
Generic Multi–Packet Communication through Object
Serialization

Leon Evers
Pervasive Systems Group

University of Twente,
the Netherlands

eversl@cs.utwente.nl

Maria Eva Lijding
Pervasive Systems Group

University of Twente,
the Netherlands

lijding@cs.utwente.nl

Jan Kuper
Embedded Systems Group

University of Twente,
the Netherlands

kuper@cs.utwente.nl

ABSTRACT
Wireless sensor networks communication protocols and ab-
stractions have remained fairly simple until now, dealing
only with payloads the size of individual network packets.
A method to transparently communicate variably sized data
in a platform-agnostic manner may ease building energy-
efficient and robust applications.

This paper presents a communication abstraction that en-
ables multi-packet communication, while minimizing mem-
ory requirements by using an object serialization mechanism
to integrate memory management and communication func-
tionalities. Evaluation shows reduction of communication of
up to 3.5 times using our method compared to state of the
art, and improvement of application performance through
the use of reliable communication.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Performance, Reliability, Experimentation

Keywords
Wireless Sensor Networks; Transmission Protocol; Reliable
Communication; Memory Management

1. INTRODUCTION
Wireless Sensor Networks have been around for a number

of years now, and the software and tool support for program-
ming them is expanding and maturing quickly. Surprisingly
however, the software abstractions for communication have
remained fairly basic. All that WSN programmers can use
to communicate are individual byte packets to transfer sin-
gle integers or small, flat structures. Given the importance
of communication in WSN applications – it is practically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MidSens’08, December 1-5, 2008, Leuven, Belgium
Copyright 2008 ACM 978-1-60558-366-2/08/12 ...$5.00.

the only method of data in– and output – this is truly a
remarkable fact.

In Internet communication, we are used to communicating
streams of data, automatically packaged into separate pack-
ets, using the TCP/IP protocol. More advanced services
like serialization or marshaling directly transfer language-
level objects, without needing to explicitly encode and de-
code those objects. Having a similar kind of communication
service for WSN platforms could simplify writing applica-
tions, which are more portable across platforms using differ-
ent packet sizes.

For the SensorScheme WSN platform [4], we have devel-
oped a communication mechanism called ObjectStreams that
transfers collections of linked objects in a sequence of pack-
ets. Using ObjectStreams makes it straightforward to com-
municate payloads of any size, which is then transmitted in
as many packets as needed.

In section 2 we describe the object model, the memory-
efficient serialization mechanism, and multi-packet order-
ing and recombination technique used. ObjectStreams is
a mechanism that can be used in conjunction with any of
the wide variety of existing MAC, routing and transport
protocols for WSNs. It is independent of the underlying
protocols and packet payload size, and optionally supports
reliable transport through the use of acknowledgments and
retransmissions.

We evaluate the benefit for such applications in section 3
by taking a closer look at two example applications: neigh-
borhood gossiping, and tree-routed data collection as used
by for example TinyDB [8]). We analyze the communication
efficiency and memory requirements for different implemen-
tations of the same application, one of which uses Object-
Streams.

We conclude this paper with a review of the state of the
art in section 4, and state our conclusions in section 5.

2. OBJECTSTREAMS
ObjectStreams is a communication library that merges

multi-packet streaming communication with object serial-
ization in single communication protocol stack layer. Serial-
ization is a well-known method used to transport language-
level objects across networks, available in languages such as
Java for use with RMI [10] , or known as marshalling in
CORBA [13]. ObjectStreams was developed as a communi-
cation library for the SensorScheme [4] platform, but – as
it is built on TinyOS [6]– its benefits are also applicable for
use with TinyOS applications.

Unlike internet-scale serialization mechanisms that make

25

large pair

 12345

pair pair float pair

 8.9
 small

 67 null

pair

null 0

(I w 12345 (I b 67) F 8.9 () I . I b 0)

(I w (12345 I b) F 6712345 () I . I b)) 0 8.9

(a)

(b)

(c)

Figure 1: Encoding of an example message: (a) The
in-memory layout; (b) tokens and bytes emitted dur-
ing encoding; (c) message packed into two bytes.

use of the TCP/IP protocol for transmission and fragmen-
tation, ObjectStreams is responsible for the serialization of
payload data, fragmentation of messages, and recombination
on the receiving side.

