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ABSTRACT

Road network data is often incomplete, making it hard to
perform network analysis. This paper discusses the problem
of extending partial road networks with reasonable links,
using the concept of dilation (also known as crow flight con-
version coefficient). To this end, we study how to connect a
point (relevant location) inside a polygon (face of the known
part of the road network) to the boundary so that the di-
lation from that point to any point on the boundary is not
too large. We provide algorithms and heuristics, and give a
computational and experimental analysis.

Categories and Subject Descriptors: H.4 [Information
Systems Applications]: Geographic Information Systems

General Terms: Algorithms, Experimentation.

Keywords: Road Network, Network Analysis.
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1. INTRODUCTION

Motivation. When new schools are built in rural areas of
developing countries, an important consideration for their
placement is the distance school children have to walk to
reach a school – every child must be able to reach some
school within a reasonable time. Such spatial analysis is of-
ten impossible due to lack of suitable data. Sometimes the
locations of settlements are known, but the road network
data does not contain any road that leads to the settlement.
An example is shown in Figure 1. In reality, however, there
will be some path between the settlement and the road net-
work, because people have to reach the (major) roads some-
how. In fact, if the land surface permits, there will probably
be more than one such path from a settlement, since people
generally are unwilling to make large detours.

Figure 1: Villages around Lusaka, Zambia, appear
disconnected from the road network of Google Earth
because smaller roads are missing in the data.



Figure 2: Road network of the Dutch municipal-
ity of Hontenisse, showing the centers of the postal
code areas (black dots), most of them missed by the
roads.

Another scenario where we wish to perform network analy-
sis on a road network and separate locations arises in devel-
oped countries. Centers of postal code areas or of municipal-
ities are often used as single point locations for larger groups
of houses that lie within a particular postal code or munic-
ipality. Computations of travel times between postal code
areas or municipalities are not uncommon, since in many
situations exact address information is not available. But
the centers need not lie on the road network, and therefore
must be connected to be able to perform network analysis.
A concrete example is shown in Figure 2. The road network
of the Dutch municipality of Hontenisse does not suffice to
cover the centers of the postal code areas that belong to the
municipality.

Even when road network data exists, it may not be avail-
able in full detail for many different reasons. National or
provincial authorities are often responsible only for roads of
a certain level and do not record local or smaller roads in
their databases.

All forms of network analysis require a connected network.
This applies to measures of centrality of locations, measures
of circuitry of the network (the alpha-index), the potential
of any destination, and facility location. In most cases, the
central concept is that of shortest paths or travel times in
the network between any two locations. If a road network
is not fully known, and isolated locations exist, a reasonable
guess of a possible network that extends the known portion
of the network and connects a number of locations is needed.
Such a network extension must take the land cover into con-
sideration: Obstacles like lakes or mountains influence the
presence and shape of (shortest) paths. Fortunately, data
for obstacles is often available.

One can think of a number of practical ways to extend a
network to connect all isolated locations. The simplest ap-
proach physically snaps the locations to the network. This
may produce very unrealistic results if two nearby locations,

inside the same face of the network, are snapped to oppo-
site sides of that face. Moreover, this approach modifies
the actual positions of the locations, which we assumed to
be correct. A different strategy places links from all loca-
tions inside a face to a central location, a so-called feed-
node, which is connected directly to the network. The feed-
node can be the centroid of the face or some other relevant
point. Another approach simply connects each individual
location to the nearest network node or segment. De Jong
and Tillema [5] use a Delaunay network to connect all loca-
tions. They discard Delaunay edges that cross obstacles and
merge the remaining Delaunay network with the road net-
work. None of these approaches tries to control the amount
of detour that the resulting extended network can have, and
therefore, estimates based on such extensions can be very
unreliable.

Detours. A measure of the detour between two points
forced by a network is the dilation or crow flight conversion
coefficient (CFCC). It is defined as the quotient between
the network distance and the Euclidean distance. Previous
studies in developed countries have shown that the CFCC
of road networks usually varies between 1.13 and 1.45 [13].
Networks in developing countries are expected to have a
higher coefficient, although one could claim, for instance,
that between any two locations at some distance, a route on
paths exists that typically has at most twice the length of
the Euclidean or crow flight distance.

