidel-
berg: Springer-Verlag, 2009, ch. MUSIC: Middleware Support for Self-Adaptation in
Ubiquitous and Service-Oriented Environments, pp. 164–182.

[68] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent middleware for self-
adaptive wireless sensor networks,” ACM Trans. Auton. Adapt. Syst., vol. 4, 2009.

[69] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesc
language: A holistic approach to networked embedded systems,” in PLDI ’03: Proc.
of the ACM SIGPLAN 2003 Conf. on Programming language design and implemen-
tation. San Diego, California, USA: ACM, 2003, pp. 1–11.

[70] L. Mottola and G. P. Picco, “Programming wireless sensor networks: Fundamental
concepts and state of the art,” ACM Comput. Surv., vol. 43, pp. 19:1–19:51, 2011.

[71] Y. Shoham, “Agent-oriented programming,” Artif. Intell., vol. 60, pp. 51–92, 1993.

[72] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd edi-
tion. Boston, MA, USA: Addison-Wesley, 2002.

[73] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Sea-
cord, and K. Wallnau, “Technical concepts of component-based software engineer-
ing,” Carnegie Mellon Software Engineering Institute, Pittsburgh, PA, USA, Tech.
Rep. CMU/SEI-2000-TR-008, May 2000.

[74] P. Grace, G. Coulson, G. Blair, B. Porter, and D. Hughes, “Dynamic reconfiguration
in sensor middleware,” in MidSens ’06: Proc. of the Int. Workshop on Middleware
for sensor networks. Melbourne, Australia: ACM, 2006, pp. 1–6.

[75] GUMSTIX, “Gumstix embedded computing platform specifications,” 2004, http://
www.gumstix.com.

[76] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The fractal
component model and its support in java: Experiences with auto-adaptive and re-
configurable systems,” Softw. Pract. Exper., vol. 36, no. 11-12, pp. 1257–1284, 2006.

[77] F. Loiret, J. Navas, J.-P. Babau, and O. Lobry, “Component-based real-time oper-
ating system for embedded applications,” in CBSE ’09: Proc. of the 12th Int. Sym-
posium on Component-Based Software Engineering. East Stroudsburg, PA, USA:
Springer-Verlag, 2009, pp. 209–226.

[78] D. Hughes, K. Thoelen, W. Horré, N. Matthys, P. J. del Cid Garcia, S. Michiels,
C. Huygens, and W. Joosen, “Looci: A loosely-coupled component infrastructure for
networked embedded systems,” in Proc. of the 7th Int. Conf. on Advances in Mobile
Computing & Multimedia. Kuala Lumpur, Malaysia: ACM, Dec. 2009, pp. 195–203.

63

References

[79] Sun Microsystems, “Squawk java micro edition virtual machine,” 2005, http://
squawk.dev.java.net.

[80] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: simplifying event-
driven programming of memory-constrained embedded systems,” in SenSys ’06:
Proc. of the 4th Int. Conf. on Embedded networked sensor systems. Boulder, Col-
orado, USA: ACM, 2006, pp. 29–42.

[81] S. Li, S. H. Son, and J. A. Stankovic, “Event detection services using data service
middleware in distributed sensor networks,” in IPSN ’03: Proc. of the 2nd Int. Conf.
on Information processing in sensor networks. Palo Alto, CA, USA: Springer-Verlag,
2003, pp. 502–517.

[82] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract task graph:
a methodology for architecture-independent programming of networked sensor sys-
tems,” in EESR ’05: Proc. of the 2005 workshop on End-to-end, sense-and-respond
systems, applications and services. Seattle, Washington: USENIX Association, 2005,
pp. 19–24.

[83] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, “Reliable and efficient
programming abstractions for wireless sensor networks,” SIGPLAN Not., vol. 42,
pp. 200–210, 2007.

[84] R. Newton and M. Welsh, “Region streams: functional macroprogramming for sensor
networks,” in DMSN ’04: Proc. of the 1st Int. Workshop on Data management for
sensor networks: in conjunction with VLDB 2004. Toronto, Canada: ACM, 2004,
pp. 78–87.

[85] ——, “Building up to macroprogramming: an intermediate language for sensor net-
works,” in IPSN ’05: Proc. of the 4th Int. Symposium on Information processing in
sensor networks. Los Angeles, California: IEEE Press, 2005.

[86] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic, “Envirosuite: An environmen-
tally immersive programming framework for sensor networks,” ACM Trans. Embed.
Comput. Syst., vol. 5, pp. 543–576, 2006.

[87] M. S. Hossain, A. B. M. A. al Islam, M. Kulkarni, and V. Raghunathan, “μSETL:
A set based programming abstraction for wireless sensor networks,” in IPSN ’11:
Proc. of the 10th Int. Conf. on Information Processing in Sensor Networks, Chicago,
Illinois, 2011, pp. 354–365.

[88] Crossbow Tech Inc., “Mote in-network programming user reference,” 2003, http:
//www.tinyos.net/tinyos-1.x/doc/Xnp.pdf.

64

References

[89] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update mechanism
for wireless sensor networks,” CENS-TR-30, UCLA, Center for Embedded Networked
Computing, Tech. Rep., 2003.

[90] J. Jeong and D. Culler, “Incremental network programming for wireless sensors,” in
SECON ’04: Proc. of the IEEE Sensor and Ad Hoc Communications and Networks,
Santa Clara, CA, 2004, pp. 25–33.

[91] N. Reijers and K. Langendoen, “Efficient code distribution in wireless sensor net-
works,” in WSNA ’03: Proc. of the 2nd ACM Int. Conf. on Wireless sensor networks
and applications. San Diego, CA, USA: ACM, 2003, pp. 60–67.

[92] F. Kon, F. Costa, G. Blair, and R. H. Campbell, “The case for reflective middleware,”
Commun. ACM, vol. 45, pp. 33–38, 2002.

[93] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor networks,”
SIGARCH Comput. Archit. News, vol. 30, pp. 85–95, 2002.

[94] T. Liu and M. Martonosi, “Impala: a middleware system for managing autonomic,
parallel sensor systems,” in PPoPP ’03: Proc. of the ninth ACM SIGPLAN sym-
posium on Principles and practice of parallel programming. San Diego, California,
USA: ACM, 2003, pp. 107–118.

[95] ZebraNet Wildlife Tracker, 2002, http://www.princeton.edu/∼mrm/zebranet.html.

[96] P. Buonadonna, J. Hill, and D. Culler, “Active message communication for tiny
networked sensors,” in INFOCOM ’01: Proc. of the 20th Annual Joint Conf. of the
IEEE Computer and Communications Societies. Alaska, USA: IEEE, 2001.

[97] A. Dunkels, F. Österlind, and Z. He, “An adaptive communication architecture for
wireless sensor networks,” in SenSys ’07: Proc. of the 5th Int. Conf. on Embedded
networked sensor systems. Sydney, Australia: ACM, 2007, pp. 335–349.

[98] Oracle, “Java remote method invocation (java RMI),” 1997-2003, http://www.oracle.
com/technetwork/java/javase/tech/index-jsp-136424.html.

[99] Microsoft Corporation, “Microsoft .Net remoting: A technical overview,” 2001, http:
//msdn.microsoft.com/en-us/library/ms973857.aspx.

[100] T. Dean, S. Dunning, and J. Hallstrom, “An rpc design for wireless sensor networks,”
Int. Journal of Pervasive Computing and Communications, vol. 2, no. 4, pp. 384–397,
2007.

[101] OASIS Standard, “Devices Profile for Web Services, Version 1.1,” 2009, http://docs.
oasis-open.org/wsdd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.html.

65

References

[102] D. Yazar and A. Dunkels, “Efficient application integration in ip-based sensor net-
works,” in BuildSys ’09: Proc. of the First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings. Berkeley, CA, USA: ACM, 2009, pp.
43–48.

[103] “Simple xml parser web site.” http://simplexml.sourceforge.net.

[104] UPnP Forum, “UPnP Device Architecture 1.0,”
http://www.upnp.org/resources/documents.asp, Apr. 2008.

66

Part II

Research Papers

67

Chapter 7

A Self-Adaptive Context
Processing Framework for
Wireless Sensor Networks

Authors. Amirhosein Taherkordi, Romain Rouvoy, Quan Le-Trung, and Frank Eliassen

Affiliation. Department of Informatics, University of Oslo, Norway
{amirhost, rouvoy, quanle, frank}@ifi.uio.no

Publication. The Third International Workshop on Middleware for Sensor Networks
(MidSens’08), co-located with ACM/IFIP/USENIX Middleware’08, Leuven, Belgium, De-
cember 2008.

Abstract. Wireless sensor networks are increasingly being exploited in ubiquitous com-
puting environments as one of the main platforms for gathering context data. In order
to continuously observe the environment context during a long period, the sensor node
should be considered itself as a context-aware device having particular contextual param-
eters, such as residual energy or sample rate. Existing work in the field of context-aware
computing mostly considers the sensor node as a context data collector agent, regardless of
the concern of the node’s context elements. In this paper, we first propose an approach for
modeling sensor network context information, and then, we introduce a middleware frame-
work that maps our context model to software components, processes the context data, and
implements the context model. For this purpose, we propose the notion of context node,
which is the building block of our context processing framework. The proposed solution is
exemplified in the shape of a home monitoring application. Using the proposed framework,
the sensor application can adapt itself to the current situation in the environment through

69

A Self-Adaptive Context Processing Framework for WSNs

executing a high-level context model describing both the context information to process
and the adaptation actions to perform.

7.1 Introduction

Gradually, applications for Wireless Sensor Networks (WSNs) move beyond “sense and
send” to pervasive computing environments, where a sensor node has tight interactions
with actuators in the environment and behave depending on the context information sur-
rounding it [1, 2]. Applications for such environments must observe continuously their
execution context in order to detect the conditions under which some behavioral adapta-
tions are required. This execution context includes various categories of observable entities,
such as sensing parameters, residual energy of node, sample rate, or user preferences. In-
terpretation of context data coming from these entities can be used for improving the
execution performance, and adapting application behaviors.

The notion of context has been recognized as an important characteristic of ubiquitous
computing environments, where a large number of autonomous agents work together to
collect environmental information for smart and interactive devices [3]. Fundamentally,
context is defined as “any information about the circumstances, objects, or conditions by
which a user is surrounded and that is considered as relevant to the interaction between
the user and the ubiquitous computing environment” [4].

According to what has been reported in the literature [5, 6, 7], in most of the context-
aware systems, sensor is recognized as a context information provider agent. Depending on
the type of possible activities in an environment, various sensor devices should be exploited.
The context manager, as a main part of such systems, is in charge of analyzing sensor data
and identifying situations where application needs to be adapted. As an example, in a
context-aware mobile application, the setting of a mobile device display depends on what
is reported from the light detector sensors in the environment. However, the question that
arises is whether the sensor node itself should be considered as an adaptable device having
its own contextual parameters.

To make this issue more concrete, we consider a monitoring application for which
sensor nodes with different capabilities may be deployed in an environment with changing
parameters. In this case, we need to extract the different circumstances under which the
application is running, process them, and deduce what should be performed in a particular
situation. The problem becomes more complex when a lot of conditions come into the play;
thereby inserting context management code in the application logic becomes an impractical
solution. On the other side, most of the contextual logics are specified by the application
user and may change over the application lifespan. Consequently, we face the challenges
of i) how to model the flow of context information in a WSN application, and ii) how this
application can be dynamically adapted based on the context model.

In this paper, we propose a context management framework in the middleware layer
of WSNs to process context information and provide the necessary analyzed data for

70

Motivating Scenario

adaptation and reconfiguration tasks. Our work is inspired partially from the COSMOS
framework—a comprehensive model for processing context information in ubiquitous com-
puting environments [8, 9].

Specifically in our proposal, each piece of context information is defined as a context
node. Context nodes can be considered as virtual sensor nodes that are distributed over
the physical sensor nodes in the network with respect to the type of information provided
by the context node and its role in the context model. Besides, during their deployment,
context nodes are mapped to the software components proposed specifically for context
data processing in the WSN application. Therefore, the reification of context nodes as
components at run-time provides support for the dynamic reconfiguration of sensor nodes
whenever their execution context changes.

The rest of paper is organized as follows. In Section 7.2, we demonstrate a motivat-
ing application illustrating why context consideration is important in WSNs. The basic
concepts of the context middleware are introduced in Section 7.3. The infrastructure of
the proposed middleware and implementation issues are presented in Section 7.4. Next,
in Section 7.5, the proposal is exemplified based on the motivation scenario described in
Section 7.2. We discuss some related work in Section 7.6. Finally, Section 7.7 concludes
this paper and identifies some future work.

7.2 Motivating Scenario

As a motivating scenario, let us consider a home-monitoring application. Most of the earlier
efforts in this field employed a high-cost wired platform for making the home a smart
environment [10, 11]. The emergence of wireless technologies and miniaturized devices
make it possible to realize the same functionalities for a smart home more efficient in
terms of deployment cost and deployment time. In particular, sensor nodes together with
actuators are relevant technologies capable of monitoring various parameters, reasoning
about the situation, and reacting to the processed information accordingly [1]. Thus, future
home-monitoring applications are expected to be filled with different types of sensors that
can provide various context information related to themselves, the inhabitants, and other
appliances, such as occupancy, activity, and resource availability. These row of context
data are fed to the context-aware home automation system.

Figure 7.1 illustrates an hypothetical context-aware home. Rooms in the home are
equipped with various sensor nodes. As shown, depending on the activities that can happen
the relevant sensors are deployed, e.g., in the living room three “occupancy” sensors detect
movement, two sensors sense the temperature of the room, and one smoke detector sensor
determines if a fire is present in the room. Obviously, sensor types and their placement in
each room are determined according to the inhabitants’ requests, potential home disasters,
and technical issues.

The tight interaction of the sensor nodes and the environment on one side, and the
inherent resource limitations of WSNs on the other side, complicate requirements analysis

71

A Self-Adaptive Context Processing Framework for WSNs

��������

	
����������

������
��

��������

�����������

������ ��������

�����

����
������

Figure 7.1: Description of the home monitoring system.

and their relations. In this way, adding contextual conditions to the application software
in a hardcoded manner becomes an impractical solution. An important question arises on
how we can model such information and build a reconfigurable application based on the
model. For this purpose, at first, we describe the basic concepts used in building a context
model; next the approach for modeling context data will be explained.

7.3 Concepts Of A Context Middleware

Inspired by COSMOS [8], we introduce the architecture of context management in this
section. Subsequently, the related concepts are explained. Figure 7.2 illustrates the overall
architecture of a context information management framework. This architecture is divided
into three layers: the Context Collector, Context Processing, and Context Adaptation layers.
Similarly to COSMOS, each layer is organized into a 3-steps cycle of data collection, data
interpretation, and situation identification.

The lower layer defines the notion of a Context Collector. Context collectors are software
entities that provide raw data about the environment and sensor resources status. The
Context collector also encompasses information coming from user preferences. The ratio-
nale for this choice is that context collectors should provide all the inputs needed to reason
about the execution context. In our hierarchical architecture for WSN, the responsibility
of context collectors is assigned to the sensors.

The middle layer defines the notion of Context Processing. Context processors filter and
aggregate raw data coming from context collectors. The purpose is to compute some high-
level, numerical or discrete, information about the execution environment. Data provided
by context processors are fed into the adaptation layer. Intuitively, context processing

72

Concepts Of A Context Middleware

��
��� �� ����

!���"#����#
$
����
�
�� �

%������# &#��%��'� #

��
��� %���##�
�

��
��� (��������

Figure 7.2: Architecture of a context management framework.

tasks should be performed by the intermediate more powerful nodes in the hierarchical
WSN architecture, namely, cluster heads and sink node.

The upper layer is concerned with the process of decision making. The purpose is to
be able to make a decision on whether or not an adaptation action should be performed.
The Context Adaptation layer is thus a service that is provided to applications and that
encapsulates the situations identified by context nodes and processors. For example, in
the motivating scenario, changing the behavior of temperature sensor in case of room
occupancy is a decision made within this layer.

7.3.1 Architecture of a Context Node

The above architectural model defines the main aspects of a typical context management
system. To exploit this model for WSN applications, each layer needs to be tailored
according to the limitations and specifications of WSNs. In particular, for each layer it is
necessary to extract the tasks and find the appropriate node in the network for performing
these tasks.

We define the notion of context node as a representative of functionality in the context
management architecture. In fact, a context node is the basic structuring of the architec-
ture. A context node reifies particular context information. Context nodes are organized
into hierarchies, which are compatible with hierarchies defined in WSN architectures. The
graph of context nodes represents the set of context management policies associated to the
application logic.

Thus, as illustrated in Figure 7.3, a context node interacts with other context nodes by
exchanging messages, which encapsulate context information reports and are handled by
the message manager. The context node can be either active or passive. A passive node
obtains messages upon demand, while an active node gathers periodically messages via the
activity manager. The context processor is responsible for processing the received messages
into context information of higher-level of abstraction and can, eventually, operate some
functional or non-functional actions on the enclosed context nodes. These actions are
planned and executed by a context reasoner and a context configurator, respectively. The

73

A Self-Adaptive Context Processing Framework for WSNs

context model we define supports the sharing of Context Reasoner and Configurator as
well as Activity and Message Managers across collocated context nodes in order to reduce
the memory footprint and the resource consumption of the sensor nodes.

��	����
 ���

��	����
��	���������

��	����
����	��

��	����
�������

����/��'
��	����

�����
��	����

��	����
 ���������

��	
�������

�����������

Figure 7.3: Architecture of a context node.

As an example from the motivating scenario, the temperature sensors deployed in the
room enclose four context nodes (cf. Figure 7.4). At the leaf level, a context node encapsu-
lates the hardware sensor and converts raw data into the context information reports. This
report covers not only temperature reports, but also clock and energy information. The
current temperature and the energy left are extracted by two other context nodes (mean-
ing that a context node can be shared among other context nodes). The energy status
is then processed by a fourth context node in order to be compared to a given threshold
that determines if the action of reconfiguring the sample rate should be taken or not. The
current temperature is notified to the context node of the parent domain (the room is this
case) in order to be processed.

7.3.2 Composition of Context Nodes

Each context node is placed in one of the layers of the context processing architecture based
on its responsibility. The context model we define organizes the collaboration between
context nodes.

Figure 7.4 illustrates the context model of a dynamic home-monitoring system. Hard-
ware sensors deployed in the rooms produce context information that is continuously pro-
cessed to identify potential actions to execute. These actions can be functional (e.g.,
activation of the alarm bell) or non-functional (e.g., reconfiguration of a sensor sample
rate). The context information is propagated within the monitoring system proactively
or reactively via observation and notification mechanisms, respectively. Context domains
identify context nodes that can be collocated in order to reduce the cost of communication
and thus react autonomously (without relying on a centralized architecture).

A context node in the context model can be shared between other nodes. The sharing
of a context node corresponds to the sharing of a context management policy. Nodes in
the lower level of the hierarchy are more likely to be shared. Such nodes are more expected

74

Concepts Of A Context Middleware

Figure 7.4: Context model of the monitoring system.

to collect context data, rather than performing any action. For instance, the context node
providing raw information about the temperature—i.e., Temperature Sensor—falls in this
category.

Our proposal for context model is more in accordance with hierarchical architectures
for WSNs. The frequent reference to this model in WSN challenges makes the proposed
context model a reference model for addressing context management issues for WSNs.
Note that like hierarchical WSNs architectures, our context model does not impose any
limitation on the depth of the hierarchy.

In addition to the propagation of context information, the context nodes can embed
some autonomic behavior to react to context changes. In fact, context nodes basically
provide the raw data for identifying the type of adaptation required. Like the design
model of the context node, the adaptation model is expected to follow the component
model in order to have a unified approach for addressing self-* issues. This feature enables
the context model to be self-adaptive and thus adapts the context information retrieval
characteristics depending on the context currently manipulated.

75

A Self-Adaptive Context Processing Framework for WSNs

7.4 Implementation Of A Context Middleware

In this section, we put the concepts mentioned in the previous section all together and
describe the cycle of context management first. Next, the infrastructure of a middleware
facilitating the context management tasks will be presented.

Context management encompasses all activities required to reach a context-aware appli-
cation. The major phases of management can be categorized as i) classification of context
information for a particular computing environment, ii) finding the relation between the
classified information, iii) extraction of context elements (context nodes in our scope), iv)
putting context elements together in an interaction model, v) mapping the context model
to the platform supporting context elements definition and interaction, and vi) iterating
these steps for the possible future needs.

Context management frameworks have tried to span as much as possible of the above
tasks, although the main focus has been on the modeling. Apart from concerns directly
related to each step, the underlying platform brings its own challenges and concerns. The
limitations and characteristics of a particular platform specialize some steps of context
management. Particularly, context modeling and execution need to be considered precisely
with respect to the target platform.

Moreover, frameworks for context execution have been a challenging issue in terms of
the degree of generality, implementation techniques, and non-functional features, such as
scalability. Proposals target middleware layer solutions to address such concerns. A mid-
dleware solution can simplify the task of maintaining context-aware systems and provide
common services for context management. It supports a common model for context data
definition and also it is able to maintain the context model dynamically.

Our proposal relies on a component-based middleware for providing context information
in WSN applications. Thus, we have investigated several component models [12, 13, 14] to
identify features suitable for our context model. Based on this we extract a fundamental
characteristic of state-of-the-art component model: A lightweight hierarchical component
model that stresses on modularity and extensibility. It allows the definition, configura-
tion, dynamic reconfiguration, and clear separation of functional and non-functional con-
cerns. The central role is played by interfaces, which can be either functional or control.
Whereas functional interfaces provide external access point to components, control inter-
faces are in charge of non-functional properties of the component (e.g., life-cycle manage-
ment or binding management). Components are sometimes divided into passive and active.
Whereas passive components generally represent services, active components contain their
own thread of control.

Based on these assumptions, a context node is implemented as a composite compo-
nent that contains at least five primitive components: the context processor, the context
reasoner, the context configurator, the activity manager, and the message manager. The
context node’s dependencies are enclosed as components as well. The observation and
notification mechanisms are implemented by functional interfaces, while the support for

76

Sample Scenario Execution

reconfiguration is provided by the control interfaces.

The middleware run-time system is composed of two major parts: core services and core
context components. Core services are dedicated for maintaining the context model, e.g.,
communication service for making the interaction of context nodes located in the different
nodes. There are also some context nodes that are frequently used in the context models,
e.g., ResidualEnergy. The middleware is equipped with such core context components as
well.

Moreover, the middleware is in charge of maintaining the context model. Particularly,
the middleware run-time system takes care of managing context nodes and their interac-
tions according to the context model description. Figure 7.5 illustrates how the context
model is mapped to the context components. Each context component represents a portion
of context model (one context node or more context nodes and their interactions). The
logic behind the context model specifies which portion of model should be mapped to a
particular context component. Based on this knowledge, the middleware will be able to
deploy context components over the sensor nodes, handle local and remote interactions
of context components, and provide the run-time system for context-aware application
execution.

����������	
������

������������

Figure 7.5: Mapping of the context model to the context components.

7.5 Sample Scenario Execution

Let us again refer to the sample home-monitoring application and consider how the context
components and their interactions can be obtained from the context model. As mentioned
before, we propose the context domain for identifying collocated context nodes in order to
process information locally. In fact, each context domain represents a physical node in the

77

A Self-Adaptive Context Processing Framework for WSNs

system. The most inner domains represent the sensor nodes and domains encompassing
them are cluster heads, while the outer domain surrounds all clusters context information.

Figure 7.6 presents the context components and their interactions for a temperature
sensor, occupancy sensor, and cluster head. The TemperatureSensor component provides
two kinds of contextual information: current temperature and residual energy of the sensor
node (see 7.4). For the former one, a context component reading the current environment
temperature is deployed. All temperature sensors inside the room send the output of this
component to the temperature aggregator component located in the cluster head. The lat-
ter information is provided by the EnergyLeft component. In case of reaching a threshold
of residual energy, the EnergyBelow component calls the sampleRateControl function from
TemperatureSensor to reduce the sample rate. OccupancySensor component running on the
occupancy sensors notifies the RoomOccupied component in the cluster head in case of de-
tecting any movement. TemperatureActivation component detects room occupancy. Upon
receiving any notification from RoomOccupied component it calls the changeState function
of TemperatureSensors and makes them silent while receiving occupancy notification.

��	
�������������

����������

�����������

�������
��	
�������

����
����������

�������	�	�

��
����	����	���

���	����
��

��	
�������
���� �����

��	
�������
���������

��	
������� ����������
���� ������

��������!��

Figure 7.6: Context components composition for home monitoring.

The interactions of components located in a node are established via local message
passing. As of context node architecture, the message manager in each component receives
the context information, processes it, and delivers the result to the context processor part.
The context components interacting directly to each other are expected to know the format
of message passed among them. Likewise, components running in different nodes interact
via message passing, however, in this case messages are sent over the data distribution

78

Related Work

protocol of network.
The middleware run-time system is in charge of connecting context components via

message passing according to the context model description. The middleware communica-
tion service also encapsulates the remote message and sends it to the relevant node within
the network. Similarly, in the target node, this service reads the message and delivers it
to the relevant context component for further processing.

Figure 7.6 presents just a small part of managing the home context information. In fact,
this model is part of a larger model that encompasses all context elements. The middleware
supporting such model should be able to manage the context model in a scalable fashion.
Maintaining the context model in a particular sensor node needs just the meta-context
information related to that node including i) the context components that should be
deployed within that node, and ii) the details of local and remote interactions of those
components. In our proposal, the middleware in each sensor node is equipped with such
metadata. In this way, the large amount of meta-context information is split among sensor
nodes according to their role in the context model execution.

7.6 Related Work

As mentioned at the beginning of this paper, most of the context processing work employs
the sensor node just as a context data collector, whereas the concern of context awareness
for WSN application is a separate topic indicating how the WSN itself can be managed
based on its own context data.

The first relevant work has been reported by Huebscher et al. [6]. They propose an
adaptive middleware for context-aware application that abstract the applications from the
sensors that provide context data. The proposed middleware is a layered architecture for
context provision. In this architecture sensors are placed at the bottom as raw context
data provider. In the one upper level, a network of context services is located. The main
contribution of this work is to choose the best set of available context services in order
to satisfy the context-aware application requirements. The motivation for this work is
a home automation application for smart appliances in the home equipped with sensors.
The sensors in such a smart-home are not necessarily networked, but play as an isolated
agent for gathering the context data. However, in our proposal a sensor is characterized as
an autonomous node of a network capable to adapt itself against the environmental and
sensory context data.

