
Technical Report: TR_CS-07-267

Training Towards Mastery
Brian Krisler

Brandeis University
Volen Center for Complex Systems

Waltham, MA 02454-9110
bkrisler@cs.brandeis.edu

Richard Alterman
Brandeis University

Volen Center for Complex Systems
Waltham, MA 02454-9110
alterman@cs.brandeis.edu

ABSTRACT
Few users ever attain mastery with an application. Mastery,
the state of knowing how to work efficiently with an
application requires an understanding of the underlying
conceptual model of the system. The Active User Paradox
is one of the main inhibitors of mastery. In this study, we
present HotKeyCoach, a training method designed to insert
learning events into the flow of the activity that provides
contextually relevant training and helps the user circumvent
the active user paradox in the pursuit of application
mastery.

Keywords
Active User Paradox, Activity Theory, Skill Acquisition,
Mastery, Training, Design

INTRODUCTION
A well-designed user interface should accommodate both
novice and expert users and provide a means for a novice to
transition towards expertise [1].

At the novice level, the interface should encourage
exploration and promote the discovery of the functionality
required to perform their goal attaining tasks, within the
context of their activity. Once the user establishes a comfort
level with the interface, she should continue to learn,
transitioning beyond the visual elements of the interface, to
develop the deep structural knowledge characteristic of
expertise [2] that will enable her to work more efficiently
with the interface.

Most user interfaces contain the scaffolding required to
achieve expertise. For example, menu items display the
keyboard shortcut operator next to the function name,
thereby eliminating the need to locate documentation for
expediting frequent operations. Previous studies [3, 4] have
shown that even expert users continue to place a heavy
reliance on the visual display elements of the interface for
successful recall of common operations. The reliance upon
the display as the basis of application action retards the
emergence of better thought out and more effective plan-
based use of the application [5].

One inhibitor to attaining mastery is the Paradox of the
Active User [6]. Once a user acquires a basic understanding
of the operations required to perform a task, she continues
to repeat the successful operations even when she is aware
that more efficient execution methods probably exist [7].

As she gains experience with the application, becoming
more comfortable with its functionality she spends less time
exploring the interface to discover new functions and
features. Her focus switches away from learning the
interface towards performing her domain-associated tasks.
Because she spends little or no time learning the advanced
features of the interface, she must rely upon her existing
functional knowledge for completing her tasks. A user
plateaus in her knowledge of and efficiency with the
application and its interface.

One of the objectives of our research is the development of
a method for overcoming the active user paradox. Our goal
is to develop a method that scaffolds users toward mastery
without disrupting their everyday computer-mediated tasks.
We have developed an experimental training tool,
HotKeyCoach (HKC) that provides a user with the means
to continue her progression towards expertise and
eventually mastery of the application.

Existing training methods are frequently ineffective. User
manuals fall victim to the paradox of the active user [8].
Their consultation produces a disruption to the central
activity. They require the user to stop work in order to
locate both the manual and the desired instructional
information. Another issue is the lack of context. Designers
of user manuals cannot expect to understand the multitudes
of usage patterns for an application. For example a scientist
performing data analysis would use Microsoft Excel
differently than an accountant would for tracking spending.
For training to succeed it must take into consideration the
tasks of the users. The training must extend beyond the
simple tasks like underlining text, towards the analysis of
data by a scientist or the summary worksheet of the
accountant.

In our research, we are designing a training method to help
the user circumvent the active user paradox. Our model is
designed to introduce relevant training as learning events
within the context of the activity. Results from our study
confirm the effectiveness of this method towards training.

THEORITICAL FOUNDATION

Interface Staging
Graphical user interfaces (GUIs) support three stages of
application proficiency [9]. When a novice encounters an
application for the first time, she searches the menus within

Technical Report: TR_CS-07-267

the interface to discover the correct item for executing the
desired operation. Menu searching provides visual feedback
to the user helping to reinforce the learning experience. As
the user becomes more familiar with the application and the
operations required for performing tasks, she transitions
towards the usage of toolbars and context menus, reducing
the operational distance between the desired task and its
execution. These intermediate methods usually require
fewer interface interactions from the user, often resulting in
just a single mouse click for successful execution. Finally,
as the user approaches expertise, she becomes even more
comfortable interacting with the interface, requiring even
less feedback. The use of keyboard shortcuts and macros
helps to improve efficiency even further by reducing the
time required to move the hand between the mouse and the
keyboard [8]. The end goal is an optimal user experience
where desired functionality is executed with little or no
distraction from the interface.

However, in most cases, the transition tends to breakdown
before the user reaches true efficiency, with most
experienced users rarely employing keyboard shortcuts and
macros [9].

Novice vs. Expert Users
As an individual transitions from novice to expert, the users
knowledge about the tool transitions from a set of abstract
principles towards a series of concrete usage patterns [10].
For example, a novice user of an application interface sees
the interface as a set of context-free operators that she can
understand without reference to a specific situation [11].
Many interface actions require exploration and repeated use
in order to fully grasp their utility.