If a network is such that for any two points p, q on the
network, their shortest path is at most t times as long as
the Euclidean distance between p and q, then the network
has a dilation, or crow flight conversion coefficient, of t (and
t is the smallest number for which this holds). For example,
the graph of a 3 × 3 regular square grid has a dilation of
2, because for any two points on the grid lines, a shortest
path is at most twice as long as the Euclidean distance. The
dilation of 2 is realized by two middles of opposite sides of
a square cell. An equilateral triangle also has a dilation of
2, while a circle has a dilation of π/2 ≈ 1.57, see Figure 3.

Dilation is a concept that has been studied extensively in
computational geometry [2, 3, 6, 7, 10, 12, 14]. The basic
problem is to compute – for a given set of points – a graph in
which a shortest path between any two points is close to their
Euclidean distance. Such a graph is called a t-spanner if it
has dilation t. For a detailed study on spanners see the book
by Narasimhan and Smid [11]. Spanners in the presence of
obstacles have also been considered [1, 4]. Recently, Farshi
and Gudmundsson [8] performed an extensive experimental
comparison between various available spanner algorithms.

(a) (b) (c)

Figure 3: Dilation in (a) a square, (b) an equilateral
triangle, and (c) a circle. The dashed lines indicate
pairs of points achieving the dilation.
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Figure 4: (a) Example of a setting with one feed-link l1 (dotted). (b) The dilation of point r is the length
of the path between p and r using l1 and part of the boundary of P (solid thick), divided by the length of
the shortest path between them (dashed). (c) Obstacles must be taken into account for computing shortest
paths. (d) Example of a setting with three feed-links. (e) The feed-link that gives the shortest path is used
in the computation of the dilation, in this case l3.

Results. In this paper we study the problem of connecting
a single point p to a road network by a feed-link : A connec-
tion between p and a point on the road network that avoids
obstacles (lakes, swamps, mountains, etc.). We assume that
p lies in a simple polygon P , which is a face of the known
road network. Inside P there may be obstacles which are
represented by simple polygons.

We show how to compute one or more feed-links from
point p to the boundary of P using various algorithms and
analyze the resulting dilation for p. Since p is our point
of interest, we concentrate on the dilation from p only. We
consider both the dilation from p to any point on the bound-
ary of P and the dilation from p to a fixed set of points (for
example, the vertices) of P .

In particular, in Section 2 we explore the effect one or
more feed-links can have on the dilation from a theoretical
point of view. In Section 3 we give efficient algorithms that
compute the dilation for a set of k feed-links with or without
obstacles. We also describe several heuristics that place one
or more feed-links to minimize dilation. In Section 4 we com-
pare these heuristics experimentally on a large set of poly-
gons with obstacles. Our experiments show that a greedy
approach works very well. In Section 5 we consider the prob-
lem of finding a minimum size set of feed-links that achieves
a given dilation. We give an additive 1-approximation al-
gorithm that solves this problem with or without obstacles.
Finally, in Section 6 we discuss various extensions to our al-
gorithms. We show how to combine the solutions for single
faces into a solution for a complete road network, we con-
sider the case of several isolated locations inside the same
face, and we adapt our algorithm to non-simple polygons
representing areas with dead-end roads or cul-de-sacs.

2. FEED-LINKS AND DILATION

Our input is a polygon P , a collection B = {B1, . . . , Bh} of
obstacles that are disjoint and do not cross the boundary of
P , and a point p that lies inside P but outside all Bi. Our
goal is to find a feed-link that connects p to some point on
the boundary of P while avoiding the obstacles in B.

We first need to redefine the concept of dilation in the

presence of obstacles. Let r and q be points on the boundary
of P . We denote by sp-length(r, p) the length of a shortest
path between r and p that avoids the obstacles. Further we
denote by bd-length(r, q) the distance between r and q on
the boundary of P , i.e., the length of the shorter of the two
paths between r and q along the boundary of P .

