
An Inconsistency Tolerant Approach to Querying Spatial
Databases

M. Andrea Rodríguez
Universidad de Concepción

Concepción, Chile
andrea@udec.cl

Leopoldo Bertossi
Carleton University

Ottawa, Canada
bertossi@scs.carleton.ca

Monica Caniupán
Universidad del Bío-Bío

Concepción, Chile
mcaniupa@ubiobio.cl

ABSTRACT
In order to deal with inconsistent databases, a repair se-
mantics defines a set of admissible database instances that
restore consistency, while staying close to the original in-
stance. This set can be used to characterize consistent data
and consistent query answers in inconsistent databases. In
this work we present a repair semantics for spatial databases
and spatial integrity constraints, i.e. constraints that com-
bine semantic and topological aspects of spatial data. We
also propose the notion of consistent answer to a spatial
conjunctive query. This introduces the idea of inconsistency
tolerance in the spatial domain, shifting the goal from the
consistency of a spatial database to the consistency of query
answers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Theory

Keywords
Consistency, inconsistency tolerance, repair semantics

1. INTRODUCTION
The consistency of a database is defined as the satisfac-

tion of a set of integrity constraints (ICs) that describes
admissible states of the database. Although consistency is
a desirable and usually enforced property of databases, it
is non uncommon to find inconsistent spatial databases due
to data integration, unforced integrity constraints, or time
lag updates. In cases of inconsistencies, there are alterna-
tive courses of action: (a) ignore inconsistencies, (b) restore
consistency via updates on the database, or (c) accept in-
consistencies, without changing the database, but compute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CM GIS ’08 November 5-7, 2008. Irvine, CA, USA.
Copyright 2008 ACM 978-1-60558-323-5/08/11 ...$5.00.

the“consistent or correct” answers to queries. For many rea-
sons, the first two alternatives may not be appropriate [5],
specially in the case of virtual data integration [4], where
centralized and global changes to the data sources are not
allowed. In this paper we explore the latter alternative in
the spatial domain, i.e. in spatial databases and with respect
to spatial semantic integrity constraints (SICs).

Extracting consistent data from inconsistent databases
could be qualified as an “inconsistency tolerant” approach
to querying databases. Intuitively, a piece of data will be
part of a consistent answer if it is not logically related to
the inconsistencies in the database with respect to its set of
ICs. We introduce this idea using an informal and motivat-
ing example.

Example 1. Consider a database instance with a relation
Landparcel, with a thematic attribute (idl), and a spatial
attribute, geometry, of data type polygon. An IC stating
that geometries of two different land parcels must be disjoint
or just touch, i.e. they cannot overlap, is expected to be
satisfied. However, the instance in Figure 1 does not satisfy
it, i.e. it is inconsistent: the land parcels with idls idl2
and idl3 overlap. Notice that these geometries are partially
in conflict and what is not in conflict can be considered as
consistent data.

Landparcel idl geometry
idl1 g1
idl2 g2
idl3 g3

Figure 1: An inconsistent spatial database

Suppose that a query requests all land parcels whose ge-
ometries intersect with a query window, which represents
the spatial region shown in Figure 1 as a rectangle with
dashed borders. Although the database instance is inconsis-
tent, we can still obtain useful and meaningful answers. In
this case, only the intersection of g2 and g3 is in conflict, but
the rest of both geometries can be considered consistent and
should be part of a “database repair”. Thus, since the no-
conflicting parts of geometries g2 and g3 intersect the query
window, we would expect an answer including land parcels
with identities idl1 , idl2 and idl3 . 2

In contrast to (in)consistency handling in relational data-
bases, not much research of this kind has been done for spa-
tial databases. In the spatial domain, some related studies
address the specification of integrity constraints [6, 16], and
checking topological consistency at multiple representations

and for data integration [11, 24, 12, 17]. More recently, [10]
proposes qualitative reasoning with description logics to de-
scribe consistency between geographic data sets. In [18] a set
of abstract relations between entity classes was defined; and
they could be used to discover redundancies and conflicts in
sets of SICs. In [22] some issues around query answering un-
der violations of functional dependencies involving geomet-
ric attributes were raised. However, the problem of handling
an inconsistent spatial database has not been systematically
addressed so far.

Consistent query answering (CQA) from inconsistent data-
bases was introduced and studied in the context of relational
database in [1] (cf. [5, 3, 8] for surveys). Consistent answers
to queries are those that are invariant under all the mini-
mal forms of restoring consistency of the original database.
Thus, the notion of repair of an instance with respect to
a set of ICs becomes a fundamental concept for defining
consistent query answers. A repair semantics defines the
admissible and consistent alternative instances to an incon-
sistent database at hand. More precisely, a repair of an
inconsistent relational instance D is a consistent instance
D′ obtained from D by deleting or inserting whole tuples.
This set of tuples by which D and D′ differ is minimal under
set inclusion [1]. Other repair semantics have been studied
in the relational case. For example, in [25, 14] repairs are
obtained by allowing updates of attribute values in tuples.

In this work we define a repair semantics for spatial data-
bases with respect to spatial semantic integrity constraints
(a.k.a. topo-semantic integrity constraints) [23], which im-
pose semantics on topologies. For example, they can specify
that “building blocks must be inside land parcels”. This
class of constraints is related to many, if not most, cases
of inconsistency of spatial databases, and has not received
enough attention from the research community. These con-
straints will be simply called spatial integrity constraints
(SICs). Other spatial integrity constraints [9] are domain
(topological or geometric) constraints, and refer to the ge-
ometry, topology, and spatial relations of the spatial data
types. One of them could specify that “polygons must be
closed”. This kind of constraints are now commonly inte-
grated into spatial DBMSs [19].

Our repair semantics considers restoring consistency of
spatial databases through virtual changes of geometries that
participate in violations of SICs. This requires the cor-
responding formalization of a repair of a spatial database
instance. After doing that, we characterize consistent in-
formation in an inconsistent spatial database. A particular
case is the notion of consistent answer to a spatial query, as
an answer that can be obtained for the given query from all
the admissible repairs.

Repair semantics and consistent query answers can be de-
fined for a fairly broad class of SICs and queries. However,
as it becomes clear soon, naive algorithms for computing
consistent answers on the basis of the computation of re-
pairs are of exponential time. For this reason, we investi-
gate classes of SICs and queries for which CQA becomes
tractable. Actually, CQA for a relevant subset of SICs and
spatial range queries can be done via a core computation;
that is, by querying directly the intersection of all repairs
of an inconsistent database instance, but without actually
computing the repairs. We show cases where this core can
be specified as a view of the original, inconsistent database.

In comparison to the relational case, spatial databases of-

fer new alternatives and challenges when defining a repair
semantics. This is due, in particular, to the use of complex
attributes to represent geometries, their combination with
thematic attributes, and the nature of topological relations.