Learning how to use Paste Special in Microsoft Word is an
obvious example of how operators require exploration and
continued use to be fully understood. But even more
fundamental operators require exploration and practice to
gain mastery. After the user starts creating documents and
applying the functionality of the interface operations, such
as Format, Font, she starts to develop a meaning for the
operation within the context of her goals. She starts to
understand that each character within the document
contains attributes, with each attribute effecting the visual
representation of the character. She discovers, with practice,
that the selection mechanisms of her document editing
application provide her with the means to define the range
of text to format. The process of applying operators to
actual tasks and observing their effect on the problem is
where expertise develops.

 Once expertise is obtained, the individual no longer
requires an analytical principle to connect the current
situation to a relevant action. An expert can execute the
desired operation without the assistance of outside
mediation. When the advanced user of Microsoft Word
edits her document, she can select a text region and execute
command-d, via the keyboard to display the font properties
for the selected text, without moving the action into

working memory. She no longer requires the visual cue of
the Format menu item to assist with her desired operation.
She possesses the conceptual knowledge to successfully
modify the font attributes without mediation.

The ability to execute operations subconsciously
demonstrates a deep structural knowledge [2] of the
operation. When a novice performs an operation, she relies
on external cues from the interface to guide her. It is not
until the interface information becomes internalized, that
working memory is available to accommodate domain
specific tasks. Once information becomes internalized, the
user has the knowledge to construct plans, making it
possible to optimize performance [12]. However, for many
interactive tasks, behavior is driven by the surface features
of the display [13], with most users relying on the feedback
provided from the interface which prevents her from
internalizing the operations. In other words, using keyboard
shortcuts frees up resources to do the kind of planning that
leads to better thought out and more effective application
use.

Skill Acquisition to Attain Mastery
Anderson [14] describes two stages of skill acquisition, the
declarative stage and the procedural stage. During the
declarative stage, the user has enough information to
generate the desired behavior of a skill in some form. As
the user practices this skill, through the process of
compilation, the knowledge transforms into a procedural
form where it can be directly applied without outside
mediation. Once compiled, the skill continues to get fine-
tuned resulting in a gradual speed-up during the execution
of the skill.

When it comes to using an interface, the compiling of
frequent operations results in a speed up of user work. As
the user becomes more efficient and knowledgeable about
the articulation work it takes to use the interface, she frees
up more time to perform her actual work. As a result, the
application becomes transparent and unobtrusive [18]. This
transparency leads to a more optimal user experience,
where the user stays in the flow of the activity [19], and
concentrates for extended periods of time without
interruption and demonstrates expertise with the interface.

However, users frequently form procedural knowledge at
the menu or toolbar stage of the activity, never reaching the
keyboard shortcut stage. Models on adaptive choice [15,
16] are based on the principle that if a procedure was
successful in the past, it will most likely be successful again
in the future. Unfortunately, the adapted choice principle is
not always the most efficient for the given task. Part of this
lack of efficiency stems from an insufficient knowledge
about the underlying functionality of the system [17].

By not developing an understanding of the interface
actions, the user never develops a mastery of the
application. Because of adaptive choice they might compile
into a procedural form the wrong set of interface actions.

Technical Report: TR_CS-07-267

Mastery means you need to continue to learn despite the
problem of adaptive choice and the tendency to compile
into procedural form too soon.

Mastery, a state of “knowing” how to productively work
through the technology, is a problem of skill acquisition. To
learn to operate at a more effective level of an activity
many users need help advancing beyond the exclusive
mouse usage typical of the earlier stages of interface
utilization. To achieve mastery requires an understanding of
the conceptual model that underlies an application, i.e.
learning the operations and methods that best apply to
different kinds of situations. As the user becomes more
efficient and knowledgeable about the articulation work it
takes to use the application, she can remain within the flow
of the activity for longer periods of interrupted time. By
developing a deep conceptual model of the system, the
amount of work required to accomplish goals diminishes,
resulting in a more efficient utilization of the system.

Active User Paradox
As technology advances, application interfaces become
more complex, incorporating many new features that
require an increased amount of understanding for successful
utilization. Training manuals are a standard method for
learning how to use new technology; however, learners at
every level tend to avoid reading [6], with most users
preferring instead to dive straight into a system [20] and
discovering the intricacies of the interface as they attempt
to complete their work. As a result of this as-you-go
learning method, most users typically adapt their familiarity
with similar systems and functionality and improvise when
required. For example, when an architect uses a new
computer-assisted drawing (CAD) application she applies
her existing knowledge to the new application, preferring to
discover the details of the new interface while she works.
This tendency to make do with existing knowledge is
referred to as the assimilation bias [6]: the individual
employs already known operations even when she knows or
suspects more efficient methods probably exist [7].

