
The Multi-Rule Partial Sequenced Route Query

Haiquan Chen
Dept. of Computer Science
and Software Engineering

Auburn University
Auburn, AL 36849, USA

chenhai@auburn.edu

Wei-Shinn Ku
Dept. of Computer Science
and Software Engineering

Auburn University
Auburn, AL 36849, USA

weishinn@auburn.edu

Min-Te Sun
Dept. of Computer Science
and Information Engineering
National Central University

Taoyuan 320, Taiwan
msun@csie.ncu.edu.tw

Roger Zimmermann
Dept. of Computer Science

National University of
Singapore

Singapore 117590
rogerz@comp.nus.edu.sg

ABSTRACT
Trip planning search (TPS) represents an important class of queries
in Geographic Information Systems (GIS). In many real-world ap-
plications, TPS requests are issued with a number of constraints.
Unfortunately, most of these constrained TPS cannot be directly an-
swered by any of the existing algorithms. By formulating each re-
striction into rules, we propose a novel form of route query, namely
the multi-rule partial sequenced route (MRPSR) query. Our work
provides a unified framework that also subsumes the well-known
trip planning query (TPQ) and the optimal sequenced route (OSR)
query. In this paper, we first prove that MRPSR is NP-hard and then
present three heuristic algorithms to search for near-optimal solu-
tions for the MRPSR query. Our extensive simulations show that
all of the proposed algorithms can answer the MRPSR query ef-
fectively and efficiently. Using both real and synthetic datasets, we
investigate the performance of our algorithms with the metrics of
the route distance and the response time in terms of the percentage
of the constrained points of interest (POI) categories. Compared
to the LORD-based brute-force solution, the response times of our
algorithms are remarkably reduced while the resulting route length
is only slightly longer than the shortest route.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search Process; H.2.8 [Database Management]:
Database Application—spatial databases and GIS

General Terms
Algorithms

Keywords
Advanced traveler information systems, location-based services.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’08, November 5-7, 2008, Irvine, CA, USA.
Copyright 2008 ACM ISBN 978-1-60558-323-5/08/11 ...$5.00.

1. INTRODUCTION
Geographic Information Systems (GIS) have been an active field

of research during the past decade and many significant research
results have been reported [21, 18, 2, 4, 20]. In GIS systems, spa-
tial data types are first-class citizens and much work has focused
on efficiently answering spatial queries. Past research efforts have
mostly concentrated on nearest neighbor (NN) as well as range
queries and their variants [22, 24, 11, 12]. While these basic query
types are fundamental for many applications, more complex spatial
query types must be considered for advanced GIS systems.

In this study we propose a novel query type for spatial databases
in support of travel-planning GIS applications. The objective is
to assist users in the planning of trips that involve several desti-
nations, possibly belonging to different POI categories. Based on
a number of traveling rules (or constraints) that are expressed as
sub-sequences of locations, users aim to find the route with the rel-
atively shortest traveling distance. Note that it is possible that the
traveling rules may only involve a subset of the user-requested lo-
cations. Consider the following example. Alice is planning a trip
around town that involves visiting the following locations: a bank,
a restaurant, a gas station, and a movie theater. In addition, Alice
also observes the following rules:

1. Visit a bank to withdraw money before having lunch at a
restaurant.

2. Fill up gas before going to watch a movie.

In order to not violate the two rules, the planned trip must in-
clude two sub-sequences: (a) traveling to a bank before going to a
restaurant and (b) visiting a movie theater after filling up the gas
tank. Aside from these two sequences, Alice is free to visit any
of the other POI categories in any order she pleases and further-
more, they can be interleaved in any order with the two rule-based
sequences. Figure 1 illustrates two possible routes which can ful-
fill this query. We name this new query type Multi-Rule Partial
Sequenced Route (MRPSR) query. Note that the MRPSR query
differs from the Traveling Salesman Problem (TSP). In both cases
a least-cost route is sought. However, with TSP a set of POIs (e.g.,
cities) is given and each element must be visited exactly once. In
contrast, with MRPSR each POI is associated with a category and
one may select any element of that category. For example, if the
route should include a bank visit, then one may choose any one of

the available banks. Furthermore, with MRPSR an ordered sub-
sequence may be imposed among some of the POIs. Such sub-
sequences occur naturally in many GIS applications. Therefore,
MRPSR queries are useful in numerous fields such as automotive
navigation systems, supply chain management, online Web map-
ping services, and more.

Gas
Station

Home

Movie
Theater

Gas
Station

Bank

Movie
Theater

Restaurant

Gas
Station

Restaurant

Bank
Restaurant

Figure 1: Two possible routes (solid and dashed arrows) of a
partial sequenced route query.

In this paper we put forth three novel MRPSR query algorithms
which are designed to efficiently compute feasible trips with the
near-optimal travel distance. The contributions of our study are as
follows:

• We formally define the partial sequenced route planning ques-
tion and prove it to be a member of the NP-complete class of
problems.

• We propose a Nearest Neighbor-based Partial Sequence Route
query (NNPSR) algorithm. Our method utilizes topological
sort [9] for combining multiple travel rules and executes a
nearest neighbor query for planning the complete trip.

• We integrate NNPSR with the Light Optimal Route Discov-
erer (LORD) algorithm [20] to create NNPSR-LORD that
further reduces the trip distance.