A repair semantics for spatial databases can be evaluated
from different points of view. Of course, it has to be mathe-
matically and logically sound. It also has to make sense from
the point of view of modelling and manipulation of spatial
data, i.e. from the point of view of its potential uses, intu-
itions around spatial data, and practical experience. These
are our main two goals in this paper. However, there is still
a third criterion that could be used to assess a proposed
repair semantics: its possible computational implementa-
tion. Although we have left outside the scope of this work a
full analysis of the repair semantics in terms of computabil-
ity, complexity and implementation issues (which are all left
for future work), some of the choices we make here for the
semantics have been motivated by the possibility of imple-
menting it.

This paper is organized as follows. In Section 2 we de-
scribe the spatial data model upon which we define the re-
pair semantics. Section 3 analyzes alternative ways to re-
store consistency of spatial databases and their consequences.
A formal definition of repair for spatial inconsistent databases
under SICs is introduced in Section 4. In Section 5 we define
consistent answers to spatial queries, and give a strategy to
compute, in polynomial time (data complexity), consistent
query answers for a class of SICs and range queries. Fi-
nal conclusions and future research directions are given in
Section 6.

2. PRELIMINARIES
Current models of spatial data are typically seen as exten-

sions of the relational data model (object-relational models),
with the definition of abstract data types to specify spatial
or geometric attributes. We now introduce a general spatio-
relational data model that includes spatio-relational predi-
cates (that can be purely relational), spatial predicates, and
also spatial ICs. It uses some of the definitions introduced in
[20]. The model is independent of the geometric data model
(e.g. Spaghetti, topological, raster, or constraint model) un-
derlying the representation of spatial data types.

A spatio-relational database schema is of the form Σ =
(U ,A,R, T ,O,B), where: (a) U is the possibly infinite
database domain of atomic thematic values. (b) A is a set
of thematic, non-spatial, attributes. (c) R is a finite set of
spatio-relational predicates 1 whose attributes belong to A
or are spatial attributes. The latter take admissible values
in P(Rm), the power set of R

m, for an m that depends on
the predicate. (d) T is a fixed set of binary spatial predi-
cates. (e) O is a fixed set of geometric operators that take
spatial arguments. (f) B is a fixed set of built-in relational
predicates, like comparison predicates, e.g. <,>,=, 6=, that
apply to thematic attribute values.

A database instance D of a spatio-relational schema Σ is a
finite collection of ground atoms (or spatial database tuples)
of the form R(c1, ..., cn; s), where R ∈ R, 〈c1, ..., cn〉 ∈ Un

contains the thematic attribute values and s ∈ P(Rm)2.

1spatio-relational predicates are relations in our database
schema.
2For simplicity, we use one spatial attribute, but it is not
difficult to consider a greater number of spatial attributes.

The extension in a particular instance of a spatio-relational
predicate is a subset of Un ×P(Rm). For simplicity, and to
fix ideas, we will consider the case where the spatial type of
predicates is m = 2.

Among the different abstraction mechanisms for modelling
single spatial objects, we use regions for modelling real ob-
jects that have an extent. They are useful in a broad class
of applications in Geographic Information Systems (GISs).
More specifically, our model follows the specification of spa-
tial operators (spatial relations or geometric operations) as
found in current spatial database management systems [19],
and considers closed regions in the topological space formed
by point sets of the Euclidean space.

A region is either the empty region (or empty geometry),
g⊘, which corresponds to the empty subset of the plane, or
is defined as a finite set of polygons of positive area. In this
work, we represent a polygon as a ring or a simple polyline
whose first and last points coincide. As expected, it holds
g⊘ ∩ g = g ∩ g⊘ = g⊘, for every region g. From now on,
regions of R

2 that conform to these spatial data types are
called admissible regions.

Geometric attributes are complex data types, and their
manipulation may have an important effect on the computa-
tional costs of certain algorithms and algorithmic problems.
As usual, we are interested in data complexity, i.e. in terms
of the size of the database. The size of a spatio-relational ta-
ble (relation) can be defined in terms of the number of tuples
and the number of points that are necessary to represent the
geometry in a tuple.

We concentrate on binary (i.e. two-ary) spatial predicates
that represent topological relations between regions. They
have a fixed semantics, and become the elements of T . There
are eight basic binary relations over non-empty regions of R

2

(dark boxes in Fig. 2) [13, 21]: PO (PartialOverlaps),EQ
(Equal),CB (CoveredBy), IS (Inside),CV (Covers), IC
(Includes),TO (Touches),D (Disjoint), INT (Intersects),O
(Overlaps),W (Within), and C (Contains) [21, 13]. Some
of them are symmetric, like Disjoint , PartialOverlaps , Equal ,
Touches . The others have their converse relation within the
set.

In addition to the basic topological relations, we consider
four derived relations (white boxes in Fig. 2) that are also
included in query languages of current spatial database sys-
tem [19]. These predicates can be logically defined in terms
of the other basic predicates.

Figure 2: Subsumption lattice of relations

Given a database instance, additional spatial information is
usually computed from the explicit geometric data by means
of the spatial operators in O associated with Σ. Some rele-

vant operators are: Union (binary), Intersection , Difference ,
Buffer , and Union Aggregation (GeomUnion)3 (cf. [19] for
the complete set of spatial predicates defined within the
Open GIS Consortium). In this work, we will identify a
particular subset Oa of spatial operators in O, i.e., Oa ⊆ O.
They will be used to shrink geometries with the purpose of
restoring consistency, as we describe in Section 4.

Definition 1. The set Oa of admissible transformation
operations contains the following geometric operations on
closed and possibly empty geometries g and g′:
(1) Difference(g, g′) is the closure of the set difference be-
tween g and g′. More precisely: (a) Difference(g, g) = g⊘.
(b) Difference(g, g⊘) = g. (c) Difference (g⊘, g) = g⊘. (d)
For non-empty regions g 6= g′, Difference(g, g′) = (g r g′)∪
(boundary(g′) ∩ g).
(2) Buffer(g, d) is the geometry obtained by buffering a dis-
tance d around g, where d is a distance unit. Buffer(g, d)
returns a closed region ḡ containing geometry g, such that
every point in the boundary of ḡ is at a distance d from the
boundary of g. However, Buffer(g⊘, d) = g⊘.
(3) Identity(g) = Difference(g, g⊘) = g. 2

Notice that all these operations, when applied to admissible
geometric regions, produce closed, admissible regions.