Complicating the transition towards expertise even further
is the production bias. The production bias concerns the
tension between short and long term competency and
productivity [6]. When a user requires a tool for completing
a task, she must balance the time required to learn the
functionality of the tool with the application of the tool to
the task at hand. This balancing act often results in the
suspension of learning new interface functionality to
improve overall proficiency. When the architect employs
her new CAD tool, she prefers to avoid the tutorials and
example exercises because of the overhead they entail and
the conflicting time pressure to finish the tasks associated
with her job.

These mutually reinforcing conflicts are referred to as the
Paradox of the Active User. Because of the assimilation
bias, users will make do with what they already know how
to do. Because of the production bias, users tend to focus on

the their current task, not the application. Users who
frequently use an application would benefit from learning
more efficient methods for task completion. But because of
the production and assimilation biases the users who would
benefit most from learning more about the application are
also the most likely to not take the time to do the necessary
learning.

The use of an application’s menus versus the time it takes
to learn the comparable keyboard shortcut is an illustrative
example of the active user paradox. Once a user becomes
comfortable with using an application’s interface via menus
and toolbars they will continue to leverage these operators
for completing their tasks (assimilation bias). Knowing that
a potentially more efficient method exists for invoking the
operation, such as a keyboard shortcut exists, but not taking
the time to refer to the application’s manual to learn the
more efficient methods is an example of the production
paradox.

Our focus is on the effect of the active user paradox as an
inhibitor to skill acquisition, as the user approaches
interface mastery. When an individual turns to an
application as a tool for completing a task, she must balance
the time required to learn the details of the tool’s
functionality and interface with the task of completing her
work. As a result, when the user encounters a new task
based activity, she tends to rely on already known
operations to complete the activity. This reliance results in
the suspension of new learning, preventing the user from
acquiring new, more efficient methods for satisfying the
activity. In order to achieve immediate throughput, the user
sacrifices long-term knowledge and efficiency in order to
satisfy the short-term goal of activity completion.

TRAINING METHOD
The tool we developed, HotKeyCoach (HKC), supports the
user’s progression towards mastery during the course of her
normal work activities. To attain this goal, the HKC model
turns the user’s interface actions into learning events: the
user briefly switches from her task to reasoning about the
domain [21]. At the intermediate level of skill acquisition,
an individual is still required, on occasion, to take the time
to make new discoveries and obtain knowledge relevant to
their activity. All changes in strategy occur during learning
events [22].

The HKC is built upon the following principles:

• Users have many learning opportunities for attaining
mastery of the technology that mediates her normal
work.

• Learning events can either introduce new material
and/or provide the learner with an ability to practice
previously introduced material.

• Learning events should minimize task interruption.

• The user should have complete control of the
learning process.

Technical Report: TR_CS-07-267

Minimal Task Interruption
To make training during an activity’s execution successful,
preservation of the activity’s flow is imperative. The
introduction of a learning event should occur as a minimal
distraction to the user. Microsoft’s paperclip is a training
method that results in an inappropriate distraction to the
user. When the paperclip appears, a new activity is created
where the user’s attention is directed towards the paperclip
and away from the user’s work. After a few untimely
interruptions, many users quickly abandon this training
method [23].

Bødker, [24], defines two types of interruption that direct
the user’s attention away from her central activity:
breakdowns and focus-shifts. A breakdown occurs when
something unexpected happens resulting in the creation of a
new activity. The new activity interrupts the work of the
user, becoming the focus of attention. Another type of
interruption is a focus-shift. A focus-shift is not as severe as
a breakdown and usually occurs when a subconscious
operation becomes a conscious activity, such as the
articulation of a point, method or procedure. The key
difference between a breakdown and a focus-shift is how it
affects the flow of the central activity. A breakdown results
in a severe disruption of the activity flow, while a focus-
shift has a minimal effect on the flow of the activity. Not
knowing how to pin an inserted object to a position in a
Microsoft Word document results in a breakdown. Using a
menu to select the “replace” operator in Word is a focus-
shift.

To preserve the flow of activity, the user must be able to
concentrate on her activity with minimal interruption [19].
The HKC model of learning introduces learning
opportunities during focus-shifts. Upon the introduction of
a learning event, the user has the option to ignore the
introduced event and continue with her main activity, or,
she can selectively learn an operation that is relevant to
what she is doing at that very moment during the focus-
shift. This method preserves the flow of the activity.

For example, during a document editing session, when a
user attempts to change the indentation for the current
paragraph, she must perform multiple steps. To satisfy this
goal, she uses the mouse to select the menu operation for
formatting a paragraph; selecting the menu item causes a
focus-shift. The focus-shift creates an opportunity for the
introduction of a learning event where she can learn the
keyboard shortcut for the most recently executed formatting
activity, which could lead to a reduction of work in the
future.