• We also design an Advanced A* Search-based Partial Se-
quence Route query (AASPSR) algorithm. AASPSR em-
ploys distance heuristic functions to generate efficient trip
plans.

• We compare the performance of the proposed algorithms with
the LORD-based brute-force solution through extensive sim-
ulation experiments.

The rest of the paper is organized as follows. Section 2 surveys
the related work. The problem is formally defined in Section 3.
In Section 4 we introduce the NNPSR, the NNPSR-LORD, and
AASPSR algorithms. The experimental validation of our design
is presented in Section 5. Section 6 concludes the paper with a
discussion of future work.

2. RELATED WORK
In this section we review previous work related to nearest neigh-

bor queries and route planning queries.

2.1 Nearest Neighbor Query
The nearest neighbor query is a very important query type for

supporting Geographic Information Systems applications. With
the R-tree family [5, 19, 1] of spatial indices, depth first search
(DFS) [16] and best first search (BFS) [6] have been the preva-
lent branch-and-bound techniques for processing nearest neighbor
queries. The DFS method recursively expands the intermediate
nodes for searching NN candidates. At each newly visited index
node, DFS computes the ordering metrics for all its child nodes
and applies pruning strategies to remove non-promising branches.
When the search reaches a leaf node, the data objects are retrieved
and the NN candidates are updated. On the other hand, the BFS
method employs a priority queue to store nodes to be explored
through the search process. The nodes in the queue are sorted ac-
cording to their minimum distance (MINDIST) to the query point.
During the search process, BFS repeatedly dequeues the top entry
in the queue and enqueues its child nodes with their MINDIST into
the queue. When a data entry is dequeued, it is included in the
result set.

Recently nearest neighbor search solutions have been extended
to support queries on spatial networks. Jensen et al. [8] proposed
data models and graph representations for NN queries in road net-
works and designed corresponding solutions. Papadias et al. [14]
presented solutions for NN queries in spatial network databases by
progressively expanding road segments around a query point. A
network Voronoi diagram based solution for NN search in road net-
work databases was proposed in [10].

2.2 Route Planning Query
In many GIS applications (e.g., logistics and supply chain man-

agement), users have to plan a trip to a number of locations with
several sequence rules and the goal is to find the optimal route that
minimizes the total traveling distance. One related query type is
named the optimal sequenced route (OSR) query proposed by Shar-
ifzadeh et al. [20]. An OSR query retrieves a route of minimum
length starting from a given source location and passing through a
number of locations (with different types) in a particular order im-
posed on the types of the locations. A multi-type nearest neighbor
(MTNN) query solution was proposed in [13] by Ma et al. Given
a query point and a collection of locations (with difference types),
a MTNN query finds the shortest path for the query point such that
only one instance of each type is visited during the trip. From a
spatial query perspective, MTNN is an extended solution of OSR
by exploiting a page-level upper bound. Li et al. [12] designed so-
lutions for a new query type – Trip Planning Queries (TPQ). With a
TPQ, the user specifies a subset (not a sequence) of location types
R and asks for the optimal route from her starting location to a
specified destination which passes through at least one database
point of each type in R. Terrovitis et al. [23] illustrated a-autonomy
shortest path and k-stops shortest path problems for spatial data-
bases. Given a source point and a destination point, the first query
retrieves a sequence of points from the database where the distance
between any two consecutive points in the path is not greater than
a. The second query searches for the optimal path from a origin to
an end which passes through exactly k intermediate points in the
database. However, all the aforementioned solutions cannot sup-
port MRPSR queries.

The most similar problem to MRPSR is the sequential ordering
problem (SOP) [3] and it is stated as follows. Given a graph G with
n vertices and directed weighted edges, find a minimal cost Hamil-
tonian path from the start vertex to the terminal vertex which also
observes precedence constraints. Nevertheless, a Hamilton path is
not required in MRPSR and the types of visited locations are con-

sidered by our solution.

3. THE MULTI-RULE PARTIAL SEQUENCED
ROUTE QUERY

In this section, we formulate the proposed multi-rule partial se-
quenced route query and then discuss the properties of the proposed
query. The definitions of the partial sequence rules and the multi-
rule partial sequenced route query are introduced in Section 3.1.
The properties of the multi-rule partial sequenced route query are
discussed in Section 3.2.

3.1 Problem Formulation
Given n disjoint sets of POI categories {C1, C2, . . . , Cn}, each

containing a number of POIs in R2, the MRPSR query is to ask for
a route that satisfies the following three requirements:

1. The route will traverse through exactly one POI in each cat-
egory;

2. The total traveling distance is minimized;

3. The route conforms with the given constraints (i.e., traveling
rules).

While the first two requirements are commonly seen in the other
types of TPS queries [20, 12], the third requirement is unique.
Here, the issue is how we should properly define a constraint. With-
out loss of generality, we assume that each constraint can be mapped
into a set of partial sequence rules, defined as follows.

Definition 3.1 A partial sequence rule is defined as an ordered sub-
set of categories Ck1 → Ck2 → · · · → Ckm , which specifies the
order of visits between < Cki > in the subset.