Some work uses the context-aware concept as a technique for conserving energy in
WSNs. [5] proposes a framework for supporting the use of context to trigger power saving
functionalities in the sensors—i.e., controlling the behavior of the sensors. For this purpose,
they propose context discovery to discover useful contexts from sensor data, and context-
trigger engine to use the discovered context as a trigger. In this work, two centralized
databases are proposed for indentifying context information and context actions. This work
is suitable for applications with simple isolated context information. However, the overhead

79

A Self-Adaptive Context Processing Framework for WSNs

of centralized observation method in this framework may compromise the improvement
claimed in the context-based energy conservation.

TeenyLime is the recent reported middleware solution for dealing with the complexity of
specifying how multiple tasks coordinate to accomplish a functionality in the wireless sensor
and actor networks [15]. TeenyLIME operates by distributing the tuple space among the
devices, transiently sharing the tuple spaces contents as connectivity allows, and describing
reactive operations that fire when data matching a template appears in the tuple space.
In fact, TeenyLIME system provides a single unified abstraction for representing both the
application and system context. TeenyLime can takes part in our model as a context
processor if the message format, adopted for context nodes interactions, conforms to the
tuple structure.

7.7 Conclusions And Future Work

Using WSNs in autonomous environments makes the application design process more chal-
lenging. This process is based on gathering, analyzing and treating large amount of context
data produced by the environment and sensor nodes, and then adapting and configuring
application based on this data.

In this paper, we presented an approach for addressing context related concerns in the
WSNs. Mainly, our approach is composed of two parts i) a context information process-
ing architecture for modeling the sensor context elements and their interactions, and ii) a
middleware framework for executing the context model. The basic structuring concept of
our proposal is the context node. In fact, a context node is context information modeled
by a context component performing context execution tasks (context processing, context
reasoning, and context configuration). Context components are distributed over the net-
work according to the context model description. The underlying middleware run-time
system maintains the model and provides a container for context execution. Using this
middleware, a WSN application can adapt itself to the current situation in the environment
through executing a high-level context model describing the context information and the
adaptation actions corresponding to the context.

We are currently focusing on the home-monitoring application as a motivating scenario.
In this paper, we described this application briefly and discussed how its context model can
be obtained and also the equivalent context components composition for a part of context
model was illustrated at the end of paper.

This work will be continued along two main axes. First, the initial version of middleware
framework will be developed based on the requirements mentioned in this paper. The run-
time middleware system should be equipped with services for facilitating context data
processing, reasoning and configuration, besides the services for supporting context model
execution. Second, the middleware system will be evaluated by developing the context-
aware home monitoring application. Also, the performance of the middleware will be
evaluated in terms of memory occupation, context model execution processing overhead,

80

References

and energy consumption.

References

[1] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: research
challenges,” Ad Hoc Networks, vol. 2, no. 4, pp. 351–367, 2004.

[2] D. Puccinelli and M. Haenggi, “Wireless sensor networks: applications and challenges
of ubiquitous sensing,” Circuits and Systems Mag., IEEE, vol. 5, no. 3, pp. 19–31,
2005.

[3] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta, “Reconfigurable context-
sensitive middleware for pervasive computing,” IEEE Pervasive Computing, vol. 1,
no. 3, pp. 33–40, 2002.

[4] A. Ranganathan and R. H. Campbell, “A middleware for context-aware agents
in ubiquitous computing environments,” in Middleware ’03: Proc. of the ACM/I-
FIP/USENIX 2003 Int. Conf. on Middleware. Rio de Janeiro, Brazil: Springer-
Verlag, 2003, pp. 143–161.

[5] S. K. Chong, S. Krishnaswamy, and S. W. Loke, “A context-aware approach to con-
serving energy in wireless sensor networks,” in PERCOMW ’05: Proc. of the Third
IEEE Int. Conf. on Pervasive Computing and Communications Workshops. Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 401–405.

[6] M. C. Huebscher and J. A. McCann, “Adaptive middleware for context-aware appli-
cations in smart-homes,” in MPAC ’04: Proc. of the 2nd workshop on Middleware for
pervasive and ad-hoc computing. Toronto, Canada: ACM, 2004, pp. 111–116.

[7] R. Couto Antunes da Rocha and M. Endler, “Middleware: Context management in
heterogeneous, evolving ubiquitous environments,” IEEE Distributed Systems Online,
vol. 7, no. 4, p. 1, 2006.

[8] D. Conan, R. Rouvoy, and L. Seinturier, “Scalable processing of context information
with cosmos,” in DAIS ’07: Proc. of the 7th IFIP WG 6.1 Int. Conf. on Distributed
applications and interoperable systems. Paphos, Cyprus: Springer-Verlag, 2007, pp.
210–224.

[9] R. Rouvoy, D. Conan, and L. Seinturier, “Software architecture patterns for a context-
processing middleware framework,” IEEE Distributed Systems Online, vol. 9, no. 6,
p. 1, 2008.

[10] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sensor
networks for habitat monitoring,” in WSNA ’02: Proc. of the 1st ACM Int. Workshop

81

A Self-Adaptive Context Processing Framework for WSNs

on Wireless sensor networks and applications. Atlanta, Georgia, USA: ACM, 2002,
pp. 88–97.

[11] M. C. Mozer, “Lessons from an adaptive home,” Smart Environments: Technology,
Protocols, and Applications, pp. 273–298, 2004.

[12] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The fractal
component model and its support in java: Experiences with auto-adaptive and recon-
figurable systems,” Softw. Pract. Exper., vol. 36, no. 11-12, pp. 1257–1284, 2006.

[13] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and T. Siva-
haran, “A generic component model for building systems software,” ACM Trans.
Comput. Syst., vol. 26, no. 1, pp. 1–42, 2008.

[14] I. Crnkovic, Building Reliable Component-Based Software Systems, M. Larsson, Ed.
Norwood, MA, USA: Artech House, Inc., 2002.

[15] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco, “Programming wireless sensor
networks with the teenylime middleware,” in Middleware ’07: Proc. of the ACM/I-
FIP/USENIX 2007 Int. Conf. on Middleware. Newport Beach, California: Springer-
Verlag New York, Inc., 2007, pp. 429–449.

82

Chapter 8

WiSeKit: A Distributed
Middleware to Support
Application-level Adaptation in
Sensor Networks

Authors. Amirhosein Taherkordi (1), Quan Le-Trung (1), Romain Rouvoy (1,2), and
Frank Eliassen (1)

Affiliation.

(1) Department of Informatics, University of Oslo, Norway
{amirhost,quanle,rouvoy,frank}@ifi.uio.no

(2) INRIA Lille Nord Europe, ADAM Project-team, University Lille 1, LIFL CNRS
UMR 8022, Villeneuve dAscq, France
{romain.rouvoy}@inria.fr

Publication. The 9th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS’09), Lisbon, Portugal, June 2009.

Abstract. Applications for Wireless Sensor Networks (WSNs) are being spread to areas
in which the contextual parameters modeling the environment are changing over the appli-
cation lifespan. Whereas software adaptation has been identified as an effective approach
for addressing context-aware applications, the existing work on WSNs fails to support
context-awareness and mostly focuses on developing techniques to reprogram the whole
sensor node rather than reconfiguring a particular portion of the sensor application soft-
ware. Therefore, enabling adaptivity in the higher layers of a WSN architecture such as the

83

WiSeKit: A Distributed Middleware to Support Adaptation in WSNs

middleware and application layers, beside the consideration in the lower layers, becomes
of high importance. In this paper, we propose a distributed component-based middleware
approach, named WiSeKit, to enable adaptation and reconfiguration of WSN applications.
In particular, this proposal aims at providing an abstraction to facilitate development of
adaptive WSN applications. As resource availability is the main concern of WSNs, the
preliminary evaluation shows that our middleware approach promises a lightweight, fine-
grained and communication-efficient model of application adaptation with a very limited
memory and energy overhead.

8.1 Introduction

The challenges for application development on WSNs are becoming as prominent as the
issues concerning sensor hardware, network architecture, and system software. It is because
the new emerging applications for WSNs do not limit themselves to a single function called
“sense and send” with trivial local data processing tasks [1, 2]. Applications for WSNs
are gradually moving towards pervasive computing environments, where sensor nodes have
tight interactions with actuators, deal with the dynamic requirements and unpredictable
future events, and behave based on the context information surrounding them [3].

In such an environment, in addition to the basic tasks, an application needs to adapt
its behavior to cope with changing environmental conditions, and different capabilities of
each individual sensor node in the network. As different nodes are expected to run different
tasks, software with dynamic adaptable functionalities becomes an essential need. More-
over, for applications deployed to a high number of nodes in inaccessible places, individual
software updating becomes an impractical and inefficient solution.

As the common types of sensor nodes are still suffering from resource scarceness, re-
searchers have not been willing to consider the application code on sensor node as adaptive
software. This is because, on one hand, the typical adaptation frameworks mostly come
with a high level of complexity in the reasoning process and reconfiguration mechanism.
On the other hand, most of the software development paradigms for WSN application are
not able to support reconfigurability due to the lack of modularity, such as in the case
of script programming. Moreover, the lack of operating system level support for dynamic
reconfiguration is the other critical challenge in the way of achieving application-level adap-
tivity in WSNs. Recently, operating systems, such as Contiki [4], have considered this issue
by supporting dynamic binding and loading of software components.

A few works have been reported in the literature that address adaptation for embed-
ded and sensor systems. In [5, 6, 7], the main contribution is to provide adaptivity at
the middleware-level (not application-level) in order to make the network-level services
reconfigurable and replaceable. In [8], a small runtime support is proposed over Contiki to
facilitate dynamic reconfiguration of software components. Although it promises to achieve
application-level reconfigurability, the level of abstraction is low and it does not propose
a general framework supporting all essential aspects of application adaptation. In fact, it

84

Motivating Application Scenario

plays the role of component reconfiguration service in a typical adaptation framework.
The performance of the adaptation middleware depends on two major factors. The

first is the reconfigurability degree of software modules. In a highly reconfigurable model,
the update is limited to the part of the code that really needs to be updated instead of
updating the whole software image. We term this feature fine-grained reconfiguration. The
second is the mechanism by which a module is reconfigured. In this paper, we concentrate
on the latter, whereas the former has been discussed in [9] by proposing a new component
model, called ReWiSe, for lightweight software reconfiguration in WSNs.

In this paper, we present a novel distributed middleware approach, named WiSeKit,
for addressing the dynamicity of WSN applications. WiSeKit provides an abstract layer
accelerating development of adaptive WSN applications. Using this middleware, the de-
veloper focuses only on application-level requirements for adaptivity, while the underlying
middleware services expose off-the-shelf APIs to formalize the process of adaptive WSN
application development and hide the complexity of the technical aspects of adaptation.
The adaptation decision logic of WiSeKit is also inspired from the hierarchical architecture
of typical WSNs in order to achieve the adaptation goals in a light-weight and efficient
manner.

The rest of this paper is organized as follows. In Section 8.2, we demonstrate a mo-
tivating application scenario. The basic design concepts of our middleware proposal are
described in Section 8.3. In Section 8.4, the WiSeKit middleware is proposed with a pre-
liminary evaluation presented in Section 8.5. Related work is presented in Section 8.6.
Finally, Section 8.7 concludes the paper and gives an outlook on future research.

8.2 Motivating Application Scenario

In this section we present an application scenario in the area of home monitoring to further
motivate our work. Most of the earlier efforts in this field employed a high-cost wired
platform for making the home a smart environment [10, 11]. Future home monitoring
applications are characterized as being filled with different sensor types to observe various
types of ambient context elements such as temperature, smoke, and occupancy. Such
information can be used to reason about the situation and interestingly react to the context
through actuators [3].

Figure 8.1 illustrates a hypothetical context-aware home. Each room is equipped with
the relevant sensor nodes according to its attributes and uses. For instance, in the living
room three “occupancy” sensors are used to detect the movement, one sensor senses the
temperature, and one smoking sensor for detecting the fire in the room. Although each
sensor is configured according to the preliminary requirements specified by the end-user,
there may happen some predictable or unpredictable scenarios needing behavioral changes
in sensor nodes. Basically, these scenarios can be considered from two different aspects: i)
application-level, and ii) sensor-level. The former refers to the contextual changes related
to the application itself, e.g., according the end-user requirements for the living room,

85

WiSeKit: A Distributed Middleware to Support Adaptation in WSNs

Figure 8.1: Description of the home monitoring system.

if one of the occupancy nodes detects a movement in the room, the temperature nodes
should stop sensing and sending tasks. The latter further concerns with the capabilities
and limitations of a particular sensor node, e.g., if the residual energy of temperature sensor
is lower than a pre-defined threshold, the aggregated data should be delivered instead of
sending all individual sensor readings.

Besides the above concerns, the recent requests for remote home monitoring, which
enables the owner to check periodically home state via a web interface, are being extended
by the request of remote home controlling. This need also brings some other new challenges
in terms of dynamicity and makes the issue of adaptivity more significant.

Considering statically all above concerns becomes quite impossible when you have many
of these scenarios that should be supported simultaneously by the application on a resource-
limited node. Moreover, at the same time you need to maintain the relation between the
context elements and reason timely on a change. Obviously, supporting all these require-
ments during application run-time needs an abstract middleware approach to address the
dynamicity and adaptivity challenges w.r.t. the unique characteristics of WSNs.

8.3 Basic Design Concepts

In this section, we describe the basic design concepts of WiSeKit middleware.

Adaptation Time. Basically, adaptation can be performed in two manners: stat-
ically and dynamically. Static adaptation relates to the redesign and reconfiguration of
application architectures and components before deployment of the application. Dynamic
adaptation is performed at application run-time due to the changing needs, resource and
context conditions. We adopt dynamic adaptation in our proposal because most WSN
applications are expected to work seamlessly for a long time and mostly deployed in inac-
cessible places.

86

WiSeKit Adaptation Middleware

Adaptation Scope. Two popular adaptation mechanisms are introduced in the lit-
erature [12], [13]: parameter adaptation and component adaptation. Parameter adaptation
supports fine tuning of applications through the modification of application variables and
deployment parameters, while component adaptation allows the modification of service im-
plementation (replacement of component), adding new components, and removing running
components. We explain later in this paper why and how our middleware supports both
of these mechanisms.

Adaptation Policy. In general, there are three different approaches for identifying
a policy: situation-action rules [13, 14], goal-oriented [15] and utility-based [16]. The two
latter techniques represent high level forms of policies, while the former specifies exactly
what to do in given situations. As the adaptation policies of most WSN applications can
be described easily through a set of conditional statements, WiSeKit follows the situation-
action rules approach. Situations in our proposal are provided from the framework we
proposed in [17]. This framework proposes a context processing model to collect data from
different sources (environment, application, sensor resources, and user) and process them
for the use of adaptation reasoning service.

Fine-grained Reconfiguration. Adaptation reasoning specifies through which mech-
anism (either parameter-based or component-based) which parts of the application should
be reconfigured. As the major cost of reconfiguration in WSNs is in transferring the new
update code across the network, fined-grained reconfiguration becomes very important.
Note that fine-grained reconfigurability should be supported by the underlying system
software.

Hierarchical Adaptation. As the sensor nodes are mostly organized in a hierarchical
way [18], our proposal distributes the adaptation tasks among nodes according to the level
of hierarchy of a particular node. Hierarchical adaptation is based on the idea of placing
adaptation services according to: i) the scope of information covered by a particular node,
and ii) the resource richness of that node.

8.4 WiSeKit Adaptation Middleware

WiSeKit aims to provide a set of APIs at the middleware level of WSNs in order to
make an abstraction layer that formalizes and simplifies the development of adaptive WSN
applications. In general, WiSeKit is characterized by the following features:

− Local-adaptivity : an application running on the sensor nodes has the possibility of
identifying its adaptation policies. The APIs exposed at the middleware layer are
able to read the policy object and maintain the application components’ configuration
according to the context information gathered periodically from both sensor node and
application.

− Intermediate-observation: using WiSeKit, we can specify adaptation requirements
for a region of the network, e.g., a floor or a room in a building. At this level, we

87

WiSeKit: A Distributed Middleware to Support Adaptation in WSNs

can specify high-level adaptation policies through WiSeKit APIs provided at more
powerful nodes such as cluster head or sink node.

− Remote-observation: the end-user or the agent checking the application status locally
through sink interface or remotely via a web interface might need to specify his/her
own requirements regarding adaptation.

− Component-based reconfiguration: updates in WiSeKit can take place both at compo-
nent attribute level and at component level. WiSeKit expects application developers
implement predefined interfaces for components which are subject to reconfiguration.
We present later in this section the signature of such interfaces and the mechanisms
for reconfiguration.

− Distribution: The heterogeneity of WSNs in terms of the node’s resource capabilities
and functionalities necessitates support for distribution at the middleware layer in
order to achieve the above goals and also optimize network resources usage. WiSeKit
is within all nodes types built up over a set of Core Services which provides an
infrastructure for distribution.

Figure 8.2 illustrates the complete logical architecture of the WiSeKit middleware dis-
tributed over the different node types. It shows how the adaptation services are located
in different node types and mapped to a typical WSN architecture. At the left side of the
figure, sensor node features a set of services for realizing Local-adaptivity and Component-
based reconfiguration. Next to the sensor nodes, the cluster head has the responsibility of
Intermediate-observation to observe data and analyze it in terms of adaptation required
within the scope of a cluster. Finally, at the right side of Figure 8.2, WiSeKit in the sink
node is able to retain the “whole” WSN application in a high degree of adaptivity via
Intermediate-observation and Remote-observation. Therefore, the end user of the applica-
tion can specify his/her own adaptation needs through the APIs provided within the sink
node. Middleware services in different nodes interact through core services customized for
each type of node. The details of WiSeKit services within each type of node are explained
in the rest of this section.

8.4.1 Sensor Side

To address the middleware requirements of adaptive applications, we need first to explore
the desired structure of an application deployed over the sensor nodes, then the adaptation
middleware services will be discovered accordingly. Figure 8.3 illustrates a sample configu-
ration of application components for a home monitoring application. There are three main
aspects that should be considered for application development.

Firstly, the components which are subject to reconfiguration should implement the
relevant interfaces. In general, four types of reconfigurations are likely to happen during
the application runtime, including: i) replacing a component with a new one, ii) adding a

88

WiSeKit Adaptation Middleware

�������
�������
�����������

���������
�������

��������
�������

�����������	�����

���������������

���������������

0
���1

���	
�
	���
�������

��
�����������

	�����
� ��������

�����������	�����

����������

���������������

0
���1

���	
&
�

!���	
���������

�������
��"�
�����������

��"
� ��������

�����������	�����

��"���������

���������������

0
���1

���	
�
�	1

���
���������

�������� ��

Figure 8.2: WiSeKit in the hierarchical WSN architecture.

new component, iii) component removal, and iv) changing the values of component member
variables. For each type of reconfiguration the relevant interface(s) should be implemented.
We explain later in this section the name and specification of those interfaces.

Secondly, as shown in the figure, the deployable package should include a predefined
policy file describing situation-actions rules. It is one of the main sources of local adapta-
tion decision. The local decision is limited to changing the values of component member
variables, while the decision of full component image replacement is made by the cluster
head. It is because the decisions for replacing or adding components fall in the category of
heavyweight reconfiguration requests. Such a decision should be assigned to a node being
aware of what happens in the scope of a cluster. Moreover, sometimes we need to send a
component image to a set of sensor nodes having similar attributes or responsibilities.

"���#������������

��	
���������	

������

���$���	

%������

��	
���

�������	
����������	
���������	
���

��
�������&�������

"���#����&'�

�

����������������

�������� �������
 ����
 �����

Figure 8.3: A sample component configuration for an adaptive home application.

Finally, Application Context is a meta-data reporting application-related contextual

89

WiSeKit: A Distributed Middleware to Support Adaptation in WSNs

information. Application components can update it when a contextual event is detected
through APIs provided by WiSeKit. The content of application context is used together
with sensor context information against the situations described in the policy object to
check whether any adaption is needed.

Figure 8.4 describes the architecture of our adaptation middleware for sensor nodes.
As shown, WiSeKit addresses three main areas of adaptation concern.

��������	��
��� ����������	�	���������	��
���

����
���
���	�		���
	��
���������
������

��������	��	

��������	
��

����������

�������
�����

���������

�������������

���������

���	������ �����������
� 	 �� �

����������	�	�
�������

����������
���������	��	����

�����	��	����

������

����������

���	�		���
	��

���������	���
��������� ��������������

�����	���������

������������������

�����������

���

���������	����
���	����������

���	������	����

���!����
���
���	������ ���������� �����"������ !�����
������

��������������

���������	����
���	������	����

�������	���������

�������������	������

�� ��� �

Figure 8.4: WiSeKit services in the sensor node.

Local Adaptation is in charge of carrying out local parameter adaptation requests. Lo-
calReasoner, as the main service receives both the adaptation policies of the application and
context information, then it checks periodically the situations within policy file against ap-
plication context and sensor context for adaptation reasoning. Upon satisfying a situation,
the corresponding action, changing the values(s) of component attribute(s), is performed
via calling the updateAttributes interface of the component and passing the new values.

Remote Adaptation is concerned with adapting the whole component. In fact, the
corresponding cluster node performs the reasoning task and notifies the sensor node the
result containing which component should be wholly reconfigured. The key service in this
part is ReplacementMng. Upon receiving either newComp or updatedComp event, it reads
the component image from CompRepository, loads the new component and finally removes
the image stored by CompRepository from the repository.

After loading the component image, the current component is periodically checked to
identify whether it is in a safe state of reconfiguration or not. The safe state is defined as a
situation in which all instances of a component are temporarily idle or not processing any
request. There are several safe state checking mechanisms in the literature [19], [20]. In
some solutions, safe state recognition is the responsibility of the underlying reconfiguration
service, whereas in the other mechanisms this checking is assigned to the component itself.

90

WiSeKit Adaptation Middleware

We adopt the second method because of its low overhead. Therefore, WiSeKit expects
from each reconfigurable component to implement the checkSafeState interface.

Distribution Adaptor provides a distribution platform for adaptation decision and ac-
complishment. Specifically, it is proposed to address three issues: i) the possibility of up-
dating adaptation policies during application lifespan, ii) receiving the result of high-level
adaptation decision from cluster head, i.e., the image of a component, and iii) providing an
abstraction for distributed interactions between WiSeKit services. ReconfRequestDelegator
reads the data received through the Communication service, checks whether it encompasses
any event such as new policy, new component, or updated component, and finally unmar-
shals the content and generates the corresponding event object.

The bottom part of middleware is decorated with the core to provide an infrastructure
for distribution as well as the utility and common services. The Communication service
has the responsibility of establishing connection to the other nodes in the hierarchical
structure. This service not only sends the data, but also receives the reconfiguration infor-
mation (component image or policy). Aggregator is a service for performing aggregation of
data received from CoreSenseComp. EventHandler handles events generated by the services
within the middleware. The context information related to the sensor hardware and system
software is reported by SensorContext service as an newSensorContext event.

8.4.2 Cluster Head Side

Based on hierarchical adaptation, when the context information of a sensor node is not
sufficient to make an adaptation decision, the cluster head attempts to decide on an adap-
tation based on the data received from sensor nodes in its own cluster. Similarly, if the
current information in the cluster head is not enough for the adaptation reasoning, the
final decision is left to the sink node, e.g., in our motivation scenario, if the occupancy
sensors detect a movement in the living room, the cluster head notifies the temperature
sensors to reduce the sampling rate. Figure 8.5 illustrates both the structure of WSN ap-
plication and the WiSeKit architecture over the cluster head. The WiSeKit services within
the cluster head make the high-level adaptation decisions through processing application
context model and cluster-level adaptation policies.

The context model defines the possible contextual situations by describing the relations
between the application data gathered by sensor nodes [17]. For example, “room occupied”
is a situation that can be deduced from checking the data values of both occupancy sensors
and light sensors in a room. The cluster-level adaptation policies are described in the same
way as for sensor nodes (situation-action). However, in this case, the situations are those
defined in the context model. The action also includes loading a new policy or a new
component in some selected nodes.

As depicted in Figure 8.5, WiSeKit aims at addressing the high-level reasoning issues
within the cluster head. To this end, the middleware services expect from the application
to provide: i) the context model, and ii) the adaptation policies. In this way, WiSeKit

91

WiSeKit: A Distributed Middleware to Support Adaptation in WSNs

��������
���

"#�����$
���������

���������

����������
���

�	%!	%
���

����

��������	
��

������
�������������	�����

���������
������

����	�������	
��������

�	����� ����������

����

������$�����

�����	������
��	���������
��	�����������	

����
���	������ �����"������

���� ��!������������

�����$�������� �����$��������
���������
&�����

��������� ��	�����������	
��	��������������������	

Figure 8.5: WiSeKit in the cluster head.

processes at first the context model along with the data received from sensor nodes in order
to find out the current context situation(s) of environment, then the Reasoner service checks
whether any adaption is needed. In fact, this service analyzes the adaptation policies based
on the current context information, thereby it decides on update notifications, i.e., either
new policy or new component. If Reasoner makes the decision of a component update,
AdptationNotifier loads the binary object of new component from the Local Repository
and multicasts it along with the required meta-information to the nodes in its vicinity.
AdaptationNotifier is also responsible for forwarding the adaptation requests of the sink
node to the cluster members. We assume that the local repository of cluster head contains
all versions of a component that might be needed during the application lifespan.

8.4.3 Sink Side

WiSeKit in the sink node is designed in the same way as it is proposed for the cluster
head. The main differences between the sink node and the cluster head in the context
of our middleware are in two aspects. Firstly, the scope of network covered by the sink
node is the whole sensor network, while the cluster head has only access to the information
retrieved within a cluster. Therefore, the global adaptation, the highest level of adaptation
decision, takes place only in the sink node, where it has access to the status of all clusters.
Secondly, the sink node is able to receive end-user preferences regarding to the adaptation
requirements.

The component repository within the sink node contains all versions of all components.
As the sink node is a powerful node with sufficient resources for processing tasks and
storing application components, WiSeKit in the sink node has the ability of reasoning on
the sophisticated adaptations and providing different versions of a component according
to the adaptation needs.

The communication service within the core of sink provides the following functional-

92

Preliminary Evaluation

ities: i) global context information exchange between the sink and the cluster heads, ii)
code distribution, and iii) internetworking between WSNs and external networks, e.g., the
Internet. While the context information can be piggybacked into either the code distri-
bution or routing protocols to reduce the signaling overhead, the internetworking provides
more flexible facilities to manage and control WSNs remotely.