Let q1, . . . , qk be a set of k points on the boundary of
P that have feed-links l1, . . . , lk to p. The dilation δ(r) of
the point r is the length of the shortest path from r to p
using only the boundary of P and one of the feed-links from
l1, . . . , lk, divided by sp-length(r, p), i.e.,

δ(r) :=
mini=1,...,k(sp-length(p, qi) + bd-length(r, qi))

sp-length(p, r)
.

The dilation obtained by the set of feed-links is the maximum
dilation realized by any point r on the boundary of P .

Figure 4 shows a polygon P with a single feed-link (a),
the resulting dilation visualized for a point r on the bound-
ary (b), the resulting dilation visualized if P contains ob-
stacles (c), a situation with three feed-links (d), and the
dilation of r in that case (e).

To achieve a small dilation, a feed-link should be chosen
as a shortest path from some point on the boundary of P to
p. Obviously, this shortest path must avoid the obstacles.
If P is not convex, then the shortest path from a boundary
point q to p might pass through the outside of P , and hence
we might have to avoid obstacles outside P as well. If all
feed-links are indeed shortest paths, then the points where
a feed-link is attached have dilation exactly 1, whereas all
other points have dilation at least 1.

We first assume that only one feed-link is present from
p to the boundary of P , namely to the closest point on P .
This seems a reasonable choice and in fact we can show:

Lemma 1. If p has one feed-link to the closest point on
the boundary of P , then the resulting dilation obtained by
the feed-link is never worse than twice the dilation obtained
by an optimally placed feed-link.
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Figure 5: Illustration of proof of Lemma 1: con-
necting p to its closest point results in a maximum
dilation at most twice the optimal one.

Proof. Suppose that the closest point is q, and that a
point r has the worst dilation when a feed-link between q
and p is chosen. Since q is the only feed-link the dilation
δ(r) of r is

δ(r) =
sp-length(p, q) + bd-length(r, q)

sp-length(r, p)
.

We need to prove that for any feed-link there is a point
with dilation at least δ(r)/2. For this we consider several
cases depending on which part of the boundary a feed-link
connects to. Let m be the point in the middle of the shorter
boundary path from r to q (see Figure 5). If a feed-link
connects to a point between q and m, then the length of
the detour to r is at most halved and therefore the dilation
of r is at least δ(r)/2. This is in particular the case for a
feed-link connecting to m. In this case the dilation of q is
at least the dilation of r, and therefore at least δ(r)/2, since
the length of the detour is the same and q is a closest point
to p. Now if a feed-link connects to a point between m and
r, then the dilation of q is at least as large as for a feed-link
to m and therefore at least δ(r)/2. Finally, if a feed-link
connects to a point on the longer boundary part between q
and r, then the same arguments apply.

The bound in Lemma 1 is tight in the sense that the factor
by which the dilation using the closest point is worse than
the dilation for the optimal feed-link can be arbitrarily close
to 2. This is illustrated in Figure 6: q and r are the closest
points to p and taking a feed-link to one of them gives a
dilation of 4x + 7 at the other. The optimal feed-link is
between p and q′ and gives a dilation of 2x + 5 (obtained at
q and r). Thus, for x → ∞ the factor approaches 2.

We can relate the dilation of a point r in a polygon P with
obstacles to the dilation of r in P without obstacles.

q

r

q′p4
1

x + 2

2

2x

1

Figure 6: Example where choosing the closest point
(q) to connect the feed-link results in a maximum
dilation close to two times worse than when con-
necting to the optimum feed-link point (q′).

Lemma 2. Let δ(r) be the dilation of r with feed-link l for
a polygon P without obstacles, and let δ′(r) be the dilation of
r for the same situation, but now P may contain obstacles
and l avoids the obstacles. Then δ′(r) ≤ 3 · δ(r).