For instance, a user may issue a MRPSR query with a constraint
that he would like to withdraw money before going for grocery
shopping and dinner. This constraint can be converted to the fol-
lowing two partial sequence rules:

1. CATM → CSupermarket and

2. CATM → CRestaurant.

These two rules enforce that an ATM will be visited before a su-
permarket and a restaurant on the route, but do not put a restriction
on the order between the supermarket and the restaurant.

Notice that if no restriction is placed on the format of the user’s
constraints, the translation itself is a challenging artificial intelli-
gence research problem [15]. The human natural language can
be ambiguous and non-grammatical. The automatic translation re-
quires the creation of algorithms that can deal with not only the
ambiguity but also with parsing and interpretation of a large dy-
namic vocabulary, which is not likely to be accomplished in real
time. With the help of input forms, the types of the user’s con-
straints can be limited so that the translation from the constraints
to the partial sequence rules can be handled with ease. With the
notion of the partial sequence rules, the original definition of the
MRPSR query can be formulated as follows.

Definition 3.2

Input: A set of POI categories and a set of traveling rules.

Output: The route with the minimal total traveling distance that
satisfies the order specified in each of the partial sequence rules.

3.2 Properties of The MRPSR Query
The MRPSR query is by far the most general format of the route

planning query. The following theorem shows that our query pro-
vides a unified framework that subsumes the well-known trip plan-
ning queries, including the trip planning queries (TPQ) [12] and the
optimal sequenced route (OSR) queries [20].

THEOREM 3.1. The problems of the trip planning query and
the optimal sequenced route query are special cases of the problem
of the multi-rule partial sequenced route query.

PROOF. According to [12], the problem of the trip planning
query is identical to the problem of the multi-rule partial sequenced
route query when the set of partial sequence rules is empty. In addi-
tion, according to [20], the problem of the optimal sequenced route
for a given sequence of categories of POIs is the same as the prob-
lem of the multi-rule partial sequenced route query when the set of
partial sequence rules contains one partial sequence rule specifying
the same order.

From Theorem 3.1, we obtain the following important property
for the MRPSR query.

COROLLARY 3.2. The problem of the multi-rule partial sequence
route query is NP-hard.

PROOF. According to [12], the problem of the trip planning
query is NP-hard. Since the problem of the trip planning query
is a special case of the problem of the multi-rule partial sequenced
route query (Theorem 3.1), it follows immediately that the problem
of the multi-rule partial sequenced route query is NP-hard.

Corollary 3.2 implies that when the search space is large, it is sat-
isfactory to quickly find a suboptimal route that satisfies the given
partial sequence rules instead of the route with the minimal total
distance.

The set of the partial sequence rules plays an important role in
the MRPSR query. As indicated in Theorem 3.1 and Corollary 3.2,
if the set is empty, the search space will be large and the MRPSR
query is NP-hard. However, if the rules specify a total order of
the categories, the MRPSR problem can be solved in polynomial
time [20]. Intuitively, the tighter the set of rules is, the smaller
the search space will be and the easier the MRPSR query can be
answered. While it is difficult to quantify the level of tightness for
a set of partial sequence rules, we provide the following definition
to see if a given set of rules will possibly lead to a solution.

Definition 3.3 A set of the partial sequence rules is defined to be
compatible if and only if there is a total order of < Ci > that
satisfies the order specified in each of the rules in the set.

For instance, the set of rules {C1 → C2, C2 → C3, C3 → C1}
is not compatible since it will be impossible to satisfy all these three
rules at the same time. The following theorem shows the relation-
ship between the solvability of a MRPSR query and the compati-
bility of a given set of rules.

THEOREM 3.3. If a multi-rule partial sequenced route query is
solvable, then the corresponding set of the partial sequence rules
must be compatible.

PROOF. The proof is done by contradiction. Assume that the set
of rules is not compatible, then according to Definition 3.3 there is
no ordered sequence of categories that satisfies all the rules. In
other words, no matter how POIs are selected, it will be impos-
sible to order them so that the ordered sequence meets all of the
constraints.

Notice that Theorem 3.3 does not guarantee that a compatible
set of partial sequence rules can always lead to a solution for a
corresponding MRPSR query because some categories may contain
no POI. If each category contains at least one POI, the inverse of
Theorem 3.3 (i.e., the compatible set of rules implies the solvability
of the corresponding MRPSR query) will also be true. In Section 4,
we will elaborate how to verify if a set of partial sequence rules is
compatible.

4. SYSTEM DESIGN
We propose three multi-rule partial sequenced route query al-

gorithms in this section: the Nearest Neighbor-based Partial Se-
quenced Route (NNPSR) algorithm, the Nearest Neighbor-based
Partial Sequenced Route with Light Optimal Route Discoverer (NNPSR-
LORD) algorithm, and the Advanced A* Search-based Partial Se-
quenced Route (AASPSR) algorithm. NNPSR applies topologi-
cal sort for combining traveling rules and utilizes a nearest neigh-
bor query for planning the whole trip. NNPSR-LORD further ap-
plies the Light Optimal Route Discoverer algorithm on the route
obtained from NNPSR to acquire a shorter route. Distance heuris-
tic functions are adopted in AASPSR for planning route sequences
to reduce the trip distance. All of the proposed algorithms aim to
find the near-optimal route which follows all of the traveling rules.
Table 1 summarizes our set of notations.