8.5 Preliminary Evaluation

As our adaptation middleware is customized for each type of node, the evaluation should
take into account many performance figures. At first, we need to evaluate each type
of node separately, then the effectiveness of WiSeKit should be assessed for all nodes
together. As considering the evaluation for all nodes is a huge work, this paper focuses
only on middleware performance in the sensor node as the critical part of our proposal,
while evaluating the whole adaptation middleware is a part of our future work.

The efficiency of our approach for sensor node can be considered from the following
performance figures:

− The memory overhead of middleware run-time, with respect to both program and
data memory. The former can be evaluated by measuring the size of binary images
after compilation. The latter includes the data structures used by the programs.

− The energy usage during adaptation, which refers to the energy overhead of running
an adaptation task.

− The communication overhead between sensor nodes and cluster head in the presence
of middleware for a typical adaptive application.

We chose the Instant Contiki simulator [21] to measure the overhead of memory. The
prototype implementation shows the memory footprint for reconfiguration program and
its data is no more than 3 Kbytes in total. As most of sensor nodes are equipped with
more than 48 Kbytes of program flash (TelosB node), WiSeKit does not impose a high
overhead in terms of memory. It should be noted that this cost is paid once and for all,
regardless of the amount of memory is needed for the application components. There
is also an application level memory overhead for the description of adaptation policies
and implementing the reconfiguration interfaces (checkSafeState, updateAttributes,
etc.). This cost depends directly on the degree of application adaptivity. Moreover, the
amount of memory used by CompRepository varies with respect to the number of new
components downloaded simultaneously in the sensor node. As WiSeKit removes the
image of a component from repository when loading it to the memory, this overhead is
kept at a very low level in the order of zero.

For measuring energy consumption, we assume that our hypothetical WSN application
is similar to the configuration depicted in Figure 8.6 and Sampler is the replacement candi-
date. The main reconfiguration tasks include: i) checking the old Sampler to ensure that it

93

WiSeKit: A Distributed Middleware to Support Adaptation in WSNs

�������	
������
 !�������	

������

 ��" ����	

Figure 8.6: Sample configuration.

is not in interaction with the other components before starting reconfiguration, ii) saving
the state of old Sampler, iii) creating the new one and transferring the last state to it.

Each loadable module in Contiki is in Compact Executable and Linkable Format (CELF)
containing code, data, and reference to other functions and variable of system. When a
CELF file is loaded to a node, the dynamic linker in core resolves all external and internal
references, and then writes code to ROM and the data to RAM [22]. For our sample
configuration, the Sampler CELF file (764 bytes) must be transferred to the node, and all
mentioned tasks for dynamic loading must be done for the Sampler program (its code size
is 348 bytes). As the energy consumption depends on the size of new update, the model
of energy consumption will be [22]:

E = SNew CELF × (Pp + Ps + Pl) + SNew Sampler × Pf + EsafeStateCheck

Where SNew CELF is the size of new CELF file and Pp, Ps, Pl and Pf are scale factors for
network protocol, storing binary, linking and loading, respectively. SNew Sampler is the code
size of new Sampler, and EsafeStateCheck is the energy cost of performing reconfiguration.
Concretely, we obtain the following energy consumption for the considered adaptation
scenario:

E = 764× (Pp + Ps + Pl) + 348× Pf + EsafeStateCheck

In this equation, we take into account the overhead of checking safe state (dependencies
to the other two components). We believe that this value is very low compared to the first
part, which is the reconfiguration cost imposed by Contiki.

To measure the communication overhead, we assume a scenario in the living room
of home application in which the “occupancy” of context changes occasionally. Accord-
ing to the monitoring rules of home, when the room is empty the temperature sensors
should report the temperature of room every 10 minutes. Once the room is occupied the
temperature sensors should stop sensing until the room becomes empty again.

According to this scenario, when the room is occupied, ContextProcessor within the
cluster head observes the new context and Reasoner notifies the relevant sensor nodes to
stop sampling. WiSeKit does not impose any communication cost for context detection
because it piggybacks the current value of a node’s attributes at middleware layer of cluster

94

Related Work

Figure 8.7: Number of saved communications for a sample home monitoring scenario.

head. Therefore, the communication cost is limited to sending policy objects to stop/restart
sampling task.

Three parameters should be taken into account to measure the overhead of communica-
tion: i) sampling rate (r), ii) context consistency duration (c), and iii) number of context
changes during a particular period of time (k). For the hypothesis scenario, if a room is
occupied for two hours during one day, we have: r = 10 min, c = 120 min, and k = 1. In
this case, the temperature sensors do not send the data for two hours, thus the number of
communication for one day (24 hours) is:

Ntotal = NforWholeDay −NoccupiedT ime +NWiSeKitOverhead

= (24× 60)/r − c/r + k ×NpolicySending

= 144− 12 + 2 = 134

Therefore for this case the number of saved communications is 10. Generally, we can
evaluate that the saved number of communications is:{

Nsaved = c/r × k − 2× k

1 � k � 24/y

Figure 8.7 shows the saved number of communication. As the consistency period of
new context is increased and sampling rate is decreased, more number of communications
will be saved. This is because the middleware prevents a sensor node to send data during
the period of new context activation.

8.6 Related Work

The first prominent work reported to address reconfigurability for resource-constrained
systems is [6]. In this paper, Costa et al. propose a middleware framework for embedded

95

WiSeKit: A Distributed Middleware to Support Adaptation in WSNs

systems. Their approach focuses on a kernel providing primary services needed in a typical
resource-limited node. Specifically, their work supports customizable component-based
middleware services that can be tailored for particular embedded systems. In other words,
this approach enables reconfigurability at the middleware level, while our proposal tries to
give this ability to the application services through underlying middleware services.

Efforts for achieving adaptivity in WSNs have continued by Horr et al [5]. They pro-
posed DAVIM, an adaptable middleware enabling dynamic service management and ap-
plication isolation. Particularly, their main focus in this work is on the composition of
reusable services in order to meet the requirements of simultaneously running applications.
In fact, they consider the adaptivity from the view of dynamic integration of services,
whereas our work tries to make the services adaptable.

A fractal composition-based approach for constructing and dynamically reconfiguring
WSN applications is introduced in [23]. The approach uses π-calculus semantics to unify
the models of interaction for both software and hardware components. The novel feature
of that approach is its support for a uniform model of interaction between all components,
namely communication via typed channels. Although the reconfiguration model in [23] is
promising, it fails to explain under which conditions a reconfiguration should take place.

The most relevant work in the context of reconfiguration for WSN has been reported
recently under the name of FiGaRo framework [8]. The main contribution of FiGaRo
is to present an approach for what and where should be reconfigured. The former one
is related to runtime component replacement, and latter is concern with which nodes in
the network should receive update code. In fact, FiGaRo provides a run-time support
for component loading, while our approach proposes a generic solution which includes all
of-the-shelf adaptation services besides the feature of run-time component loading.

8.7 Conclusions and Future Work

In this paper, we proposed WiSeKit as a middleware solution making adaptation and re-
configuration of WSN application software possible. We categorized our proposal into three
different layers according to the hierarchical architecture of WSN and presented WiSeKit
features for each type of node. The hierarchical adaptation decision of WiSeKit conforms
the hierarchical architecture of WSNs so that based on the resource availability in a node
as well as the portion of the network covered by a node, adaptation and reconfiguration
are performed.

This paper focused only on adaptation for the portion of application running on sensor
nodes, while the part of application deployed on cluster head and sink may need to be
adapted as well. This issue will be addressed in our future work. The work reported in this
paper is a part of our comprehensive solution for self management in WSNs. Integrating
this work with the other work reported in [9], [17] is another future direction. Developing a
complete home monitoring application based on the proposed middleware is also included
in the plan for future work.

96

References

References

[1] D. Puccinelli and M. Haenggi, “Wireless sensor networks: applications and challenges
of ubiquitous sensing,” Circuits and Systems Mag., IEEE, vol. 5, no. 3, pp. 19–31,
2005.

[2] P. e. a. Costa, “The runes middleware for networked embedded systems and its appli-
cation in a disaster management scenario,” in PERCOM ’07: Proc. of the Fifth IEEE
Int. Conf. on Pervasive Computing and Communications. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 69–78.

[3] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: research
challenges,” Ad Hoc Networks, vol. 2, no. 4, pp. 351–367, 2004.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in LCN ’04: Proc. of the 29th Annual IEEE Int.
Conf. on Local Computer Networks. Tampa, Florida, USA: IEEE Computer Society,
2004, pp. 455–462.

[5] W. Horré, S. Michiels, W. Joosen, and P. Verbaeten, “Davim: Adaptable middleware
for sensor networks,” IEEE Distributed Systems Online, vol. 9, no. 1, p. 1, 2008.

[6] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco, and S. Zachariadis, “A re-
configurable component-based middleware for networked embedded systems,” Journal
of Wireless Information Networks, vol. 14, no. 2, 2007.

[7] P. Grace, G. Coulson, G. Blair, B. Porter, and D. Hughes, “Dynamic reconfiguration
in sensor middleware,” in MidSens ’06: Proc. of the Int. Workshop on Middleware for
sensor networks. Melbourne, Australia: ACM, 2006, pp. 1–6.

[8] L. Mottola, G. P. Picco, and A. A. Sheikh, “Figaro: fine-grained software reconfigu-
ration for wireless sensor networks,” in EWSN ’08: Proc. of the 5th European Conf.
on WSNs. Bologna, Italy: Springer-Verlag, 2008, pp. 286–304.

[9] A. Taherkordi, F. Eliassen, R. Rouvoy, and Q. Le-Trung, “Rewise: A new component
model for lightweight software reconfiguration in wireless sensor networks,” in IWSSA
’8: Proc. of the 7th Int. Workshop On System/Software Architectures. Monterrey,
Mexico: Springer-Verlag, 2008, pp. 415–425.

[10] M. C. Huebscher and J. A. McCann, “Adaptive middleware for context-aware appli-
cations in smart-homes,” in MPAC ’04: Proc. of the 2nd workshop on Middleware for
pervasive and ad-hoc computing. Toronto, Canada: ACM, 2004, pp. 111–116.

[11] M. C. Mozer, “Lessons from an adaptive home,” Smart Environments: Technology,
Protocols, and Applications, pp. 273–298, 2004.

97

WiSeKit: A Distributed Middleware to Support Adaptation in WSNs

[12] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw, “Dynamic configuration of resource-
aware services,” in ICSE ’04: Proc. of the 26th Int. Conf. on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 604–613.

[13] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow:
Architecture-based self-adaptation with reusable infrastructure,” Computer, vol. 37,
pp. 46–54, 2004.

[14] H. Lutfiyya, G. Molenkamp, M. Katchabaw, and M. A. Bauer, “Issues in managing soft
qos requirements in distributed systems using a policy-based framework,” in POLICY
’01: Proc. of the Int. Workshop on Policies for Distributed Systems and Networks.
London, UK: Springer-Verlag, 2001, pp. 185–201.

[15] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer,
vol. 36, pp. 41–50, 2003.

[16] J. O. Kephart and R. Das, “Achieving self-management via utility functions,” IEEE
Internet Computing, vol. 11, pp. 40–48, 2007.

[17] A. Taherkordi, R. Rouvoy, Q. Le-Trung, and F. Eliassen, “A self-adaptive context
processing framework for wireless sensor networks,” in MidSens ’08: Proc. of the 3rd
Int. Workshop on Middleware for WSNs. Leuven, Belgium: ACM, 2008, pp. 7–12.

[18] Q. Le-Trung, A. Taherkordi, T. Skeie, H. N. Pham, and P. E. Engelstad, “Information
storage, reduction and dissemination in sensor networks: a survey,” in CCNC ’09:
Proc. of the 6th IEEE Conf. on Consumer Communications and Networking. Las
Vegas, NV, USA: IEEE Press, 2009, pp. 1111–1116.

[19] J. a. P. A. Almeida, M. Van Sinderen, and L. Nieuwenhuis, “Transparent dynamic
reconfiguration for CORBA,” in DOA ’01: Proc. of the 3rd Int. Symp. on Dist. Objects
and Apps. Washington, DC, USA: IEEE Computer Society, 2001, pp. 197–.

[20] J. Zhang, B. H. Cheng, Z. Yang, and P. K. McKinley, “Enabling safe dynamic
component-based software adaptation,” in Architecting Dependable Systems III, ser.
Lecture Notes in Computer Science. Springer, 2005, vol. 3549, pp. 194–211.

[21] InstantContiki, 2008, http://www.sics.se/contiki.

[22] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic linking for
reprogramming wireless sensor networks,” in SenSys ’06: Proc. of the 4th Int. Conf.
on Embedded networked sensor systems. Colorado, USA: ACM, 2006, pp. 15–28.

[23] D. Balasubramaniam, A. Dearle, and R. Morrison, “A composition-based approach to
the construction and dynamic reconfiguration of wireless sensor network applications,”
in SC ’08: Proc. of the 7th Int. Conf. on Software composition. Budapest, Hungary:
Springer-Verlag, 2008, pp. 206–214.

98

Chapter 9

A Generic Component-based
Approach for Programming,
Composing and Tuning Sensor
Software

Authors. Amirhosein Taherkordi (1), Frédéric Loiret (2), Romain Rouvoy (1,2), and
Frank Eliassen (1)

Affiliation.

(1) Department of Informatics, University of Oslo, Norway
{amirhost,rouvoy,frank}@ifi.uio.no

(2) INRIA Lille Nord Europe, ADAM Project-team, University Lille 1, LIFL CNRS
UMR 8022, Villeneuve dAscq, France
{frederic.loiret,romain.rouvoy}@inria.fr

Publication. The Computer Journal, Oxford University Press. The earlier version of
this paper has been published in the proceedings of the 6th IEEE/ACM International
Conference on Distributed Computing in Sensor Systems (DCOSS’10), Springer-Verlag,
Santa Barbara, California, USA, June 2010.

Abstract. Wireless Sensor Networks (WSNs) are being extensively deployed today in
various monitoring and control applications by enabling rapid deployments at low cost
and with high flexibility. However, high-level software development is still one of the
major challenges to wide-spread WSN adoption. The success of high-level programming

99

A Component Model for Programming and Tuning Sensor Software

approaches in WSNs is heavily dependent on factors like ease of programming, code well-
structuring, degree of code reusability, required software development effort, and the ability
to tune the sensor software for a particular application. Component-based programming
has been recognized as an effective approach to satisfy such requirements. However, most
of the componentization efforts in WSNs were ineffective due to various reasons, such as
high resource demand or limited scope of use. In this article, we present Remora, a novel
component-based approach to overcome the hurdles of WSN software implementation and
configuration. Remora offers a well-structured programming paradigm that fits very well
with resource limitations of embedded systems, including WSNs. Furthermore, the special
attention to event handling in Remora makes our proposal more practical for embedded
applications, which are inherently event-driven. More importantly, the mutualism between
Remora and underlying system software promises a new direction towards separation of
concerns in WSNs. This feature also offers a practical way to develop sensor middleware
services which should be generic and developed close to the operating system. Additionally,
it allows the customization of sensor software—deploying only application-required system-
level services on nodes, instead of installing a fixed large system software image for any
application. Our evaluation results show that the deployed Remora applications have an
acceptable memory overhead and a negligible CPU cost compared to the state-of-the-art
development models.

9.1 Introduction

Wireless Sensor Networks (WSNs) are a rapidly emerging research area because of their
vast application vistas in real-world environments. The advances in wireless communi-
cations and miniaturization of hardware components have enabled the development of
low-cost, low-power, and multifunctional sensor nodes. These tiny devices can be easily
embedded in the environment, establish a wireless ad-hoc network, and compose a dis-
tributed system to collaboratively sense and process the surrounding physical phenomenons
as data. However, WSNs differ from the conventional distributed systems in many aspects.
Resource scarceness is the most important uniqueness of WSNs. Sensor nodes are often
equipped with a limited energy source and a processing unit with a small memory capac-
ity. Additionally, the network bandwidth is much lower than for wired communications
and radio-based operations are the dominant energy consumer within a sensor node. The
sensor nodes and network are less reliable than in conventional distributed systems. De-
pending upon the configuration of network and environment circumstances, wireless links
may become degraded or unviable.

These factors make the way to develop WSN applications quite critical and also dif-
ferent from the other existing network systems. However, this concept is still immature in
the context of WSNs for various reasons. Firstly, the existing diversities in WSN hardware
and software platforms have brought the same order of diversity to programming models
for such platforms [1]. Moreover, developers’ expertise in state-of-the-art programming

100

Introduction

models become useless in WSN programming as the well-established discipline of program
specification is largely missing in this area. Secondly, the structure of programming models
for WSNs are usually sacrificed for resource usage efficiency, thereby, the outcome of such
models is usually a piece of tangled code hardly maintainable by its owner. Finally, ap-
plication programming in WSNs is mostly carried out very close to the operating system,
forcing developers to learn low-level system programming models. This not only diverts
the programmer’s focus from the application logic, but also needs low-level programming
techniques, which imposes a significant burden on the programmer.

From a software composition perspective, the way to implement WSN applications
is also becoming increasingly important as today’s sensor software not only consists of
application and system modules, but also includes various off-the-shelf, third-party software
products, such as middleware services. Ideally, such integrations should be realized through
a meta-level abstraction with minimum programming effort. This, in fact, indicates the
capability of a WSN programming model to facilitate the development of middleware
services and their integration to target application software.

The ability to tune the sensor software for a particular use-case or application domain is
the other major issue in this context. As sensor nodes are typically equipped with a limited
memory capacity, operating system developers need to keep the size of system modules as
small as possible in order to preserve enough memory space for application modules, and
they also have to ensure the portability of system software to various sensor platforms.
This mostly leads to software artifacts with either degraded functionality not satisfying
all end-user expectations, or suffering from the lack of modularity and maintainability.
One solution to tackle this problem is to consider the operating system as a collection of
well-defined services deployable on a minimized kernel image so that the programmer has
the ability to involve only application-required system services in the process of software
installation. Therefore, this can bring a significant efficiency to resource usage in sensor
nodes by avoiding installing a single monolithic operating system for any application.

Software componentization has been recognized as a well-structured programming model
able to tackle the above concerns. Component-based programming provides an high-level
programming abstraction by enforcing interface-based interactions between system mod-
ules and therefore avoiding any hidden interaction via direct function call, variable access,
or inheritance relationships. This abstraction rather offers the capability of black-box
integration of modules in order to simplify configuration and maintenance of software sys-
tems. Module reusability and provision of standard API are some other advantages of
adopting component-based software development [2, 3]. Although using this paradigm in
earlier embedded systems was relatively successful [4, 5, 6, 7], most of the efforts in the
context of WSNs remain inefficient or limited in the scope of use. The TinyOS program-
ming model, named NesC [8], is perhaps the most popular component model for WSNs.
Whereas NesC eases WSN programming, this component model remains tightly bound to
the TinyOS platform. Other proposals, such as OpenCom [9] and THINK [10], are either
too heavyweight for WSNs, or not able to support event-driven programming, which is of

101

A Component Model for Programming and Tuning Sensor Software

high importance in WSNs.

In this article, we present extended results on Remora, a lightweight component model
designed for resource-constraint embedded systems, including WSNs [11]. The strong ab-
straction promoted by this model allows a wide range of embedded systems to exploit it
at different software levels from Operating System (OS) to application. To achieve this
goal, Remora provides a very efficient mechanism for event management, as embedded
applications are inherently event-driven. Remora components are described in XML as an
extension of the Service Component Architecture (SCA) model [12] in order to make WSN
applications compliant with the state-of-the-art componentization standards. Additionally,
the C-like language for component implementation in Remora attracts both embedded
system programmers and PC-based developers to programming for WSNs. Remora also
features a coherent mechanism for component instantiation and property-based compo-
nent configuration in order to facilitate lightweight event-driven programming in WSNs.
Notably, in this paper the aforementioned features of Remora are extended in the fol-
lowing ways. First, we propose a programming approach, based on the concept of Au-
tonomous Composable Module (ACM), to achieve a practical and efficient way of develop-
ing component-based middleware systems in WSNs. Second, we introduce a mechanism
to enable tuning system software by componentizing the OS-level services and customizing
OS functionality based on target application’s requirements. The Remora specifications
and their implementation techniques are also extensively explored in this paper.

As a matter of validation, we demonstrate the comprehensive evaluation results of
deploying Remora components on Contiki—a leading operating system for WSNs [13].
Specifically, we extend our earlier evaluation efforts in [11] with considering a complemen-
tary set of performance figures, such as required programming effort. The efficient use
of Contiki features, such as process management and event distribution [14], on the one
hand, and the abstraction layer linking Remora to Contiki, on the other hand, promise a
very effective and generic approach towards practical high-level programming in WSNs. In
particular, we present the functionality of Remora within the context of a real use case
involving a network-level application suite in order to support code distribution in dynamic
sensor applications. Finally, the evaluation work is completed by carrying out a compre-
hensive investigation of existing software component models for WSNs and comparing them
with Remora.

The remainder of this article is therefore organized as follows. In Section 9.2, the
specification of the Remora component model is presented. Section 9.3 describes how
Remora is implemented, while the evaluation results are reported in Section 9.4, including
the assessment of a real Remora-based deployment. A survey of existing approaches and a
discussion on Remora extension opportunities are presented in Section 9.5 and Section 9.6,
respectively. Finally, Section 9.7 concludes this paper and identifies some future work.

102

Remora Component Model

9.2 Remora Component Model

In this section, we first discuss the primary design concepts in Remora and then we
explain the specifications of the Remora component model. The first obvious principle
is that WSN applications in our approach are built out of components conforming to the
Remora component model. The other design principles of Remora include:

XML-based Component Description. The first design goal emphasizes simplicity
and generality of the technique for describing Remora components. In Remora, we
therefore adopt XML technologies to describe components. The basis for the XML schema
we defined is the Service Component Architecture (SCA) notations in order to provide a
uniform component model covering components from sensors to the Internet, as well as
to accelerate standardization of component-based programming in WSNs. As SCA was
originally designed for large-scale systems-of-systems [12], Remora extends SCA with its
own architectural concerns to achieve realistic component-based programming in WSNs.

C-like Language for Component Implementation. Remora components are written
in a C-like language enhancing the C language with features to support component-based
and structured programming. The other objective in this enhancement is to attract both
embedded systems programmers and PC-based developers towards high-level programming
in WSNs.

OS Abstraction Layer. The Remora component framework is integrated with the
underlying operating system through a well-defined OS-abstraction layer. This thin layer
can be developed for various WSN operating systems supporting the C language, such as
Contiki. This feature ensures the portability of Remora components towards different
OSs. The abstraction provided by Remora becomes more valuable when the component
framework is easily configured to reuse OS-provided features, such as event processing and
task scheduling.

Event Handling. Event-driven programming is a common technique for programming
embedded systems as memory requirements in this programming model is very low. Besides
the support for events at the operating system level in embedded systems, we also need to
consider event handling at the application layer. Remora therefore proposes an high-level
support of event generation and event handling, which makes it one of the key features of
our proposal. In particular, Remora achieves this goal by reifying the concept of event as
a first-class architectural element simplifying the development of event-oriented scenarios.

Before describing our component model, we first define the basic terms used throughout
this article. Figure 9.1 illustrates the development process of Remora-based applications.
A Remora application consists of a set of Remora Components, containing descriptions
and implementations of software modules. The Remora engine processes the components
and generates standard C code deployable within the Remora framework. The framework
is an OS-independent module supporting the specification of the Remora component
model. Finally, the Remora application is deployed on the target sensor node via the
Remora runtime, which is an OS-abstraction layer integrating the application to the

103

A Component Model for Programming and Tuning Sensor Software

system software.

�����������	�

���!��
&�������2
���������	

��	
��

#������	�����	
������

���!��
�����	�	�
���!��
�	��	�

�����'����
�����	�	�

������ �����!��"��� #��������$�

���!��
&�������2

���!��
��	����

��	��
3�������

!������	�
�'���

Figure 9.1: Development process of Remora-based applications.

9.2.1 Component Specification

A Remora component contains two main artifacts: component description and component
implementation. The component description is an XML document containing the specifica-
tions of the component including its services, references, producedEvents, consumedEvents,
and properties (cf. Figure 9.2). A service can expose a Remora interface, which is a sepa-
rate XML document specifying the functions provided by the component, while a reference
indicates the operations required by the component as an interface. Likewise, a producedE-
vent identifies an event type generated by a component, whereas a consumedEvent specifies
component’s interest on receiving a particular event. The component implementation is a
C-like program containing three types of operations: i) operations implementing the com-
ponent’s services, ii) operations processing events, and iii) component’s private operations.

#$���%&������'()*+(%�������"'(,-./0($1
#������������������'(�2��23�3-43��51
#�����������'(��67 ��)43��(1

#���������������������'(3-�6.��)43��(81
#8���&���1
***%�	���%���&����
#��������������'(6�.�6�3��)43��(1

#���������������������'(3-�6.��943��(81
#8���������1
***%�	���%����������
#�������������'(�62�)43��(%	���'(�62�)4-:��(1

�62�)4��.,�-47�,�
#8������	�1
***%�	���%������	���
#����
���1

#�������������	���'(�7�3-)4-:��(%����'(�7�3-)47643��(81
#8����
���1
***%�	���%����
����
#���
���������	���'(�23�,��642��6- 23(1

#�������������	���'(�7�3-94-:��(%����'(�7�3-947643��(81
#8����
���1
***%�	���%����
����

#8��������	-���1

Figure 9.2: The XML template for describing Remora components.

104

Remora Component Model

To make the specification more concrete, we first present a simple example of aRemora-
based application, then we discuss Remora features carefully. This simple application is
in charge of blinking a LED on a sensor node every three seconds. Figure 9.3 depicts the
components involved in this application.

4��	2

%��	� &�	���
.�������$�� .������

���������
�����������

����������

*�� ����

%%%%

Figure 9.3: A simple Remora-based application.

We here focus on the Blink component and describe it according to the Remora com-
ponent model. In Figure 9.4, the XML description of the Blink component is shown. This
component provides an ISensorApp interface to start application execution and requires an
ILeds interface to switch LEDs on and off, which is implemented by the Leds component. It
also owns a property to toggle a LED on the sensor node. As the Blink component produces
no event, the producer tag in the component description is empty, while it is subscribed
to receive TimerEvent and process this event in the timerExpired function. The last part of
the component description is the libraries used by the component implementation.

#$���%&������'()*+(%�������"'(,-./0($1
2������������������'(���*!������(1
#�����������'(���������(1

#���������������������'(����*���	*���* ��������(81
#8���&���1
#��������������'(�����(1

#��	������*������%����'(����*����������*���* ����(1
#8���������1
#�������������'(�""��(%	���'(���;����	(1+#8������	�1
#����
���81
#���
���������	���'(�����������(1

#�������������	���'(����*���*-�����&��	(%����'(�-����&��	(81
#8����
���1
#��������1

#����
�������'(�	���(%	���'(���	�����(81
#8���������1

#8�������������1

Figure 9.4: XML description of Blink component.