Proof. Let q be the point on the boundary of P where
l connects to. The dilation δ(r) is given by

δ(r) =
dist(p, q) + bd-length(r, q)

dist(p, r)
,

and the dilation δ′(r) is given by

δ′(r) =
sp-length(p, q) + bd-length(r, q)

sp-length(p, r)
.

Using the fact that

sp-length(p, q) ≤ sp-length(p, r) + bd-length(r, q)

we get

δ′(r) =
sp-length(p, q) + bd-length(r, q)

sp-length(p, r)

≤ sp-length(p, r) + 2 · bd-length(r, q)

sp-length(p, r)

= 1 +
2 · bd-length(r, q)

sp-length(p, r)

≤ 1 +
2 · bd-length(r, q)

dist(p, r)

=
dist(p, r) + 2 · bd-length(r, q)

dist(p, r)
.

Since dist(p, r) ≤ dist(p, q) + bd-length(r, q) we get

δ′(r) ≤ dist(p, q) + 3 · bd-length(r, q)

dist(p, r)

≤ 3 · dist(p, q) + bd-length(r, q)

dist(p, r)
= 3 · δ(r) .

This completes the proof.

If we want to guarantee that a network has a dilation that
is bounded from above by a fixed value, we may have to use
several feed-links to achieve this. In such a case, we would
like to use the minimum number k of feed-links (in Section 5
we address the algorithmic problem). A dilation of 2, for
instance, is often a reasonable assumption in a realistic road
network. It is interesting to know how many feed-links need
to be placed in the worst-case, i.e., how large k needs to be
for a given dilation. In particular, we may want to know

(a) (b)

pp

Figure 7: Dilation in a (a) non-convex polygon and
(b) convex polygon. The dotted lines inside the
polygons show feed-links and the circle in (b) in-
dicates a point with large dilation.



whether we can bound k by a constant or not. It is easy to
see that simple polygons exist that require many feed-links
to bound the dilation. Consider a polygon that is shaped
like a star with n/2 spikes, as in Figure 7 (a). If the spikes
are sufficiently long, we need n/2 feed-links to bound the
dilation of the polygon by a given constant c, and hence, a
constant number of feed-links does not always suffice.

For convex polygons, the dilation for one feed-link also
cannot be bounded by a constant. Consider a skinny rectan-
gle with p the midpoint of the rectangle, as in Figure 7 (b).
If the one feed-link connects to a point above p then the di-
lation for a point below p is larger than any given constant
c if the rectangle is sufficiently wide. The analogue holds for
the case where the one feed-link connects to a point below
p. Thus, if we place only one feed-link, we may get an ar-
bitrarily large dilation. However, we can prove that for any
convex polygon there is a placement of two feed-links such
that the dilation is bounded by 6. More generally, we can
show that there is a placement of k feed-links such that the
worst dilation is 1 + O( 1

k
) (proof omitted here), but this is

mainly of theoretical interest.

3. ALGORITHMS FOR FEED-LINKS

In this section we present algorithms that compute the di-
lation and algorithms that place feed-links.

3.1 Algorithms for dilation and shortest paths
First we show how to compute the dilation for a given set of
feed-links l1, . . . , lk efficiently in case there are no obstacles.

Assume that the points q1, . . . , qk where the feed-links at-
tach to the boundary of P are sorted along the boundary.
For any two consecutive points qi and qi+1, find the point
mi on the boundary of P where the network distance to p
via feed-link li is equal to the network distance via feed-link
li+1. See Figure 8. Then along the boundary of P , we have
points q1, m1, q2, m2, . . . , qk, mk. All points between mj and
mj+1 will have their best network connection to p via qj+1.