Symbol Meaning

A The adjacency list representation of an AOV
C The set of all the user selected categories
R The set of all the traveling rules
P A set of POIs
|S| The number of elements in set S

S The starting point of a trip
D The destination of a trip
Q The query point of a nearest neighbor query
T The plan of a certain trip
C A POI category

C.P All the POIs of a category
px.C The category of a POI px

px.L The location of a POI px

Lzero A list of AOV vertices with a zero count
Lroute A list of the POI sequence of a trip plan

NN(Q, P) Nearest neighbor query of query point Q on a POI
set P

Dist(x, y) The Euclidean distance between points x and y

Table 1: Symbolic notations.

4.1 Nearest Neighbor-based Partial Sequenced
Route Algorithm

In order to plan a route which can fulfill all the user defined par-
tial sequence rules, we need a solution to combine all the provided
traveling rules and verify if they are compatible. The relationship
between all the given traveling rules can be represented as a di-
rected graph in which the vertices represent POI categories and
the directed edges represent prerequisites. This graph has an edge
<i, j> if and only if category i is an immediate prerequisite for
category j in one of the rules. The complete graph is named an Ac-
tivity On Vertex (AOV) network [7]. The following theorem pro-
vides the relationship of an AOV network with the compatibility of
the traveling rules.

THEOREM 4.1. The rules are compatible if and only if the cor-
responding AOV network is a directed acyclic graph.

PROOF. Definition 3.3 indicates that the rules are compatible if
and only if there is a category sequence that satisfies the order spec-
ified in each of the traveling rules. Let that category sequence be
the feasible sequence of tasks that satisfies all of the orders. Ac-
cording to [7], an AOV has a feasible sequence of tasks if and only
if the precedence relations in the AOV network are both transitive
and irreflexive. In other words, the corresponding AOV network
must be directed and acyclic.

Table 2 lists the POI categories covered by the traveling rules
of a certain trip plan Tx. The AOV network corresponding to the
traveling rules in Table 2 is shown in Figure 2.

Data Type Name Prerequisites
C1 Bank None
C2 Bookstore None
C3 Restaurant C1, C2
C4 Gas Station None
C5 Hospital C4
C6 Shopping Center C5
C7 Church C3, C6
C8 Coffee Shop C3
C9 Gift Shop C7, C8
C10 Park C7

Table 2: POI categories needed based on traveling rules for trip
Tx.

C1

C2

C3

C8

C7

C9

C10

C4 C5 C6

Figure 2: AOV network represents POI categories as vertices
and prerequisites as edges.

After we obtain an AOV of a certain trip plan Tx, the following
step is to generate a linear ordering, vi0, vi1, . . . , vn−1 of the ver-
tices in the AOV, referred to as the Topological Order, provided the
associated AOV network is directed and acyclic. In graph theory,
a topological order of a directed acyclic graph (DAG) is a linear
ordering of its vertices in which each vertex comes before all ver-
tices to which it has outbound edges. An algorithm that sorts the
tasks into topological order is straightforward. The first step is to
list out a vertex in the network that has no predecessor. Then the
second step is to delete this vertex and all edges leading out from
it from the AOV. These two steps are repeated until either all the
vertices have been listed or all remaining vertices have predeces-
sors and hence none of them can be removed. In the latter case, the
AOV has a cycle and the trip is infeasible, i.e., the partial sequence
rules are not compatible. If a topological order has the property that

all pairs of consecutive vertices in it are connected by AOV edges,
then these edges form a directed Hamiltonian path in the AOV [9].
If a Hamilton path exists, the topological sort order is unique and
no other order respects the edges of the path. On the contrary, if a
topological order does not form a Hamiltonian path, the AOV will
have two or more valid topological orderings, for in this case it is
always possible to form a second valid ordering by swapping two
consecutive vertices that are not connected by an AOV edge to each
other. To support both cases, we keep a counter of the number of
immediate predecessors for each vertex and represent the network
by its adjacency lists. We can then carry out the deletion of all inci-
dent edges of a vertex v by decreasing the predecessor count of all
vertices on its adjacency list. Whenever the count of a vertex drops
to zero (in-degree = 0), we place the vertex on a list (Lzero) of
vertices with a zero count. As mentioned in Section 1, the traveling
rules (the AOV network) may not cover all the user selected POI
categories. With the goal of creating a complete trip plan (i.e., the
plan covers all requested categories), we add all the requested POI
types which are not included in the AOV into the list Lzero. The
complexity of topological sort is O(e + n), where n is the number
of vertices and e is the total edge number. The sort can be finished
in linear time.

We can start to compute a complete trip plan after having the cor-
responding topological order in hand. We devise a Nearest Neighbor-
based Partial Sequence Route query algorithm by utilizing both the
Lzero list and any well-known nearest neighbor query algorithm to
generate an efficient route. With NNPSR, we first search for the
nearest POI whose category is included in Lzero from the query
point Q (as the starting point). The retrieved nearest POI px will
be stored in a route list Lroute and the category of px (px.C) will
be removed from Lzero. Next, we update the adjacency list and
new zero count vertices may be added to Lzero. In addition, the
query point Q is also updated to the location of px (px.L). The
process will repeat until all the selected categories are contained
in the route. The complete algorithm of NNPSR is formalized in
Algorithm 1.