Numerous learning events of this sort are potentially
available. If every time the user selects an operation from a
menu, she had the option to learn an alternate and more
efficient method for achieving the same goal, over time she
would gain some mastery at using the application.
Leveraging these learning opportunities has multiple
benefits. The more the user performs an operation, the more

opportunity she has to acquire mastery of the operation.
And, her learning is highly contextualized: learning is
directly associated with the current activity.

 The problem is that if the user must access the help system
to discover the appropriate keyboard shortcut the learning
event is causing a breakdown: the process of locating the
proper keyboard shortcut to execute the desired operation
results in an extended deviation from the main task of
finishing the document. Even if she had an easily accessible
cheat-sheet of keyboard shortcuts, the likelihood that the
short-term cost of learning as-you-go will outweigh the
long-term benefit (production bias) is low. Costly learning
events of this sort introduce a breakdown in her main
activity and a slowdown of her work, resulting in a
reduction of productivity that is likely to be too costly to
maintain for any extended period of time.

A better design for a user to learn “as-she-goes” is for a
learning event to occur as a focus-shift. The HKC model of
learning introduces learning events as focus-shifts rather
than breakdowns. At the very moment she selects the menu
item, a semi-transparent “coach” window appears
informing her that she can perform the same operation
using the keystrokes option-command-L (see Figure 1). She
also has the ability to ignore coaching, giving her complete
control over the training process.

Complete Interface Control
One of the eight golden rules of interface design [8] is that
an interface must support internal locus of control. The user
should have complete control over the interface at all times.
There should be no surprising actions resulting from
unexpected interface behavior. The HKC model does not
usurp the user as the locus of control.

Once the user is presented with the coach tip, she has a few
choices. She can either practice the keyboard shortcut at
that very moment or ignore the coaching tip and continue
with her work. If she is interested in learning the keyboard
operation, she is given the option to execute the displayed
keyboard sequence. When the user chooses to practice the
keyboard sequence, the HKC software will validate the
sequence and dismiss the tip if the executed keystrokes
matched the proper sequence for the operation. If the user
mistyped the sequence, a notification indicating the
sequence was invalid is displayed. Practice leads to speedup
[15] in the acquisition of the skill.

Technical Report: TR_CS-07-267

Figure 1. Example of an introduced coach event,
demonstrating an instance where the subject was coached on

the keyboard shortcut for executing spell checking on the
document. The checkbox provides the ability not display the

window for this action in the future.

However, if the user decides to ignore the tip for this
particular instance, she can either click anywhere on the
screen or tap the return key to dismiss the event. She also
has the option of ignoring the tip for all future occurrences
by selecting a checkbox in the coach window.

By providing these controls to the user, she has control over
what she is taught. Having the capability to turn off
coaching means the user can selectively decide on what she
wants to learn.

IMPLEMENTATION
To collect evidence that our model promotes learning
beyond the visual elements of the interface, we developed a
native OS X 10.4+ application to implement our methods.

The application we developed, HotKeyCoach (HKC), runs
as a background service and is designed to provide
coaching to any application installed on the user’s system.

In order to achieve universal coaching, we developed our
application using the accessibility API [25] built into the
OS X operating system. By leveraging the features of this
API, we gained the capability to easily monitor all
application interactions performed by the user from the
operating system level. Each accessibility object also
contains useful information about the most recently
executed element, such as the application name, the
selected operation and the keyboard shortcut if one exists.
Having access to this information expanded the range of
applications we were able to provide coaching for out-of-
the-box because it eliminated the need to create
action/shortcut mappings for all interface applications.

Leveraging the accessibility API provides an almost
universal, system wide application of our training method.
It places no extra requirements upon the training system for
new applications. However, the accessibility API does have
its limitations in that not all interface widgets return useful

objects containing pertinent information. For example, the
palettes within Microsoft Office provide quick access to
functionality but from an accessibility point of view, they
do not provide any useful information pertaining to the
corresponding keyboard shortcut. Even worse, in some
cases they do not even contain an easily obtainable unique
identifier that would allow the training application to refer
to a lookup map. We are currently implementing a solution
that will help us identify all interface elements.

Data Collection
To analyze the effectiveness of our methods, HKC is
designed to transfer data to a central data harvester. Once
harvested, the data is stored in an SQL database for data
analysis.

A major requirement of our design is the protection of user
privacy. We assign each user a randomly generated
identification number the first time the application runs.
Each subject is known only as a random number for the
duration of the study.

For each interface interaction, we collect a few key items
for analysis:

• Timestamp of the interaction

• Method of interaction (mouse or keyboard)

• Name of the interaction (Copy, Paste, etc.)

• Name of the application (Word, Safari, etc.)

• If the interaction is ignored by the user

Information Presentation
To present a learning event to the user, HKC displays the
information relevant to the learning event within a semi-
transparent window (see Figure 1), also referred to as a
heads-up-display (HUD). The transparent nature of the
display enables the user to become aware of the learning
event without fully disengaging their thought from the
central activity [26].