The ObjectStreams protocol layer positions itself between
the network or routing layer and the application in a proto-
col stack.

Different routing protocols can serve as the lower layer to
ObjectStreams, provided that they present a standard inter-
face for sending and receiving of individual packets, such as
the TinyOS Send and Receive interfaces. This allows appli-
cation developers to use ObjectStreams with the transport
protocol of their choosing or send ObjectStreams messages
directly over the broadcast medium (using Active Messages
on TinyOS) to direct neighbor nodes. If desired, it is pos-
sible to reliably transfer the sequence of packets comprising
an ObjectStreams message, with the use of retransmission
mechanisms that a transport protocol provides.

2.1 Object model
ObjectStreams uses a linked list data structure designed

to minimize memory footprint. Objects of different kinds
can be made to form compound data structures containing
integer and floating point numbers. SObjects are a generic
data type that can can contain four different kinds of data:

Integer a signed integer between −231 and 231 − 1;

Floating point a 32-bits floating point number;

Pair an object containing two references – left and right –
to other objects;

Null a special object (with its own type) used to signify the
end of a list.

While the first two kinds just contain a single number, the
pair SObject kind is the constructive element for complex
data structures, such as lists, associative lists or dictionaries
and binary trees. Arrays and structs (as they are called in
the C programming language) – particularly relevant in the
context of WSNs, because of their frequent use – can be
represented by forming a linked list of pairs where the left
references point to the elements inside the array or struct,
and the right reference points to the rest of the list, or to
the null object in the case of the last element of the list.

2.1.1 Implementation
To achieve acceptable memory use, minimizing the mem-

ory footprint of SObjects is crucial. Figure 1 (a) shows the
in-memory layout of an example ObjectStreams message.

All SObjects are allocated from an allocation pool consist-
ing of 4 byte allocation cells. Application developers using
ObjectStreams may themselves choose the size of the allo-
cation pool, but for maximum performance it is considered
good practice to allocate as large a pool as possible, that is,
all memory not allocated by other parts of the application
should be available for allocation of SObject cells.

References to SObjects, which are the contents of pairs,
occupy 16 bits. References, shown as arrows in figure 1 (a),
contain a type tag (shown next to the arrow) of 2 bits in
size, to distinguish the different kinds of SObjects from each
other. The remaining 14 bits of the SObject reference con-
tain the address of the SObject carrying the data, in the case
of large integers, floats or pairs, stored in an allocation cell.
References using the fourth type tag value are considered
short integers: the address bits of the reference contain the
numerical value, between −213 and 213−1. The majority of
integer numbers in a program are within this range, and the
use of short integers eliminates the need for a separate cell
to store the number. Finally, the special-purpose null SOb-
ject does not need a storage location. Only tests for equality
are performed on the null SObject, so its value is a single
address that is outside of the range of available allocation
cells.

The ObjectStreams library provides the necessary opera-
tions to allocate, access and deallocate SObjects, and pro-
vides a number of conversion routines, to make it easy and
straightforward to use SObjects in WSN application code
witen in NesC.

2.2 Serialization
During communication, ObjectStreams serializes SObjects

as a sequence of bytes, that – stored into one or more packets
– travel to a receiver, which reconstructs the message as a
collection of SObjects in memory. Packets are filled to their
maximum payload size, or with as many bytes as are left at
the end of the sequence.

The method of encoding SObjects, shown in figure 1 (b)
is similar to the Lisp [9] notation of linked list structures
(in figure 1 (b), the black tokens): a list is surrounded by
opening and closing tokens (parentheses), with inbetween
the elements of the list, which may themselves be lists sur-
rounded by a pair of opening and closing tokens, or integer
or floating point numbers. Instead of characters separated
by whitespace, ObjectStreams uses a compressing encoding,
emitting tokens and single bytes according to the algorithm
in figure 2.