A schema Σ determines a many-sorted, first-order lan-
guage L(Σ) of predicate logic. It can be used to syntacti-
cally characterize and express SICs. For simplicity, we con-
centrate on denial SICs,4 which are sentences of the form:

∀
6=g⊘

s1 · · · sk∀x̄¬(

m
^

i=1

Ri(x̄i; si)∧ϕ∧
n

^

j=1

Tj(vj , wj)), (1)

where 0 ≤ m,n ∈ N, x̄ =
Sm

1
x̄i, vk ∈

Sm

j=1
{sj}, wk ∈

(
Sm

j=1
{sj}) ∪ (

Sn

j=1
{αj}), αj is a user defined query win-

dow, R1, . . . , Rm ∈ R, ϕ is a formula containing built-in
atoms over thematic attributes, Tj ∈ T , and ∀̄ denotes the
universal closure. A constraint of the form (1) prohibits cer-
tain combinations of atoms for non-empty geometries.5 The
restriction to non-empty geometries is because predicates in
T are undefined for empty geometries.

Example 2. Figure 3 shows an instance for the schema
R = {Landparcel(idl , name, owner ; geometry), Building(idb;
geometry)}. Dark rectangles represent buildings and white
rectangles represents land parcels. In Landparcel , the the-
matic attributes are idl ,name and owner , whereas geometry
is the spatial attribute of dimension 2. Similarly for Building,
which has only idl as a thematic attribute.

Landparcel idl name owner geometry
idl1 n1 o1 g1
idl2 n2 o2 g2
idl3 n3 o3 g3

3Operator GeomUnion returns the geometry that represents
the point set union of all geometries in a given set. Although
this function is part of SQL for several spatial databases
(Postgres/PostGIS, Oracle), it is not explicitly defined in
the OGC specification [19].
4Denial constraints are easier to handle in the relational case
as consistency with respect to them is achieved by tuple
deletions only [5].
5(1) can be replaced by a FO sentence with relativized quan-
tifiers. In the future, we may omit the 6= g⊘ in (1) or leave
quantifiers implicit.

Building idb geometry
idb1 g4
idb2 g5

Figure 3: A spatial database instance

The following sentences are the denial SICs:

¬(Landparcel (id1, n1, o1; s1) ∧ Landparcel (id2, n2, o2; s2) ∧

id1 6= id2 ∧ Overlaps(s1, s2)). (2)

¬(Building(idb; s1) ∧ Landparcel(idl , n1, o1; s2) ∧

PartialOverlaps(s1, s2)). (3)
They specify that geometries of land parcels with different
ids do not overlap, and that building blocks cannot partially
overlap land parcels. 2

A database instance D for schema can be seen as a finite
set of ground atoms from language L(Σ) that use predicates
in R. For a spatial database instance D for schema Σ and
a set Ψ of SICs in L(Σ), D |= Ψ denotes that each of the
constraints in Ψ is true in (or satisfied by)D. In this case, we
say that D is consistent with respect to Ψ. Correspondingly,
D is inconsistent wrt Ψ, denoted D 6|= Ψ, when there is
ψ ∈ Ψ that is violated by D, i.e. not satisfied by D. The
instance in Example 2 is consistent with respect to its SICs.

3. CONSISTENCY RESTORATION
Notice that D violates a constraint ∀x̄1x̄2s1s2¬(R1(x̄1; s1)

∧R2(x̄2; s2)∧ϕ∧T (s1, s2)) when there are data values ā1, ā2,

g1, g2 for the variables for which (R1(x̄1; s1) ∧ R2(x̄2; s2) ∧
ϕ ∧ T (s1, s2)) becomes true in D, i.e. D |= (R1(x̄1; s1) ∧
R2(x̄2; s2) ∧ ϕ ∧ T (s1, s2)) [ā1, ā2, g1, g2]. When this is the
case, it is possible to restore consistency of D by making
T (g1, g2) false by replacing g1 or g2 by other admissible ge-
ometries, which could be done in different ways. This sug-
gests that if D is inconsistent with respect to a set Ψ of
denial SICs, we may try to restore consistency by perform-
ing admissible updates on the geometries. These updates
can be represented as sequences of spatial operators.

One of the key criteria to decide about the update to ap-
ply is minimality of geometric changes. Another important
criteria may be the semantics of spatial objects, which makes
changes over the geometry of one type of object more appro-
priate than others. In this work, however, we assume that
no previous knowledge about the quality and relevance of
geometries exists and, therefore, geometries are all equally
important.

We start by identifying a suitable class of geometric trans-
formations using some (anti) monotonicity properties of topo-
logical relations with respect to set-inclusion of regions, ⊆.
These properties would allow us to discard certain changes
on geometries. For example, for T = Intersects , it holds

T (s1, s2) ∧ s1 ⊆ s
′

1 ⇒ T (s′1, s2) (4)

T (s1, s2) ∧ s2 ⊆ s
′

2 ⇒ T (s1, s
′

2) (5)

T (s1, s2) ∧ s1 ⊆ s
′

1 ∧ s2 ⊆ s
′

2 ⇒ T (s′1, s
′

2) (6)

¬T (s1, s2) ∧ s
′

1 ⊆ s1 ⇒ ¬T (s′1, s2) (7)

¬T (s1, s2) ∧ s
′

2 ⊆ s2 ⇒ ¬T (s1, s
′

2) (8)

¬T (s1, s2) ∧ s
′

1 ⊆ s1 ∧ s′2 ⊆ s2 ⇒ ¬T (s′1, s
′

2). (9)

From (4) to (6) we can see that the Intersects relation be-
tween two regions is kept if we enlarge one or both of them.
So, if we have to make the topological predicate Intersects(s1,
s2) false, we cannot make changes that only enlarge geome-
tries. (7)-(9) indicate that when two geometries do not in-
tersect, shrinking them will keep them disjoint; and also that
if we shrink a geometry to satisfy a SIC based on Intersects ,
no new inconsistencies will be added with respect to this
predicate.

Relation T (Anti) Monotonicity Property
Disjoint T (s1, s2) ∧ s

′
1 ⊆ s1 ⇒ T (s′1, s2)

¬T (s1, s2) ∧ s1 ⊆ s′1 ⇒ ¬T (s′1, s2)
Inside T (s1, s2) ∧ s

′
1 ⊆ s1 ⇒ T (s′1, s2)

T (s1, s2) ∧ s2 ⊆ s′2 ⇒ T (s1, s
′
2)

¬T (s1, s2) ∧ s1 ⊆ s′1 ⇒ ¬T (s′1, s2)
¬T (s1, s2) ∧ s

′
2 ⊆ s2 ⇒ ¬T (s1, s

′
2)

Equal T (s1, s2) ∧ s
′
1 ⊂ s1 ⇒ ¬T (s′1, s2)

Table 1: Monotonicity of topological relations

Table 1 shows (anti) monotonicity properties for other topo-
logical relations. We omit some of the monotonicity proper-
ties for the symmetric relations Disjoint and Equal . The ta-
ble shows that enlarging a geometry makes an atom T (s1, s2)
false when T is Disjoint or Inside. In the latter case, when
the enlarged geometry is inside the other.