Experimental Design
To test our methods, our software application,
HotKeyCoach (HKC), was made publicly available to the
Brandeis University population. Nine users volunteered,
installing and using our software for an average of 52 days.
The subject base consisted of both students and faculty.
During the study, we collected data for all interface actions
while HKC was active, providing a detailed view into the
activities of each user.

Overall, we observed a total of 38,000 interface actions
across 85 unique applications; an interface action is the
execution within an application of functionality by either
the keyboard or the mouse.

To analyze our data, we grouped all interactions on a per
day basis and then quartered the data, with each quarter
containing roughly the same number of days. For example,

Technical Report: TR_CS-07-267

if a subject used HKC for 40 days, then each quarter would
consist of 10 days worth of data.

• Novice (greater than 90% mouse usage)

• Intermediate (10 - 90% mouse usage)

• Expert (less than 10% mouse usage)

From this classification, we determined the subject base
consisted of two expert and seven intermediate subjects;
one intermediate subject was borderline novice entering the
study with 89.5% mouse usage.

Adoption of Our Method
One of our major design goals was to promote learning
through minimal distractions to the subject’s workflow. If a
subject finds our method interferes with her work, she has
three possible courses of action:

• Ignore coaching for a single operation

• Ignore coaching for an entire application

• Or disable the software entirely

We discovered that ignoring complete applications (Table
1, column C) was rare and that subjects chose to ignore
single operations (Table 1, column E), but not very often,
leading us to conclude that if the subjects were in fact using
HKC, our method was not interfering with their everyday
work tasks.

To determine that the subjects actually used our training
method, we calculated the percentage of time our software
was used as a ratio of the total install time to actual days of
usage. Using a scale from 0 to 100%, where 100% indicates
daily usage, and 0% signifies no usage, the results were
divided into three levels:

• Greater than 90% (Almost daily usage)

• 50-90% (Regular usage)

• Less than 50% (Intermittent usage)

We determined that 67% of our subjects were regular users
(See Table 1, column A) of HKC over the course of the
analysis period. Given the anonymous nature of our
subjects, we were unable to query the three intermittent
users about their experiences with HKC, however analysis
of their usage patterns revealed that two of the three
intermittent users turned off HKC for a longer than normal
period (10 and 22 days) in the middle of the experiment but
otherwise demonstrated regular use patterns.

The subject population for our study was self-selected;
nobody was under any obligation to use HKC and they
were free to disable it as they saw fit. By adopting our
method, our subjects presented evidence that our method
helped them to learn despite the production bias. HKC did
not interfere with the subject’s throughput.

 A B C D E F G H

 Applications Actions Potential

Subject Usage Unique Ignored Unique Ignored Known Learned Learning

5 91% 6 0 19 0 3 2 16

2 81.3% 24 1 105 5 19 21 86

1 76.9% 17 0 83 2 41 3 42

4 76.4% 29 0 110 0 48 9 62

8 66.7% 9 2 133 4 7 13 126

7 52.8% 19 0 127 9 34 11 93

3 43.1% 36 0 124 7 46 7 78

6 30.8% 27 0 200 1 8 3 192

9 9.1% 7 0 15 0 2 1 13

Average 58.68% 19.33 0.4 101.78 4.2 23.11 7.78 78.67

Median 66.7% 19 0 110 2 19 7 78

Std Dev 26.9% 10.6 0.7 57.6 3.3 19.16 6.51 56.13

Table 1. Subject Analysis. Details subject knowledge prior to and at the end of our study. Column A displays the usage level of
our software, B, C is the number applications used during the study and the number ignored in HKC. D-G display the total

actions performed, total ignored in HKC, percent keyboard shortcut known prior to study and the percent learned. Column H
is the potential number of actions the subject can learn.

Technical Report: TR_CS-07-267

Circumvention of the Assimilation Bias
Having determined that our subjects found our method
useful, we next analyzed the data to determine if the
subjects actually learned. Overcoming the assimilation bias
requires the adoption of more efficient methods for
performing common tasks. To determine if our subjects
acquired more efficient operators for existing knowledge,
we identified interface actions that transformed from mouse
usage to keyboard usage over the course of the study.

To determine if learning occurred, we first has to identify
areas of potential learning, by determining which actions
the subjects already knew prior to participation in the study.
An action is classified as known if the subject never used
the mouse for executing the action over the duration of the
study.

Table 1 details the learning potential for each subject.
Column B displays the number of unique applications the
subject used during the study. Column D indicates the
number of unique actions executed per subject and column
F shows the number of actions known upon entry to the
study. To establish the potential learning for each subject,
we subtracted the known actions from the unique actions.
For example, subject 3 executed 124 unique actions, where
an action is the selection of an interface element, within 36
different applications during the course of the study. The
subject demonstrated existing keyboard proficiency for 46
of the unique actions, never once using the mouse for their
execution. Based on this analysis, we can determine that
subject 3 has the potential to learn a new, more efficient
method for performing 78 interface actions.