The algorithm in figure 2 uses pattern matching on the
type of the SObject to define the operations performed in
the main encoding routine – encode – and the auxilary pro-
cedures enc-int and enc-list. Tokens encode which one of
four possible types of data is encoded next, after which the
actual data follows. At any moment during encoding, only
four possible tokens are permitted, from either the ObjToken
or IntToken data types defined in figure 2. Figure 1 (a)
shows the result of applying this algorithm to the example
message in figure 1 (a). Tokens are encoded using 2 bits, and
four subsequent tokens are put together in a single byte. Fig-
ure 1 (c) shows the result of serializing the example message

26

data SObject = Pair SObject SObject | Int num
| Float float | Null;

data ObjToken = TStart | TEnd | TInt
| TFloat; // ‘(’, ‘)’, ‘I’, ‘F’ in fig 1

data IntToken = TByte | TWord | TLong
| TDot; // ‘b, ‘w’, ‘l’, ‘.’ in fig 1

encode (Null) = emit (TStart), emit (TEnd);
encode (Pair l r) = emit (TStart), encode (l), enc-list (r);
encode (Int n) = emit (TInt), enc-int (n);
encode (Float f) = emit (TFloat), emit-bytes (f, 4);

enc-list (Null) = emit (TEnd);
enc-list (Pair l r) = encode (l), enc-list (r);
enc-list (s) = emit (Int), emit (TDot), encode (s);

enc-int (−27 ≤ n < 27) = emit (TByte), emit-bytes (n, 1);
enc-int (−215 ≤ n < 215) = emit (TWord), emit-bytes (n, 2);
enc-int (−231 ≤ n < 231) = emit (TLong), emit-bytes (n, 4);

Figure 2: Algorithm for encoding of SObjects into
a token sequence.

into a sequence of bytes stored into two packets.
Encoding of SObject structures and filling packets pro-

ceeds in a streaming fashion: The SObject is traversed and
tokens emitted until the packet’s payload section is filled,
or the entire SObject structure is encoded. When a packet
is filled before the entire structure is traversed, the current
state of encoding is stored in a sequence of linked SObjects,
to be used again when encoding can resume. Subsequently,
when the next packet will be filled, the encoding state is re-
trieved, and the encoding process continues, storing emitted
tokens in the new packet.

Similarly, receiving nodes decode the contents of a packet
sequence on a per-packet basis. During decoding, tokens
are read from the packet payload, and the encoded SObject
structure is created, allocating SObjects as needed. When
a message consists of multiple packets, at the end of each
packet (except for the last packet of the sequence), the cur-
rent decoding state is stored in a number of allocation cells,
which are stored away to be retrieved when the next packet
in the sequence arrives. When the last packet of the se-
quence is received, ObjectStreams returns to the application
a reference to the SObject structure contained in the pack-
ets. In case not all packets in the sequence are received, the
SObjects received are deallocated, and not returned to the
application.

2.3 Packet Sequencing
ObjectStreams carries its payload in a sequence of pack-

ets. Receivers of this packet sequence must be able to rec-
ognize all packets belonging to the same sequence, and pro-
cess them one by one, in order, without missing ones or du-
plicates. Additionally, nodes may receive multiple streams
simultaneously, possibly from the same sender. The Object-
Streams protocol defines a packet header format designed to
take care of all of this, while being compact enough to induce
only marginal overhead. The encoded SObject structure can
have arbitrary complexity and size, and its size can be calcu-
lated only by traversing the entire structure. The encoded
message therefore does not contain information regarding
the total number of packets it consists of, but rather is a

stream of packets, marking only its start and end.
ObjectStreams payload is carried in a stream of pack-

ets, each consisting of a small header, and a payload field
to carry the stream content. ObjectStreams defines three
header fields: a start flag a, a stop flag z and a sequence
number k – implemented as a fixed-bit-width number of b
bits. The start flag marks the start of a stream, and is set
only on the first packet of the stream. Similarly, the end flag
is set on the last packet of a stream. The sequence number
is used to track the order of packets in a stream. Every sub-
sequent packet in the stream contains a sequence number
ki+1 = ki + 1 mod 2b, until the last packet, which is marked
with the stop flag.

The tuple 〈 sequence number, source address 〉, called a
packet ID, uniquely defines every individual packet. There-
fore, no two packets with the same packet ID should be alive
in the network at any moment. When a packet is received
and processed at its destination it is no longer active and a
packet with the same packet ID is permitted again. Packets
can remain active for a longer duration because of buffering
or caching at either the source or destination node, or on
any intermediate node in the case of multi-hop link models.