Figure 9.5 presents the excerpt of the Blink implementation. This C-like code im-
plements the single function of the ISensorApp interface (runApplication) and handles
TimerEvent within the timerExpired function. In the runApplication function, we specify
that the TimerEvent generator (aTimeEvent.producer) is configured to generate periodi-

105

A Component Model for Programming and Tuning Sensor Software

cally TimeEvent every three seconds. The last command in this function is also to notify
the TimerEvent generator to start time measurement. When time is expired, Timer sets
the attributes of aTimeEvent (e.g., latency) and then the Remora framework calls the
timerExpired function.

�

�

�

�

�

�

&���%�
������������<=>
����	�<(/// �	��	��"%!����%������	���%///(=?
����	%��������%'%)?
���������������
���*�����"
��<@A��2�B4���23�C%��������=?
���������������
���*�	��	<=?

D
&���%������������<=>
��%<���*	�""��%''%+=>

����*������<����46��=?
���*	�""��%'%)?

D����>
����*�������<����46��=?
���*	�""��%'%+?

D
����	�<(-���%�������%��	��%��	��&��;%E�(C%������������������=?

D

Figure 9.5: C-like implementation of Blink component.

Services and References. The first step towards component-based programming is
identifying system services, and then identifying which component(s) provides a service and
which one(s) requires the service (so called reference). Similar to component descriptions
in Remora, interfaces are described in XML. Interface description includes a name and
the associated operations. Figure 9.6 presents the simplified ILeds interface used by the
Blink component as a reference. Every component providing a service should implement all
the operations specified in the interface description with the same signatures.

�

�

�

#$���%&������'()*+(%�������"'(,-./0($1
#���������������������'(������������������������(1
#��������������'("�	����(%���
��'(���;
���"���!�	�(81
#��������������'(������(1

#�������'(����(%	���'(���;
���"���!�	�(81
#8�����	���1
#��������������'(�������(1

#�������'(����(%	���'(���;
���"���!�	�(81
#8�����	���1

#8����������������1

Figure 9.6: A simplified description of ILeds interface.

Component Properties. In Remora, programmers can define properties for a compo-
nent. Properties enable reconfiguration of component behaviors and also convert compo-
nents from a dead unit of functionality to an active entity tractable during the application
lifespan. The component reconfiguration becomes very essential for event producer compo-
nents, e.g., to generate accurate TimerEvents in the Blink application, we need to configure

106

Remora Component Model

the Timer component through a property that holds the time at which the measurement
is started. Properties also enable components to become either stateless or stateful. A
component is stateful if and only if it defines a property—e.g., the Blink component in our
sample application is a stateful component retaining the value of the toggle property—
whereas the Leds component is a stateless component. The properties of a component can
be accessed from the component implementation using the keyword this.

Component Implementation. Remora components are implemented by using a di-
alect of C language with a set of new commands. This C-like language is mainly proposed
to support the unique characteristics of Remora, namely, component instantiation, event
processing, and property manipulation. Therefore, for pure component-based programming
without the above features, the programmer can almost rely on C features and develop
an elementary Remora-based application including only Remora-based interface invo-
cations. We implicitly introduced a few of these commands within the Blink component
implementation, while the complete description of commands is available in [15].

Parameter-based Reconfiguration. To preserve efficiency in resource usage, Remora

relies on compile-time linking so that system components are linked together statically
and their memory address is also computed at compile-time. Additionally, for multiple-
instance components, all required instances are created in compiler-specified addresses prior
to application startup. These constraints not only reduce the size of the final code, but
also relieve the programmer from the burden of managing memory within the source code.
In Remora, the reconfiguration feature is also considered from a parametric perspective:
A Remora component can be reconfigured statically by changing the behavior of its
functions through its component properties. In particular, for the property-dependent
functions of a component, the behavior of the component can easily be changed by adjusting
property values and thus a form of parameter-based reconfigurability is enabled within the
component.

9.2.2 Component Instantiation

Remora features a concrete mechanism to support component instantiation. This feature
is essentially proposed to manage efficiently event producer components. The Remora

engine greatly benefits from component instantiation when undertaking linking of one
event producer to several consumer components. For example, in the Blink application,
the producer (Timer) of TimerEvent should be instantiated per consumer component, while
the UserButtonEvent generator is a single-instance component publishing an event to all
subscribed components when the user button on a sensor node is pressed.

By component instantiation, we refer to two principles: i) the component code is always
single-instance, and ii) the component context is replicated per instance. By component
context, we mean the data structures required to handle the properties independently from
the component’s code. By doing that, a Remora component becomes a reconfigurable and
reusable entity with a strong abstraction, and more importantly the memory overhead is

107

A Component Model for Programming and Tuning Sensor Software

kept very low by avoiding code duplication.

Remora proposes three multiplicity types for the component’s context: raw-instance
(stateless component), single-instance, and multiple-instances. The Remora engine fea-
tures an algorithm computing the multiplicity type of a component based on three param-
eters: i) whether the component owns any property, ii) whether the component is an event
producer, and iii) the number of components subscribed to a specific event. When the
multiplicity type is determined, the Remora engine statically allocates memory to each
component instance.

9.2.3 Event Management

As high-level event processing is a necessary functionality in embedded systems, theRemora

design comprehensively supports events between components. The main goal is to reify
the concept of event as a first-class architectural element simplifying the development of
event-oriented scenarios at a low cost. The event design principles in Remora include:

Event Attributes. An event type in our approach can have a set of attributes with
specific types. By defining attributes, the event producer can provide the event-specific
information to the event consumer, e.g., the latency attribute of TimerEvent in the Blink
application.

Application Events vs OS Events. Events in our framework are categorized into
two classes: application-events and OS-events. Application-level events are generated by
the Remora framework (like Timer in the Blink application), while the latter are gen-
erated by the sensor operating system. In other words, the only difference of these two
types is the source of event generation. To process OS-events at the application level, the
Remora runtime features mechanisms to observe OS-events, translate them to correspond-
ing application-level events, and publish them through OS-event producer components.

Event Observation Interface. One of the important aspects of event processing is the
time period in which events should be observed by the event producer. Obviously, the
length of this period varies with the type of events, e.g., the observation period for a
TCP/IP event is the whole application lifespan (automatic observation), while a Timer
event is observed according to the user-configured time (manual observation). Remora

therefore proposes the event observation interface in order to control the manual observa-
tions. This interface includes event control operations, such as start, pause, resume, and
terminate. If an event type is manually observable, the associated event producer should
implement the generic observation interface. By doing that, the event consumer can handle
the life cycle of the observation process by calling the operations of this interface without
being aware of the associated event producer.

Event Configuration Interface. The specification of an event type in our approach
contains a configuration interface. Each component producing an event should implement
the associated configuration interface. This feature enables the event consumer to config-
ure event generation before starting the event observation process. More importantly, by

108

Remora Component Model

introducing such an interface within the event specification, the event producer and the
event consumer become completely decoupled, e.g., in the Blink application, TimerEvent

generation is configured within the Blink component without being aware of the associated
event generator.

Single Event Producer per Event Type. Each event type in our approach is pro-
duced by one and only one component. Instead of imposing the high overhead of defining
event channels and binding event consumers and producers, we ease event-based program-
ming by assuming one-to-one association between event types and event producers. The
programmer is also released from identifying such bindings as the Remora framework
becomes responsible to automatically wire producers and consumers. We believe that this
assumption does not affect event-related requirements of embedded platforms. In case an
event is produced by two different components, the programmer can define a new event
type, extended from the original event, for one of the producer components.

Event Casting. Events in our proposal can be either unicast, or multicast. Unicast is a
one-to-one connection between an event producer and an event consumer—e.g., TimerEvent

in the Blink application. In contrast to the unicast model, a multicast event may be of
interest to more than one component—e.g., a UserButtonEvent may be handled by several
components. The Remora framework distinguishes between these two types in order to
improve the efficiency of processing and distributing events. Event distribution should also
be considered together with component instantiation. We need to clarify how multiplicity
type of components on the one side, and unicast events and multicast events on the other
side are related. To this end, we define two invariants:

Invariant1: The consumer of a unicast event should be a raw-instance or single-
instance component.

Invariant2: The producer of a multicast event should be a raw-instance or single-
instance component.

These invariants are mainly proposed to boost the efficiency of event processing in the
Remora framework. We do not support other event communication schemes since it im-
plies to reify at runtime the source and the destination of an event and to maintain complex
routing tables within the Remora framework, which will induce significant overheads in
term of memory footprints and execution time. We rather believe that these invariants do
not limit event-related logic of embedded applications.

Events Description. Similar to components, events have their own descriptions, which
are in accordance to the event specification in Remora. Figure 9.7 presents a simplified
events description document of the Blink application. This document consists of two outer
tags: remora-events and os-events, corresponding to the application level events and
the OS events, respectively. For each event type, we can specify its observation model and
casting type. The attributes of an event are also described by the attribute tag and the
operations of event configuration interface is specified by the configInterface tag.

109

A Component Model for Programming and Tuning Sensor Software

#$���%&������'()*+(%�������"'(,-./0($1
#�����1
#������ �����1

#����� ���� ����'(����*���*-�����&��	(%
%%%%%%%%%%%%%%%% �������'(
�����	(%����������'(���
��(1
%%%%%%#������
�� ����'(��	����(%	���'(���;��	(81
%%%%%%#���������������1
%%%%%%%%#��������� ����'(�����"
��(1
%%%%%%%% #�� ����'(��	��&��(%	���'(���;��	(81
%%%%%%%% #�� ����'(��������(%	���'(���;����	(81
%%%%%%%%#8�����	���1
%%%%%%#8�����" �	������1

#8�&��	/	���1%
#8������/�&��	�1
#F// ���%�	���%�������	��� �&��	%	����%����%//1
#� �����1

#F// ��������%2�/�&��	�%���� //1
#8��/�&��	�1

#8�&��	�1

Figure 9.7: Application events description.

Event Management Illustration. Figure 9.8 illustrates the event management mecha-
nism implemented in Remora. We explain the mechanism based on the steps labeled in
the figure. During the first two steps, the event consumer can configure event generation
and control event observation by calling the associated interfaces realized by the event
producer component. These steps in our sample application are achieved in the Blink
component (event consumer) by the code below:

aTimeEvent.producer.configure(3*CLOCK SECOND, periodic);

aTimeEvent.producer.start();

Note that the programmer is not aware of the TimerEvent producer. She/he only knows
that the TimerEvent generator is expected to implement the configure function defined
in the description of TimerEvent (cf. Figure 9.8). The TimerEvent producer should also
implement the observation interface as the observation type of TimerEvent is manual.

Whereas the above steps are initiated by the component programmer, the next two
steps are performed by the Remora component framework. Step 3 is dedicated to polling
the producer component to observe event occurrence. The event producer is polled by
the Remora framework through a dispatcher function in the producer. In fact, the event
observation occurs in this function. The polling process is started, paused, resumed, and
terminated based on the programmer’s configuration for the event observation, performed
in step 2.

For application-level events, the Remora framework is in charge of calling periodically
this function, while for OS-events, Remora invokes this function whenever an OS-event is
observed by the Remora runtime. The Remora runtime listens only to application-
requested OS-events, and delivers the relevant ones to the framework. The Remora

framework then forwards the event to the corresponding OS-event producer component
by calling its dispatcher function—e.g., user button is a Contiki-level event that should

110

Remora Component Model

be processed by the Remora component UserButton. This component then generates an
high-level UserButtonEvent and publishes it to the Remora framework.

Finally, in step 4, upon detecting an event in the dispatcher function, the producer
component creates the associated event, fills the required attributes, and publishes it to
the Remora framework. The framework in turn forwards the event to the interesting
components by calling their event handler function.

��	���&�������2

5

6

7
8

��	�����	����
��'$	��

�/�	�
��������
�/�	�

����� ��
3
����4

����� ��
	 ����4

�������"�

�/�	�

��	�����&�	�+
�	�����

� ��$+
�	�����

"�	���

Figure 9.8: Event management mechanism in Remora.

9.2.4 Components Assembly and Deployment

A typical Remora application may contain several implementations of a given component
type due to the existing heterogeneity in WSN hardware and software platforms. To con-
figure an application according to the target platform requirements, Remora introduces
components assembly (equivalent to composite component in SCA). This XML document
specifies the list of application components, as well as bindings between references and
services of components. Figure 9.9 shows the configuration of Blink application in which
there is only one binding from Blink to the Leds component implementing the interface
ILeds for the MSP430 micro-controller. Note that, based on the event casting invari-
ants, the event-binding between Blink and Timer is created automatically by the Remora

framework.

Figure 9.10 illustrates the four main phases of an application deployment. TheRemora

development box encompasses artifacts supporting component specification. Events de-
scription and components configuration are used to describe system events and components
assembly, respectively. Components and interfaces are also described in separate XML doc-
uments, one for each. External types are a set of C header files containing application’s
type definitions. The last group of elements in this box are C-like implementation files of
components in which OS libraries may be called through a set of System APIs implemented
by Remora runtime components. Note that there is no hard-coded dependencies between
Remora implementers and the native API of the underlying OS (e.g., Contiki) to ensure
portability of Remora components towards different OSs.

111

A Component Model for Programming and Tuning Sensor Software

#$���%&������'()*+(%�������"'(,-./0($1
#�������������'(���*!�����������"
���(1
#��������������'(������	���(1

#����������������������
����������������������	��'(��
*	�����*����������*����(81
#8��������	1
#��������������'(�����(1

#������������������������������	��'(���*!������(1
#8��������	1
#��������������'(����(81

#������������������������������	��'(����*���*-����(81
#8��������	1
#FG��������	� �����" //1
#!�����
���'(�����8�����(%������'(������	���8�����(81

#8��������1

Figure 9.9: Blink application configuration.

In the next phase, the Remora engine reads the elements of the development box and
also OS libraries in order to generate the Remora framework including the source code
of components and OS-support code. Then, application object file will be created through
OS-provided facilities and finally deployed on sensor nodes.

5$	��
���������	

#���$
�	�����

���������	

#���$
56��	��
)���

���	����	

�%����

�����	�	�
���������	

#���1

&����		�
�����	�����	

�/��������
&����		��
&�	���������	

#���$

��	��� ��/������	�
4�� ��	��� �	��	�

!�
*�� ��	��� ��	����

!������	�
�'���

��	��
3�������

�� ��
��	��� ����������	

����������	

����

��	��
 ���

��1
�	����

�	���������
"�

�����

%����' ���

�����
�.��

Figure 9.10: Remora-based development process.

9.2.5 Middleware Programming

The research efforts on sensor middleware have hitherto focused on developing services and
algorithms for routing, quality of service, energy-efficiency, resource management, localiza-
tion, synchronization, etc. These, however, often fall short of expectation in integrating
services and algorithms into a generic middleware system, and in helping application pro-
grammers to compose a system that exactly matches their requirements. This raises the
need for a specific approach for middleware programming in WSNs that goes beyond deal-
ing with only application-specific logics. From the programming point of view, middleware

112

Remora Component Model

services are distinguished from other components in the system by the following two main
factors.

First, despite the application-level programming, middleware components are devel-
oped very close to the operating system, requiring to tightly interact with system-level
components. Therefore, sensor programming models, supporting middleware development,
should provide the primitives required to interface between middleware services and sys-
tem components. Remora addresses this concern through the OS Abstraction Layer and
the OS-Wrapper components. In addition to enabling the portability of sensor applica-
tions, these principles make Remora a suitable programming model to build middleware
applications.

Second, middleware solutions should be exposed as a well-packaged, stand-alone appli-
cation which can be easy integrated to the target application with minimum programming
effort. Although this issue has been extensively addressed in conventional resource-rich
systems, software pieces in WSNs are often assembled together in an ad-hoc manner, with-
out any well-established software composition model. This problem originates from the
fact that WSN programming abstractions do not pay enough attention to software com-
position and integration approaches. With the increasing number of intermediate software
solutions for WSNs (e.g., networking, algorithms and QoS), programming constructs are
required to compose the application, middleware services, and the operating system into a
unified sensor software in a generic, simple and robust manner.

The technique we have adopted in Remora to compile and assemble components
has the potentials to meet a higher level of assembly which is integrating a given set
of Remora-based applications. In particular, we enhance the Remora engine with the
capability of processing multiple isolated Remora applications and integrating them into a
unified system. The main concerns, in this endeavor, include how to expose an application’s
functionality as an API and bind applications based on the dependencies between their
APIs. Remora addresses these concerns based on the concept of Autonomous Composable
Module (ACM). This refers to developing Remora applications in an autonomous man-
ner so that the programmer considers an under-development application as a stand-alone
module with its own operations. It means that, based on this approach, the dependencies
of the application to others are not declared within its description. The Remora engine is
in charge of analyzing dependencies among ACMs and binding them together. Figure 9.11
shows the overall architecture of Remora composition solution, consisting of a set of
ACMs and the main sensor application. The latter not only implements the application
logic, but also serves as a starting point to execute programs. An ACM contains a set of
Remora components implementing its logics, as well as a component representing its API.

As a use case for the Remora middleware programming model, in [15] we demonstrate
a run-time middleware system, called RemoWare, to support dynamic reconfiguration of
Remora-based applications. RemoWare is basically an ACM which can be easily used as
a middleware solution in any dynamic sensor application to enable run-time reconfiguration
of Remora components.

113

A Component Model for Programming and Tuning Sensor Software

%����
�������1

�&��&��&�
�.�

���	
����������	

Figure 9.11: The overall architecture for composing the main application and ACMs.

9.2.6 Automatic Tuning

Besides the componentization of application-level modules, Remora can be exploited to
componentize operating system’s modules either by wrapping them in Remora compo-
nents, or redeveloping them according to the Remora specification. This enables the
Remora engine to expand its control on the configuration of sensor software and therefore
makes it possible to automatically tune the target software installed on nodes. In this way,
the Remora engine can gain a meta knowledge showing which OS-level components are
involved in supporting application logic and based on that it can trace the interactions
between application components and system components. In this way, it can identify the
orphan components—the components that are not involved in the application scenario
execution.

Figure 9.12 describes an initial configuration (prior to deploying on nodes) of sen-
sor software in which the application-level components gain system services through OS-
wrapper components at the runtime layer. These components interact either directly with
kernel-level modules, or with other intermediary wrapper components beneath the run-
time. This initial setting can be optimized by Remora engine. When it executes the
tuning process, deduces that one of the intermediary components is orphan, and removes
it from the final package installed on nodes.

!������	�
 �'���
1��	��

������
��	����

����������	

��
�����

��'������
&����		�

����������	
&����		�

*���	�

���"�	
 &����		�

Figure 9.12: The Remora engine tunes the operating system by tracing component de-
pendencies and finding orphan components.

114

Implementation

9.3 Implementation

To discuss the implementation of Remora, we structure this section according to the
main modules proposed for Remora-based application development, namely, the engine,
the framework, and the runtime. Since the platform supporting the component model
is comprehensive and includes numerous implementation issues, we only highlight the key
technologies and design techniques used for implementing each of the aforementioned mod-
ules. Beyond the internal design of modules, the overall design goal is to keep the artifacts
of each module completely independent from others in the sense that in the final system,
each module is composed of three set of source codes dedicated to corresponding modules.
The main advantage of this separation is to minimize the required effort to port the compo-
nent model to a new operating system by ensuring a clear isolation between the Remora

framework and the Remora runtime.

9.3.1 Remora Engine

The Remora engine is deployed on the programmer’s desktop machine to read all artifacts
within the development box, perform required analyses for code generation, and generate
the final C code of components, as well as OS-support code. We adopt Java to develop
the engine because of its cross-platform capabilities, as well as its strong support for XML
processing. Additionally, the object-oriented nature of Java simplifies the complex process
of code analyzing and code generation. We briefly discuss the key design principles of this
Java-based engine below.

The first task of the engine is to parse the C-like implementation of components and
extract the information concerning the specification of Remora. To this end, we have
developed a parser module, which is originally generated by ANTLR—a widely used open-
source parser generator [16]. Since this generated tool only parses the source code, we have
modified the generated parser to extract Remora-required information, such as name, sig-
nature, and body of implementation functions. By doing that, the engine builds a meta-data
structure containing all required information about the implementation of a component and
the rest of the engine tasks are performed based on that.

The other key implementation part of the Remora engine deals with processing events,
component instantiation, and component lifecycle. This unit deduces the multiplicity type
of components according to the algorithm 1 and generates the necessary data structures.
This algorithm determines the multiplicity type based on the type of events generated
by the component, as well as whether the component owns any property or not. If the
final value of variable InstNumber is 0, this means that the component has no instance
and only requires the code memory, while the value of 1 shows that only one instance of
component’s data should be stored in the data memory. Finally, for a multiple instance
component the value of InstNumber is 2.

This module also features a set of well-defined techniques, such as in-component call
graph analyzer and cross-component call tracker to support stateful component. The for-

115

A Component Model for Programming and Tuning Sensor Software

Algorithm 1 Determining the multiplicity type of components

Input: producedEvents, events generated by the components
Input: properties, component’s properties
Output: component’s multiplicity type
InstNumber ⇐ −1
MultiConsumers ⇐ false
for aEvent in producedEvents do
if aEvent is unicast then
if sizeOf(aEvent.consumers) > 1 then
MultiConsumers ⇐ true
break

end if
end if

end for
if MultiConsumers is false then
if sizeOf(producedEvents) > 0 then
InstNumber ⇐ 1

else
if sizeOf(properties) > 0 then
InstNumber ⇐ 1

else
InstNumber ⇐ 0

end if
end if

else
InstNumber ⇐ 2

end if

116

Implementation

mer concept is concerned with discovering state-dependent functions of a component. Two
types of state dependency can be envisaged for a function: i) explicit dependency : the
component’s property(s) is(are) directly accessed within the function’s code, ii) implicit
dependency : the function contains direct/indirect invocation(s) to an explicit type. To pre-
serve the state of a component, we need to retain a pointer to the component’s context and
pass it to the state-dependent functions of component. The in-component call graph ana-
lyzer employs a recursive technique to navigate the function calls with the component and
identify the state-dependent functions. Likewise, the cross-component call tracker tracks
the interactions between components in order to retain the state of components. Finally,
the major task of the engine is to support events and manage the component lifecycle by
embedding framework-support patches in the component implementation.

Automatic tuning of sensor software is the other responsibility of the Remora engine.
The data structure supporting the tuning process is a directional graph in which every
node represents a component of the system and edges between nodes are the service-
based interactions among the components (cf. Figure 9.13). The engine first creates this
graph and then navigates the nodes based on the Depth-First Search (DFS) algorithm to
find the orphan nodes. In particular, it initiates this process from the main component
of application, implementing the interface ISensorApp, as the root of graph. When it
accomplishes DFS, it removes orphan nodes—all components that are never visited by
DFS.

��
�
����
	

�����������

�
����
������

%&� �����

����������

��������������

Figure 9.13: Using depth-first search algorithm to discover the orphan nodes.

Moreover, the Remora engine undertakes binding ACM modules in order to support
middleware programming. This process is carried out in a two-phase strategy. It first
processes the components configuration document of each ACM and creates a disconnected,
directed graph structure in which each ACM would have directed edges to the required
APIs. In the second phase, the engine analyzes the yielded disconnected graph from the
first phase and creates a connected graph representing dependencies among ACMs, as well

117

A Component Model for Programming and Tuning Sensor Software

as between the main sensor application and ACMs. Therefore, it provides a higher-level of
wiring model between co-habiting applications and this model is further processed by the
engine to implement the execution flow graph in the system.

9.3.2 REMORA Framework

The Remora framework is composed of a collection of core C programs, supporting the
event management model of Remora and hosting the target application’s components.
As mentioned before, the Remora framework is an OS-independent module. There are
two main reasons for this: i) the core of the framework is written in the C language and
also the final code of application’s components are translated to equivalent C programs
by the Remora engine, ii) the framework is linked to the OS via the Remora runtime
which translates all OS-originated interactions (e.g., OS-events) to a set of pre-defined,
application-specific instructions understandable by the framework (cf. Section 9.2.3). The
other possible dependency issue is caused by the mechanism used to form the Remora

framework as a process within the OS and schedule it to run. This is also extensively
addressed by the Remora runtime as explained in Section 9.3.3.

The main mission of the framework is to facilitate event management tasks, including
scheduling and dispatching. To explain these tasks, we first introduce two queue data
structures supporting our event model. The first queue is dedicated to the event producer
components (PQ), while the second one is designed to maintain the event consumers (CQ).
We discuss here how the Remora framework is built based on these data structures.

Scheduling in Remora refers to all operations required to enqueue and dequeue event
producers and event consumers. In particular, the main concern is when to enqueue/d-
equeue a component and who should perform these tasks. The Remora framework ad-
dresses these issues based on the observation model of events. For example, if an event
is automatically observable, the associated producer component and all the subscribed
consumers are enqueued by the framework core during the application startup, while in a
manual observation, producer and consumer are placed respectively in PQ and CQ when
the consumer component calls the start function of observation interface. A question may
arise is that prior to initiating the scheduling mechanism, how the components instances
are created. In Remora, memory allocation for components is done statically. Therefore,
the memory address of all instances of all components are determined during the frame-
work compilation and we do not impose the high overhead of dynamic memory allocation
to such a resource-constraint platform. At runtime, parts of the framework, embedded in
each component, are responsible for dealing with component lifecycle—e.g., activating or
deactivating event generator components.

The other role of the Remora framework is to periodically poll the generator com-
ponents for event observation, and then feed event handlers with the matched events. To
achieve the former, event generators in Remora keep a pointer to the globally known
callback function, dispatcher, thereby, the Remora framework is able to poll event gener-

118

Implementation

ators by periodically calling this function. Similarly, the latter is realized by invoking the
callback handler function within the event consumer component like timerExpired in the
Blink component.

Figure 9.14 illustrates the dispatching mechanism in the framework including the sup-
porting data structures. In Polling, the Remora framework continuously polls the Event-
Producer components through dispatcher—the globally known callback function. When-
ever a producer dispatches an event (AbstEvent), the framework casts this event to the ac-
tual event type, which is either UCastEvent(unicast event) or MCastEvent(multicast event).
UCastEvent will be directly forwarded to the subscribed consumer through the callback func-
tion pointer stored in the UCastEvent. If a MCastEvent is generated, the framework delivers
it to all the interesting components formerly enqueued. For OS-events, the same procedure
is followed except the polling phase, which is performed by the operating system.