Algorithm 1 Nearest Neighbor-based Partial Sequenced Route
query(C, R, S)

1: Set Lroute = ∅ and Q = S
2: Integrate all elements in R into an AOV adjacency list A and

put all vertices with zero count in Lzero

3: if The AOV network is a DAG then
4: Add all elements of C \ A into Lzero

5: while Lzero �= ∅ do
6: P = ∅
7: for each Ci ∈ Lzero do
8: P = Ci.P ∪P

9: end for
10: pNN = NN(Q, P)
11: Lroute = Lroute ∪ pNN

12: Remove pNN .C from Lzero

13: Update A and Lzero

14: Q = pNN .L
15: end while
16: return Lroute

17: else
18: Report cycles in R

19: end if

4.2 Performance Improvement with the Light
Optimal Route Discoverer Algorithm

As described in Section 2, if we have a given sequence of POI
categories, the Light Optimal Route Discoverer (LORD) algorithm
[20] can retrieve a route of minimum length. Since we can obtain a
complete POI sequence after executing the NNPSR algorithm, we
can further improve the efficiency of the trip plan by combining
NNPSR with LORD. LORD is a threshold-based algorithm and re-
quires less memory space compared with Dijkstra’s shortest path
solution. The first step in LORD is to issue consecutive nearest
neighbor queries to find the greedy route that follows the given POI
category sequence from the starting point. Then, the length of the
greedy route becomes a constant threshold value Tc. In addition,
LORD also keeps a variable threshold value Tv whose value re-
duces after each iteration and LORD discards all the POIs whose
distances to the starting point are more than Tv . Afterward, LORD
iteratively builds and maintains a set of partial sequenced routes in
the reverse sequence (i.e., from the end points toward the starting
point). During each iteration of LORD, POIs from the following
category are added to the head of each of these partial sequence
routes to make them closer to the starting point. The two thresh-
olds are utilized to prune non-promising routes for reducing the
search space.

After executing the NNPSR algorithm, we can acquire a sequence
of POIs. Since each POI belongs to an individual POI category, we
can also obtain a POI category sequence as the input of LORD. For
most cases, the compound NNPSR-LORD solution outperforms
the original NNPSR algorithm. More detailed performance eval-
uations are demonstrated in Section 5.

4.3 A* Search-based Partial Sequenced Route
Algorithm

Although the NNPSR and NNPSR-LORD algorithms can fulfill
the traveling rules and reduce the travel distance of a trip, they do
not consider the location of the destination when greedily generat-
ing the route sequence. Consider the example shown in Figure 3.
By running NNPSR, we will find that the created trip plan T1 =
{S, px, py, pz, D} (the dashed route) is much longer than another
feasible trip plan T2 = {S, pa, pb, pc, D} (the solid route) which
considers the destination location. A more advanced approach is to
limit the trip planning within a range defined by S and D (e.g., an
ellipse and S and D are the two focal points). Consequently, we de-
sign an A* Search-based Partial Sequenced Route (ASPSR) query
algorithm which takes the location of the destination into account.

S D

px

py

pz

pa

pb

pc

T2

T1

`

Figure 3: Two trip plans generated by NNPSR (the dashed
route) and ASPSR (the solid route) respectively.

Similar to the admissible heuristic of the A* algorithm [17], we
can use the sum of costs Dist(S, px) + Dist(px, D) to retrieve the
POI which has the minimum total cost among all POIs belonging

to categories included in Lzero from the starting point. Afterward
the lowest cost POI px will be inserted into the route list Lroute

and the category of px will be withdrawn from Lzero. Then both
A and Lzero will be updated and the location of px is set as the
new query point. The process will repeat until all the user selected
categories are covered in the trip plan.

4.4 Advanced A* Search-based Partial
Sequenced Route Algorithm

The A* search based solution in Section 4.3 considers the lo-
cation of the destination in its heuristic function. However, there
could be roundabout ways when we have skewed POI sets. Con-
sider the example of Figure 4. Because the POIs which are closer
to the major axis of an ellipse (S and D are the two focal points)
have a lower cost, px will be the first picked POI from S. Assume
that the other two POI sets are skewed. A user has to take a route
which is far away from the destination to visit py and pz before
traveling to D. Consequently, we need to improve the A* search
based solution to solve the aforementioned problem.

`

S D

px
py

pz

Figure 4: A roundabout way route (the dashed route) gener-
ated by the ASPSR algorithm.

The improved version of the A* search based solution is as fol-
lows. The Advanced A* Search-based Partial Sequenced Route
query (AASPSR) algorithm computes a set of POIs P*, one per
category in C, such that every element in P* has the minimum trav-
eling distance from S to D. After P* has been generated, AASPSR
creates a trip from S to D by utilizing both the AOV adjacency list
and P*. Starting with S, we first search for the nearest POI px in P*
and the category of px must be in Lzero. Afterward, px is inserted
into Lroute and the location of px is used as the new NN query
point. Then, we remove the category of px from Lzero and recom-
pute the adjacency list. The whole process will repeat until Lzero

becomes empty. The complete algorithm of AASPSR is illustrated
in Algorithm 2.