Shrinking geometries will solve inconsistencies with re-
spect to SICs involving any topological relations, except
Disjoint and a specific case of Intersects . For instance, when
the geometries in the database satisfy the topological rela-
tion Equal (a particular case of Intersects), in which case
shrinking any of the inconsistent geometries will solve the
inconsistency with respect to Equal , but not with respect
to Intersects . In these particular cases, we can still solve
inconsistency by shrinking geometries but allowing a geom-
etry g to become empty , i.e. g⊘. This can be interpreted
as cancelling the geometry without deleting the whole tuple.
This is possible because we are not considering constraints
over metric measures of the geometric representation, such
as a minimum area.

Other geometric changes may be combinations of shrink-
ing and enlarging a geometry. Actually, the translation of a
geometry could be conceived as first shrinking it and then
enlarging it at a different place. Although it is easy to solve a
particular inconsistency with respect to a particular SIC, we
might generate new inconsistencies with respect to the same
or other SICs. Figure 4(a) shows an inconsistent instance
with respect to (2): geometries g1 and g2 overlap. Shrinking
g2 restores consistency (Figure 4(b)). However, translating
g2 down eliminates the inconsistency with respect to g1, but
introduces a new inconsistency with respect to g3 (Figure
4(c)).

On the basis of this analysis, we propose to solve inconsis-
tencies with respect to SICs of the form (1) through shrink-

(a) (b) (c)

Figure 4: Effect of geometric changes

ing or cancellation of geometries. From an ontological point
of view, by shrinking we eliminate conflicting parts of ge-
ometries, instead of adding new uncertain geometries by en-
largement. We have to define how much to shrink a geome-
try in order to restore consistency. Actually, we may have a
continuum of possibilities for shrinking geometries.

In Figure 1, we could shrink both g2 and g3, so that they
touch just at the border, but this border could be placed
anywhere in the region where they originally overlap. Hav-
ing infinitely many possible repairs carries obvious problems
when thinking of practical implementations. In particular,
it may not be possible to compute them if needed. Even
if we do not want to compute them, representing them and
possibly querying them, even implicitly, offer practical diffi-
culties. In Figure 1 (and in general), we will consider only
the “extreme” repairs (only two in Figure 1), but not the
continuum in between.

In summary, consistency restoration will be achieved by
shrinking or cancelling geometries, and only a discrete num-
ber of extreme repairs will be considered. In Section 4, this
update based methodology will be expressed in terms of se-
quences of admissible operations in Oa.

4. A REPAIR SEMANTICS
We can compare geometries and their transformations by

means of a distance function that refers to their areas. We
assume that area ∈ O is an operator that computes the area
of a geometry.

Definition 2. For regions g1, g2, δ(g1, g2) = area(g1)−
area(g2). 2

The amount of geometric change could be measured in differ-
ent ways, in particular if we allow geometric translations. In
such case, the area may remain the same, but not the spatial
position. However, as we will modify geometries by shrink-
ing them, using the just introduced distance makes sense.
We will be comparing a region g1 with a region g2 that is
obtained by shrinking g1, and then it will hold δ(g1, g2) ≥ 0.
Since we need the distance between two instances via the ge-
ometric attributes, we will assume that it is possible to com-
pare geometries by correlating their (relational-topological)
tuples, one by one. This requires a correspondence between
instances. In the following definition, D|A stands for the
restriction of instance D to a subset A of its attributes.

Definition 3. Let D be a fixed database instance over
schema Σ. (a) An instance D ′ over Σ is (D , f)-indexed
if f is a bijective function from D |A to D ′|A, such that
f(R(c1, . . . , cn; s)) = R(c1, . . . , cn; s′) for some region s′. (b)
For a (D , f)-indexed instance D ′ and tuple R(c1, . . . , cn; s) ∈
D′, f−1(s) denotes f−1(R(c1, . . . , cn; s)). 2

In an (D , f)-indexed instance D′ we can compare tuples one
by one with their counterparts in instance D . In particular,
we can see how the geometric attribute values differ. In some
cases there is an obvious function f (in which case we simply
use the notion of D-indexed), for example when there is a
key from a subset of A to the spatial attribute S.

Example 3. (example 2 cont.) Consider the relational
schema Landparcel(idl , name, owner ; geometry), with A =
{idl ,name, owner}. For the given instance D in Example 2,
the following are the D |A-instance, and (D , f)-indexed in-
stance, resp.

Landparcel|A idl name owner
idl1 n1 o1
idl2 n2 o2
idl3 n3 o3

Landparcel idl name owner geometry
idl1 n1 o1 g7
idl2 n2 o2 g8
idl3 n3 o3 g9

Here, f(Landparcel (idl1, n1, a1; g1)) = Landparcel (idl1, n1,

a1; g7), etc. 2

When restoring consistency, it may be necessary to consider
complex combinations of tuples and SICs. Eventually, we
should obtain a new instance, hopefully consistent, that we
have to compare to the original instance in terms of their
distance.

Definition 4. Let D ,D ′ be spatial database instances
over the same schema Σ, with D ′ (D , f)-indexed. The dis-
tance ∆(D ,D ′) between D and D ′ is the numerical value
∆(D , D ′) = Σt̄∈Dδ(ΠS(t̄), ΠS(f(t̄))), where ΠS(t̄) is the
projection of tuple t̄ on its spatial attribute S. 2

Now it is possible to define a “repair semantics”, which is
independent of the geometric operators used to shrink ge-
ometries.

Definition 5. Let D be a spatial database instance over
schema Σ, Ψ a set of SICs, such that D 6|= Ψ. (a) An s-
repair of D with respect to Ψ is a database instance D ′ over
Σ, such that: (i) D ′ |= Ψ. (ii) D ′ is (D , f)-indexed. (iii)
For every tuple R(c1, . . . , cn; g) ∈ D , if f(R(c1, . . . , cn; g))
= R(c1, . . . , cn; g′), then g′ ⊆ g. (b) A minimal s-repair D′

of D is a repair of D such that, for every repair D ′′ of D, it
holds ∆(D ,D ′′) ≥ ∆(D ,D ′). 2

This is an“ideal and natural” repair semantics that defines a
collections of semantic repairs. The definition is purely set-
theoretic and topological in essence. It is worth exploring
the properties of this semantics and its impacts on proper-
ties of consistent query answers (as invariant under minimal
s-repairs) and reasoning from or with them. However, in
this work we will use an alternative repair semantics that is
more operational in nature. Under this alternative notion
of repair, we will have a finite number of them for a given
instance, instead of a continuum, as may be the case, for
s-repairs (cf. Section 3).