�������
���%�!
��������&�����

'�����$��%�(�������&�����

)�����%

(������ &���(� � &
�������#

�/�	���������
5 �/�	���������
	

%

�/�	���������
6 �

����/�	�

�����/�	�

"����/�	�

�������������������#�#�#������������ ####

"�����	����

������	���� ������	�����

�������

Figure 9.14: Remora event processing mechanism.

9.3.3 REMORA Runtime

The Remora framework is integrated with the underlying operating system through the
Remora runtime. In our current implementation, the core of the Remora runtime is
a Contiki-compliant process running together with all other autostart processes of Con-
tiki (see Figure 9.15). This process undertakes two tasks: i) periodically scheduling the
Remora framework (for polling event generator components) to run, and ii) listening to
the OS-events and delivering the relevant ones to the Remora framework. By relevant, we
mean the Remora runtime recognizes those OS-events that are of interest to the applica-
tion. To achieve such a filtering, the source code of this part is generated by the Remora

engine according to the events description of target application and then imported to the
Remora runtime. By doing that, we provide a lightweight event dissemination mechanism
interpreting only application-specific OS-events.

In addition, the application code may need to use libraries available in the OS. In
Remora, a programmer can develop a set of Remora components acting as system API
providers. In fact, these components delegate all high-level system calls to the correspond-

119

A Component Model for Programming and Tuning Sensor Software

*�������)�������!���%�����

��������
�����
5
������ +
��������)������

� ���	��� �������

*�������&�����	���$�,�����

Figure 9.15: Integration of Contiki and Remora through the runtime layer.

ing OS-level functions—e.g., the currentTime() function call in the system API is delegated
to the Contiki function clock time(). We offer this API to decouple the application com-
ponents from OS modules and ensure the portability of Remora-based applications. If
an application is not expected to be ported to other operating systems, programmers can
directly call the OS functions within component code and therefore slightly improve the
runtime performance.

9.4 Evaluation

To evaluate the efficiency of Remora, in this section we first demonstrate and assess a real
Remora-based application, then we focus on the general performance figures of Remora.

9.4.1 A Real Remora-based Deployment

Our real application scenario is a network-level application suite consisting of a set of mini
applications bundled together. This suite is basically designed to provide services, such as
code propagator and web facilities in WSNs. We focus here on the first one and design it
based on the Remora approach.

Code propagation becomes a very important need in WSNs when we need to update
remotely the running application software [17]. The code propagator application is respon-
sible for receiving all segments of a running application’s object code over the network and
loading the new application image afterwards. The code propagator exploits the TCP and
UDP protocols to propagate code over the network. At first, TCP is used to transfer new
code, block by block, to the sink node connected to the code repository machine, and then
UDP is used to broadcast wirelessly new code from a sink node to other sensor nodes in
the network. When all blocks are received, the code propagator loads the new application.

Figure 9.16 describes the components involved in the first part of our application sce-
nario. TCPListener is a core component listening to TCP events. This multiple-instances
event generator is created for each TCP event consumer component with unique listening
port number. For example, CodePropagator receives data from port 6510 (codePropPort),
while WebListener is notified for all TCPEvents on port 80 (webPort). CodePropagator stores all
blocks of new code in the external flash memory through the interface IFile implemented
by the FileSystem component. When all blocks are received, CodePropagator loads the new

120

Evaluation

application by calling the interface ILoader from the component ELFLoader. These two
interfaces are system APIs that delegate all application-level requests to the OS-specific
libraries. The interface INet, implemented by the component Network, is also the other
system API providing the low-level network primitives to TCPListener.

&����'���

���*���	��

����	���	���

��������������

�$	�����

&��

0��
*���	��0

�*&*������*
�
�����"�����

�����������
�����	���

���#��%
�
����

�$	�����

���������

!��	�����
�������

�&���
 �����2

�%��
��&&���%����
��&&�������
����"������

Figure 9.16: Code propagation application architecture.

As mentioned before, we adopt Contiki as our OS platform to assess the Remora

component model. Contiki is being increasingly used in both academia and industrial
applications in a wide range of sensor node types. Additionally, Contiki is written in the
standard C language and hence Remora can be easily ported to this platform. Finally,
the great support of Contiki on event processing and process management motivate us to
design and implement the Remora runtime on this OS. Our hardware platform is the
popular TelosB mote equipped with a 16-bit TI MSP430 MCU with 48KB ROM and
10KB RAM.

The concrete separation of concerns in this application is the first visible advantage of
using Remora. The second improvement is the easy reuse of TCPListener for other TCP-
required applications, which is not the case in a non-componentized implementation. In
particular, for each new application, we only need to instantiate the context of TCPListener
and configure its properties (like port number) accordingly—e.g., WebListener in Figure 9.16.

Memory Footprint. Table 9.1 reports the memory requirement of Remora and Contiki
programming model (protothreads) for implementing the code propagation application. As
indicated in the table, the Remora-based development does not impose additional data
memory overhead, while it consumes extra 532 bytes of code memory, which is essentially
related to the cost of framework and runtime modules. This cost is paid once and for all,
regardless of the size and the number of applications running on the sensor node. The code
memory cost could be even further reduced by removing system APIs (Network, FileSystem,
and ELFLoader) and calling directly the Contiki’s libraries within CodePropagator. Note that
the overhead of TCPListener can also be decreased when this component is shared for the
use of other applications—e.g., WebListener. Therefore, we can conclude that the memory
overhead of Remora is negligible compared to the high-level features it provides to the
end-user.

121

A Component Model for Programming and Tuning Sensor Software

Table 9.1: The memory requirement of code propagation application in Remora-based
and Contiki-based implementations.

Code Data
Programming Memory Memory
Model (bytes) (bytes)

Contiki 722 72

Code Propagation Components
CodePropagator 252 36
TCPListener 310 0

System API Components
ELFLoader 38 0

Remora Network 92 0
FileSystem 68 0

Remora Core
Framework and Runtime 494 14
Total 1254 50

Remora overhead +532 -22

Processing Cost. Figure 9.17 reports the comparison of CPU costs in these two ap-
proaches. The time measurement was started when the first block of new application’s
code was received and it was stopped when the last block of code arrived to the sensor
node. Since in-file seeking and writing is a costly process, we removed invocations related
to FileSystem and ELFLoader and measured the execution time afterwards. As the size of
new code (ELF file) is increased, the processing overhead of Remora is also slightly in-
creased compared with the equivalent Contiki implementation. We believe that this very
low overhead is due to the extra context-switchings (among event processing functions
within the Remora runtime) occurring for larger code in Remora, which is not the case
in the Contiki-based implementation.

Programming Effort. Evaluating the programming effort is difficult since it is affected
by factors difficult to measure—e.g., the nature of code (algorithmic or routine), the com-
plexity of the processing, and syntax and semantic of programming languages. However,
WSN programming research has hitherto adopted the number of lines of code (LOC) as
a simple indication. Table 9.2 reports this metric for the two main components of code
propagator application. It is interesting to compare these measurements against the equiv-
alent functionality available in Contiki libraries, where it is directly developed atop of the
operating system. The Contiki-based implementation of the TCP listener module contains
41% more LOC than our version. This efficiency is achieved since in our implementation
event-handling code is embedded in the run-time system and shared for the use of dif-
ferent applications. We also gain a significant improvement in LOC for code propagator
module compared with the Contiki’s implementation. It is because the verbose code of
event handling in Contiki programming model is replaced with the shortened C-like code

122

Evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30

C
P

U
 U

sa
ge

 (m
s)

Code Size (KBytes)

CPU usage vs code size

Remora CPU usage
Contiki CPU usage

Figure 9.17: CPU usage for receiving new code by propagator application in Remora and
Contiki.

Table 9.2: Line of code for our main components.
Line of Line of

Code Code Reduced
Component (Remora) (Contiki) Effort

TCP Listener 62 104 41%

Code Propagator 19 36 47%

of Remora.

Tuning Result. The efficiency of the tuning technique directly depends to the target use
case and its requirements in terms of low-level system services. In the case of the code
propagation application, we cannot precisely measure the reduction of the final object code
size as it is basically an intermediate application lying beneath the main sensor application.
Therefore, we measure the tuning performance of the code propagator by considering it
as a main sensor application. Applying tuning technique on this application yields 5%
reduction in the final Contiki binary object file. This efficiency is achieved by automatic
removal of modules that never involve in the code propagation process, e.g., programs
interfacing a node’s peripherals (e.g., light, button and sensors).

The rest of this section is devoted to the assessment of two main performance figures
of Remora, namely, memory footprints and CPU usage.

9.4.2 Memory Footprint

In Remora, we have made a great effort to maintain memory costs as low as possible. The
first step of this effort is to avoid creating meta-data structures, which are not beneficial

123

A Component Model for Programming and Tuning Sensor Software

in a static deployment. Distinguishing unicast events and multicast events has also led
to a significant reduction in memory footprints as Remora does not need to create any
supporting data structure for unicast events.

The memory footprints in Remora is categorized into a minimum overhead and a
dynamic overhead. The former is paid once and for all, regardless of the amount of memory
is needed for the application components, while the latter depends on the size of application.
Table 9.3 shows the minimummemory requirements of Remora, which turn out to be quite
reasonable with respect to both code and data memory. As mentioned before, our sensor
node, TelosB, is equipped with 48KB of program memory and 10KB of data memory. As
Contiki consumes roughly 24KB (without μIP support) of both these memories, Remora

has a very low memory overhead considering the provided facilities and the remaining space
in the memory.

Table 9.3: The minimum memory requirement of Remora.
Code Data

Memory Memory
Module (bytes) (bytes)

Framework Core 374 4

Runtime Core 120 10

Total 494 14

Table 9.4 shows the memory requirement of different types of modules in the Remora

framework. The exact memory overhead of Remora depends on how an application is
configured, e.g., an application, containing one single instance event producer and one
unicast event, needs extra 56 bytes (38+8+10) of both data and code memory. Ordinary
components do not impose any memory overhead as Remora does not create any meta
data structures for them. For other types of modules, Remora keeps the data memory
overheads very low as this memory in our platform is really scarce. We also believe that
the code memory overhead is not significant since a typical WSN application is small in
size and it may contain up to a few tens of components, including ordinary components. It
should be noted that componentization itself reduces the memory usage by maximizing the
reusability degree of system functionalities like the one discussed in the code propagation
application.

9.4.3 CPU Usage

As energy cost of Remora core is limited to only the use of the processing unit, we focus
on the processing cost of our approach and show that Remora keeps the CPU usage at a
reasonable level, and in some configurations it even reduces CPU usage compared to the
Contiki-based application development.

To perform the evaluation, we set up a Blink application in which a varying number of

124

Evaluation

Table 9.4: The memory requirement of different entities in Remora.
Code Data

Memory Memory
Entity (bytes) (bytes)

Ordinary Component 0 0

Event Single Ins. 38 8
Producer Multiple Ins. 42 10

Event Unicast 0 10
Multicast 0 10

Multicast Event Consumer 30 6

OS Event 28 4

System API 4 0

mirror components (1 to 15) switch LEDs on and off every second. The two implementa-
tions of this application, Contiki-based and Remora-based, were compared according to
a CPU measurement metric. The metric was to measure the amount of time required by
one Remora component and one Contiki process to switch LEDs six times: three times
on and three times off. With the less number of switches, we cannot extract the exact
timing differences as our hardware platform provides a timing accuracy of the order of one
millisecond.

We started our evaluation by deploying an application similar to the one presented in
Section 9.2.1 and measuring the CPU usage based on our metric. In each next evaluation
step, we added a mirror Blink component to the application and measured again the time.
This experiment was continued for 15 times. We made the same measurement for a Contiki-
based Blink application and added a new Contiki Blink process in each step. Figure 9.18
shows the evaluation result of our scenario. When we have one Blink component/process,
the CPU overhead of both approaches is almost the same, indicating that the Remora

runtime and framework impose no additional processing overhead. When the number
of components/process increases towards 15, reduction in CPU usage is achieved in two
dimensions.

Firstly, the number of CPU cycles for Remora is slightly less than for the Contiki
application. This difference reaches 13 milliseconds when Contiki undertakes running 15
Blink processes. Therefore, we can conclude that Remora does not impose additional
processing overhead affecting the performance of the system. Secondly, the CPU usage of
Remora application is reduced when the number of Blink components is increased. This
improvement is achieved because the number of context switches between the Remora

runtime and the Remora framework is significantly decreased when there are more event
producer components (Timer) in PQ.

To clarify this issue, we assume that the application running time is T and Contiki
periodically allocates CPU to the Remora runtime in this period. In each allocation
round, the runtime module invokes the event manager in the Remora framework to poll

125

A Component Model for Programming and Tuning Sensor Software

5500

5600

5700

5800

5900

6000

2 4 6 8 10 12 14 16

C
P

U
 U

sa
ge

 (m
s)

Number of components

Remora
Contiki

Figure 9.18: The Remora-based implementation does not impose additional CPU over-
head compared to the Contiki-based implementation.

the application level event producers. Given that there are K producers in PQ, the polling
process consumes K × t1 of CPU, where t1 is the average processing cost of one element.
Therefore, the frequency of event manager calling (equal to the number of context-switches)
is in the order of T/K × t1. Therefore, as the value of K is increased the number of
context-switches is decreased accordingly. Figure 9.19 shows the changes in the number
of context-switches when the number of Timer components is increased to 15. As a result,
the maximum performance in Remora relies on the average number of event producer
components enqueued during the application lifespan, while in the worst case (a very few
producers in the queue) Remora does not impose any additional processing cost.

9.5 Existing Approaches

In this section, we survey the existing component-based approaches for programming on
embedded system and WSNs. As mentioned before, a number of these component models
are proposed not only to facilitate development of application modules, but also to build
component-based operating systems for WSNs. Furthermore, the other objective behind
component-based frameworks for WSNs has been the provision of run-time reconfigurability
in dynamic WSN applications. There are also a few attempts devoted to porting the
existing component-based approaches to other platforms—e.g., embedded systems, large-
scale systems, to sensor platforms with some minor changes.

NesC [8] is perhaps the best known component model being designed specifically for
WSNs and used to develop TinyOS [18]. Knowing NesC language, programming in
TinyOS is quite simple and the developed components are reusable in different applica-
tions. As mentioned earlier, the main downside of NesC is that it is tightly bound to the

126

Existing Approaches

3000

4000

5000

6000

7000

8000

9000

10000

11000

2 4 6 8 10 12 14 16

N
um

be
r o

f c
on

te
xt

-s
w

itc
he

s

Number of components

Context-switch overhead

Figure 9.19: As the number of producer components in the queue is increased, the number
of context switches is significantly decreased.

TinyOS platform. Moreover, although NesC efficiently supports event-driven program-
ming, events in NesC are not considered as independent entities with their own attributes
and specifications. Therefore, the binding model of event-related components is not well-
described as it is not essentially described based on the specification of events. Additionally,
the unique features of Remora, such as multiplicity in component instance and property-
based reconfiguration of components bring significant improvements to component-based
programming in WSNs compared to NesC.

Coulson et al. in [9] propose OpenCom as a generic component-based programming
model for building system applications without dependency on any target-specific platform
environment. The authors express that they have tried to build OpenCom with negligible
overhead for supporting features specific to a development area, however it is a generic
model and basically developed for platforms without resource constraints and tends to be
complex for embedded systems.

To evaluate OpenCom, we deployed a sample beacon application [19], including Radio,
Timer and Beacon components, on a TelosB node with Contiki. Based on our measurements,
the memory footprint of this application is significantly high, so that it consumes 4, 618
bytes of code memory and 28 bytes of data memory. As a real application, Gridkit [20]
is an OpenCom-based middleware for sensor networks, realizing co-ordinated distributed
reconfigurations based on policies and context information provided by a context engine.
This middleware was deployed on Gumstix-based [21] sensor platforms (a resource-rich
node type) for a flood-monitoring scenario, where the minimum memory requirement of
Gridkit core middleware and OpenCOM run-time is about 104 KB of memory. Lo-

rien [22] is an OpenCom-driven approach that was recently proposed to provide a fully
reconfigurable OS platform in WSNs, however this work is still at an initial stage of devel-

127

A Component Model for Programming and Tuning Sensor Software

Table 9.5: Overview of existing component-based approaches to WSN programming.
Cost per

OS Core Component
Approach Platform Size(KB) (Bytes)

Lorien Lorien 5.5 350

Think OS-Indep. 2 102

FiGaRo Contiki 2 15

LooCI SunSpot 20 587

Remora OS-Indep. 0.5 8

opment.

FiGaRo [23] is a WSN-specific dynamic component model, focusing on what and
where should be reconfigured. Specifically, Figaro proposes a set of C macros representing
a new component model exploitable over any operating system written in the C language.
However, the dynamic aspect of FiGaRo—its main feature—is only exploitable on the
Contiki operating system. Apart from that, FiGaRo fails to consider event management
issues at the component design level and mostly relies on the operating system’s event
handling features.

LooCI [24] is a component-based approach, providing a loosely-coupled component
infrastructure focusing on an event-based binding model for WSNs, while the Java-based
implementation of LooCI limits its usage to the SunSPOT sensor node.

The THINK framework [10] is an implementation of the Fractal [25] component
model applied to operating systems. The choice of the THINK framework is motivated by
the fact that it allows fine-grained reconfiguration of components. Although the experi-
ments on deploying THINK components on WSNs have been quite promising in terms of
memory usage [26], the lack of application-level event support is the main hurdle for using
THINK in WSNs.

Table 9.5 shows a summarized comparison of Remora with other works proposed in
this category in terms of minimum memory required for the core and additional memory
overhead per component.

The OSGi model [27] is a framework targeting powerful embedded devices, such as
mobile phones and network gateways along with enterprise computers. OSGi features a
secure execution environment, support for runtime reconfiguration, lifecycle management,
and various system services. While OSGi is suitable for powerful embedded devices, the
smallest implementation, Concierge [28] consumes more than 80KB of memory, making it
inappropriate for resource-constrained platforms.

OSKit [29] is a set of off-the-shelf components for building operating systems. OSKit

is developed with a programming anguage called Knit [30]. However, in contrast to NesC,
Knit is not limited to OSKit. Nevertheless, OSKit has adapted the Microsoft COM
model and is not primarily focused on embedded systems.

128

Discussion: Extension Opportunities

9.6 Discussion: Extension Opportunities

We believe that the current specification of Remora along with its low resource require-
ments can tackle the concerns we mentioned at the beginning of this paper. However, there
are a number issues—to further support advanced programming in WSNs—that has not
been considered by the current Remora yet. In this section, we focus on these issues and
identify potential solutions.

Dynamic Reprogramming. Enabling dynamic reprogramming in WSNs becomes a
vital feature when the target application is subject to changes—e.g., fixing bugs, upgrading
operating system and applications, and adapting applications behavior according to the
physical environment [31, 32, 17]. Although the component-based nature of Remora can
simplify the support for dynamic replacement of system modules, the restrictions on the
Remora component model, including the lack of dynamic memory allocation and the
absence of a meta-data to dynamically handle the interactions between components, make
the reconfiguration of Remora components a challenging issue. In fact, the main problem
is that how to efficiently provide such a feature in such a way that the overhead of dynamic
memory allocation is carefully minimized. Reducing the additional memory required to
store the meta-data is another issue in the way of upgrading Remora to a dynamically
reconfigurable module.

Componentization of an OS using Remora. As mentioned earlier, the current goal of
Remora is to be exploited only in application-level programming. However, we believe that
the efficient support of event processing in Remora potentially enables it to componentize
system level functionalities. This can also increase the customization of an operating system
for a particular WSN application. In the Blink application, we implicitly demonstrated this
capability by wrapping the Timer component, which is essentially developed at the OS level.
To address precisely this issue, we need to enhance the current Remora implementation
with features like concurrency support, task scheduling, and interrupts handling.

Supporting Preemption. In our current implementation, a Remora process cannot
be preempted by any other process in the operating system. This issue becomes critical
when a component execution takes a long time to complete and it causes large average
waiting times for other processes waiting for the processor. The event handling model of
Remora can be used to provide preemption by defining a new event type per preemption-
required point of application, while in this case the component implementation and the
event management become quite complicated. This concern will also be considered in the
future extensions for Remora. In particular, we intend to promote the native Contiki
macros, handling process lifecycle, to the Remora application level. In this way, the
Remora component becomes preemptable by explicitly yielding the running process.

Distribution Support. Beside the fact that Remora provides a strong abstraction for
single node programming, the same level of programming abstraction is expected to occur
at the network level. This challenge opens up another key area for future work: how to
make Remora components distributed by the provision of a well-defined remote invocation

129

A Component Model for Programming and Tuning Sensor Software

mechanism. In particular, this refers to rather programming with low-level APIs to provide
distribution; we can automatically generate the code which is required for sending data
over the network or invoking methods. As a result, the communication strategy could be
reified at the architecture level and therefore relieve the programmer from dealing with the
specificities of the protocol she/he will need to use for exposing her/his services across the
network.

9.7 Conclusions

From a high-level programming point of view, WSNs are still difficult to program. Most
of the state-of-the-art programming approaches address this issue by slightly extending
low-level system programming languages and promoting them as a solution for application
development in WSNs. In this article, we considered WSN high-level programming as a
challenge independent from low-level programming paradigms and presented Remora as
a novel programming abstraction for resource-constrained embedded systems.

Remora simplifies high-level event-driven programming in WSNs by a component-
based approach portable to different operating system platforms. Involving PC-based
developers in WSN programming and conforming Remora to the state-of-the-art tech-
nologies for component development are two other challenges addressed in this article.
The special consideration paid to the event abstraction in Remora makes it a practi-
cal and efficient approach for WSN applications development. The other key features of
Remora include: simplifying middleware services development, enabling tunability of op-
erating system software by wrapper components, rich support of component reusability
and instantiation, and reduced effort and resource usage in WSN programming.

Careful restrictions on the Remora component model, including the lack of dynamic
memory allocation and avoiding M-to-N communications between event producers and
event consumers bring significant improvements to the static deployments in WSNs, where
the main improvement happens in sensor memory usage. The main additional memory
overhead is induced by the Remora runtime, occupying only 1% of the total code memory
on our sensor platform, which is a very low overhead considering the provided facilities
and the remaining space in the memory.

The remora future work targets all issues discussed in the previous section. In par-
ticular, we are currently considering the first issue and investigating how the Remora

specification should be modified to support dynamic programming in WSNs with a rea-
sonable cost.

References

[1] L. Mottola and G. P. Picco, “Programming wireless sensor networks: Fundamental
concepts and state of the art,” ACM Comput. Surv., vol. 43, pp. 19:1–19:51, 2011.

130

References

[2] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd edi-
tion. Boston, MA, USA: Addison-Wesley, 2002.

[3] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Sea-
cord, and K. Wallnau, “Technical concepts of component-based software engineering,”
Carnegie Mellon Software Engineering Institute, Pittsburgh, PA, USA, Tech. Rep.
CMU/SEI-2000-TR-008, May 2000.

[4] R. Van Ommering, F. Van der Linden, J. Kramer, and J. Magee, “The koala compo-
nent model for consumer electronics software,” Computer, vol. 33, no. 3, pp. 78–85,
2000.

[5] T. Genssler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R. Wuyts,
G. Arévalo, B. Schönhage, P. O. Müller, and C. Stich, “Components for embedded
software: the pecos approach,” in Proc. of the Int. Conf. on Compilers, Architectures
and Synthesis for Embedded Systems (CASES). Grenoble, France: ACM, 2002, pp.
19–26.

[6] H. Hansson, M. Akerholm, I. Crnkovic, and M. Torngren, “Saveccm - a component
model for safety-critical real-time systems,” in Proc. of the 30th EUROMICRO Conf.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 627–635.

[7] A. Pľsek, F. Loiret, P. Merle, and L. Seinturier, “A component framework for java-
based real-time embedded systems,” in Middleware ’08: Proc. of the 9th ACM/I-
FIP/USENIX Int. Conf. on Middleware. Leuven, Belgium: Springer-Verlag, 2008,
pp. 124–143.

[8] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesc
language: A holistic approach to networked embedded systems,” in PLDI ’03: Proc. of
the ACM SIGPLAN 2003 Conf. on Programming language design and implementation.
San Diego, California, USA: ACM, 2003, pp. 1–11.

[9] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and T. Siva-
haran, “A generic component model for building systems software,” ACM Trans.
Comput. Syst., vol. 26, no. 1, pp. 1–42, 2008.

[10] J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller, “Think: A software frame-
work for component-based operating system kernels,” in ATEC ’02: Proc. of the
General Track of the USENIX Annual Technical Conf. Berkeley, CA, USA: USENIX
Association, 2002, pp. 73–86.

[11] A. Taherkordi, F. Loiret, A. Abdolrazaghi, R. Rouvoy, Q. L. Trung, and F. Eliassen,
“Programming sensor networks using Remora component model,” in DCOSS ’10:
Proc. of the 6th Int. Conf. on Distributed Computing in Sensor Systems. Santa
Barbara, CA, USA: Springer, 2010, pp. 45–62.

131

A Component Model for Programming and Tuning Sensor Software

[12] OSOA, “The service component architecture,” http://www.oasis-opencsa.org/sca.

[13] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in LCN ’04: Proc. of the 29th Annual IEEE Int.
Conf. on Local Computer Networks. Tampa, Florida, USA: IEEE Computer Society,
2004, pp. 455–462.

[14] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: simplifying event-driven
programming of memory-constrained embedded systems,” in SenSys ’06: Proc. of the
4th Int. Conf. on Embedded networked sensor systems. Boulder, Colorado, USA:
ACM, 2006, pp. 29–42.

[15] University of Oslo, “The Remora Component Model,” 2010, http://folk.uio.no/
amirhost/remora.

[16] ANTLR, “Parser Generator,” http://www.antlr.org.

[17] B. Pásztor, L. Mottola, C. Mascolo, G. P. Picco, S. A. Ellwood, and D. W. Macdon-
ald, “Selective reprogramming of mobile sensor networks through social community
detection,” in Proc. of 7th European Conf. on WSNs (EWSN), vol. 5970. Coimbra,
Portugal: Springer-Verlag, 2010, pp. 178–193.

[18] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler, “Tinyos: An operating system for sensor networks,” in
Ambient Intelligence. Berlin, Germany: Springer Verlag, 2004, pp. 15–148.

[19] I. Chatzigiannakis, S. Fischer, C. Koninis, G. Mylonas, and D. Pfisterer, “WISEBED:
an open large-scale wireless sensor network testbed,” in SENSAPPEAL ’09: Proc. of
the 1st Int. Conf. on Sensor Networks Applications, Experimentation and Logistics,
ser. Lecture Notes of the Institute for Computer Sciences. Athens, Greece: Springer-
Verlag, 2009, pp. 68–87.