5. EXPERIMENTAL VALIDATION
We implemented the NNPSR, NNPSR-LORD, and AASPSR al-

gorithms to evaluate their performances with respect to the dis-
tance of the returned route and the response time to generate the
route. The experimental results are reported in this section. To
highlight the benefits of our approaches, we use the LORD-based
brute-force solution, which applies LORD [20] to reduce the search
space of each possible permutation of the category sequence, to get
the shortest route distance and record the corresponding response
time. We varied the following parameters to obtain their effects on
the route distance and response time: the percentage of the con-
strained categories (PCC), the average category cardinality (ACC),
and the number of total categories (NTC). For a given MRPSR
query, PCC is defined as the percentage of the number of categories
involved in the traveling rules with respect to the total number of

Algorithm 2 Advanced A* Search-based Partial Sequenced Route
query(C, R, S, D)

1: Set Lroute = ∅ and Q = S
2: Integrate all elements in R into an AOV adjacency list A and

put all vertices with zero count in Lzero

3: if The AOV network is a DAG then
4: Add all elements of C \ A into Lzero

5: for i = 0; i < |C|; i++ do
6: Min = ∞
7: for j = 0; j < |Ci|; j++ do
8: Cost = Dist(S, pj) + Dist(pj , D)

{pj ⊂ Ci}
9: if Cost < Min then

10: Min = Cost
11: pmin = pj

12: end if
13: end for
14: P* = P* ∪ pmin

15: end for
16: while Lzero �= ∅ do
17: P = ∅
18: for each Ci ∈ Lzero do
19: Retrieve the corresponding px in P* and
20: P = P ∪ px

21: end for
22: pNN = NN(Q, P)
23: Lroute = Lroute ∪ pNN

24: Remove pNN .C from Lzero

25: Update A and Lzero

26: Q = pNN .L
27: end while
28: return Lroute

29: else
30: Report cycles in R

31: end if

categories and ACC is defined as the average number of POIs of all
categories. We used both the real dataset from the state of Califor-
nia and synthetic datasets. The California dataset has 63 different
categories and the categories used in this research are shown in Ta-
ble 5. The synthetic datasets consist of randomly generated POIs
with a uniform distribution in the longitude range from 124W to
114W and latitude range from 32N to 42N. In Sections 5.1 and 5.2,
we assume the category number is 6. In the real dataset, rules are
generated that involve either the categories of Church and Hospital
or Locale and Park according to the different level of PCC. In the
synthetic datasets, rules are generated that involve either the second
and the third category or the forth and the fifth category according
to the different level of PCC. For each investigated algorithm, 100
MRPSR queries were generated with a randomly generated starting
point and a destination in the simulated area for a given configura-
tion. All the experiments were conducted on a Linux machine with
an Intel Pentium 4 2.4GHz CPU.

5.1 Effect of the Percentage of the Constrained
Categories

In this subsection, we varied the percentage of the constrained
categories to investigate the performance of NNPSR, AASPSR, and
NNPSR-LORD on route distance and response time and to com-
pare them with the LORD-based brute-force solutions. Since our
proposed MRPSR query subsumes the TPQ and OSR queries, the
MRPSR query exhibits the characteristics of a TPQ query when

Fig. 5(a) California dataset Fig. 5(b) Synthetic dataset

Figure 5: Route distance of NNPSR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of PCC.

Fig. 6(a) NNPSR, AASPSR, and LORD-based
brute-force (real)

Fig. 6(b) NNPSR-LORD and LORD-based brute-force
(real)

Fig. 6(c) NNPSR, AASPSR, and LORD-based
brute-force (synthetic)

Fig. 6(d) NNPSR-LORD and LORD-based brute-force
(synthetic)

Figure 6: Response time of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of PCC.

PCC decreases and the characteristics of an OSR query when PCC
increases. Figure 5 illustrates the relationship between route dis-
tance and PCC for NNPSR, AASPSR, NNPSR-LORD, and LORD-
based brute-force. Our observations are as follows:

1. Route distance increases with the increase of PCC for all the
algorithms. This is because with higher PCC there will be
more restrictions on the order of the categories, which leads
to a longer route.

2. The route distance of AASPSR changes remarkably against

PCC in contrast to NNPSR and NNPSR-LORD. The lower
PCC is, the better AASPSR works compared with NNPSR.
Hence, AASPSR is only suitable for trips with low PCC, for
example, TPQ (PCC equals zero). With a higher PCC, the
route distance of AASPSR increases dramatically. This is
because AASPSR only picks a single POI in each category
for the subsequent NN search. With a higher PCC, there are
more restrictions on the category order, which generates a
longer route. Therefore, the performance of AASPSR is not
necessarily better than NNPSR in terms of route distance.

Fig. 8(a) Percentage of constrained categories = 33% Fig. 8(b) Percentage of constrained categories = 66%

Figure 8: Route distance of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of the average category
cardinality.

Fig. 9(a) NNPSR, AASPSR, and LORD-based brute-force
(PCC = 33%)

Fig. 9(b) NNPSR-LORD and LORD-based brute-force
(PCC = 33%)

Fig. 9(c) NNPSR, AASPSR, and LORD-based brute-force
(PCC = 66%)

Fig. 9(d) NNPSR-LORD and LORD-based brute-force
(PCC = 66%)

Figure 9: Response time of NNSPR, AASPSR, NNPSR-LORD, and LORD-based brute-force as a function of the average category
cardinality.