The operational definition of repair (cf. Definition 6) will
make it possible to deal with repairs in current spatial data-
base management systems and in terms of standard geo-
metric operators. Consistency will be restored by applying

a finite sequence of admissible transformation operations to
conflicting geometries. Now we have to analyze and propose
those operations.

It is easy to see that each true relationship (atom) of the
form T (g1, g2), with T ∈ T , can be falsified by applying a
sequence of operations in Oa to g1 and/or g2. Important
considerations at the moment of defining this sequence of
operators are: (a) the minimality condition; that is, we only
eliminate conflicting parts of geometries. (b) obtaining only
extreme repairs and not the whole continuum in between.

In the following, we indicate, for each relation T ∈ T ,
alternative sequences of operators that falsify a true atom
of the form T (g1, g2). Table 2 shows our list of admissi-
ble transformations. This table prescribes particular and
legal ways of applying the admissible operators of Defini-
tion 1. In some case, those operations have to be applied
in complete sequences. Only those operations or sequences
thereof will be accepted in our operational definition of re-
pair (cf. Definition 6). Each entry in the table of the form
g′1 = · · · , g′2 = · · · . under a same topological predicate T is
called an admissible transformation.

Table 2 shows that, for PartialOverlaps (PO), we have
two ways of transforming each of the geometries g1, g2 into
g′1, g

′
2 resp., in such a way that when PartialOverlaps(g1, g2)

is true, PartialOverlaps(g′1, g
′
2) becomes false. The selec-

tion will depend on the relative size between overlapping
and non-overlapping areas: (1) the overlapping area between
g1 and g2 using Difference(g1, g2) or Difference(g2, g1) (first
example for PO in Table 3); and (2) the non-overlapping
part of g1 and g2 using Difference(g1,Difference(g1, g2)) or
Difference (g2,Difference(g2, g1)) (second example for PO
in Table 3) (cf. Example 4).

Op. T T (g1, g2) becomes false by applying...

PO 1. g′1 = Difference(g1, g2), g
′
2 = Identity(g2).

2. g′1 = Identity(g1), g
′
2 = Difference(g2, g1).

3. g′1 = Difference(g1,Difference(g1, g2)),
g′2 = Identity(g2).

4. g′1 = Identity(g1),
g′2 = Difference(g2,Difference(g2, g1)).

IC,CV ,
IS ,CB ,
O ,W ,C

1. g′1 = Difference(g1, g2), g
′
2 = Identity(g2).

2. g′1 = Identity(g1), g
′
2 = Difference(g2, g1).

TO, INT 1. g′1 = Difference(g1, buffer(g2, d)),
g′2 = Identity(g2).

2. g′1 = Identity(g1),
g′2 = Difference(g2, buffer(g1, d)).

EQ ,D 1. g′1 = Difference(g1, g1), g
′
2 = Identity(g2).

2. g′1 = Identity(g1), g
′
2 = Difference(g2, g2).

Table 2: Admissible transformations

Table 2 also shows that Touches and Intersects are predi-
cates for which the eliminated area is not completely delim-
ited by the real boundary of objects. Actually, we need to
separate the touching boundaries, and we do so by buffering
a distance d around one of the geometries and taking the
overlapping part from the other one. Here, we consider d

to be a fixed value associated with the minimum size of a
geometry in the cartographic scale of the database instance.

Table 3 graphically illustrates the application of the ad-
missible transformation to restore consistency of predicates
T = PartialOverlaps, T = Disjoint, and T = Touches.
The dashed boundary is the result of applying Buffer(g, d).

T (g1, g2) Original Change on g1 Change on g2

PO

D

TO

Table 3: Examples of admissible transformations

We now introduce the formal definition of repair semantics
that is used in the definition of consistent query answers.

Definition 6. Let D be an instance over schema Σ, Ψ
a set of SICs, such that D 6|= Ψ. (a) A repair of D with
respect to Ψ is a database instance D ′ over Σ, such that:
(i) D ′ |= Ψ. (ii) D ′ is (D , f)-indexed. (iii) For every tuple
R(c1, . . . , cn; g) ∈ D , if f(R(c1, . . . , cn; g)) = R(c1, . . . , cn; g′),
then g′ ⊆ g and g′ is the result of applying a finite sequence
of admissible transformations (cf. Table 2) to the initial ge-
ometries in D . (b) A minimal repair D′ of D is a repair of D
such that, for every repair D ′′ of D, ∆(D ,D ′′) ≥ ∆(D ,D ′).
(c) Rep(D ,Ψ) denotes the set of minimal repairs of D with
respect to Ψ. 2

The use of the admissible transformation operations to re-
store consistency enforces that: (a) regions in conflict are
shrunk, (b) the whole conflicting areas are eliminated, (c)
a finite number of minimal repairs is associated to a given
instance (instead of infinitely many, even a continuum, un-
der the s-repair semantics), (d) repairs can be computed (if
needed) using existing spatial DBMS. These useful proper-
ties are not necessarily shared by the class of minimal s-
repairs, which may be more natural from a theoretical point
of view. As we will now discuss, it is not necessarily the
case that a minimal repair in the sense of Definition 6 is a
minimal s-repair.

As consequence of removing the whole areas in conflict in
a repair, in addition to the cases of relations Disjoint and
Intersects as discussed in Section 3, we may also have to
make a geometry empty (g⊘) for SICs involving relations
Equal, Inside and ConveredBy. For example, for topolog-
ical predicate Equal, an s-repair will be obtained by shrink-
ing, as much as needed, one of the geometries, but without
making the geometries empty. However, by using the admis-
sible transformations, we restore consistency with respect to
Equal by making empty one of the geometries in conflict.
Clearly, what we obtain is not a minimal s-repair. Neverthe-
less, this solution has also practical sense, since having two

geometries that are topologically equal could, in most cases,
be the result of duplicate data, and one of them should be
eliminated. In this case, we should consider if not only a ge-
ometry should be eliminated, but the whole tuple containing
it.

Example 4. (example 2 cont.) The instance D in Fig-
ure 5 is inconsistent with respect to (2) and (3), because the
land parcels with geometries g2 and g3 overlap, and also the
land parcels with geometries g2 and g4. Likewise, buildings
with geometry g5 and g6 overlap land parcels with geome-
tries g1 and g2, respectively.

Figure 6 shows the two minimal repairs of D . In them,
the regions with thicker boundaries are the regions that had
their geometries changed.