For any point on an edge of the boundary of P between mj

and mj+1, the network distance changes linearly in the po-
sition of that point on the edge, and the Euclidean distance
changes hyperbolically. Therefore, an analytic computation
can determine the location on the edge where the dilation
is maximized: If we parameterize the edge by t ∈ [0, 1],
then the network distance is a linear function at + b where
a > 0 and b > 0 are reals depending only on P , p, and qj+1.
The Euclidean distance has the form

√
At2 + Bt + C where

A, B, and C are constants depending only on the coordi-
nates of p and the endpoints of the edge. By setting the
derivative of the quotient to zero, we get a parameter value

p

q1

P

q2

q3

m1

m2

m3

Figure 8: At the points m1, m2, and m3, the used
feed-link changes.

t = (−bB + 2aC)/(2Ab − aB) of a possible maximum. If
t ∈ [0, 1] then we insert it into the quotient to determine
the dilation at the corresponding point on the edge. Other-
wise we check the dilation for t = 0 and t = 1. Finally we
compare the result to the largest dilation found so far.

The computation of the maximum is done for all edges
between mj and mj+1, and similarly, for all pairs of consec-
utive midpoints of this type.

If P has n edges, then splitting at the points q1, . . . , qk

and m1, . . . , mk gives rise to at most n + 2k edges on which
we maximize the dilation, taking constant time for each.
Therefore, we can compute the dilation of the polygon and
its feed-links in O(n + k) time. If we need to compute the
sorted order of q1, . . . , qk on the boundary, we must add an
O(k log k) term. However, note that k is typically a small
constant, and the dependency on n is the relevant part.

Theorem 1. Given a simple polygon P with n vertices
and a set of k feed-links, we can compute the dilation in
O(n + k log k) time.

The situation is more difficult if there are obstacles in P .
We can use the algorithm of Hershberger and Suri [9] to find
shortest paths amidst obstacles in O(n log n) time. Since we
are interested only in shortest paths to p, we run this algo-
rithm on p and the obstacles B1, . . . , Bh. The algorithm will
compute a subdivision of the plane into cells where the first
vertex of an obstacle on the shortest path to p is fixed. This
subdivision S has linear complexity (linear in the number of
vertices b of all obstacles) and can be computed in O(b log b)
time.

We overlay the subdivision S with the polygon P to par-
tition P ’s edges into subedges that have a similar shortest
path to p, similar in the sense that the first obstacle vertex
on the shortest path to p is the same (see Figure 9). This
allows us to get an analytic expression for the length of the
shortest path from any point on the boundary of P to p of
the form

√
At2 + Bt + C +D for constant reals A, B, C, and

D. We can now find the dilation of the set of feed-links by
applying the ideas from the case where no obstacles were
present. This analytical expression gives rise to two candi-
date solutions for the maximum dilation, in contrast to the
case of no obstacles where there is only one candidate.

p

P

Figure 9: Example of the overlay of subdivision S
and the polygon P .
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Figure 10: Theoretically, the overlay of S and P can
have Θ(nb) complexity. In practice, this is unlikely.

Theorem 2. Given a simple polygon P with n vertices, a
set of obstacles with b vertices, and a set of k feed-links with
k′ edges in total, we can compute the dilation in O(nb+k′ +
k log k + b log b) time.

Proof. Most terms in the time bound are clear from the
steps needed in the algorithm. The quadratic term is caused
by the overlay of S and the boundary of P : There may be
O(nb) intersection points in the overlay, and therefore the
edges of P are partitioned into O(nb) pieces due to the short-
est path subdivision. For each piece, we can find the point
with maximum dilation on that piece in constant time.

The algorithm above also finds the closest point on the
boundary of P to the point p in O(nb) time in a polygon with
obstacles, which we can use to compute a good feed-link.
Without obstacles, this operation can easily be done in O(n)
time. We also note that even for one obstacle with b vertices,
the overlay of S and P can have Θ(nb) complexity in theory.
However, to obtain this complexity, the polygon and the
obstacle have to be laid out in very contrived configurations,
similar to the one depicted in Figure 10. In practice we
expect the complexity of the overlay to be much lower.

3.2 Heuristics for placing feed-links
We next present two heuristics for placing one or more feed-
links to achieve a small dilation.

The first heuristic is called the greedy heuristic. If only
one feed-link is required, we connect p to the closest point
on the boundary of P . If more than one feed-link is required,
we first add a feed-link to the closest point, then iteratively
find the point with worst dilation, and add a feed-link to
this point.