For instance, in Figure 7, the triangle, rectangle, and penta-
gon each represent a different category of POIs, and S and
D denote the start and destination of the trip. The NNPSR
created trip plan T1 = {S, px1, py1, pz1, D} (the solid route)
is shorter than the AASPSR created trip plan T2 = {S, px2,

py2, pz2, D} (the dashed route). The partial sequence rule,
triangle → rectangle → pentagon, leads to a roundabout
route in AASPSR, which only chooses the POIs inside the el-
lipse. Consequently, AASPSR performs worse than NNPSR
in terms of route distance in this scenario.

Figure 10: Route distance of NNSPR and AASPSR
as a function of the number of total categories.

Figure 11: Response time of NNSPR and AASPSR as
a function of the number of total categories.

Category Size

Building 4110
Church 7680
Hospital 835
Locale 13481
Park 6728

School 11173
Populated place 6900

Summit 5594
Valley 7596

Table 3: The California dataset used in our experiments.

y2

z1

`

y1x1

z2 x2

Figure 7: An example where NNPSR generates a shorter route
than AASPSR.

3. NNPSR-LORD outperforms NNPSR and AASPSR in terms
of route distance given any PCC. The reason is that NNPSR-
LORD employs LORD to obtain the shortest route under the
specific order of categories in the route found by NNPSR.

Figure 6 plots the response time against PCC for NNPSR, AASPSR,
NNPSR-LORD, and the LORD-based brute-force method. No-
tice that, because the response times of the shortest route are in
a different order of magnitude, the right Y axis corresponds to the
LORD-based brute-force case and the left Y axis corresponds to
our proposed algorithms. First, as shown in Figure 6, all our pro-
posed algorithms significantly reduce the response time compared
with the LORD-based brute-force solution. To be specific, NNPSR
and AASPSR are about 100,000 times faster than the LORD-based
brute-force method while NNPSR-LORD is about 200 times faster.
Second, the response times decrease with the increase of PCC. This
is because a higher PCC will decrease the search space of POIs.
Third, PCC has little impact on the response time of AASPSR. The

reason is because AASPSR only selects from each category the
POI with the shortest distance sum from the starting point and the
destination and thus the cost of computation is relatively constant.
In particular, AASPSR responds faster than NNPSR with a lower
PCC.

5.2 Effect of the Average Category Cardinal-
ity

The cardinality of each category has an impact on the route dis-
tance and response time. In this subsection, we studied the effect
of the average category cardinality by varying the cardinality from
2,000 to 10,000 using synthetic datasets. Figure 8 shows the route
distances of NNPSR, AASPSR, NNPSR-LORD, and the LORD-
based brute-force method where PCC equals 33% and 66%, respec-
tively. Figure 9 shows the response time for the above algorithms.
Our observations are as follows:

1. The route distance reduces for each algorithm with the in-
crease of the average cardinality. The reason is that a denser
distribution of a category will lead to more POI choices, which
results in a lower probability of detours.

2. The response time of each algorithm increases with the en-
largement of the average cardinality. This is a result of the
expanded POI search space which each algorithm uses to an-
swer a query.

3. With respect to route distance, AASPSR has poor perfor-
mance under either 33% or 66% of PCC because, as men-
tioned in Section 5.1, AASPSR outperforms NNPSR in terms
of route distance only if PCC is low. Both 33% and 66%
of PCC are large enough to deteriorate the performance of
AASPSR. On the other hand, AASPSR has the shortest re-
spond time among all the proposed algorithms under either
33% or 66% of PCC because the computation cost of AASPSR
comes mainly from the selection of the POIs within a small
ellipse whose foci are the starting point and the destination as
discussed in Section 4.4. To sum up, whether AASPSR can
outperform NNPSR depends largely on the level of PCC.

5.3 Effect of the Total Number of Categories
In this subsection, we changed the total number of categories

to 3, 6, and 9 to investigate the impact of the category number on
the performance of NNPSR and AASPSR. We assume that PCC
equals 66% and use the California dataset. Figure 10 and Figure 11
illustrate the simulation results. Our observations are as follows:

1. When the category number increases, the route distance of
both NNPSR and AASPSR extends. This is because with an
increasing number of categories there will be more POIs to
be traversed.

2. When the category number increases, the response time pro-
longs accordingly. The reason is that both NNPSR and AASPSR
need to compute more categories to answer a MRPSR query.

3. The number of categories has a significant impact on whether
AASPSR has a better performance than NNPSR. For 3 cat-
egories, AASPSR outperforms NNPSR in terms of both the
route distance and response time. On the other hand, in case
of either 6 or 9 categories, AASPSR responds faster but re-
turns a longer route than NNPSR. The reason is that fewer
categories will lead to a lower probability for a detour to oc-
cur when AASPSR traverses the POIs in a smaller ellipse.
Therefore, we conclude that AASPSR outperforms NNPSR
in terms of both the route distance and response time on the
condition that a relatively small number of categories is re-
quested in a MRPSR query.