Landparcel idl name owner geometry
idl1 n1 o1 g1
idl2 n2 o2 g2
idl3 n3 o3 g3
idl4 n4 o4 g4

Building idb geometry
idb1 g5
idb2 g6

Figure 5: Inconsistent spatial database instance

For example, the inconsistency involving geometries g2 and
g3 is repaired by applying Difference(g2 , g3) to g2, i.e. re-
moving from g2 the whole overlapping geometry, and keeping
the geometry of g3 as originally. The latter is obtained by
applying Identity(g3) to g3, which is shown in Figure 6(a),
and (b). Notice that if we apply Difference(g3 , g2) to g3, i.e.
we remove the whole overlapping area from g3, we still have
an inconsistency, because the building with geometry g6 will
continue partially overlapping geometries g2 and g3. Then,
this change will require another transformation, to ensure
that g6 is completely covered or inside of g3.

(a) (b)

Figure 6: Spatial database repairs

The inconsistency between g2 and g4 is repaired by shrink-
ing g2, eliminating the overlapping area with respect to g4
(cf. Figure 6(a)). This change is obtained by applying
Difference(g2 , g4) to g2; or by eliminating geometry g4, i.e.

applying Difference (g4, g2) = g⊘, as illustrated in Figure
6(b). Finally, the inconsistency between g1 and g5 is re-
paired by taking the non-overlapping part of geometry g5
with respect to geometry g1. Notice that we could have re-
paired by eliminating the overlapping region between g1 and
g5, but this is not a minimal change. 2

Since spatial operators remove the whole conflicting geome-
tries associated with objects in conflict, we obtain a finite
number of repairs, which is important if we need to compute
them. However, the following example shows that, even ap-
plying the admissible transformations, there may be expo-
nentially many minimal repairs in the size of the database,
a phenomenon already observed with relational repairs with
respect to functional dependencies [5].

Example 5. Consider the schema in Example 2, and the
SIC (2). The database instance contains n spatial tuples, as
shown in Figure 7. There are n−1 overlapping geometries.

Figure 7: Exponential number of repairs

In order to solve each of those overlaps, we have the options
of shrinking either one of the two regions involved. We have
2n−1 possible minimal repairs. 2

5. CONSISTENT QUERY ANSWERS
We can use the minimal repairs as an auxiliary concept

to define, and possibly compute, consistent answers to a
relevant class of queries in L(Σ). We concentrate here on
operator free conjunctive queries, i.e. conjunctive queries of
the form

Q(ū) : ∃ȳ(R1(x̄1; s1) ∧ · · · ∧Rn(x̄n; sn) ∧ ϕ), (10)

where ϕ is a conjunction of built-in atoms over thematic
attributes and over spatial attributes of the form T (t1, t2),
where T ∈ T , and t1, t2 are spatial terms (geometric vari-
ables or query windows α). Also, ȳ ∪ ū ⊆

S

i
(x̄i ∪ {si}) ∪

Var(ϕ), and ū∩ȳ = ∅. ϕ does not contain operators from O.
We also add the safety condition that all variables appear in
some of the Ri.

The classical spatial range queries form a particular class
of conjunctive queries:

∃ȳ(R(x̄; s) ∧ T (s,w)), (11)

with T either Intersects or Overlaps, and w a spatial con-
stant, e.g. a query window. The free variables in the query
are those in (x̄ ∪ {s}) r ȳ.

Example 6. (example 2 cont.) The following is a range
query for the instance in Figure 8:
Q(idb; geometry) : Building(idb, geometry) ∧
Overlaps(geometry, [x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1]).
Here, the spatial window is the (closed) polygon obtained by
joining the four points in the indicated order. The answer
to this query is 〈idb2, g5〉. 2

Given a query Q(x̄; s̄), a sequence of thematic/spatial con-
stants 〈c̄; ḡ〉 is an answer to the query in instance D if and

Figure 8: Query example

only if D |= Q(c̄; ḡ). The formula for Q becomes true in
D when its free variables are replaced by (interpreted as)
the constants in 〈c̄; ḡ〉. We denote with Q(D) the set of an-
swers to Q in instance D . Now we can define the notion of
consistent answer to a conjunctive spatial range query.

Definition 7. Consider an instance D , a set Ψ of SICs,
and a conjunctive queryQ(x̄; s̄). A tuple of thematic/geome-
tric constants 〈c1, . . . , cm; g1, . . . , gl〉 is a consistent answer
to Q with respect to Ψ if: (a) For every D ′ ∈ Rep(D ,Ψ),
there exist g′1, . . . , g

′
l such that D ′ |= Q(c1, . . . , cm; g′1, . . . , g

′
l).

(b) gi is the intersection over all regions g′i that satisfy (a)
and are correlated to the same tuple in D.6 Con(Q,D ,Ψ)
denotes the set of consistent answers to Q in instance D
with respect to Ψ. 2

Since Q is operator free, the regions g′i in repairs appear in
relations, and then f−1 can be applied. However, due to the
intersection, the geometries in a consistent answer may not
belong to the original instance or its repairs.

In contrast to the definition of consistent answer to queries
in relational databases [1], where a consistent answer is an
answer in every repair, here we have an aggregation of query
answers via the intersection, similar in spirit to consistent
answers to aggregate queries with group-by [5, 15, 7]. This
definition of consistent answer allows us to obtain more sig-
nificant answers: Since we are shrinking geometries, we can-
not expect to have, for a fixed tuple of thematic attribute
values, the same geometry in every repair. If we did not
use the intersection of geometries, we might lose or not have
consistent answers due to the lack of geometries in common
among repairs.

Example 7. (example 4 cont.) Consider the spatial range
query Q(idl , geometry):
∃name owner(Landparcel(idl , name, owner , geometry) ∧
Overlaps(geometry, ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])).

Consider the two minimal repairs in Figure 6. In them,
objects idl1 and idl3 do not change geometries, whereas ob-
ject idl2 does, from g2 to g′2 (cf. Figure 6(a), (b), resp.).
Likewise, object idl4 changes from g4 to g′4 (g⊘).

idl geometry
idl1 g1
idl2 g′2
idl3 g3

Figure 9: Consistent answers

6Via the correlation function f , cf. Definition 3.

The consistent answers are the intersections of geometries in
the minimal repairs that also overlap the query window and
are associated to the same object. Here, g′2 ∩ g′′2 = g′2, so
g1, g

′
2, and g3 overlap the query window and are part of the

consistent answer to this query, cf. Figure 9. Geometries
with thicker lines undergo changes. 2

Now we establish that for some queries, we can compute
consistent answers by focusing on the core, i.e. the intersec-
tion of all the database repairs of a given instance D with
respect to a set Ψ of SICs.