For this study, we used a liberal definition of potential
learning: any observed interface action was classified as a
potential learning opportunity. However, this is often not
the case, since not every interface action contains an
associated keyboard shortcut. Subject 1, for example,
indicates a learning potential of 42 interface actions,
however in reality, the true learning potential could be
much lower.

We classified an interface action as learned if by the fourth
quarter of the study, a subject used the keyboard shortcut
for a interface action at more than 50% of the time. Figure 2
charts the overall progression of learning across the subject
base for each quarter, displaying how over time, most
subjects transitioned to the keyboard for their common
interface actions. Of the three subjects in the figure that
exhibited increased mouse reliance in the final quarter, two
of them were also two of the intermittent subjects (subjects
3 and 6), suggesting that they did not have enough
opportunity to practice the skills for successful acquisition.

Overall, we determined that the subjects acquired an
average of 7.78 new keyboard shortcuts for interface
actions during the study (See Table 1, column G); one user
acquired 21 new operations. Across all subjects we
identified 25 actions at an intermediate stage of learning;
the users had some success at using the keyboard shortcut,

but their use of the shortcut had not reached the 50%
threshold.

Three subjects in the study demonstrated below average
learning (subjects 1, 3 and 6). Of those subjects two were
intermittent users of the HKC system (subjects 3 and 6),
suggesting that while learning is possible at an intermittent
level, a more frequent utilization of our system produced
more learning. The third below average learner, subject 1,
was unique in that he/she had the highest percentage,
65.1%, of already known keyboard shortcuts.

The results indicate that while frequent usage of our
application produced better results, even intermittent usage
led to the acquisition of new, more efficient means for
performing previously known operations. Our subjects

demonstrated their ability to continue learning new
interface actions despite the assimilation bias, leading them
towards mastery.

Learning Within an Application
Discovering that the subject acquired an individual
keyboard shortcut is a sign of improved efficiency.
However to “free up” the sort of mental resources that
would enable a user to develop a plan for a more thought
out and effective user experience requires the acquisition of
multiple keyboard shortcuts.

We analyzed the data for instances of learning within an
entire application by aggregating our data per application

Figure 2. Learning for each user. For each user, actions
were aggregated by day. A decrease in mouse usage over
time indicates learning.

Subject Application 1st
Half

2nd
Half

Improved

1 Finder 3% 0.3% 90%

1 TextEdit 3% 0.9% 70%

2 Finder 29% 9% 69%

2 Safari 47% 11% 77%

3 Finder 8% 4% 50%

4 BBEdit 4% 0.1% 98%

4 Safari 4% 3% 25%

5 Safari 52% 30% 42%

7 Word 34% 22% 35%

8 Mail 46% 34% 26%

Table 2. Sampling of learning within an application. Each
row contains an instance of learning for a single subject.

The columns indicate the application, the percent of mouse
usage for the first and second half of data, and finally the

percent improve.

Technical Report: TR_CS-07-267

for each subject, looking for a decrease in mouse executed
actions between the first and last half of observed data. We
then filtered the data to instances that consisted of at least
50 actions per half, to ensure that learning occurred. Table 2
displays a sampling of data where subjects demonstrated a
shift from the mouse to the keyboard within a single
application.

The results in Table 2 highlight the effectiveness of the
HKC training method across our subject base.

For subject 4, we collected a total of 7150 actions for the
application BBEdit. During the first half of the study,
he/she relied on the mouse for only 4% of the 397
performed interface actions. During the second half of the
study, she/he increased the usage of BBEdit to 6753
performed actions and only relied on the mouse only 0.1%
of the time, showing a 98% improvement in keyboard
proficiency over the course of our study.

In another instance, subject 1 relied on the mouse for only
3% of his/her interactions with Finder during the first half,
demonstrating strong keyboard proficiency. Using HKC
allowed this subject to decrease the reliance even more, to
just 0.3% mouse utilization in the second half of the study,
an improvement of 90% over the course of the study.

Both of these examples demonstrate learning at the expert
skill level. In Table 2, there are five instances where the
subjects entered the study using the keyboard for 90% of
their interface work, yet they still improved their keyboard
shortcut proficiency by at least 25% over the course of the
study.

The results in Table 2Error! Reference source not found.
also indicate that intermediate application users also
improved their overall keyboard proficiency. Subject 5
entered the study using the mouse 52% of the time for all
interactions. By the end of the study, she/he had decreased
their reliance on the mouse to 30%, an improvement of
42%. Subject 8 also demonstrated a 26% improved learning
for the application Mail during the study, having started
with a 46% reliance upon the mouse.

Learning Beyond Operations
One of the authors of this paper is a long-term user of HKC.
During preparation for lectures he often copies images from
a PDF document using the PDF viewer Preview into a
Microsoft PowerPoint presentation, using the screen
capture utility, Grab.