[20] P. Grace, G. Coulson, G. Blair, B. Porter, and D. Hughes, “Dynamic reconfiguration
in sensor middleware,” in MidSens ’06: Proc. of the Int. Workshop on Middleware for
sensor networks. Melbourne, Australia: ACM, 2006, pp. 1–6.

[21] GUMSTIX, “Gumstix embedded computing platform specifications,” 2004, http://
www.gumstix.com.

[22] B. Porter and G. Coulson, “Lorien: a pure dynamic component-based operating sys-
tem for wireless sensor networks,” in MidSens ’09: Proc. of the 4th Int. Workshop on
Middleware Tools, Services and Run-Time Support for WSNs. Illinois: ACM, 2009,
pp. 7–12.

132

References

[23] L. Mottola, G. P. Picco, and A. A. Sheikh, “Figaro: fine-grained software reconfigu-
ration for wireless sensor networks,” in EWSN ’08: Proc. of the 5th European Conf.
on WSNs. Bologna, Italy: Springer-Verlag, 2008, pp. 286–304.

[24] D. Hughes, K. Thoelen, W. Horré, N. Matthys, P. J. del Cid Garcia, S. Michiels,
C. Huygens, and W. Joosen, “Looci: A loosely-coupled component infrastructure for
networked embedded systems,” in Proc. of the 7th Int. Conf. on Advances in Mobile
Computing & Multimedia. Kuala Lumpur, Malaysia: ACM, Dec. 2009, pp. 195–203.

[25] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The fractal
component model and its support in java: Experiences with auto-adaptive and recon-
figurable systems,” Softw. Pract. Exper., vol. 36, no. 11-12, pp. 1257–1284, 2006.

[26] O. Lobry, J. Navas, and J.-P. Babau, “Optimizing component-based embedded soft-
ware,” in COMPSAC ’09: Proc. of the 33rd Annual IEEE Int. Computer Software
and Applications Conf. Washington, DC, USA: IEEE Computer Society, 2009, pp.
491–496.

[27] OSGi Alliance, “The OSGi framework,” 1999, http://www.osgi.org.

[28] J. S. Rellermeyer and G. Alonso, “Concierge: a service platform for resource-
constrained devices,” ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp.
245–258, 2007.

[29] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers, “The flux oskit:
a substrate for kernel and language research,” in SOSP ’97: Proc. of the 16th ACM
symposium on Operating systems principles. Saint Malo, France: ACM, 1997, pp.
38–51.

[30] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide, “Knit: component composition
for systems software,” in OSDI’00: Proc. of the 4th Conf. on Symposium on Operating
System Design & Implementation. San Diego, California: USENIX Association, 2000,
pp. 24–24.

[31] A. Taherkordi, Q. Le-Trung, R. Rouvoy, and F. Eliassen, “WiSeKit: A distributed
middleware to support application-level adaptation in sensor networks,” in DAIS ’09:
Proc. of the 9th IFIP WG 6.1 Int. Conf. on Distributed Applications and Interoperable
Systems. Lisbon, Portugal: Springer-Verlag, 2009, pp. 44–58.

[32] A. Taherkordi, R. Rouvoy, Q. Le-Trung, and F. Eliassen, “A self-adaptive context
processing framework for wireless sensor networks,” in MidSens ’08: Proc. of the 3rd
Int. Workshop on Middleware for WSNs. Leuven, Belgium: ACM, 2008, pp. 7–12.

133

A Component Model for Programming and Tuning Sensor Software

134

Chapter 11

A Component-based Approach for
Service Distribution in Sensor
Networks

Authors. Amirhosein Taherkordi (1), Romain Rouvoy (2), and Frank Eliassen (1)

Affiliation.

(1) Department of Informatics, University of Oslo, Norway
{amirhost,frank}@ifi.uio.no

(2) INRIA Lille Nord Europe, ADAM Project-team, University Lille 1, LIFL CNRS
UMR 8022, Villeneuve dAscq, France
{romain.rouvoy}@inria.fr

Publication. The 5th International Workshop on Middleware Tools, Services and Run-
Time Support for Sensor Networks (MidSens’10), co-located with ACM/IFIP/USENEX
11th Middleware Conference, Bangalore, India, December 2010.

Abstract. The increasing number of distributed applications over Wireless Sensor Net-
works (WSNs) in ubiquitous environments raises the need for high-level mechanisms to
distribute sensor services and integrate them in modern IT systems. Existing work in
this area mostly focuses on low-level networking issues, and fails to provide high-level and
off-the-shelf programming abstractions for this purpose. In this paper, we therefore con-
sider WSN programming models and service distribution as two interrelated factors and
we present a new component-based abstraction for integrating WSNs within existing IT
systems. Our approach emphasizes on reifying distribution strategies at the software ar-
chitecture level, thus allowing remote invocation of component services, and facilitating

175

A Component-based Approach for Service Distribution in WSNs

interoperability of sensor services with the Internet through Web service-enabled compo-
nents. The latter is efficiently provided by incorporating the REST architectural style—
emphasizing on abstraction of high-level services as resources—to our component-based
framework. The preliminary evaluation results show that the proposed framework has an
acceptable memory overhead on a TelosB sensor platform.

11.1 Introduction

WSNs have been recognized as an emerging technology for monitoring and controlling a
variety of phenomena, such as environmental surveillance, infrastructures, home and office,
and medical environments [1, 2, 3]. Whereas the early WSN applications were primarily
concerned with sensing primitive environmental data and delivering those raw data to a
central node, recent applications consider sensor nodes as service-enabled devices with the
ability of providing distributed services to other nodes of the network.

The other concern is related to using WSNs in ubiquitous computing environments,
where sensor nodes populate with actuators, RFID readers, and mobile devices for mon-
itoring ambient environments and reacting to the external stimuli gathered by different
devices [4, 5, 6]. As each device in such a heterogeneous environment has its own re-
quirements in terms of system software and communication protocol, integrating them at
a higher software level brings the challenges of service orchestration and interoperabil-
ity. Furthermore, sensor nodes as one of the technologies driving the future Internet of
Things [7] should be equipped with protocols that enable them to interoperate with every
IP-enabled node across the Internet.

In contrast to the approach of plain text message streaming widely adopted in tradi-
tional “sense and send” models [8, 9], the service-oriented approaches in WSNs rely on
high-level ad-hoc communication protocols to discover and exhibit services across different
computing environments. Although there have been a number of significant efforts to dis-
tribute sensor services and integrate them with conventional network platforms [10, 11, 12],
the state-of-the-art mostly focuses on low-level APIs and fails to provide a concrete com-
munication abstraction relieving the programmer from dealing with the tedious and error-
prone distribution tasks in WSNs.

Thus, in this paper we aim at providing a software framework for WSNs that enables
programmers to develop distributed sensor services and integrate them with existing IT
systems at a high-level programming abstraction. To achieve that, we leverage the concepts
of component-based programming to design, describe and implement distributed and inter-
operable WSN services. In particular, we reconsider Remora—a lightweight component
model for high-level programming in WSNs [13]—in order to extend it with the capability
of distributing a component’s services across the network. The second part of the paper
is devoted to integrating the above component-based solution to a uniform interaction
model in order to facilitate interoperability of sensor services with the Internet through
Web service-enabled components. This interaction model is inspired by REST—an archi-

176

Related Work

tectural style for distributed systems emphasizing scalability of component interactions,
generality of interfaces, and independent deployment of components [14]. From another
point of view, this paper illustrates the feasibility of utilizing a component framework to
develop RESTful Web services for resource-constrained sensor nodes.

The remainder of this paper is organized as follows. Section 11.2 gives a survey of
existing approaches. In Section 11.3, we briefly discuss the Remora component model.
The architecture and specification of our service distribution proposal are presented in Sec-
tion 11.4, while the implementation and the evaluation result are discussed in Sections 11.5
and 11.6, respectively. Finally, Section 11.7 concludes this paper and identifies some future
work.

11.2 Related Work

Efforts in providing distribution and integration approaches for WSNs can be categorized
into four groups: i) providing low-level APIs to enable distribution within sensor networks
for exchanging raw sensed data among nodes, ii) high-level component-based techniques
to enable remote invocation of sensor services, iii) exploiting Web services standards to
bridge the gap between sensor nodes and the Internet, and iv) protocols allowing sensor
nodes to connect seamlessly to other devices in pervasive computing environments.

The first group emphasizes on exposing proprietary interfaces in order to unicast or
multicast plain text messages across the network. Most of the works in this field are inspired
by the concepts of message-oriented communication. TinyOS [15] as the most popular
operating system for WSNs provides a number of Active Message Interfaces to abstract
the underlying radio communications services and Software Components that implement
these interfaces [8]. Other sensor operating systems, such as Contiki [16], have also paved
the same way [17]. They have also paid a significant consideration on integrating WSNs
with the Internet by providing the IP protocol stack for low-power sensor nodes. However,
high-level programming APIs and application-level service distribution facilities are not
addressed by these proposals.

A number of lightweight component models have also been proposed to provide RPC-
like service invocations in sensor networks. In addition to the fact that none of them
consider Web service-based distribution, they essentially suffer from making extensive use
of sensor resources or lack of generality. As an example of the former, OpenCOM [18]
offers Component Frameworks (CFs) to model local and distributed interactions between
cooperating components, but OpenCom is a generic model and basically developed for
resource-rich platforms. LooCI [19], falling in the latter category, is a loosely-coupled
component infrastructure for WSNs, featuring an Event Bus to bind distributed LooCI

components. Nonetheless, the Java-based implementation of LooCI limits its usage to the
SunSPOT nodes.

The third group has been motivated by the concept of Internet of Things—a techno-
logical revolution to connect daily objects and devices to large databases and networks,

177

A Component-based Approach for Service Distribution in WSNs

and therefore to the Internet. In this model, Web services standards are used to integrate
WSNs and the Internet, e.g., in SOCRADES [20] Web services are tailored at the gateway
device where the Device Profile for Web Services (DPSW) is used to enable messaging,
discovery and eventing on devices with resource restrictions. However, since the current
footprint of DPSW for sensor nodes is too large, this solution is only deployable on gate-
ways. To overcome this issue, Priyantha et al. [11] propose a SOAP-based Web services,
called Tiny web services, for WSNs. However, apart from its complexity, this work mainly
focuses on low-level issues related to Web integration in TinyOS-based sensor networks.

A few works have also been devoted to the use of simple Internet protocols. In fact,
these approaches are proposed due to the high resource needs and complexity of SOAP-
based Web Service protocols for WSNs. TinyREST is one of the first attempts to integrate
WSNs into the Internet [21]. It uses the HTTP-based REST architecture to retrieve/update
the state of sensors/actuators. The TinyREST gateway maps a set of HTTP requests to
TinyOS messages in order to link MICA motes to any Internet client. Beside the fact that
in TinyREST only a gateway is able to connect to the Internet (not any individual sensor
node), this approach fails to follow all standard HTTP methods. The work reported in [10]
also presents a REST-based gateway to bridge the Web requests to powerful SunSPOT

nodes.
Approaches in the last category are based on the Universal Plug and Play (UPnP)

architecture. UPnP is a set of computer network protocols, promoted by the UPnP Fo-
rum [22], allowing devices to connect seamlessly in the home and corporate environments.
In UPnP, all communications are peer-to-peer and transferred over TCP/IP, UDP and
HTTP. As most sensor node products are not equipped with the support of UPnP stan-
dards, in [23] a new WSN platform is proposed to support connectivity of sensor nodes to
a UPnP-enabled device. However, UPnP discovery and control protocols are heavyweight
for a typical sensor node and there is a very limited range of sensor nodes supporting
UPnP-based communications. Furthermore, using UPnP in this framework imposes many
new hardware and new software set-up for integration support.

The main difference between our approach and the works presented above is that we
address the service distribution problem in a top-down manner. Specifically, we first formu-
late high-level service distribution requirements based on a programming model for WSNs,
and then consider how the programming proposal can simplify and generalize distribution
and integration of sensor services.

11.3 Programming Model

We adopt a component-oriented approach to address the programming needs of service
distribution inWSNs. Componentization provides a high-level programming abstraction by
enforcing interface-based interactions between system modules and therefore avoiding any
hidden interaction via direct function call, variable access, or inheritance relationships [24].
This abstraction instead offers the capability of black-box integration of system services.

178

Programming Model

Therefore, it theoretically becomes a good candidate for developing distribution tasks in
WSNs, beside the fact that component-based software development is extensively used in
WSN programming. Thus, in this section we briefly discuss a WSN-specific component
model we have recently proposed—Remora [13]. Then, in the next section, we propose
our service distribution model based on this component framework.

11.3.1 REMORA in a Nutshell

The main motivation behind proposing Remora is to facilitate high-level and event-driven
programming in WSNs through a component-based abstraction. Remora achieves this
goal by: i) deploying components within a lightweight framework executable on every
operating system written in the C language, and ii) reifying the concept of event as a
first-class architectural element simplifying the development of event-oriented scenarios.
The latter is one of the key features of Remora since a programming model for embedded
systems is expected to support event-driven design. Reducing software development effort
is the other objective of Remora. A Remora component is composed of two main
artifacts: a component description and a component implementation.

Component Description. Remora components are described in XML as an extension
of the Service Component Architecture (SCA) model [25] in order to make WSN appli-
cations compliant with the state-of-the-art componentization standards. Based on the
SCA Assembly Language, the component description indicates the specifications of the
component including services, references, interfaces, producers, consumers, and properties
(cf. Figure 11.1). A service can expose a Remora interface, which is a separate XML
document describing the functions provided by the component. A reference can request a
Remora interface, which describes the operations required by the component. Similarly,
a producer identifies an event type generated by the component, while consumer specifies
a component’s interest on receiving a particular type of event.

Component Implementation. The component implementation contains operations im-
plementing: i) the component’s service interfaces, ii) event handlers, and iii) private utili-
ties of the component. Remora components are implemented by using the C programming
language extended with a set of new commands. This extension is essentially proposed to
support the main features of Remora, namely, component instantiation, event processing,
and property manipulation.

Remora Development Process. A Remora application consists of a set of Remora

components, containing descriptions and implementations of software modules (cf. Fig-
ure 11.2). The Remora engine processes the component descriptions and generates
standard C code deployable within the Remora framework. The framework is an OS-
independent C module supporting the specification of the Remora component model. Fi-
nally, the Remora framework is deployed on the target sensor node through the Remora

runtime, which is an OS-abstraction layer integrating the application with the system
software.

179

A Component-based Approach for Service Distribution in WSNs

#$���%&������'()*+(%�������"'(,-./0($1
#������������� ����'(�2��23�3-43��51

#������ ����'(��67 ��)43��(1
#���������������� ����'(3-�6.��)43��(81

#8���&���1%***%
#��������� ����'(6�.�6�3��)43��(1

#���������������� ����'(3-�6.��943��(81
#8���������1%***%
#�������� ����'(�62�)43��(%	���'(�62�)4-:��(1

�62�)4��.,�-47�,�
#8������	�1%***%
#����
���1

#������������ 	���'(�7�3-)4-:��(
����'(�7�3-)43��(81

#8����
���1%***%
#���
��� �����	���'(�23�,��642��6- 23(1

#������������ 	���'(�7�3-94-:��(
����'(�7�3-943��(81

#8����
���1%***%
#8��������	-���1

Figure 11.1: The XML template for describing Remora components.

�����������	�

���!��
&�������2
���������	

��	
��

#������	�����	
������

���!��
�����	�	�
���!��
�	��	�

�����'����
�����	�	�

������ �����!��"��� #��������$�

���!��
&�������2

���!��
��	����

��	��
3�������

!������	�
�'���

Figure 11.2: Development process of Remora applications.

11.4 Component-Based Service Distribution

Remora provides a complete component-based abstraction for node-level programming in
the sense that the accessibility scope of Remora services is limited to the runtime process
of a sensor node. Services deployed on two different nodes can communicate through an
indirect ad-hoc interaction model, which is message-based and handled by low-level data
transmission protocols provided by sensor operating systems. It means that for network-
level programming, the developer requires to switch from component-based programming
to system-level messaging techniques, a cumbersome and error-prone task. It is also the
case when a Remora-based application is integrated with heterogeneous systems with a
different set of software and hardware settings.

180

Component-Based Service Distribution

11.4.1 Basic Concepts

We propose a new key concept, which is considered as a basis for our distribution proposal.
This concept, called Remora Distribution, refers to a new paradigm in component-based
software design for resource-constrained networks in which every system functionality is
encapsulated in a component and distributed for the use of both homogenous and het-
erogeneous systems. This indicates the capability of defining platform-specific bindings
for Remora components in order to transparently handle the communication issues in
WSNs. In this way, Remora will automatically generate part of the code which is re-
quired for sending data over the network or invoking methods, instead of time-consuming
and error-prone programming with low-level APIs.

Generally, the Remora bindings are categorized into two classes: remote binding and
interoperable binding. The former specifies a type of remote service call occurring within
a sensor network between two homogenous sensor nodes in order to send the required
service data from one node to the other node (like Java RMI), while the latter refers to the
invocations happening beyond a sensor network between a sensor node and a node in an
existing IT system, such as the Internet. To concretely describe the Remora distribution,
we first discuss the principles underpinning this framework, including:

Access Transparency. From the programmer’s point of view, local and distributed
services should be accessed using identical operations. Additionally, she/he should not be
forced to write distribution-related code that is out of scope of application logic.

Location Transparency. The distribution mechanism should enable Remora compo-
nents to access remote services without any knowledge of their location in the network.

Synchronisms. The calling mode can be either synchronous or asynchronous correspond-
ing to the mode supported by the network protocol, e.g., RESTful calls are synchronous,
while remote calls over RIME—a WSN-specific communication protocol implemented by
Contiki [17]—are handled asynchronously.

Pluggability of Bindings. Remora bindings should be maintained in a well-structured
way in the sense that every binding-related library for a particular network protocol should
be easily pluggable to or unpluggable from services provided by Remora components
without affecting other parts of the system.

Figure 11.3 depicts the overall architecture of the Remora distribution model. Each
component of the system exhibits a set of services, which can interact in two different ways:
locally or remotely. In the local mode, service calls are carried out through a simple and
lightweight node-level invocation plan, while the distributed calls occur either remotely
(between two nodes with the same set of configurations), or in an interoperable manner
(between a Remora-enabled node and an IP-enabled node).

While the development of each main type of Remora binding would require considera-
tion of many kinds of challenges, such as programming constructs, streaming, networking,
and runtime support, the contribution of this paper is limited to providing service-level
integration of sensor nodes with IP-enabled systems. We therefore leave the issues of the

181

A Component-based Approach for Service Distribution in WSNs

�

�

�Remora Runtime

OS

Remora Runtime

OS

OS

Sensor NodeSensor Node IP-enabled Node

Remora
Component

Non-Remora
Component

Service
Reference

Local Call
Remote Call

Figure 11.3: Architecture of the Remora distribution model.

Remora remote binding as our future work and in this paper we study the Remora

interoperable binding in the context of Web integration. Remora Web binding is basi-
cally concerned with integrating sensor services with IP-enabled networks by translating
the service requests to the equivalent RESTful web services. In this way, the distribu-
tion mechanism of Remora follows a standard and widely-adopted protocol to link WSN
services to any Web-enabled device in ubiquitous environments.

11.4.2 REMORA Web Services

In this section, we first describe the principles of the REST architectural style and RESTful
Web services, and then present our component-based approach for integrating Remora

services with the Web.

REST Principles. The REpresentational State Transfer (REST), as coined by Field-
ing [14], is an architectural style for distributed systems emphasizing scalability of com-
ponent interactions, generality of interfaces, and independent deployment of components.
The “resource-oriented” principles of REST are described through the REST triangle defin-
ing the principles for addressing, accessing and encoding a collection of resources using the
Internet standards. A distributed system, which follows REST principles, is called REST-
ful, e.g., the Web. In a RESTful system, a component can interact with other distributed
components by knowing two things: i) the unique identifier of the representative resource
of component, and ii) the predefined standard operations to invoke (GET, POST, PUT
and DELETE). In this model of interaction, the client-server separation of concerns can
simplify component implementation, reduce the complexity of connector semantics, and
increase the scalability of server components.

RESTful Web services. Web services are a set of standards and techniques for devel-
oping interoperable distributed applications that are accessed via HTTP and executed on
a remote system hosting the requested services. Nowadays, Web services are generally
categorized into two groups: SOAP-based Web services and RESTful Web services. The
former follows the Simple Object Access Protocol (SOAP), which is a heavyweight protocol
specification for exchanging structured information in the implementation of Web services,
while the latter is a lightweight model based on REST, which does not impose SOAP or

182

Component-Based Service Distribution

XML.
We believe that the simplicity and uniform interfaces of RESTful Web services is an effi-

cient approach to integrate any individual sensor node to any RESTful system in pervasive
environments. Additionally, there have been reported a number of valuable works focusing
on the integration of REST and WSNs and providing the primitives required to RESTful
programming in sensor systems [12]. Therefore, we adopt this approach and study how to
enable RESTful Web service development in WSNs by the Remora component model.

Since an application built from REST principles is transformed from operation-centric
into a data-centric model, every entity that offers a service becomes a resource (e.g., a tem-
perature sensor) that can be identified unambiguously using a Uniform Resource Identifier
(URI) [26]. Every resource then defines a uniform interface just including four main op-
erations provided by REST (GET, POST, PUT and DELETE). Therefore, incorporating
REST principles into Remora requires applying the REST triangle of nouns, verbs, and
content types to the specification of Remora component model.
Remora Service Identifier. The service identifier is a unique noun described using the
URI format. Therefore, service identifiers include a server address, a service path, and a
sequence of request parameters:

/server-address/service-path?request-params

Since Remora components in a sensor application are basically organized in a hi-
erarchical model (like Java packages), the URI of a distributed service is corresponding
to the hierarchical organization of Remora components within the application. For in-
stance, assume that Sensors is a component providing a service for temperature sensor
(myTemperature) and another service for light sensor (myLight), thus the services of the
Sensors component, located under /app/peripheral, can be addressed as follow:

/node-id/app/peripheral/Sensors/myTemperature

/node-id/app/peripheral/Sensors/myLight

As the Remora engine has a complete knowledge about the structure of applications
(including hierarchical organization of system components), service identifiers are auto-
matically obtained by the Remora engine and therefore the programmer does not need to
specify any identifier for distributed services during the application development. Never-
theless, we have provided a special REST binding tag (binding.rest) through which the
programmer can change the URI of a component, as well as its services. Figure 11.4 shows
the description of the Sensors component, where the URI of the myTemperature service is
changed. Therefore, the new URI of the myTemperature service becomes:

/node-id/app/myTemp

Remora Service API. The four main operations of REST can be mapped to the oper-
ations implemented by a particular Remora service. Figure 11.5 shows an excerpt of the

183

A Component-based Approach for Service Distribution in WSNs

#$���%&������'()*+(%�������"'(,-./0($1%
#��������	-���%����'(���*����������*�������51%
%%#���&���%����'(��-������	
��(1%
%%%%#��	������*������%����'(���* -������	
��(81%

+������������
��,-.���.������-./�
%%#8���&���1
%%#���&���%����'(����"�	(1%
%%%%#��	������*������%����'(���* ��"�	(81%
%%#8���&���1
%%***%
#8��������	-���1

Figure 11.4: RESTful service identification in Remora.

interface ITemperature. Similar to the Remora services, operations of an interface can
be considered as a REST resource and have their own URI. Depending on the functionality
of a service and variety of its operations, we may need to define a new URI for a collection
of service operations. The other important part of the REST binding tag is that we need
to provide the name of the equivalent REST operation for each operation. For example,
the current temperature of environment can be retrieved from a temperature sensor node
using the HTTP request:

GET http://device.uio.no:8080/node-id/app/myTemp

which returns the current temperature. Temperature configuration information can
also be pushed into a sensor node by using an HTTP PUT request as follow:

PUT http://device.uio.no:8080/node-id/app/

myTemp/threshold

In this case, the HTTP request is sent to the operation setThreshold, along with the
required parameters, then the Remora framework will call the setThreshold operation.
Note that in the sample code of Figure 5, threshold is considered as a new separate REST
resource with its own URI.
Content Type. Finally, for a REST binding we can specify the format of data delivered
to the client. For instance, according to the REST annotation defined for getCurrent in
the ITemperature interface, this operation provides the current temperature in the JSON
format (cf. Figure 11.5).

11.4.3 A Concrete Use Case

An example use case that can benefit greatly from our distribution framework is home
monitoring systems. Such applications are characterized as being filled with sensor nodes
to observe various types of ambient context elements (temperature, smoke, occupancy, and
health conditions of inhabitant), actuators to physically control home appliances (lights,

184

Implementation

#$���%&������'()*+(%�������"'(,-./0($1
#��	������*������%����'(���* -������	
��(1

#�����	���%����'("�	�
����	(%��	
��'(���;����	(1
+�������������� ������,-0��-

����,-�����������.1��-./
#8�����	���1
#�����	���%����'(��	-��������(%��	
��'(&���(1

#��%����'(��������(%	���'(���;����	(81
+�������������� ������,-	2�-�����,-.��������-./

#8�����	���1

#8��	������*������1

Figure 11.5: Mapping the REST verbs to equivalent Remora operations and identifying
content types.

TV, and air conditioning), and smart phones to provide information about the preferences
of owners.

Integration of multi-scale entities is one of the main challenges in such an environment.
Mobile devices and sensors have different hardware and software capabilities, which make
some devices more powerful than others. Therefore, this heterogeneity requires a flexible
and simple solution that supports multiple interaction mechanisms and considers the re-
stricted capabilities of some devices. In particular, regarding sensor nodes, the immaturity
of high-level communication protocols, as well as the inherent resource scarceness, bring a
critical challenge to the system: how to connect sensor nodes to mobile devices and actua-
tors through a standard high-level communication protocol. We believe that the RESTful
framework presented above can significantly smooth the way to integrate a sensor network
with actuators and existing infrastructure networks in the home monitoring systems.

11.5 Implementation

The implementation of the proposed model consists of two main parts according to the
model’s architecture. The first part is concerned with modifying the implementation of
Remora specifications in order to support the new commands related to Web services
programming, such as the REST binding tag. The second part is dedicated to develop-
ing a middleware framework taking care of REST communication issues. The former is
performed within the implementation of the Remora engine. In addition to enhancing
the engine to support the new commands, it should statically create the data structures
required for maintaining the REST-related service data, such as resource identifiers and
Service API information.