Definition 8. For an instanceD and a set Ψ of SICs, the
core of D is the instance D⋆ given by D∗ =

T

Rep(D ,Ψ) :=
{R(ā, g⋆) | R ∈ R, there is R(ā; g) ∈ D and g⋆ =

T

{g′ |
R(ā; g′) ∈ D′ for some D′ ∈ Rep(D ,Ψ) and R(ā; g′) =
f(R(ā; g))}}. Here, f is the correlation function. 2

Theorem 1. For an instance D , a set Ψ of SICs, and a
spatial range query of the form (11), 〈ā, g〉 is a consistent
answer to Q if and only if 〈ā, g〉 ∈ Q(D∗), where D∗ is the
core of D. 2

The theorem tells us that we can obtain consistent answer
by direct and usual query evaluation on the single instance
D⋆, the core of D.

Example 8. (example 4 cont.) Figure 10(a) represents
the core for the inconsistent instance in Figure 5, and Figure
10(b), the window for the query in Example 7. 2

(a) (b)

Figure 10: The repairs’ core

Computing consistent answers to spatial range queries on
the core carries computational benefit, since, as we will
show, we can compute these answers with respect to a rel-
evant class of SICs without actually explicitly computing
repairs. More specifically, this is possible when the SICs are
formulas of the form (12):

∀x̄1x̄2s1s2¬(R(x̄1, s1) ∧ R(x̄2, s2) ∧ x̄1 6= x̄2

∧ T ∗(s1 , s2)), (12)

where T ∗ ∈ {Overlaps, Intersects, Equal}. This class of
SICs constraints the interrelations between spatial objects
that are instances of the same entity.

Notice that there are at most two occurrences of the same
spatio-relational predicate in the same SIC, but there could
be more than one SIC for the same spatio-relational predi-
cate. Moreover, the topological predicates in this set, when
falsified by applying transformations in Table 2, do not pro-
duce new inconsistencies with respect to SICs of the form (12).

An additional good property of this class of SICs is that,
in the intersection of minimal repairs (i.e. the core), the
conflicting parts of each original geometry in conflict is al-
ways eliminated. This is not only due to the fact that they
use the spatial predicate T ∗, but also to the fact that they
use it on geometries of the same spatio-relational predicate
(i.e. only one spatio-relational predicate per SIC).

The importance of eliminating the parts from each geom-
etry in conflict, as the SICs of the form (12) allow, is that
we can give an algorithm to be applied uniformly over each
geometry in conflict. In this way we can avoid considering
alternative repairs.

In the following we concentrate only on SICs of the form
(12) that contain the predicate Overlaps . We still allow
several SICs with different spatio-relational predicates. We
will show how to obtain the core without computing any
repair and use it for CQA. The other predicates allowed in
(12) can be treated similarly, using other admissible spatial
operators than those used for Overlaps to compute the core.

In order to simplify the notation, in what follows we in-
troduce a logical formula as an abbreviation that captures a
conflict around a spatio-relational R with respect to a SIC:

∀x̄1x̄2s1s2(ConflR(x̄1, s1, x̄2, s2) ≡ (R(x̄1; s1) ∧R(x̄2; s2) ∧
x̄1 6= x̄2 ∧ Overlaps(s1, s2))).

Proposition 1. LetD be an instance and Φ a set of SICs
of the form (12) with T ∗ = Overlaps . For the core D⋆ of D
with respect to Φ, it holds
D∗ = {R(ā,Difference(g, t)) | R ∈ R, R(ā, g) ∈ D, t =

S

{g′ | there is b̄, such that D |= ConflR(ā, g, b̄, g′)}},
where

S

is the geomUnion operator. 2

Notice that t is the union of all the geometries that are in
conflict with a given geometry g. It is obtained by using the
aggregation operator geomUnion. This alternative charac-
terization of the core allows us to compute it avoiding the
explicit computation of all repairs. As we will see below, we
can also use this representation of the core for computing
consistent answers. This holds for spatial range queries Q
of the form (11) and sets Φ of SICs of the form (12) with
topological predicate Overlaps .

We now give an example of this approach. In order to
show that our methodologies could be implemented on top of
current spatial database management systems, we use spa-
tial SQL. In it we basically specify the core as a view, on
top of which the query expecting for consistent answers is
called.

Example 9. (example 7 cont.) The example considers
only the relation Landparcel and the SIC (2) in Example 2.
We want to consistently answer the query of Example 8, i.e.
∃name owner(Landparcel(idl , name, owner , geometry) ∧
Overlaps(geometry, ([x1, y1], [x2, y1], [x2, y2], [x1, y2], [x1, y1])).

To answer this query, we apply Proposition 1, generating
a view that represents the core of the repairs. That is, we
eliminate from each geometry the union of conflicting regions
with respect to each land parcel. In this case, the conflicting
geometries for g2 are g3 and g4; for geometry g3 is g2; and
for geometry g4 is g2. This is the definition of the core in
SQL:

CREATE VIEW Core

AS (SELECT l1.idl AS idl,

l1.name AS name, l1.owner AS owner,

difference(l1.geometry,

geomunion(l2.geometry)) AS geometry

FROM Landparcel AS l1, Landparcel AS l2

WHERE l1.idl <> l2.idl AND

Overlaps(l1.geometry, l2.geometry)

GROUP BY l1.idl, l1.name, l1.owner,

l1.geometry)

UNION

(SELECT l1.idl AS idl, l1.name AS name,

l1.owner AS owner, l1.geometry AS geometry

FROM Landparcel AS l1

WHERE NOT EXISTS(SELECT l2.idl, l2.geometry

FROM Landparcel AS l2

WHERE l1.idl <> l2.idl AND

Overlaps(l1.geometry, l2.geometry)))

Now we can pose the following query to compute the con-
sistent answer to the original query:

SELECT idl ,name, owner , geometry FROM Core

WHERE Overlaps(geometry , ([x1, y1], [x2, y1], [x2, y2],

[x1, y2], [x1, y1]))

The answer is shown in Figure 9. This query is a classic
selection from the Core view. 2

This core-based method allows us to compute consistent an-
swers in polynomial time (quadratic) for cases where there
can be exponentially many repairs. In Example 5, where we
have 2n−1 minimal repairs, we can apply the query Q over
the core, and we only have to compute the difference of a
geometry with respect to the union of all other geometries in
conflict. This corresponds to a polynomial time algorithm
of order O(n2), with n the number of tuples.

Applying similar ideas to those used to compute consistent
answers to range queries under SICs of the form (12) with
predicate Overlaps , we can derive consistent answers under
SICs including predicates T ∗ in {Intersects,Disjoint, Equal}.
To do so, we also have to specify the core , without actually
obtaining the repairs. For space limitation, this is left for
an extended version of this work.

6. CONCLUSIONS
We have presented a repair semantics for spatial databases

with respect to SICs that makes precise the idea of incon-
sistency tolerance: Even when a database is inconsistent
it should return consistent answers to queries. Repairs are
based on updates that shrink geometries of objects, even at
the point of deleting geometries for some exceptional cases,
as for predicate Disjoint. Geometries are virtually updated
applying admissible geometric operators, which are available
in most spatial DBMS.