Prior to using HKC, he would ask one of the undergraduate
assistants in the department office to scan figures out of the
printed version of the PDF so he could then paste the
figures into his class presentations. The same result can also
be achieved without scanning, but it requires a substantial
amount of interface work. Using Grab, he captures the
desired figure, places it on the clipboard, switches to
PowerPoint, creates a new slide, pasting in the captured
image. He navigates between Grab, Preview, and

PowerPoint using the command-tab keyboard shortcut,
executes his cut and paste operations, closes windows.
Performing all operations without moving his hands from
the keyboard. When he forgets the keyboard shortcut for
Grab that allows him to select a subsection of a window—
as opposed to grabbing the whole window or all the
windows for an application he can rely on HKC to remind
him.

The internalization of a skill is not just an elimination of the
external components; it is a redistribution of the internal
and external components within a process [27], changing
the way the individual performs and activity.

Once he begins to learn to use some keyboard shortcuts,
and keeps his hands at home on the keyboard, a new
process for transferring figures between documents
becomes available, one that is more efficient than the
scanning-based method. As a result of acquiring keyboard
shortcuts, a new more efficient method evolves. A task
constructed on the fly that once required multiple
transitions between the keyboard and the mouse, or offline
work by an office assistant, is now rapidly done with the
keyboard.

CONCLUSION
During the course of computer-mediated work, novice and
expert users differ in their expectations of and interactions
with an applications interface. Novice users expect an easy
to learn and easy to use interface that allows them to
explore the interface without serious repercussions. They
navigate an interface visually and rely on the design to
direct them towards the appropriate methods for achieving
their goals. Expert users however, expect efficient
interfaces that reduce the work to use the application,
reducing the interference it presents so that the translation
of thought to action is minimized. Because of their deep
structural knowledge of the application, expert users are
able to quickly form goals and construct action sequences
for achieving those goals [1] and thereby exhibit minimal
reliance upon the visual elements of the interface.

Most users rarely attain expertise with an application. As
users transition beyond the novice level, they still place a
heavy emphasis on the visual characteristics of the user
interface, preventing them from leveraging the functionality
designed to improve their efficiency as they progress from
intermediate to expert users. This failure to develop the
required structural knowledge of the interface is the result
of the active user paradox.

In our research, we have developed the HKC tool. It helps
the user move beyond the visual characteristics they
initially rely on and continue learning new interface
methods and operations. The HKC tool allows the user to
maintain complete control over the training process.

There are many opportunities within a workflow for
training. The HKC tool converts these opportunities into
learning events that are relevant to the user and require

Technical Report: TR_CS-07-267

focus-shifts rather than interruptions for learning. By only
coaching where it is relevant and keeping the amount of
new information presented to the user to a minimum the
user is not continuously removed from her central work
task. It is for these reasons that the HKC tool can
circumvent the active user paradox.

The study presented in this paper provides evidence of the
effectiveness for the HKC learning model as a training
method that enables users to circumvent the active user
paradox. Sixty seven percent of the subjects who
participated in the study were regular users of HKC. The
subjects demonstrated an average increase of 58% in
keyboard shortcut knowledge over the duration of the
study. All subjects displayed instances of learning for both
single interface actions and for complete applications.
Overall, the subjects acquired an average of 7.78 new
keyboard shortcuts for interface actions, with one subject
demonstrating the acquisition of 21 new keyboard
shortcuts. Having entered the study knowing only 19
shortcuts, this was an improvement of 110%. The results
indicate that while frequent usage of HKC produced better
results, even intermittent usage led to the acquisition of
new, more efficient means for performing previously
known operations. The level of the subject upon entry to the
study also had no effect on overall learning, even subjects
with expert-level keyboard proficiency continued to
increase their knowledge of keyboard shortcuts with the
help of the HKC application.

FUTURE RESEARCH
Most applications do not assign keyboard shortcuts for
every operation. It is not uncommon for a user to have an
interface action that they do frequently but has no
associated keyboard shortcut. Most applications and
operating systems provide mechanisms that allow users to
create custom shortcuts for various functions, however this
feature is rarely used. This kind of user adapted interaction
makes for much more efficient usage of the application. A
natural extension of the HKC tool is to collect data on the
user’s menu actions that have no corresponding keyboard
shortcut. If the user does the action often enough HKC will
initiate adding a keyboard shortcut, which it can
subsequently train the user to perform.

Once an individual acquires the keyboard shortcut for an
operation, will they remember it after a period of infrequent
usage? If they have forgotten it, what will it take re-learn
the shortcut? We have observed instances in our data that
users typically only need a single reminder to refresh their
memory after a period of non-usage. On other occasions,
when a user has not used an application for an extended
period of time, the user forgets many of keyboard shortcuts
that she knows how to use. In situations like these, a heads-
up display that shows to the user the keyboard shortcuts for
her most frequent actions for that application may prove to
be useful. We will investigate how to introduce this kind of
information given the HKC model of training.