Multiple streams between the same sender and receiver
can be active at any one time, alternating packet trans-
missions. Streams are numbered S0, S1 ... Sn, each of
which consists of packets p0, p1 ... pm. To minimize the
probability of duplicate packet IDs active in the network,
the sequence number of a stream’s first packet Sn+1

p0 is ini-
tialized to the sequence number of the most recently sent
packet from the stream last created at the same node – Sn

pm

– minus a number k(mod 2b), where k is greater than the
number of packets the network can buffer: seqno(Sn+1

p0 =

seqno(Sn
pm

)kmod 2b).

3. EVALUATION
In this section we investigate the consequences of replac-

ing well-known existing WSN application protocols with an
implementation based on ObjectStreams: a 2-hop neighbor-
hood gossip protocol, and a tree-routed data collection ap-
plication. Our main objective is to expose the differences in
communication and memory needs between the alteratives
evaluated. Besides, as the compared implementations dis-
play somewhat different behavior, we look at the impact of
alternative implementations on application performance.

3.1 Simulation and communication modeling
We evaluate our protocols using a simulated network of

nodes that run the algorithms described below. We model
the network as a fully connected graph, with directional
edges, labeled with Pij , the probability of reception between
any two nodes, that ranges from 100 % for nearby nodes to
around zero for the most separated nodes. The reception
probability Pij between each pair of nodes are drawn from
a Gaussian random distribution, the mean and variance of
which are a function of the distance between the nodes. The
distance-related distribution parameters are obtained from
an empirical study performed by Ganesan et al. [5], also
used in the TOSSIM simulation framework.

The network consists of a large number of nodes, placed
randomly on a square area of varying sizes. The square area
’wraps around’ at the top and bottom and the sides, making
nodes at opposite edges each others’ neighbors. When the

27

0 5 10 15 20 25 30
0

2

4

6

8

10

avg. # neighbors

pa

ck
et

s
Packets sent per period

Single−packet
Multi−packet
ObjectStreams

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

bytes

Memory needed to store all received data

 Single−packet
Multi−packet
ObjectStreams average
ObjectStreams maximum

0 5 10 15 20 25 30
0

20

40

60

80

100

avg # neighbors

da

ta
 it

em
s

Distinct items received per period

Single−packet
Multi−packet
ObjectStreams

(a) (b) (c)

Figure 3: Performance parameters of broadcast protocol evaluation.

0 20 40 60 80 100 120 140
0

5

10

15

Average number of neighbors

S
en

t p
ac

ke
ts

Packets sent per value received at root

Unreliable
Retransmit
ObjectStreams

0 20 40 60 80 100 120 140
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Average number of neighbors

R
ec

ei
ve

d
pa

ck
et

s

Packets received at root

Unreliable
Retransmit
ObjectStreams

(a) (b) (c)

Figure 4: Performance parameters of the tree routing protocol evaluation.

transmission range is much smaller than the area dimen-
sions, the ’wrapped’ network mimics a network of infinite
size. We use this method to eliminate the effects of nodes at
the edges with reduced connectivity, and make the perfor-
mance characteristics independent of network size. In all of
the studies described we have experimented with networks
of different numbers of nodes, and found the results to be in-
dependent of network size. We consistently have used large
networks of 700 nodes, to reduce the influence of random ef-
fects, but the results are representative of smaller networks
as well.

The parameter we vary in the studies is the area size in
which nodes are placed. As the transmission range of the
nodes remains equal, this has the effect of increasing con-
nectivity as the area size decreases. We measure the con-
nectivity as the number of other nodes that each node is le
to receive from with probability of 50 % or greater. The
connectivity, averaged over all nodes, is displayed on the
horizontal axes of the graphs in figures 3 and 4.

Furthermore we measure only packet transmission and re-
ception occurrences. Communication is assumed instanta-
neous and packet collisions do not occur. These assumptions
accurately mimic actual implementations with very infre-
quent transmissions, short packet transmission times and a
randomly chosen moment of transmission within each pe-
riod. The goal of avoiding packet collisions coincides with
our goal of reducing communication: reduction of communi-
cation results in a proportional reduction of packet loss, and
increased communication results in an increase in packet loss
due to collisions.

3.2 Two-hop gossip protocol

As our first example we take a gossip protocol where every
node gathers sensor data from its two–hop neighborhood
(that is, the node’s neighbors and its neighbors’ neighbors).