Repairs are used as an auxiliary concept for characterizing
consistent information in a database and defining consistent
answers to spatial range queries. By restricting ourselves to
the application of the admissible transformations, we obtain
a finite number of possible repairs. However, there may still
be exponentially many of them.

To avoid computing and querying all repairs, we have
identified cases where the consistent answers to a query can
be obtained by posing a query to a single view of the orig-
inal instance. The standard answers so obtained are the
consistent answers to the original query. This view can be
specified in logical terms, but we may need a language more

expressive than the one of conjunctive queries. This situ-
ation is reminiscent of the use of logic programs to specify
repairs of relational databases, on top of which the queries
expecting for consistent answers are posed [2]: The original
query is rewritten into a (more expressive) logic program.

In an ideal situation, the original conjunctive query would
be rewritten into a new simple query, hopefully a conjunc-
tive one too. We know that, in the relational case, this is
only sometimes possible, for complexity reasons [3]. A sim-
ilar situation is expected in the spatial domain. Identifying
tight classes of queries and SICs for which low complexity
rewriting can be obtained requires further investigation.

This paper leaves many problems for ongoing and future
work, most prominently, computability and complexity is-
sues. For example, interesting decision problems are decid-
ing (a) the existence of non-trivial repairs (i.e. not obtained
by cancelation of geometries), (b) whether an instance is a
repair of another, and (c) whether a spatio-relational tuple
is a consistent answer to a query. As in the relational case,
we expect to find hard cases for all these problems. For
them, it would be interesting to obtain lower complexity
approximation algorithms.

We have considered only regions to represent spatial ob-
jects. As a natural extension would could define a repair
semantics for other spatial abstractions, such as polylines,
points, networks, etc. We would also like to explore not only
denial SICs, but also other classes of semantic ICs. This
includes also the possibility of considering combinations of
spatial with relational constraints, e.g. functional dependen-
cies, referential ICs.

Since repairs are query independent, our repair semantics
could also provide the logical and operational foundations
for spatial data cleaning and spatial data quality assessment.

Acknowledgments
This project is partially funded by FONDECYT, Chile, grant
number 1080138. Part of this research was done when L.
Bertossi was invited to the University of Concepcion. He
has also been partially funded by NSERC (DG#315682).

7. REFERENCES
[1] M. Arenas, L. Bertossi, and J. Chomicki. Consistent

query answers in inconsistent databases. In Proc.
PODS’99, pages 68–79. ACM Press, 1999.

[2] P. Barcelo, L. Bertossi, and L. Bravo. Characterizing
and computing semantically correct answers from
databases with annotated logic and answer sets. In
Semantics of Databases, LNCS 2582, pages 1–27.
Springer-Verlag, 2003.

[3] L. Bertossi. Consistent query answering in databases.
ACM Sigmod Record, 35(2):68–76, 2006.

[4] L. Bertossi, and L. Bravo. Consistent query answers in
virtual data integration systems. In Inconsistency
Tolerance, LNCS 3300, pages 42–83. Springer-Verlag,
2004.

[5] L. Bertossi and J. Chomicki. Query answering in
inconsistent databases. In Logics for emerging
applications of databases, pages 43–83. Springer, 2003.

[6] K. Borges, A. Laender, and C. Davis. Spatial integrity
constraints in object oriented geographic data
modeling. In Proc. ACM GIS’99, pages 1–6. ACM
Press, 1999.

[7] M. Caniupan. Optimizing and implementing repair
programs for consistent query answering in databases.
PhD thesis, Carleton University, Department of
Computer Science, 2007.

[8] J. Chomicki. Consistent query answering: Five easy
pieces. In Proc. ICDT’07, LNCS 4353, pages 1–17.
Springer-Verlag, 2007.

[9] S. Cockcroft. A taxonomy of spatial integrity
constraints. GeoInfomatica, 1(4):327–343, 1997.

[10] M. Duckham, J. Lingham, K. T. Mason, and M. F.
Worboys. Qualitative reasoning about consistency in
geographic information. Inf. Sci., 176(6):601–627,
2006.

[11] M. Egenhofer, E. Clementine, and P. D. Felice.
Evaluating inconsistency among multiple
representations. In Spatial Data Handling, pages
901–920, 1995.

[12] M. Egenhofer and J. Sharma. Assessing the
consistency of complete and incomplete topological
information. Geographical Systems, 1:47–68, 1993.

[13] M. Egenhofer and R. D. Franzosa. Point set
topological relations. International Journal of
Geographical Information Systems, 5:161–174, 1991.

[14] E. Franconi, A. L. Palma, N. Leone, S. Perri, and
F. Scarcello. Census data repair: a challenging
application of disjunctive logic programming. In Proc.
LPAR’01, LNCS 2250, pages 561–578. Springer, 2001.

[15] A. Fuxman, E. Fazli, and R. J. Miller. Conquer:
Efficient management of inconsistent databases. In
Proc. SIGMOD’05, pages 155–166. ACM Press, 2005.

[16] T. Hadzilacos and N. Tryfona. A model for expressing
topological integrity constraints in geographic
databases. In Proc. COSIT’92, LNCS 639, pages
252–268. Springer-Verlag, 1992.

[17] B. Kuijpers, J. Paredaens, and J. V. den Bussche. On
topological elementary equivalence of spatial
databases. In Proc. ICDT’97, LNCS 1186, pages
432–446. Springer-Verlag, 1997.

[18] S. Mäs. Reasoning on spatial semantic integrity
constraints. In Spatial Information Theory, LNCS
4736, pages 285–302. Springer-Verlag, 2007.

[19] OpenGis. Opengis simple features specification for
SQL. Technical report, Open GIS Consortium, 1999.

[20] J. Paredaens and B. Kuijpers. Data models and query
languages for spatial databases. Data Knowl. Eng.,
25(1-2):29–53, 1998.

[21] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic
based on regions and connection. In Proc. KR’92,
pages 165–176. Morgan Kaufmann, 1992.

[22] A. Rodŕıguez. Inconsistency issues in spatial
databases. In Inconsistency Tolerance, LNCS 3300,
pages 237–269. Springer-Verlag, 2005.

[23] S. Servige, T. Puricelli, and R. Laurini. A
methodology for spatial consistency improvement of
geographic databases. GeoInformatica, 4:7–24, 2000.

[24] N. Tryfona and M. Egenhofer. Consistency among
parts and aggregates: A computational model.
Transactions on GIS, 1(1):189–206, 1997.

[25] J. Wijsen. Database repairing using updates. ACM
Trans. Database Syst., 30(3):722–768, 2005.