There are other areas of training that we plan to explore
leveraging the HKC model of learning. In each of these
cases, the HKC tool can introduce learning events into the
flow of the user’s activity as focus shifts rather than
interruptions, encouraging the user to learn. In each of these
cases, the HKC tool maintains the user as the locus of
control.

REFERENCES
[1] Wu, J. Accomodating both Experts and Novices in One
Interface. Universal Usability Guide. Department of
Computer Science, University of Maryland. City, 2000.
[2] Chi, M. T. H., Feltovich, P. J. and Glaser, R.
Categorization and Representation of Physics Problems by
Experts and Novices1981).
[3] Mayes, J. T., Draper, S. W., McGregor, A. M. and
Oatley, K. Information flow in a user interface: the effect of
experience and context on the recall of MacWrite screens.
Proceedings of the Fourth Conference of the British
Computer Society on People and computers IV table of
contents1988), 275-289.
[4] Payne, S. J. Display-based action at the user interface.
International Journal of Man-Machine Studies, 35, 3 1991),
275-289.
[5] O'Hara, K. P. and Payne, S. J. Planning and the user
interface: The effects of lockout time and error recovery
cost. International Journal of Human-Computers Studies,
50, 1 1999), 41-59.
[6] Carroll, J. M. and Rosson, M. B. 5 Paradox of the
Active User. Interfacing Thought: Cognitive Aspects of
Human-Computer Interaction1987), 31.
[7] Bhavnani, S. K., Reif, F. and John, B. E. Beyond
command knowledge: identifying and teaching strategic
knowledge for using complex computer applications.
Proceedings of the SIGCHI conference on Human factors
in computing systems2001), 229-236.
[8] Shneiderman, B. Designing the user interface:
strategies for effective human-computer interaction.
Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1992.
[9] Lane, D. M., Napier, H. A., Peres, S. C. and Sándor, A.
Hidden Costs of Graphical User Interfaces: Failure to Make
the Transition from Menus and Icon Toolbars to Keyboard
Shortcuts. International Journal of Human-Computer
Interaction, 16, 2 2005), 133-144.
[10] Benner, P. From Novice to Expert. The American
Journal of Nursing, 82, 3 1982), 402-407.
[11] Dreyfus, S. E. and Dreyfus, H. L. A Five-Stage Model
of the Mental Activities Involved in Directed Skill
Acquisition1980).
[12] Nimwegen, C., Oostendorp, H., Schijf, H. J. M. and
Burgos, D. The Paradox of the Assisted User: Guidance
Leads to more Shallow Behavior2005).
[13] Larkin, J. H. Display-Based Problem Solving.
Complex Information Processing: The Impact of Herbert A.
Simon1989).

Technical Report: TR_CS-07-267

[14] Anderson, J. R. Acquisition of Cognitive Skill. Dept. of
Psychology, Carnegie-Mellon University, 1981.
[15] Anderson, J. R. Rules of the Mind. Lawrence Erlbaum
Associates, 1993.
[16] Payne, J. W., Bettman, J. R. and Johnson, E. J. The
Adaptive Decision Maker. Cambridge University Press,
1993.
[17] Reimann, P. and Neubert, C. The role of self-
explanation in learning to use a spreadsheet through
examples. Journal of Computer Assisted Learning, 16, 4
2000), 316-325.
[18] Norman, D. A. The invisible computer. MIT Press
Cambridge, MA, USA, 1998.
[19] Bederson, B. B. Interfaces for staying in the flow.
ACM Press, 2004.
[20] Carroll, J. M. The Nurnberg funnel: designing
minimalist instruction for practical computer skill1990).
[21] VanLehn, K. Cognitive skill acquisition. Annu Rev
Psychol, 471996), 513-539.
[22] VanLehn, K. Rule Acquisition Events in the Discovery
of Problem-Solving Strategies. Cognitive Science, 15, 1
1991), 1-47.

[23] Shroyer, R. Actual Readers Versus Implied Readers:
Role Conflicts in Office 97. Technical Communication, 47,
2 2000), 238-240.
[24] Bødker, S. Applying activity theory to video analysis:
how to make sense of video data in human-computer
interaction. Context and consciousness: activity theory and
human-computer interaction table of contents1995), 147-
174.
[25] Apple Computer Inc. Introduction to Accessibility
Overview. City, 2007.
[26] Harrison, B. L., Ishii, H., Vicente, K. J. and Buxton,
W. A. S. Transparent layered user interfaces: an evaluation
of a display design to enhance focused and divided
attention. Proceedings of the SIGCHI conference on Human
factors in computing systems1995), 317-324.
[27] Kaptelinin, V. and Nardi, B. A. Acting with
technology: activity theory and interaction design2006).