The second heuristic is called the sector heuristic. Assume
we wish to place k feed-links. Then k half-lines originating
at p are chosen, all with angle 2π/k in between. This parti-
tions the plane into k wedges with equal opening angle. In
every wedge, we determine the point on the boundary of P
that is closest to p, i.e., has the shortest path to p avoiding
obstacles, and place a feed-link to that point.

Theorem 3. For a polygon P without obstacles, the greedy
heuristic and the sector heuristic take O(n) time to find
k = O(1) feed-links, where n is the number of vertices of
P . For a polygon P with obstacles, the greedy heuristic and
the sector heuristic run in O(nb + b log b) time, where b is
the number of vertices of the obstacles.

The sector approach does not specify a base angle for the
k half-lines, that is, they can be rotated around p as a whole
and still give wedges with equal opening angles. We may
just choose a base angle at random. We may also place the

half-lines after computing the closest point, and choose the
base angle such that the closest point is in the middle of a
sector. We call these two methods the random and the posi-
tioned sector heuristics, respectively. The positioned heuris-
tic makes sure, for instance, that when placing only two feed-
links to points q1 and q2, the angle �q1pq2 ≥ π/k = π/2,
whereas for the random heuristic this angle can be arbitrar-
ily small, and q1 and q2 may be very close.

We note that it is unlikely in practice that the heuristics
require Θ(nb) time for a polygon with obstacles. The overlay
of the shortest path map and the polygon P can be expected
to have much fewer vertices than Θ(nb), and these vertices
can be computed in an output-sensitive manner (for example
by a plane sweep algorithm).

4. EXPERIMENTAL RESULTS

We have implemented the three heuristics (greedy and the
two sector heuristics) described in the previous section, and
have run tests on a collection of 100 polygons with two ob-
stacles. The objective is to determine the dilation of typical
polygons one can expect in practice when using one, two, or
more feed-links, and to compare which feed-link placement
heuristic gives the best resulting dilation.

First we implemented a polygon and obstacles generator
and adjusted it to generate a collection that (visually) seems
reasonable for the application at hand: Incomplete road net-
works. Also for this reason, we did not consider more than
two obstacles in the polygon. Figure 11 shows various poly-
gons that were generated. Then we chose a random point
p in each polygon, and ran the heuristics for 1, . . . , 10 feed-
links. Table 1 shows the results.

For one feed-link, all three heuristics will choose the same
feed-link, so the results are the same. For more feed-links,
it appears that the greedy heuristic outperforms the other
two. Figure 12 shows four examples of the greedy heuris-
tic, run on the same polygon for different numbers of feed-
links. The two sector heuristics perform comparable with

Figure 11: Randomly generated polygons with two
obstacles.

k random sector posit. sector greedy
µ σ µ σ µ σ

1 4.183 1.860 4.183 1.860 4.183 1.860
2 2.747 1.122 2.176 0.534 2.086 0.382
3 2.129 0.651 2.288 0.759 1.815 0.261
4 1.897 0.351 1.826 0.272 1.649 0.149
5 1.729 0.230 1.680 0.217 1.553 0.122
6 1.622 0.166 1.612 0.180 1.493 0.091
7 1.579 0.165 1.564 0.167 1.447 0.063
8 1.531 0.155 1.538 0.160 1.419 0.055
9 1.495 0.137 1.486 0.163 1.392 0.041
10 1.473 0.153 1.447 0.155 1.380 0.046

Table 1: The mean µ and standard deviation σ of
the dilation values for k feed-links.
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Figure 12: Four examples of the greedy heuristic
with different numbers of feed-links. The circle in-
dicates the point with the worst dilation. (a) One
feed-link, dilation is 4.0513. (b) Two feed-links, dila-
tion is 2.5581. (c) Five feed-links, dilation is 1.7753.
(d) Ten feed-links, dilation is 1.3137.

respect to each other, although the positioned sector heuris-
tic seems to work better for two feed-links and the random
sector heuristic seems to work better for three feed-links.
The (average) dilation decreases with more feed-links, which
is to be expected. Already for three feed-links, the dilation
obtained by the greedy heuristic is below 2 on the average.