The protocol operates in rounds of fixed duration. Ev-
ery round, nodes broadcast their sensor data, and received
data from its neighbors. The next round, nodes broadcast
all data received from its neighbors alongside their own new
sensor data, and receive all second–hop–neighbor data sent
by its neighbors. During each round, nodes make their cal-
culation using all (first and second hop) data received. Note
that multiple instances of second hop neighbor data might
be received, while only a single instance is needed in the
calculation.

The data items that nodes communicate are small – a sen-
sor reading, a node ID, and two coordinates in the case of
an object tracking application – and usually smaller than
the payload of sensor network platforms (28 bytes for the
Mica 2 motes using TinyOS [6]). During every round, nodes
transmit multiple data items, both from themselves and for-
warded data items from their neighbors.

We compare the performance of ObjectStreams to two al-
ternative implementations, both of which use existing WSN
communication protocols and abstractions, modified to ex-
ecute this protocol more efficiently. The first (called single-
packet) is an implementation of the protocol that transports
a single measurement per packet, as is done in the abstract
regions [15] implementation.

The second (named multi-packet) represents the lower
bound on communication requirements. It operates simi-
lar to the ObjectStreams implementation, sending a single
multi-packet message each timer interval, but uses fixed-
sized statically allocated message buffers to store data re-

28

ceived from first-hop neighbors. Both the size of these mem-
ory buffers, and the number of buffers needed depends on
the number of neighbors. The need to statically allocate a
large number of these memory buffers results in large mem-
ory requirements for this implementation. All three imple-
mentations send data items containing three 16-bit sensor
values and a 16 bit network address, and use packets with
28 bytes of payload.

Figure 3 shows the evaluation results of these three pro-
tocol implementations for varying connectivity rates. Fig-
ure 3 (a) shows the number of packets sent per period.
For the more dense networks, the single-packet implementa-
tion quickly becomes very costly in terms of communication
needs. ObjectStreams can contain about 2 2

3
items in a sin-

gle packet, which reduces communication considerably. The
multi-packet implementation is even more efficient, packing
3.5 data items per packet.

Figure 3 (b) shows the memory requirements of the three
implementations. Single-packet uses no additional packet
buffers to hold received data, so its memory use is a small,
fixed amount. The multi-packet version uses multiple packet
buffers to receive and store received neighbor data items.
The amount of memory that needs to be allocated for packet
buffers, shown in the graph, is the minimum number of bytes
needed to receive messages from its neighbors for 95 % of
the nodes. The graph shows two data sets for the Object-
Streams version: a maximum and an average amount. The
maximum is the amount needed to store into SObject cells
the equivalent of all multi-packet buffers. This is a theoreti-
cal maximum amount of memory, that is never fully used in
any of the nodes participating in the evaluation . The (av-
eraged) memory allocated by nodes during the simulation is
shown as the ‘average’ result set.

The ObjectStreams and multi-packet implementations re-
ceive fewer – about 75 % to 50 % – second-hop data items,
as shown in figure 3 (c), which translates into reduced appli-
cation performance. This reduced performance occurs espe-
cially in higher-densty networks, when the loss of some data
is less problematic.

From these results we can conclude that the three im-
plementations behave quite differently: While the single-
packet implementation has the lowest memory footprint and
achieves the best application performance (in terms of the
number of distinct data items received), the multi-packet
implementation is the most energy-efficient as far as commu-
nication is considered, at the cost of considerable memory
requirements. Inbetween these two, ObjectStreams operates
energy-efficiently, while keeping memory consumption low.

3.3 Tree–routed data collection
The second application we evaluate concerns the collec-

tion of sensor data, and routing it down a tree rooted at a
gateway node. TinyDB [8] is the prime example of using
this method. When the complete data set is required, as
opposed to only a summary, such as the average vale, in-
termediate nodes need to forward all individual data values
received from nodes higher up in the tree. In current im-
plementations such as TinyDB, every individual sensor data
item is transmitted in a separate packet.