6. CONCLUSIONS
Geographic information systems are getting increasingly sophis-

ticated and trip planning with traveling rules represent a significant
class of queries. Existing solutions work on trips with a predefined
complete POI category sequence or no sequence at all. However,
GIS users usually set traveling preferences when they plan their
trips. We have introduced three multi-rule partial sequenced route
query algorithms which can fulfill all the traveling rules and ef-
fectively decrease the traveling distance. We have shown through
simulation results that our techniques generate trip plans which
are very close to the shortest routes with noticeably short response
time.

For future work, we plan to extend our algorithms to support
multi-user MRPSR queries, in which users travel cooperatively to
visit a set of POIs for a specific task. Examples include how the
members of a rescue team work together to quickly inspect all of
the suspicious locations for possible survivors after a catastrophe.

7. ACKNOWLEDGMENTS
This research has been funded in part by the US National Science

Foundation (NSF) Grant CNS-0831502 (Cyber Trust) and NUS
AcRF grant WBS R-252-050-280-101/133. We also acknowledge
the support of the NUS Interactive and Digital Media Institute (IDMI).

8. REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.

The R*-Tree: An Efficient and Robust Access Method for
Points and Rectangles. In Proceedings of the 1990 ACM
SIGMOD Conference, pages 322–331, 1990.

[2] C. Beeri, Y. Kanza, E. Safra, and Y. Sagiv. Object Fusion in
Geographic Information Systems. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases
(VLDB), pages 816–827, 2004.

[3] L. F. Escudero. An Inexact Algorithm for the Sequential
Ordering Problem. European Journal of Operational
Research, 37(2):236–249, 1988.

[4] B. George, S. Kim, and S. Shekhar. Spatio-temporal
Network Databases and Routing Algorithms: A Summary of
Results. In Proceedings of the 10th International Symposium
on Advances in Spatial and Temporal Databases (SSTD),
pages 460–477, 2007.

[5] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD’84, Proceedings of Annual Meeting,
pages 47–57, 1984.

[6] G. R. Hjaltason and H. Samet. Distance Browsing in Spatial
Databases. ACM Trans. Database Syst., 24(2):265–318,
1999.

[7] E. Horowitz, S. Sahni, and S. Anderson-Freed.
Fundamentals of Data Strucures in C. W. H. Freeman, 1993.

[8] C. S. Jensen, J. Kolárvr, T. B. Pedersen, and I. Timko.
Nearest Neighbor Queries in Road Networks. In Proceedings
of the 11th ACM International Symposium on Advances in
Geographic Information Systems (ACM-GIS), pages 1–8,
2003.

[9] A. B. Kahn. Topological Sorting of Large Networks.
Commun. ACM, 5(11):558–562, 1962.

[10] M. R. Kolahdouzan and C. Shahabi. Voronoi-Based K
Nearest Neighbor Search for Spatial Network Databases. In
Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB), pages 840–851, 2004.

[11] W.-S. Ku, R. Zimmermann, H. Wang, and C.-N. Wan.
Adaptive Nearest Neighbor Queries in Travel Time
Networks. In Proceedings of the 13th ACM International
Symposium on Advances in Geographic Information Systems
(ACM-GIS), pages 210–219, 2005.

[12] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H.
Teng. On Trip Planning Queries in Spatial Databases. In
Proceedings of the 9th International Symposium on
Advances in Spatial and Temporal Databases (SSTD), pages
273–290, 2005.

[13] X. Ma, S. Shekhar, H. Xiong, and P. Zhang. Exploiting a
Page-Level Upper Bound for Multi-Type Nearest Neighbor
Queries. In Proceedings of the 14th ACM International
Symposium on Geographic Information Systems (ACM-GIS),
pages 179–186, 2006.

[14] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query
Processing in Spatial Network Databases. In Proceedings of
the 29th International Conference on Very Large Data Bases
(VLDB), pages 802–813, 2003.

[15] R. Reddy. To dream the possible dream. Commun. ACM,
39(5):105–112, 1996.

[16] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
Neighbor Queries. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data,
pages 71–79, 1995.

[17] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2002.

[18] H. Samet. Issues, Developments, and Challenges in Spatial
Databases and Geographic Information Systems (gis). In
Proceedings of the 9th ACM International Symposium on
Advances in Geographic Information Systems (ACM-GIS),
page 1, 2001.

[19] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
R+-Tree: A Dynamic Index for Multi-Dimensional Objects.
In Proceedings of 13th International Conference on Very
Large Data Bases (VLDB), pages 507–518, 1987.

[20] M. Sharifzadeh, M. R. Kolahdouzan, and C. Shahabi. The
Optimal Sequenced Route Query. The VLDB Journal,
17(4):765–787, 2008.

[21] S. Shekhar, M. Coyle, B. Goyal, D.-R. Liu, and S. Sarkar.
Data Models in Geographic Information Systems. Commun.
ACM, 40(4):103–111, 1997.

[22] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest
Neighbor Search. In Proceedings of 28th International
Conference on Very Large Data Bases (VLDB), pages
287–298, 2002.

[23] M. Terrovitis, S. Bakiras, D. Papadias, and K. Mouratidis.
Constrained Shortest Path Computation. In Proceedings of
the 9th International Symposium on Advances in Spatial and
Temporal Databases (SSTD), pages 181–199, 2005.

[24] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based Spatial Queries. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of
Data, pages 443–454, 2003.