Table 1 shows how the three heuristics compare to each
other, but it does not show how close they get to the best
achievable dilation. To determine this, we have implemented
more advanced methods that are computationally more de-
manding. Using observations to obtain lower bounds on the
boundary length needed, the advanced methods yield both
upper and lower bounds on the smallest dilation that can be
attained with any set of k feed-links for a given polygon P
and point p in P . However, due to the computational cost,
we only have such bounds for k = 1, . . . , 4. They are given
in Table 2. We observe that the dilation bounds are not as
tight for more feed-links. We also observe that the greedy
heuristic is about 10% − 20% off the optimum dilation, for
k = 1, . . . , 4. For more feed-links, we do not have data.

k lower bound µopt upper bound µopt

1 3.7744 3.7753
2 1.8758 1.8776
3 1.5710 1.5956
4 1.3862 1.4854

Table 2: Bounds on the average optimal dilation.

5. MINIMIZING THE NUMBER OF FEED-
LINKS FOR A GIVEN DILATION

In this section we study the following problem: Given a
polygon P , a point p inside P , and a target dilation c > 1,
find a (small) set of feed-links that connect p to the boundary
of P to achieve a dilation of at most c.

An exact algorithm for this problem seems hard to ob-
tain; however, we give a simple algorithm that finds a set of
feed-links that contains at most one feed-link more than an
optimal set. The algorithm proceeds in a greedy fashion. We
start by choosing an arbitrary first link pq1. For instance, we
can choose the closest point q1 to p on the boundary of P .
We want to place the next feed-link q2 (in clockwise order)
as far away from q1 as possible such that all points between
q1 and q2 have a dilation (via q1 or q2) not larger than c.

For this we first traverse the boundary of P starting at
q1 until we reach a point m1 for which another point just
beyond m1 has a dilation larger than c via q1, as in Figure 8.
To find the point m1 we traverse the edges of P , starting at
q1. As in Section 3.1 we check for a maximum of the dilation
on the edge, and whether it is larger than c. If it is, we find
the point m1 where dilation reaches c by solving the cor-
responding quadratic equation with the edge parameterized
by t ∈ [0, 1].

Then we continue traversing the boundary of P to find
the point q2. The point q2 is maximal (in the sense of fur-
thest from m1) with the property that all points in between
q2 and m1 have dilation not larger than c via q2. Let � be
the network distance from m1 to p via q1. Then the furthest
possible placement for q2 is such that the network distance
from m1 to p via q2 equals �, as well. However, we might
have to place q2 closer to q1 than this, since it is possible
that some point between m1 and q2 still has a higher dila-
tion. We check this by hypothetically placing q2 there (i.e.,
we do not actually compute its exact placement, we just re-
member that the distance to p via this link is � from m1) and
continue traversing the edges starting at m1. For each edge,
we check whether the dilation on this edge via (the current
hypothetical) q2 is not larger than c. If this check fails, i.e.,
the dilation exceeds c on the current edge, we re-compute
the (hypothetical) q2 (which will then be closer than before).

We also check whether we have not passed q2 yet (since
we did not actually compute its placement). For this we
check whether the boundary length of m1 to p via a feed-
link on the current edge of the traversal is �. If we pass the
hypothetical q2, we place a feed-link, and continue in the
same way to place the next feed-link. This process continues
until we have traversed the whole boundary of P .

Theorem 4. The above algorithm is an additive 1-approx-
imation for computing the minimum number of feed-links for
a given dilation. It runs in O(n+k) time for polygons with-
out obstacles and in O(nb+k+b log b) time for polygons with
obstacles, where n is the number of vertices of the polygon,
the set of obstacles has b vertices, and k is the minimum
number of feed-links required.

Proof. Assume the algorithm places k + 1 feed-links at
q1, . . . , qk+1 (k ≥ 0). By definition of the qi, any set of feed-
links achieving a dilation at most c needs to have a feed-link
in each of the k sectors between qi and qi+1 for i = 1, . . . , k.