We we evaluate ObjectStreams by comparing it to two
alternative implementations. Both alternative implementa-
tions use a single packet for every sampled data item, sim-
ilar to TinyDB. The first alternative – called unreliable –

transports the sensor data in a best-effort manner, with-
out the use of acknowledgements and retransmissions. The
other implementation, called retransmit uses acknowledge-
ments and retransmissions as does the ObjectStreams im-
plementation to achieve a near 100 % delivery ratio of mea-
surements to the root: Parent nodes will send an acknowl-
edgement upon reception of packets containing sensor data
items. When the sender does not receive the acknowledge-
ment, it retransmits the packet up to 5 times, and reselects
a parent if the fifth retransmission was not successful either,
after which transmission restarts. All three protocols use the
TinyOS 2 Collection protocol [12] to create and maintain the
routing tree. The communication involved in tree construc-
tion and maintenance is not included in the measurements
reported here.

Our performance measurements count only the data items
successfully delivered at the collection root, rather than the
number of measurements sent from the leaves. In the case
of the unreliable implementation, each sensor data packet is
sent to the node’s parent node in a best–effort fashion, with-
out retransmissions in the case of packet loss. The result is
that only a fraction of the sensor data is actually delivered
to the routing tree, and the probability of delivery is not
equal for all nodes, but depends on the position in the rou-
ting tree. For nodes high up in the routing tree, delivery of
its data takes many individual transmissions, each of which
may fail. To graphically indicate this, figure 4 (a) shows a
randomly generated routing tree configuration for a sensor
network of 200 nodes. The circles show the locations of the
nodes, and the lines between them indicate a parent link for
each node. The tree root is a node in the center of the figure
(hidden behind the thick lines). The shading of the circles
indicate the end-to-end delivery probability of each node’s
sensor data, ranging from as low as 11 % (in white) in the
outer corners of the network to 100 % for nodes near the
root (in black). The line thickness of the links connecting
nodes to their parents are proportional to the amount of
data traveling across it. The connections near the base of
the network carry a heavy load, up to as much as 73 sensor
data records every interval.

Figure 4 (b) displays the number of packets sent per value
arriving at the collection root. Interestingly, unreliable and
retransmit perform practically identical. ObjectStreams re-
quires considerably less communication because it is able
to transport about 3.5 sensor measurements in each packet.
For sparser networks, where nodes are at greater distances
from each other, the tree construction algorithm creates
deep trees, consising of connections to a parent node that
have a high probability of failing. Denser networks need less
communication, as a result of lower packet loss rates and
reduced tree depth.

Figure 4 (c) displays the number of packet transmissions
to the root per received data value. For the unreliable imple-
mentation, this metric is one by definition, since one packet
per data item is used, and no retransmission occur. The im-
pact of retransmissions for a retransmit implementation is a
higher communication load for the root node, since possible
retransmissions take place. In the case of ObjectStreams, in
the last hop to the root all sensor values generated in the
subtree below the sender are put into a multipacket message
to the root, thus significantly reducing communication.

4. RELATED WORK

29

This work aims to offer some of the advantages of TCP/IP
to WSN platforms. As mentioned earlier, µIP [3] is an IP
stack for WSN platforms. The TCP protocol is, however,
not very suitable for the bulk of WSN communication.

Communication of data structures through serialization
is a well-known and often-used technique, and lay at the
basis of technologies such as Java RMI [10] and CORBA
[13]. These serialization mechanisms are not designed for the
small devices used in wireless sensor networks, and cannot
be used. Besides ObjectStreams, serialization mechanisms
targeted specifically at WSNs have not been developed until
now.

One aspect or our work, to chain together a number of
packets and deliver them reliably and in order has been ad-
dressed by other published protocols. The Rudolph stack
layers, part of the Rime [1] protocol stack for the Contiki
[2] WSN operating system, can be used to communicate
payloads larger than a single physical packet. Its use is
restricted, however, to sending or receiving a single mul-
tipacket message at a time, since only a single message
buffer is available in memory. This limitation reduces its
usefulness, and reveals the memory-related difficulties for
implementing practical multi-packet transmission protocols.
In the Rime protocol stack, multiple large message buffers
would occupy too much memory.

In different ways, attention has been given to reliable
transmission of multi-packet messages. The S-MAC proto-
col [16], for example includes provisions for reliably sending
a burst of packets using acknowledges and retransmissions.
Such functionality is more often part of transport proto-
cols, of which Wang et al. present a survey [14]. Many of
these protocols can serve as a transport protocol for Object-
Streams, while some handle reliable transport of sequences
of packets itself, as does the Flush protocol [7].