The middleware framework, supportingWeb service-based communications, is a lightweight
module integrated with the Remora runtime and the Remora framework to support run-
time requirements of the proposed model. To this end, we first need to choose and exploit
an existing library that is flexible and completely support the REST principles. We adopt

185

A Component-based Approach for Service Distribution in WSNs

the REST framework presented by Yazar et al. [12] for two reasons. Firstly, they have
used the Contiki operating system to develop the RESTful architecture and our current
Remora runtime is also available on Contiki. Secondly, this framework’s architecture
along with Contiki’s extensive work on the IP protocol stack provide a set of complete
and easy-to-use low-level libraries for RESTful enhancements.

Figure 11.6 depicts the overall implementation architecture of Remora Web services,
where Contiki’s core and TCP/IP stack lie in the bottom. The gray box represents the
REST framework and contains core modules required for RESTful Web services devel-
opment over Contiki. The Remora runtime is integrated with the REST framework
through the REST Wrapper API. It should be noted that Wrapper API is one of the
main features of Remora, providing a well-described method for integrating a Remora

application with underlying system software [13].

������� ���
%����
����������	

%����
%�	���

����
&�������2

�)).
��$� %5�)
5	��	

-�#
.����

��.
*)&.��.
����1/

����
0������
��#

����
4��2��

&�	��1�
&��

Figure 11.6: Overall implementation architecture of Remora Web services.

Figure 11.7 shows an excerpt of the REST Wrapper API, including operations for
initializing REST engine, setting the representation type for a HTTP connection through
the Remora component HTTPConnection, sending GET data, receiving POST data, and
updating the status of a connection. The implementer of this interface is a Remora

component in which the low-level APIs of the REST framework are invoked.

REST Broker contains a set of Remora components processing REST requests re-
ceived from Remora runtime. Specifically, it is an intermediate module for handling the
REST requests received from a Web client or sent from the sensor node to a node hosting
RESTful Web services. The broker is also in charge of retaining the list of application-
specific resources and the corresponding Remora Web services APIs.

11.6 Preliminary Evaluation

As mentioned before, we adopt Contiki as our system platform and our hardware platform
is the popular TelosB mote equipped with a 16-bit TI MSP430 MCU with 48KB ROM
and 10KB RAM. In the preliminary evaluation, we assess the performance of the system

186

Preliminary Evaluation

#$���%&������'()*+(%�������"'(,-./0($1
#��	������*������%����'(����!��������'���(1

#�����	���%����'(��������(�(81
#�����	���%����'(��'��������(1

#��%����'(�		�������	���(
	���'(���	*����*�--�������	���(81

#��%����'(���(%	���'(���;��	(81
#8�����	���1
#�����	���%����'(��0��3���(1

#��%����'(�		�������	���(
	���'(���	*����*�--�������	���(81

#��%����'(��	�(%	���'(���;�	���"(81
#8�����	���1
#�����	���%����'(���	"��3���(%��	
��'(���;�	���"(81
#�����	���%����'(��4��	����
(1

#��%����'(�		�������	���(
	���'(���	*����*�--�������	���(81

#��%����'(���(%	���'(���;��	(81
#8�����	���1

#8��	������*������1

Figure 11.7: An excerpt of the REST Wrapper API.

based on the memory overhead incurred by the REST Broker and the REST wrapping
component (implementer of the REST Wrapper API) on ROM and RAM.

The memory footprints are categorized into a fixed overhead and a dynamic overhead.
The fixed overhead is the minimum additional memory required for a distributed appli-
cation, regardless of the number of distributed services running within the application.
Table 11.1 shows the fixed memory requirements, which turn out to be quite reasonable
with respect to both code and data memory. As seen from the table, the main memory
consuming module is the REST framework. Therefore, the fixed memory cost can be
further reduced by switching to a more efficient REST framework in the future.

Table 11.1: The fixed memory requirement of Remora Web services framework.
Code Data

Memory Memory
Module (bytes) (bytes)

Remora Runtime 494 14

REST Wrapper 94 0

REST Broker 252 8

REST Framework 4668 76

Total 5508 98

The dynamic memory overhead is calculated based on the number of distributed re-
sources (services, components or operations) in an application and the number of REST
verb mappings (GET, POST, PUT and DELETE) for each resource. The memory over-

187

A Component-based Approach for Service Distribution in WSNs

head of the former is variable according to the length of a resource’s name, while the latter
consumes 2 bytes of ROM to retain the starting memory address of a REST operation.

11.7 Conclusions and Future Work

Distributing WSN services through standard and widely-accepted communication protocols
is of high importance. In this paper, we presented a high-level programming abstraction
in order to enable service distribution in WSN applications and relieve the programmer
from the burden of dealing with low-level APIs for developing distributed sensor services.
This component-based approach promises a new abstraction for integrating sensor software
modules to the Internet through upgrading component-level services to Web services over
a lightweight RESTful architecture. This flexible framework is also potentially able to ex-
hibit sensor services to other types of network protocols by implementing platform-specific
bindings. Our future work includes addressing the Remora remote binding, occurring
when component services within a sensor network need to remotely communicate via a
particular sensor network protocol.

References

[1] M. Ceriotti et al., “Monitoring heritage buildings with wireless sensor networks: The
Torre Aquila deployment,” in IPSN ’09: Proc. of the 2009 Int. Conf. on Information
Processing in Sensor Networks. San Francisco, CA, USA: IEEE, 2009, pp. 277–288.

[2] A. Milenković, C. Otto, and E. Jovanov, “Wireless sensor networks for personal health
monitoring: Issues and an implementation,” Computer Communications (Special is-
sue: Wireless Sensor Networks: Performance, Reliability, Security, and Beyond),
vol. 29, pp. 2521–2533, 2006.

[3] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Monitoring volcanic
eruptions with a wireless sensor network,” in EWSN ’05: Proc. of the Second European
Workshop on Wireless Sensor Networks, Istanbul, Turkey, 2005, pp. 108–120.

[4] I. F. Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor networks: research
challenges,” Ad Hoc Networks, vol. 2, no. 4, pp. 351–367, 2004.

[5] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the physical world
with pervasive networks,” IEEE Pervasive Computing, vol. 1, no. 1, pp. 59–69, 2002.

[6] H. Liu, M. Bolic, A. Nayak, and I. Stojmenovic, “Taxonomy and Challenges of the
Integration of RFID and Wireless Sensor Networks,” IEEE Network, vol. 22, no. 6,
pp. 26–35, 2008.

188

References

[7] N. Gershenfeld, Raffi, R. Krikorian, and D. Cohen, “The internet of things,” SCIEN-
TIFIC AMERICAN, pp. 76–81, 2004.

[8] P. Buonadonna, J. Hill, and D. Culler, “Active message communication for tiny net-
worked sensors,” in INFOCOM ’01: Proc. of the 20th Annual Joint Conf. of the IEEE
Computer and Communications Societies. Alaska, USA: IEEE, 2001.

[9] E. Souto, G. Guimar aes, G. Vasconcelos, M. Vieira, N. Rosa, and C. Ferraz, “A
message-oriented middleware for sensor networks,” in MPAC ’04: Proc. of the 2nd
Workshop on Middleware for Pervasive and Ad-hoc Computing. Toronto, Canada:
ACM, 2004, pp. 127–134.

[10] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical mashups in the web
of things,” in INSS ’09: Proc. of the 6th Int. Conf. on Networked Sensing Systems.
Pittsburgh, PA, USA: IEEE, 2009, pp. 196–199.

[11] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web services: Design
and implementation of interoperable and evolvable sensor networks,” in SenSys ’08:
Proc. of the 6th ACM Conf. on Embedded Network Sensor Systems. Raleigh, NC,
USA: ACM, 2008, pp. 253–266.

[12] D. Yazar and A. Dunkels, “Efficient application integration in ip-based sensor net-
works,” in BuildSys ’09: Proc. of the First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings. Berkeley, CA, USA: ACM, 2009, pp.
43–48.

[13] University of Oslo, “The Remora Component Model,” 2010, http://folk.uio.no/
amirhost/remora.

[14] R. Fielding, Architectural Styles and the Design of Network-based Software Architec-
tures, University of California, Irvine, USA, 2000, PhD thesis.

[15] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M. Welsh,
E. Brewer, and D. Culler, “Tinyos: An operating system for sensor networks,” in
Ambient Intelligence. Berlin, Germany: Springer Verlag, 2004, pp. 15–148.

[16] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible operating
system for tiny networked sensors,” in LCN ’04: Proc. of the 29th Annual IEEE Int.
Conf. on Local Computer Networks. Tampa, Florida, USA: IEEE Computer Society,
2004, pp. 455–462.

[17] A. Dunkels, F. Österlind, and Z. He, “An adaptive communication architecture for
wireless sensor networks,” in SenSys ’07: Proc. of the 5th Int. Conf. on Embedded
networked sensor systems. Sydney, Australia: ACM, 2007, pp. 335–349.

189

A Component-based Approach for Service Distribution in WSNs

[18] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama, and T. Siva-
haran, “A generic component model for building systems software,” ACM Trans.
Comput. Syst., vol. 26, no. 1, pp. 1–42, 2008.

[19] D. Hughes, K. Thoelen, W. Horré, N. Matthys, P. J. del Cid Garcia, S. Michiels,
C. Huygens, and W. Joosen, “Looci: A loosely-coupled component infrastructure for
networked embedded systems,” in Proc. of the 7th Int. Conf. on Advances in Mobile
Computing & Multimedia. Kuala Lumpur, Malaysia: ACM, Dec. 2009, pp. 195–203.

[20] L. de Souza, P. Spiess, D. Guinard, M. Khler, S. Karnouskos, and D. Savio, “Socrades:
A web service based shop floor integration infrastructure,” in The Internet of Things,
ser. LNCS, vol. 4952. Springer, 2008, pp. 50–67.

[21] T. Luckenbach, P. Gober, K. Kotsopoulos, Andreas Kim, and S. Arbanowski,
“Tinyrest: a protocol for integrating sensor networks into the internet,” in REAL-
WSN ’05: Proc. of the Workshop on Real-World WSNs, Stockholm, Sweden, 2005.

[22] UPnP Forum, “UPnP Device Architecture 1.0,”
http://www.upnp.org/resources/documents.asp, Apr. 2008.

[23] M. Marin-Perianu et al., “Decentralized enterprise systems: a multi-platform wireless
sensor network approach,” Wireless Communications, IEEE, vol. 14, no. 6, pp. 57–66,
2007.

[24] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd edi-
tion. Boston, MA, USA: Addison-Wesley, 2002.

[25] OSOA, “The service component architecture,” http://www.oasis-opencsa.org/sca.

[26] R. T. Berners-Lee and M. Fielding, L., “Uniform Resource Identifier (URI): Generic
Syntax,” 2005, http://www.ietf.org/rfc/rfc3986.txt.

190

Chapter 12

The DigiHome Service-Oriented
Platform

Authors. Daniel Romero (1), Gabriel Hermosillo (1), Amirhosein Taherkordi (2), Russel
Nzekwa (1), Romain Rouvoy (1), and Frank Eliassen (2)

Affiliation.

(1) INRIA Lille Nord Europe, ADAM Project-team, University Lille 1, LIFL CNRS
UMR 8022, Villeneuve dAscq, France
{firstname.lastname}@inria.fr

(2) Department of Informatics, University of Oslo, Norway
{amirhost,frank}@ifi.uio.no

Publication. Accepted to Software: Practice & Experience Journal. The earlier ver-
sion of this paper has been published in the proceedings of the 10th IFIP International
Conference on Distributed Applications and Interoperable Systems (DAIS), Amsterdam,
Netherlands, June 2010.

Abstract. Nowadays, the computational devices are everywhere. In malls, offices, streets,
cars and even in homes we can find devices providing and consuming functionality in order
to improve the user satisfaction. These devices include sensors that provide information
about the environment state (e.g., temperature, occupancy, light levels), service providers
(e.g., Internet TVs, GPS), smartphones (that contain user preferences), and actuators
that act on the environment (e.g., closing the blinds, activating the alarm, changing the
temperature). Although these devices exhibit communication capabilities, their integra-
tion into a larger monitoring system remains a challenging task, partly due to the strong

191

The DigiHome Service-Oriented Platform

heterogeneity of technologies and protocols. Therefore, in this article we focus on home en-
vironments and propose a middleware solution, called DigiHome, which applies the SCA
(Service Component Architecture) component model in order to integrate data and events
generated by heterogeneous devices in this kind of environments. DigiHome exploits the
SCA extensibility to incorporate the REST (REpresentational State Transfer) architec-
tural style, and in this way leverages on the integration of multi-scale systems-of-systems
(from Wireless Sensor Networks to the Internet). Additionally, the platform applies CEP
(Complex Event Processing) technology that detects application-specific situations. We
claim that the modularization of concerns fostered by DigiHome and materialized in a
service-oriented architecture, makes it easier to incorporate new services and devices in
smart home environments. The benefits of the DigiHome platform are demonstrated on
smart home scenarios covering home automation, emergency detection, and energy saving
situations.

12.1 Introduction

Pervasive environments support context-aware applications that adapt their behavior by
reasoning dynamically about the user and the surrounding information. This contextual
information generally comes from diverse and heterogeneous entities, such as physical de-
vices, Wireless Sensors Networks (WSNs), and smartphones. In order to exploit the infor-
mation provided by these entities, a middleware solution is required to collect, process, and
distribute the contextual information efficiently. However, the heterogeneity of systems in
terms of technology capabilities and communication protocols, the mobility of the different
interacting entities, and the identification of adaptation situations make this integration
difficult. Thus, this challenge requires a flexible solution in terms of communication sup-
port and context processing to leverage context-aware applications on the integration of
heterogeneous context providers.

In particular, a solution dealing with context information and control environments
must be able to connect with a wide range of device types. However, the resource scarcity
in WSNs and mobile devices makes the development of such a solution very challeng-
ing. In this article, we propose the DigiHome platform, an improved version of our work
introduced in [1]. With this platform we provide a simple but efficient service-oriented
middleware solution to facilitate context-awareness in pervasive environments. Specifi-
cally, DigiHome supports the integration, processing and adaptation of the context-aware
applications. Our solution enables the integration of heterogeneous computational entities
by relying on the Service Component Architecture (SCA) model [2], the REST (REpresen-
tational State Transfer) principles [3], standard discovery and communication protocols,
and resource representation formats. We combined SCA and REST in our solution in order
to foster reuse and loose coupling between the different services that compose the platform.
Furthermore, while our solution also benefits from WSNs to operate simple event reasoning
on the sensor nodes, we rely on Complex Event Processing [4] for analyzing in real-time

192

Motivating Scenario

the relationships between the different collected events and trigger rule-based adaptations.

The remainder of this article is organized as follows. We start by describing a smart
home scenario in which we identify the key challenges in pervasive environments that mo-
tivate this work (cf. Section 12.2). Then, we present some of the background concepts that
we use in our project (cf. Section 12.3). We continue by the description of DigiHome, our
middleware platform to support the integration of systems-of-systems in pervasive environ-
ments (cf. Section 12.4). Then, we discuss the benefits of our approach (cf. Section 12.5)
before presenting the related work (cf. Section 12.6). Finally, we conclude by presenting
some promising perspectives for this work (cf. Section 12.7).

12.2 Motivating Scenario

In this paper, we use a smart home scenario to show the motivation of our work. A smart
home generally refers to a house environment equipped with several types of computing
entities, such as sensors, which collect physical information (temperature, movement de-
tection, noise level, light, etc.), and actuators, which change the state of the environment.
Sensor nodes are mostly embedded in home appliances and may be powered by batteries
with limited capacity. In this scenario, we consider a smart home equipped with occupancy,
smoke detection, and temperature sensors. These tiny devices have the ability to collect
context information and to communicate wirelessly with each other, in order to identify
the context situation of the environment. In addition to that, we can also use actuators to
physically control lights, TV, and air conditioning. Figure 12.1 illustrates the integration
of these sensors and actuators in our scenario. As observed in this figure, the different
entities use heterogeneous protocols to interact. In the scenario, the smartphones provide
information about the user preferences for the home configuration. When several people
share the same room, the configuration decision is based on merged preferences. Conflicts
between the user preferences are resolved by giving, e.g., priority to the person who arrived
first to the room. The mobile devices also have an application that enables the control of
the actuators present in the different rooms. This application can be adapted when there
are changes in the actuator’s configuration. Finally, there is a Controller device, which is
able to gather information, and interact with the other co-located devices.

To show how the different elements of our scenario interact, we present three different
situations:

Situation 1: Alice arrives to the living room. The occupancy sensor detects her presence
and triggers the temperature sensors to increase the sampling rate of data. It also notifies
the Controller that the room is occupied by somebody, which in turn tries to identify the
occupant by looking for a profile in her mobile device. When Alice’s profile is found, the
Controller loads it and adjusts the temperature and lightening level of the room according
to Alice’s preferences.

193

The DigiHome Service-Oriented Platform

���� ���!"

�"�����	
#�""�$�	
�!$%&�

�����������
�	
	�

�'%(��
�&)�*��%*�

�(�*�(�
�*���*�"��(

����������

��	����
���

���������������

!���

�

�����
��

�%**�"��
�&)�*��%*�

�����	�����������

������������

�&!+��
�������

�����	����������

��!)$���"��#��
�!!&�

���

� �"��
�*!��((�",

-��

���

��,���

��"�

����

���������

��,���

��,���

�����

�!!&�
�&�,�

�������	���	

��,���

�����

������ �������	
����������	�	��

Figure 12.1: Interactions between the smart home devices.

Situation 2: The sensors detect smoke and notify the Controller, which using the occu-
pancy sensor, detects that the house is empty. The Controller therefore sends an SMS to
Alice, including a picture of the room captured using the surveillance camera. After check-
ing the picture, Alice decides to remotely trigger the sprinklers using her mobile device.
She also tells the system to alert the fire department about the problem. If Alice does not
reply to the Controller within 5 minutes, the system activates automatically the sprinklers
and alerts the fire department.

Situation 3: Alice installs a new TV in the bedroom. The Controller detects the presence
of the new device, identifies it, and downloads the corresponding control software from an
Internet repository. The platform tries to locate the available mobile devices, using a
discovery protocol, and finds Alice’s mobile device. The Controller proposes to update the
mobile device with the components for controlling the new TV.

12.2.1 Key Challenges

The various situations we described above allow us to identify several key challenges in
terms of:

1. Integration of multi-scale entities: The mobile devices and sensors have different

194

Background

hardware and software capabilities, which make some devices more powerful than
others. Therefore, the integration of these entities requires a flexible and simple
solution that supports multiple interaction mechanisms and considers the restricted
capabilities of some devices. In particular, regarding sensor nodes, the immaturity of
high-level communication protocols, as well as the inherent resource scarcity, bring
two critical challenges to our work: 1) how sensor nodes should be connected to
mobile devices and actuators through a standard high-level communication protocol,
and 2) the framework which runs over sensor nodes for supporting context-awareness
and adaptation should not impose high resource demands.

2. Entities mobility : In our scenario, computational entities appear and disappear con-
stantly. In particular, mobile devices providing user profiles are not always accessible
(they can be turned off or the owner can leave the house with them). In a similar
way, the actuators can be replaced or new ones can be added. Thus, we need to
discover new entities dynamically as well as to support device disconnections.

3. Information processing and adaptation: In order to support adaptation, we first
need to identify the situations, in which the adaptation is required. We have a lot of
information that is generated by the different devices in the environment. Therefore,
we need to define which part of this information is useful to identify relevant situations
and react accordingly. In our scenario, those situations include the load of Alice’s
profile and the adjustment of the temperature, the sending of alerts via SMS in case
of an emergency, and the adaptation of Alice’s mobile device to control the new TV
in her bedroom.

12.3 Background

In this section we present a brief introduction to the main elements employed in the Digi-

Home conception: The Service Component Architecture Model (SCA), the FraSCAti

platform and Complex Event Processing technology.

12.3.1 Service Component Architecture (SCA) Model

SCA is a set of specifications for building distributed applications based on Service-oriented
architecture (SOA) and Component-Based Software Engineering (CBSE) principles [2].
In SCA, the basic construction blocks are the software components, which have services
(or provided interfaces), references (or required interfaces) and exposed properties. The
references and services are connected by means of wires. SCA specifies a hierarchical
component model, which means that components can be implemented either by primitive
language entities or by subcomponents. In the latter case the components are called
composites.

195

The DigiHome Service-Oriented Platform

SCA is designed to be independent from programming languages, Interface Definition
Languages (IDL), communication protocols and non-functional properties. In this way, an
SCA-based application can be built, for example, using components in Java, PHP, and
COBOL. Furthermore, several IDLs are supported, such as WSDL and Java Interfaces.
In order to support interaction via different communication protocols, SCA provides the
concept of binding. For SCA references, bindings describe the access mechanism used to
call a service. In the case of services, the bindings describe the access mechanism that
clients have to use to call the service.

12.3.2 The FRASCATI platform

The FraSCAti platform [5, 6] allows the development and execution of SCA-based appli-
cations. The platform itself is built as an SCA application—i.e., its different subsystems
are implemented as SCA components. FraSCAti provides an homogeneous view of a
middleware software stack where the platform, the non-functional services, and the ap-
plications are uniformly designed and implemented with the same component-based and
service-oriented paradigm. To achieve this, the platform is composed of four layers: i) the
Kernel Level based on Fractal [7], a lightweight and open component framework with ba-
sic dependency injection, introspection and reconfiguration capabilities; ii) the Personality
Level, which customizes the component kernel by providing the components with execution
semantics and implementing the SCA API and principles based on the Fractal component
model; iii) the Runtime Level that instantiates SCA assemblies and components and de-
fines a flexible configuration process, which is inspired by the extender and whiteboard [8]
design patterns of OSGi; and iv) the Non-Functional Level that supports the SCA Policy
Framework specification in order to provide non-functional services implemented as regular
SCA components.

12.3.3 Complex Event Processing

CEP is an emerging technology for finding relationships between series of simple and in-
dependent events from different sources, using previously defined rules [4]. It employs
different techniques such as detection of complex patterns, event correlation and abstrac-
tion, event hierarchies and relationships between events using causality, membership, and
timing. It is used in a variety of domains such as logistics, transport and finance. In our
scenario, we consider a lot of heterogeneous devices (sensors, mobile devices, etc.) that
generate isolated events, which can be used to obtain valuable information and to make
decisions accordingly.

To understand the concept, let us consider the examples in the scenario of Section 12.2.
For instance, CEP can be used for simple events, like detecting the presence of a person in
the house and triggering the discovery service to identify that person. However, whenever
a person moves in the room, the presence event will be received. In order to prevent the
triggering of the discovery service every time a person moves in the room, with CEP we

196

The DigiHome Service-Oriented Platform

can use windows of time. Using them, we can specify that we are only interested in those
events every number of seconds or minutes.

Moreover, CEP can be used to find relationships between isolated events. For example,
if the smoke detectors send an event and the temperature is above 40℃, then we can
assume that there is fire in the room and alert the user. Using again the windows of time,
we could specify that if within 5 minutes the user has not responded to the alert, then it
should trigger the sprinklers and send an alert to the fire department.

Finally, using CEP we can also configure some comfort rules according to user prefer-
ences. For example, if the user turns on the TV in a room with a window, and there is too
much light outside, then it could close the blinds to improve the user’s experience.

12.4 The DigiHome Service-Oriented Platform

The integration, mobility and adaptation issues impose several requirements for the devel-
opment of smart homes environments. To deal with these issues, in this section we propose
a comprehensive and simple solution called DigiHome, which enables the integration of
events and context information as well as the dynamic configuration of applications. In
particular, we propose a flexible architecture that modularizes the different concerns as-
sociated with event processing in ubiquitous environments by applying existing standards
and approaches. In our solution, we support the integration of events sources (e.g., sen-
sors in our scenario), context providers (e.g., mobile devices) and other kind of services
(e.g., actuators and reconfiguration services) implemented with a variety of technologies
and interacting via different protocols by means of the SCA component model. Indeed,
DigiHome deals with protocol heterogeneity, by enabling the incorporation at runtime
of different communication mechanisms if required thanks to the SCA feature isolation of
non-functional concerns.

InDigiHome, we follow the REST principles [3] to reduce the coupling between entities
by focusing the interaction in the exchanged data, which can have multiple representations
(e.g., XML and JSON). In a similar way, for supporting the integration of devices with
restricted capabilities, DigiHome promotes the usage of a lightweight API and simple
communication protocols as stated by REST. In particular, our solution benefits from
WSNs in order to process simple events and make local decisions when possible, by means
of the Remora component model [9], which is a component model for WSNs based on
SCA. Finally, the platform uses a CEP engine for the adaptation of applications and room
configuration. Figure 12.2 depicts the general architecture of the platform. In the rest of
the section we provide a detailed description of the different elements of the platform.

12.4.1 DigiHome Core

The core of the platform modularizes the main responsibilities for home monitoring. This
means that the core contains the functionality required for event collecting, event process-

197

The DigiHome Service-Oriented Platform

����������

����������������

������	
�	���������

����������

��������	��

�

���������	�	�

	

��������������������

�����

���
����	
��

��
�$�%����
�
�������� ������

������ !

������������

�&����
�
�����
�

����
������

������
��
�'��%��
�

���

�� ������ ���

�������
������

�����

���
����	
��

��
�$�%����
�
�������� ������

��������������

��������	��������
�
�����
�

��

����������
���%��
�

"#�� �$%

����
������������
�������

�����������

�$%

��&

"#��

������
���%��
�

"#�� ��&

�
����
���
��
��
�$�%���
�

"#�� ��

��������� ���������
��&��

"#��

������ !

�%������
��������%��

��&��
��������
��	
�����
�
��� ��
����	
��!

'�����

������ !

���"���(���
�

���	�������

��� ���

��

���

���

�����
����������

���

"#��

Figure 12.2: Description of the DigiHome architecture.

ing, and deciding and executing the required adaptations of the applications deployed on
DigiHome objects (cf. Section 12.4.2) as well as the room configurations. In DigiHome,
the Event Collector retrieves and stores the recent information produced by event and con-
text sources, such as sensors and mobile devices. The CEP Engine is responsible for event
processing and uses the Decision Executor to perform actions specified by the Adaptation

Rules (defined in the CEP Engine). The CEP Engine also employes a User Manager service
for determining if inhabitants have rights for executing specific system operations (e.g., the
activation of sprinklers or the alert of the fire department in situation 2) and who must to
be notified in case of requiring human intervention. Furthermore the User Manager service
is used by the Event Collector for deciding if the information from a mobile device has to
be processed by the system or not.