For polygons without obstacles the running time of the
algorithm is O(n+k) since it spends constant time per edge
of the polygon with an additional overhead of at most k + 1
for placing the feed-links. For polygons with obstacles we
use the same approach as described in Section 3.1. That is,
we overlay the polygon P with the subdivision S which has
O(nb) complexity. We then run the algorithm as before on
the O(nb) edges.



6. EXTENSIONS

The problem of determining feed-links for a single point in-
side a polygon is considerably more restricted than the prob-
lem that motivated us to study feed-links. Generally we have
a road network and a number of locations inside its faces,
and wish to determine a reasonable set of connections, feed-
links, from the locations to the network. The general prob-
lem extends our simple version in at least two ways. Firstly,
the road network has more than one face to consider, and
secondly, there may be more than one unconnected location
inside a face of the road network.

To deal with multiple faces that contain unconnected lo-
cations, we can simply treat each face separately. In some
cases we can use the dilations of different faces to bound
the dilation between two locations in these faces, see Fig-
ure 13 (a).

Lemma 3. Given a simple polygon P1 with obstacles, a
point p1, and a set of feed-links that results in a dilation
of δ1. Similarly, given P2, p2, and a set of feed-links that
results in a dilation of δ2. If P1 and P2 are adjacent faces
in the road network, and the shortest path between p1 and
p2 lies fully in P1 ∪ P2, then the dilation for p1 and p2 is at
most max(δ1, δ2).

Proof. Since the shortest path between p1 and p2 lies
fully in P1 ∪ P2, it intersects the common boundary of P1

and P2. Let r be a point where the shortest path intersects
the common boundary. The dilation in P1 from p1 to r is
bounded by δ1, and the dilation in P2 from p2 to r is bounded
by δ2. Therefore, the dilation between p1 and p2 is at most
max(δ1, δ2).

The lemma is no longer true if the shortest path inter-
sects other faces of the road network. If we then still wish
to bound the dilation, we would also need a bound on the di-
lation between any two points on the boundary of each face,
not just the dilation from the points inside to the boundary,
see Figure 13 (b).

When more points lie in a single polygon, we should con-
nect all of them to the boundary or to each other. In this
case we are not only interested in the dilation of each point
to the boundary, but also between different points in the
polygon. In applications we do not expect a large number
of points in each polygon.

Since the closest point idea and the greedy heuristic work
well for the single-point case, we extend them to multiple
points. Let p1, . . . , pm be a set of unconnected points inside

(a) (b)
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P3

rp1 p2
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Figure 13: The dilation of two points in different
faces.

P

p

q

Figure 14: Example of a polygon P with cul-de-sacs
and dead-end roads.

a polygon P with obstacles. We repeatedly choose an un-
connected point that is closest to the boundary of P or to an
existing feed-link (which includes already connected points),
and add the connection as a feed-link. After adding as many
feed-links as there were unconnected points, we have a con-
nected network in the polygon, and can add more feed-links
greedily to reduce the dilation. We compute a pair of points,
one from p1, . . . , pm and one from either the boundary of P ,
or from p1, . . . , pm as well, that gives the worst dilation, and
connect them with a shortest path. It is plausible that such
an approach works well, but both algorithmic and experi-
mental research is needed to substantiate this.

Finally, we consider the case that the polygon P is not
a simple polygon, for example, P may be part of an area
with many cul-de-sacs and dead-end roads (see Figure 14).
Our algorithms can handle this situation with only minor
modifications.

7. CONCLUSIONS

We studied the problem of extending a partial road network
by adding feed-links to disconnected locations. We formal-
ized this problem by optimizing the dilation, which – to the
best of our knowledge – has not been attempted in previ-
ous work. We gave several theoretical results for the spe-
cific case when there is just one disconnected location, and
implemented three different heuristics that perform well in
practice. The heuristics have a quadratic worst case run-
ning time, but in typical situations the running time will
be near-linear. The methods can be extended to the more
general case, where the road network has multiple faces and
multiple locations inside each face.
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