5. CONCLUSION
ObjectStreams uses object serialization to enable multi-

packet communication by combining the communication pro-
tocol with a memory management strategy. Together it is
possible to efficiently transmit messages consisting of multi-
ple packets, and receive multiple such messages concurrently.

We evaluated the performance of two applications using
ObjectStreams compared to alternative implementations. The
two-hop gossip application evaluation shows that Object-
Streams provides a new trade-off between memory use, com-
munication cost and application performance. ObjectStreams
makes it possible to reduce communication to near the theo-
retical minimum, with only a small reduction in application
performance and while keeping memory use low. Evalua-
tion of the the tree collection protocol reveals a significant
reduction in communication of over 3 times, while the use of
a reliable transmission protocol can ensure lossless delivery
of all sensor data to the collection root.

6. REFERENCES
[1] A. Dunkels. Rime — a lightweight layered

communication stack for sensor networks. In
Proceedings of the European Conference on Wireless
Sensor Networks (EWSN), Poster/Demo session,
Delft, The Netherlands, Jan. 2007.

[2] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a
lightweight and flexible operating system for tiny

networkedsensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors
(Emnets-I), Tampa, Florida, USA, Nov. 2004.

[3] A. Dunkels, T. Voigt, J. Alonso, H. Ritter, and
J. Schiller. Connecting Wireless Sensornets with
TCP/IP Networks. In Proceedings of the Second
International Conference on Wired/Wireless Internet
Communications (WWIC2004), Frankfurt (Oder),
Germany, Feb. 2004. (C) Copyright 2004 Springer
Verlag.
http://www.springer.de/comp/lncs/index.html.

[4] L. Evers, P. J. M. Havinga, J. Kuper, M. E. M.
Lijding, and N. Meratnia. Sensorscheme: Supply chain
management automation using wireless sensor
networks. In Proceedings of the 12th IEEE Conference
on Emerging Technologies and Factory Automation,
ETFA 2007, Patras, Greece, pages 448–455, Los
Alamitos, September 2007. IEEE Computer Society
Press.

[5] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler,
D. Estrin, and S. Wicker. An empirical study of
epidemic algorithms in large scale multihop wireless
networks. Technical Report RB-TR-02-003, Intel
Research, march 2002.

[6] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E.Culler,
and K. S. J. Pister. System architecture directions for
networked sensors. In Architectural Support for
Programming Languages and Operating Systems, pages
93–104, 2000.

[7] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. E.
Culler, P. Levis, S. Shenker, and I. Stoica. Flush: a
reliable bulk transport protocol for multihop wireless
networks. In SenSys, pages 351–365, 2007.

[8] S. Madden, M. J. Franklin, J. M. Hellerstein, and
WeiHong. The design of an acquisitional query
processor for sensor networks. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international
conferenceon Management of data, pages 491–502,
New York, NY, USA, 2003. ACM Press.

[9] J. McCarthy. LISP 1.5 Programmer’s Manual. The
MIT Press, 1962.

[10] S. Microsystems and Inc. Java Remote Method
Invocation Specification, 1997.

[11] Network Working Group. Tep 123: Collection tree
protocol (ctp), 2007.

[12] S. Vinoski. Corba: Integrating diverse applications
within distributed heterogeneous environments. IEEE
Communications Magazine, (14):46–55, 1997.

[13] C. Wang, M. Daneshmand, B. Li, and K. Sohraby. A
survey of transport protocols for wireless sensor
networks. IEEE Network Magazine Special Issue on
Wireless Sensor Networking, 20(Issue 3):34 – 40,
May-June 2006.

[14] M. Welsh and G. Mainland. Programming sensor
networks using abstract regions. In First
USENIX/ACM Symposium on Networked Systems
Design and Implementation(NSDI ’04), Mar. 2004.

[15] W. Ye, J. Heidemann, and D. Estrin. An
energy-efficient mac protocol for wireless sensor
networks. In Proceedings of the IEEE Infocom, pages
1567–1576, New York, NY, USA, June 2002.
USC/Information Sciences Institute, IEEE.

30