On the other hand, the core contains different Actuator components that grant access
to the available actuator services in the environment. Following a plug-in mechanism,
these components can be installed or uninstalled at runtime. This means that the different
actuators are optional, deployed according to the current service configuration and installed
on different devices.

To enable the communication between different clients and to support the mobility
of services and mobile devices, we incorporate ubiquitous bindings in SCA [10]. These
bindings bring into SCA existing discovery protocols, such as UPnP [11] and SLP [12],
providing the possibility to establish spontaneous communication. Furthermore, the ubiq-
uitous bindings improve the context information advertisements with Quality of Context

198

The DigiHome Service-Oriented Platform

(QoC) [13] attributes for provider selection. Once the services are discovered, the ubiqui-
tous bindings are flexible enough to allow the interaction via standard bindings, such as
REST. The use of these ubiquitous bindings, as well as the modularization of the different
concerns, makes it easy to distribute the different responsibilities in DigiHome.

12.4.2 DigiHome Objects

A DigiHome Object is an SCA component providing and/or consuming events to/from
other DigiHome Objects. In our scenario, the mobile device executes a DigiHome Object

that offers the user preferences as context information and hosts an adaptive application
enabling the control of home appliances (that also consumes events indirectly in order to
be adapted). The DigiHome Core can also be considered as a DigiHome Object. Because
our solution is based on standards, and in hiding the service implementation with SCA, we
can easily integrate other services in the smart home that are not part of the infrastructure
(in particular, the actuators). In a similar way, we are exposing the DigiHome Objects via
ubiquitous bindings so that other applications (that are not part of DigiHome) can benefit
from the services offered by the platform.

The exchange of events between DigiHome Objects is done following a REST-based
approach. This means that we exploit the simple REST interfaces (i.e., PUT, POST,
DELETE and GET) and unique identifiers (i.e., URLs). In particular, the objects sub-
scribe and unsubscribe via the POST and DELETE interfaces respectively. The subscrip-
tion request includes the URL that is used for sending the events. The PUT operation is
used in event notification. Because of the environment dynamism, the subscriptions have
a configurable expiration time. If a subscription is not renewed, it will be discarded. Thus,
this simple approach enables the usage of DigiHome Objects in different kinds of devices.

12.4.3 CEP Engine

To manage the events in our scenario, we need a decision-making engine that can process
them and that can create relationships to identify special situations, using predefined
rules. In order to identify the desired events, the CEP Engine requires to communicate
with an Event Collector, which is in charge of dealing with the subscriptions to the event
sources. If an adaptation situation is detected, a corresponding action is triggered, which
can go from an instruction to an actuator, to the adaptation of the system by adding or
removing functionality. These actions are received by the Decision Executor, which has the
responsibility of communicating with the different actuators in the environment.

Because connections problems with the event sources are possible, the CEP Engine is
configured with a set of rules and actions that are applied by default. For example, if the
sensor movement detects the presence of someone in the room but the DigiHome core
can not detect her or his mobile phone, the system will apply a default rule for inhabi-
tant presence and the associated actions according to the year season. These actions and

199

The DigiHome Service-Oriented Platform

rules can be modified at deployment and runtime (thanks to the frascati reconfiguration
capabilities).

InDigiHome, for the event processing in the Controller, we use Esper [14], a Java open
source stream event processing engine, to deal with the event management and decision
making process. We chose Esper for our platform because it is the most supported open
source project for CEP and is very stable, efficient, and fairly easy to use. The following
code excerpt shows an example of an Esper rule used in our scenario, in Section 12.2:

s e l e c t sum(movement)
from MovementSensorEvent . win : time (60 sec)

This demonstrates the use of a time window, which is a moving interval of time. The
rule collects all the events from the movement sensor from the last 60 seconds. By doing
this, we can know if a user is still in the room or has already left, and adapt the room
accordingly.

12.4.4 Support for Wireless Sensor Networks

In order to consume events from WSNs, we use the Remora Component Framework [9].
This framework is an extension of SCA that brings component-based development into
WSNs. The main motivation behind proposing Remora is to facilitate high-level and
event-driven programming in WSNs through a component-based abstraction. The pri-
mary feature of Remora is provisioning a high-level abstraction allowing a wide range
of embedded systems to exploit it at different software levels from operating systems to
applications. Remora achieves this goal by: i) deploying components within a lightweight
framework executable on any system software written in the C language, and ii) reifying
the concept of event as a first-class architectural element simplifying the development of
event-oriented scenarios. Remora meets efficiently the heterogeneity concerns related to
WSN programming in the DigiHome platform as this model is SCA-compliant and portable
to different operating systems used in the home sensor nodes.

Remora proposes a TCP/IP mechanism to exchange events, which is encapsulated in
an SCA component. We reuse this mechanism in order to define DigiHome objects for
WSNs (so called Remora Objects), which are able to produce and consume simple events
in the DigiHome platform. With these objects, we improve the efficiency of the system
because the WSN is able to process simple events instead of going through the DigiHome

Core for making local decisions (e.g. energy saving properties). In particular, WSNs are
equipped with a set of rules to monitor basic events, aggregate them, and emit the inferred
events as global events to the CEP engine. The local rules are essentially elicited from the
global rules identified based on the requirements of home owner, avoiding any potential
conflicts between global and local rules. In addition to the use of local rules for node-
level decisions, the core of our framework enables in-WSN decisions, whenever an event is
required to be processed with other relevant events generated by other sensor nodes. For
example, if a temperature sensor detects a high temperature, it needs to become aware

200

Empirical Validation

of the smoke density in the room to know if there is a fire—i.e., communicate with the
smoke detecting sensors. Furthermore, benefiting from the DigiHome modularization of
concerns, as well as the transparent communication promoted by SCA, DigiHome objects
can consume/notify events from/to Remora Objects with a small effort. Finally, Remora

enables DigiHome to dynamically deploy and adapt the objects running on the WSN
nodes at runtime.

12.5 Empirical Validation

Although the contribution of this article lies in the adoption of a versatile architecture style
for integrating the diversity of device appliances available in the pervasive environments,
we have also made a performance evaluation of a prototype, implementing the proposed
platform. This experimentation demonstrates the reasonable overhead imposed by the
DigiHome platform.

12.5.1 Implementation Details

We built a prototype of the DigiHome platform based on FraSCAti (cf. Section 12.3.2).
The selection of this platform is motivated by two main reasons: i) The platform

brings reflection and reconfiguration capabilities at runtime into SOA systems and, ii)
The FraSCAti customization capabilities according to the developer needs. The former
is necessary in order to enable the dynamic adaptation of DigiHome applications. The
latter allows us to easily have lightweight versions of DigiHome for executing them on
devices with restricted capabilities, such as the mobile devices in the smart home scenario.
In order to implement the ubiquitous bindings, we have used Cyberlink for Java1 version
1.7 for UPnP and the jSLP library2 for SLP. More detail about the ubiquitous bindings
architecture and implementation can be consulted in [10]. Once the services are discovered,
the DigiHome platform uses the data bindings for interacting with them. These data
bindings follow a RESTful approach in order to exchange information [15].

12.5.2 Discovery and Communication Overhead

Test Bed Configuration

In order to testDigiHome, we have employed two MacBook Pro laptops, with the following
software and hardware configuration: 2.4 GHz processor, 2 GB of RAM, AirPort Extreme
card, Mac OS X 10.5.6 (kernel Darwin 9.6.0), Java Virtual Machine 1.6.0, and Julia 2.5.2.
The mobile client used in the tests is a Nokia N800 Internet Tablet with 400 Mhz, 128 MB
of RAM, interface WLAN 802.11 b/e/g, Linux Maemo (kernel 2.6.21), CACAOVM Java
Virtual Machine 0.99.4, and Julia 2.5.2.

1
Cyberlink for Java: http://cgupnpjava.sourceforge.net/

2
jSLP: http://jslp.sourceforge.net/

201

The DigiHome Service-Oriented Platform

Evaluation Results

We have implemented the situation 1 of the motivating scenario (cf. Section 12.2) in order to
measure the media latency for discovery (of preferences provider) and context dissemination
in the DigiHome platform.

Table 12.1 reports these measures. We have executed 10000 successful tests, of which
the first 100 were considered as part of the warm-up. In this setup, we retrieve the user
preferences from multiple local and distributed providers and use multiple formats for the
context information (i.e., XML, JSON, and Java Object Serialization). In the local tests
we executed the DigiHome core and the DigiHome objects in different virtual machines on
the same laptop. In the distributed measures we used one laptop as Controller, and the
other laptop and the Nokia device as information providers.

We also measured the delay for discovering the information provided by the sources. For
discovery, we selected the UPnP and SLP protocols. In the tests, the platform aggregates
the user’s preferences to reduce the number of messages exchanged between the provider
and the consumer. The measured time corresponds to the exchange of REST messages
as well as the marshalling/unmarshalling of the information. The cost of executing others
protocols, such as ACN and ZigBee was not considered in this article. The reader can find
more information about the overhead introduced by these protocols in [16].

As seen, there is a linear increase of the latency with the different formats. This is a good
characteristic of our solution, because we can integrate several entities with an acceptable
overhead. We also observe that there is not a big variation in the communication cost
between the different formats when the number of providers is low (until aprox. 10). As
expected, when the providers are increased, the context exchange with object serialization
is more efficient than the JSON and XML representations. Furthermore, the network usage
introduces an overhead of approximately 300%.

Regarding the discovery cost (that includes the discovery time as well as the cost
associated with the ubiquitous binding configuration), it is negligible compared to the
context information retrieval, if there are not many providers. Our tests show that the
use of SLP or UPnP for discovery does not have a big impact on the discovery time. In a
similar way to the retrieval case, the measures including the network are bigger. Finally,
we tested our solution using a Nokia Internet Tablet as a preference provider. As it can be
seen, the use of this mobile device introduces an additional but still acceptable overhead
for discovery and information exchange. This increase in cost is expected because of the
limited resources of this kind of devices.

12.5.3 Event Processing Overhead

The latency for disseminating, as well as for discovering context, confirms that DigiHome

can integrate heterogeneous entities with a reasonable performance overhead. Furthermore,
according to the documentation provided by Esper[14], the efficiency of the engine to
process the events is such that it exceeds over 500,000 events per second on a workstation

202

Related Work

Table 12.1: Performance of the DigiHome Platform.

��������	�

�������

$

�

�

��

��

���

�������������������������
��������

���	
�����

�� �� ��

�������� �������

�� �� ��

�� �� ��

��� ��� ���

��� ��� ���

 �� ���� ����

��������������������������
��������

���	
�����

��� ��� ���

�������� �������

��� ��� ���

��� ��� ���

��� ��� ���

� �� ���� ����

!!� ���� ����

"������������������������

��������

"�����������������
��������
��������

������� ��������

� ��

�� ��

�� ��

�� ���

��� ���

��� ���

�� ��

�� ��

��� ���

��� ���

���� ����

���� ����

������� ��������

������� ��� ��� � ! ��� ���� ! � ! � ! � ! � !

and between 70, 000 and 200, 000 events per second running on an average laptop. Thanks
to the efficiency of the engine, the use of event processing in our system can be done at a
low cost and given the modularity of our architecture, the Esper engine can be installed
in the device that provides the highest processing power. In the context of the DigiHome

platform, we observed that Esper took 1ms on average to process the adaptation rules.

12.6 Related Work

12.6.1 Smart Home Solutions

Thanks to the increasing popularity of smart homes in the last years, we can find several
solutions dealing with the integration of services in this kind of environments. For example,
in [17] the authors propose ZUMA, a middleware solution providing universality, multi-
user optimality, and adaptability. The authors claim that this solution based on clean
abstractions for users, content and devices makes the integration of heterogeneous entities
in smart homes easier. ZUMA defines a light-weight Device Control Protocol (DCP) that
all the devices in the environment have to implement in order to be used by the middleware.
The discovery is done by means of a registry that is part of the platform. In DigiHome,
we do not impose a single protocol for interaction or discovery. Whereas, we based our
solution on standard protocols and provide the flexibility to incorporate new protocols
when required. These properties, combined with the advantages from SCA, foster the
building of a more versatile solution for dealing with heterogeneity in smart environments.

Gaia [18] is a distributed middleware that provides similar functionality to an operat-
ing system. Gaia defines the concept of active spaces as geographic regions with limited
and well-defined physical boundaries containing physical objects, heterogeneous networked
devices, and users performing a range of activities. Examples of active spaces include meet-
ing rooms and smart homes. The platform allows the coordination of software entities and

203

The DigiHome Service-Oriented Platform

heterogeneous devices in these active spaces. To do it, Gaia provides services for event
management and distribution, context information query (for the context-based adapta-
tion of applications), detection of digital and physical entities, storage of the information
associate with entities, and file management. However, despite Gaia richness in terms of
services, the solution is complex and the incorporation of new entities remains difficult.
The simplicity of DigiHome makes this task easy. Furthermore, Gaia lacks support for
restricted devices, such as the mobile devices in our scenario, in contrast to DigiHome

that uses SCA to do it.

In [19], the MAVHome (Managing an Intelligent Versatile Home) project is described.
This project aims to build a home as a rational agent that maximizes inhabitants com-
fort and reduces operation costs. The project mainly focuses on prediction algorithms to
guide decisions for controlling devices throughout the home. These algorithms include the
Smarthome Inhabitants Prediction algorithm (that matches more recent sequences of events
with stored sequences), Active LeZi algorithm (that applies information theory principles
to process historical actions sequences) and a Task-Based Markov Model algorithm (for
identifying high level tasks in action sequences). Benefiting from the DigiHome extensi-
bility and concern isolation, these algorithms can be incorporated into the CEP engine in
order to make our service-oriented platform more intelligent and autonomous in respect to
the adaptation decisions.

12.6.2 Context Dissemination

In literature, it is possible to find two kinds of solutions that deal with context integration:
centralized and decentralized. In the centralized category we can find middleware, such
as PACE [20] and Context Distribution and Reasoning (ConDoR) [21]. PACE proposes a
centralized context management system based on repositories. The context-aware clients
can interact with the repositories using protocols, such as Java RMI or HTTP. For its part,
ConDoR takes advantage of the object-oriented model and ontology-based models to deal
with context distribution and context reasoning, respectively. In ConDoR, the integration
of the information using different protocols is not considered as an important issue. The
problem with this kind of approach is the introduction of a single point of failure into the
architecture, which limits its applicability to ubiquitous computing environments.

On the other hand, in decentralized approaches we can find solutions like CORTEX [22]
and MUSIC [23, 24]. CORTEX defines sentient objects as autonomous entities that have
the capacity of retrieving, processing, and sharing context information using HTTP and
SOAP. MUSIC middleware is another decentralized solution that proposes a peer-to-peer
infrastructure dealing with context mediation. The decentralized approaches face the prob-
lem of fault tolerance by distributing the information across several machines. However,
as well as some centralized solutions, the lack of flexibility in terms of the communication
protocols remains a key limitation for these approaches. In addition to that, peer-to-
peer approaches have performance and security problems. In DigiHome, we provide a

204

Related Work

solution, where the different interacting devices can process the events retrieved from the
environment. Furthermore, in DigiHome we provide flexibility in terms of interaction
by supporting different kinds of communication protocols and we also allow spontaneous
interoperability.

12.6.3 Complex Event Processing

Given the increasing interest to integrate the flow of data into the existing systems, CEP has
gained some attention as it can help to provide that integration transforming isolated data
into valuable information. In this context we can find some works similar to ours in [25]
and [26]. In [25], the authors integrate CEP into their existing project called SAPHE
(Smart and Aware Pervasive Healthcare), and also use Esper as their CEP engine. As
the project name shows, the project is applied to healthcare and uses sensors to monitor
a patient’s activity and vital signs. They use CEP to correlate and analyze the sensor
data in order to calculate critical factors of the patient locally in their set-top box, without
having to send all the events to an external server. In their approach they lack a way to
discover new services and they never mention how, if possible, would they interact with
actuators in order to adapt to the context and respond to a specific situation.

An Event-Driven Architecture (EDA) that combines the advantages of WSN with CEP
is presented in [26]. They use an extension of the RFID EPCglobal architecture which
allows the interaction of RFID and WSN events. Once the events are collected, they use
CEP to detect specific situations. They use a smart shelf application as their scenario to
show how the events from both sources can be combined. Even though both technologies
seem to interact in their project, their specification is somehow limited because they do
not specify how the information obtained could be used, other than generating a report
that will be logged in the EPCIS server.

12.6.4 Wireless Sensor Networks

In [27], the authors describe a WSN-specialized resource discovery protocol, called DRD.
In this approach, each node sends a binary XML description to another node that has
the role of Cluster Head (CH). The CH is selected among all the nodes based on their
remaining energy. Therefore, it is necessary to give all the nodes the capacity of being a CH.
Consequently, all the nodes need an SQLlite database, libxml2 and a binary XML parser in
order to implement the CH functionalities. In DigiHome, with our modular architecture,
we consider the resource constraint of sensors nodes and provide a lightweight version of the
platform based on the REMORA Framework that delegates complex processing to more
powerful devices. Therefore, not all the nodes have to be CH. Furthermore, we benefit
from the advertisement capacities of the sensor nodes to identify adaptation situations.

In CoBIs [28], business applications are able to access functionalities provided by the
sensor nodes via web services. The major aim of the CoBIs middleware is to mediate

205

The DigiHome Service-Oriented Platform

service requests between the application layer and the device layer. The focus lies thereby
on deployment and discovery of required services.

Agimone [29] is a middleware solution supporting the integration of WSNs and IP
networks. It focuses on the distribution and coordination of WSN applications across
WSN boundaries. Agimone integrates the Agilla [30] and Limone [31] middleware
platforms. Agimone is a general-purpose middleware with a uniform programming model
for applications, that integrates multiple WSNs and the IP network. In our approach,
we also promote the integration of sensor nodes via SCA bindings. Moreover, we enable
spontaneous communications with some sensor nodes that execute a lightweight version of
DigiHome.

12.7 Conclusions and Future Work

In this article, we have presented DigiHome, a platform addressing the mobility, het-
erogeneity, and adaptation of smart entities. In particular, DigiHome detects adaptation
situations by integrating context information using an SCA-based architecture. This archi-
tecture promotes the modularization of concerns and fosters the application of the REST
principles by exploiting the SCA extensibility. The simplicity and data orientation of
REST, combined with the SCA independence of implementation technologies, make Digi-

Home an attractive solution to deal with heterogeneity in terms of interactions. The
definition and application of ubiquitous bindings in the platform enable spontaneous com-
munication by means of standard protocols (e.g.,UPnP and SLP), and furnish context
provider selection (based on QoC attributes). On the other hand, the modularized archi-
tecture of DigiHome allows the definition of variants for the platform, called DigiHome

objects, that can be deployed on resource-constrained devices. The functionality of these
objects is exposed as services, accessible via several protocols, which can be accessed by
clients that do not have to be part of the platform. Furthermore, the clear separation of
concerns in the DigiHome architecture encourages the exploitation of WSNs for simple
processing and local decision making. The suitability of our platform for context integra-
tion was evaluated with different discovery and context representations.

Future work includes further tests using some sensor nodes as context information
providers, which will execute Remora objects objects. Also, we are currently working on
a distributed CEP approach to diminish risk of failure, given the single instance of event
processing in our project. We will also define more complex scenarios including user prefer-
ences conflicts and the absence of mobile devices when the presence of someone is detected
in home. These scenarios will allow a further illustration of the potential of the platform.
Furthermore, we plain to incorporate a replication mechanism of the DigiHome core by
benefiting from the different devices such as desktops, laptops and set-top-box available in
home. This mechanism will enable the platform to deal with possible failures of the device
hosting the core. Finally, we plan to exploit the FraSCAti’s reconfiguration capabilities
in order to integrate new communication and discovery protocols at runtime.

206

References

Acknowledgement. This work is partly funded by the EGIDE Aurora and INRIA SeaS
research initiatives.

References

[1] D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and F. Eliassen,
“Restful integration of heterogeneous devices in pervasive environments,” in DAIS
’10: Proc. of the 10th IFIP Int. Conf. on Distributed Applications and Interoperable
Systems, ser. LNCS, vol. 6115. Springer, 2010, pp. 1–14.

[2] Open SOA, “Service Component Architecture Specifications,” Nov. 2007.

[3] R. T. Fielding, “Architectural styles and the design of network-based software archi-
tectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[4] D. C. Luckham, The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2001.

[5] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni, and J.-B. Stefani, “Re-
configurable sca applications with the frascati platform,” in SCC ’09: Proc. of the
IEEE Int. Conf. on Services Computing. Washington, DC, USA: IEEE Computer
Society, Sep. 2009, pp. 268–275.

[6] R. Mélisson, P. Merle, D. Romero, R. Rouvoy, and L. Seinturier, “Reconfigurable run-
time support for distributed service component architectures,” in Automated Software
Engineering, Tool Demonstration, Belgium, 2010.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani, “The Fractal

component model and its support in java,” Soft. Pract. and Exp., vol. 36, no. 11-12,
pp. 1257–1284, 2006.

[8] Listeners Considered Harmful: The Whiteboard Pattern, OSGi Alliance, 2004.

[9] A. Taherkordi, F. Loiret, A. Abdolrazaghi, R. Rouvoy, Q. L. Trung, and F. Eliassen,
“Programming sensor networks using Remora component model,” in DCOSS ’10:
Proc. of the 6th Int. Conf. on Distributed Computing in Sensor Systems. Santa
Barbara, CA, USA: Springer, 2010, pp. 45–62.

[10] D. Romero, R. Rouvoy, L. Seinturier, and P. Carton, “Service discovery in ubiquitous
feedback control loops,” in DAIS ’10: Proc. of the 10th IFIP Int. Conf. on Distributed
Applications and Interoperable Systems, ser. LNCS, vol. 6115. Springer, june 2010,
pp. 113–126.

207

The DigiHome Service-Oriented Platform

[11] UPnP Forum, “UPnP Device Architecture 1.0,”
http://www.upnp.org/resources/documents.asp, Apr. 2008.

[12] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location Protocol, Version
2. RFC 2608 (Proposed Standard),” http://tools.ietf.org/html/rfc2608, Jun. 1999.

[13] M. Krause and I. Hochstatter, “Challenges in modelling and using quality of con-
text (qoc),” in Proc. of the 2nd Int. Workshop on Mobility Aware Technologies and
Applications, Montreal, Canada, 2005, pp. 324–333.

[14] EsperTech, “Esper,” http://esper.codehaus.org.

[15] D. Romero, R. Rouvoy, L. Seinturier, and F. Loiret, “Integration of heterogeneous
context resources in ubiquitous environments,” in SEAA ’10: Proc. of the 36th EU-
ROMICRO Int. Conf. on Software Engineering and Advanced Applications. Lille,
France: ACM, 2010, p. 4.

[16] Zigbee Alliance, “ZigBee and Wireless Radio Frequency Coexistence,”
http://www.zigbee.org/imwp/download.asp?ContentID=11745, Jun. 2007.

[17] C. Baker, Y. Markovsky, J. Greunen, J. Rabaey, J. Wawrzynek, and A. Wolisz, “Zuma:
A platform for smart-home environmnents,” in Intelligent Environments, 2006. IE 06.
2nd IET Int. Conf. on, vol. 1, july 2006, pp. 51 –60.

[18] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrst-
edt, “A middleware infrastructure for active spaces,” IEEE Pervasive Computing,
vol. 1, no. 4, pp. 74–83, 2002.

[19] D. J. Cook, M. Youngblood, E. O. Heierman, K. Gopalratnam, S. Rao, A. Litvin, and
F. Khawaja, “Mavhome: An agent-based smart home,” in PERCOM ’03: Proc. of
the 1st IEEE Int. Conf. on Pervasive Computing and Communications. Washington,
DC, USA: IEEE Computer Society, 2003, p. 521.

[20] K. Henricksen, J. Indulska, and T. Mcfadden, “Middleware for distributed context-
aware systems,” in DOA ’05: Int. Symposium on Distributed Objects and Applications.
Springer, Nov. 2005, pp. 846–863.

[21] F. Paganelli, G. Bianchi, and D. Giuli, “A context model for context-aware system
design towards the ambient intelligence vision: Experiences in the etourism domain,”
in Universal Access in Ambient Intelligence Environments, 2006, pp. 173–191.

[22] C.-F. Sorensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda, A. Friday, and H. Duran-
Limon, “A context-aware middleware for applications in mobile ad hoc environments,”
in MPAC ’04: Proc. of the 2nd Workshop on Middleware for Pervasive and Ad-hoc
Computing. Toronto, Canada: ACM, 2004, pp. 107–110.

208

References

[23] X. Hu, Y. Ding, N. Paspallis, P. Bratskas, G. A. Papadopoulos, P. Barone, and
A. Mamelli, “A peer-to-peer based infrastructure for context distribution in mobile
and ubiquitous environments,” in CAMS ’07: Proc. of 3rd Int. Workshop on Context-
Aware Mobile Systems, Algarve, Portugal, 2007.

[24] M. Kirsch-Pinheiro et al., “Context grouping mechanism for context distribution in
ubiquitous environments,” in DOA ’08: Proc. of the OTM Int. Conf. on Distributed
Objects and Applications. Monterrey, Mexico: Springer, 2008, pp. 571–588.

[25] G. E. Churcher and J. Foley, “Applying and extending sensor web enablement to a
telecare sensor network architecture,” in COMSWARE ’09: Proc. of the 4th Int. ICST
Conf. on COMmunication System softWAre and middlewaRE. New York, NY, USA:
ACM, 2009, pp. 1–6.

[26] W. Wang, J. Sung, and D. Kim, “Complex event processing in epc sensor network
middleware for both rfid and wsn,” in ISORC ’08: Proc. of the 11th IEEE Symposium
on Object Oriented Real-Time Distributed Computing. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 165–169.

[27] S. Tilak, N. A.-G. K. Chiu, and T. Fountain, “Dynamic resource discovery for wireless
sensor networks,” 2005.

[28] COBIS Consortium, “Cobis. fp strep project ist 004270,” 2009, http://www.cobis-
online.de.

[29] G. Hackmann, C.-L. Fok, G.-C. Roman, and C. Lu., “Agimone: Middleware support
for seamless integration of sensor and ip networks,” in DCOSS ’06: Int. Conf. on
Distributed Computing in Sensor Systems. Springer, 2006.

[30] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent middleware for self-
adaptive wireless sensor networks,” ACM Trans. Auton. Adapt. Syst., vol. 4, 2009.

[31] C.-L. Fok, G.-C. Roman, and G. Hackmann, “A lightweight coordination middleware
for mobile computing,” in Coordination ’04: Proc. of the 6th Int. Conf. on Coordina-
tion Models and Languages. Springer, 2006, pp. 135–151.

209

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

