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Abstract

The process of recognizing individual hand-
written characters is one of classifying curves.
Typically, handwriting recognition systems—
even “online” systems—require entire charac-
ters be completed before recognition is at-
tempted. This paper presents another ap-
proach for real-time recognition: certain char-
acteristics of a curve can be computed as the
curve is being written, and these characteris-
tics are used to classify the character in con-
stant time when the pen is lifted. We adapt
an earlier approach of representing curves in
a functional basis and reduce real-time stroke
modelling to the Hausdorff moment problem.

1 Introduction

A difficulty with most handwriting recognition
techniques is that entire curve traces must be
obtained before any analysis takes place. This
is true even for so-called “online” methods,
which recognize one character at a time. This
means that recognition on a pen-enabled de-
vice, such as a Tablet PC or PDA, typically
proceeds in alternating phases with the proces-
sor mostly idle while collecting input and with
the user waiting while characters are being rec-
ognized.

This paper takes a different point of view
and asks to what degree it is possible to do
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useful computation as the digital ink is be-
ing written. The initial application is to the
problem of mathematical handwriting recog-
nition, where characters are typically written
individually and segmentation is not an is-
sue. Our approach is also applicable to other
real-time problems such as recognition of other
printed handwriting, recognition of entire cur-
sively written words and other classification
problems for curves.

Earlier work [2] has shown how coordinate
curves X(t), Y (t) for handwritten characters
can be modeled succinctly by truncated Cheby-
shev series and that the series coefficients can
be used to classify characters and for recogni-
tion. Rather than describing a digital ink trace
by a few hundred coordinate values, instead a
visually indistinguishable curve can be modeled
by twenty series coefficients. If necessary, one
can apply Euclidean or affine transformations
directly to the polynomial parametrizations of
the coordinate curves in time proportional to
the degree, faster than to the original sample
points. A secondary benefit of this representa-
tion is that the geometry of these curves can be
analyzed by general analytic techniques rather
than ad hoc numerical techniques.

The present work starts with a similar ap-
proach, but uses a different functional basis al-
lowing useful computation as the curve data
is received. The basic idea is to compute mo-
ments of the coordinate curves in real time as
the stroke is written and then to construct the
coefficients for a Legendre series representation
of the curves in constant time when the pen is
lifted.



We find that the Legendre series representa-
tion is just as suitable in practice for represen-
tation and analysis of ink traces as the Cheby-
shev representation, but has the benefit that it
can be computed in a small, fixed number of
arithmetic operations at the end of a stroke.
Additionally, the fixed number of arithmetic
operations at each time step (to compute the
moments) and on pen up (to compute the series
coefficients) makes this technique well suited to
inexpensive hardware implementation.

As detailed further in the article, none of the
computation during the stroke trace is wasted.
This contrasts with other speculative analysis
techniques that can give a “best guess so far”
as a curve is traced, but whose results can be
invalidated as the curve shape evolves. Doing
only useful computation can allow for better
overall system performance on slow devices and
conservation of battery power.

The method we present is “online” in two
senses: It is online in the usual sense of
character-at-a-time recognition, in contrast to
page at a time “offline” document analysis. It
is also online in a theoretical sense, computing
its result as stroke data is received with no look-
ahead. To aid in the evaluation of such meth-
ods, we formalize the idea of requiring com-
putation to occur as data is collected and then
separately measuring the time required after all
data is seen.

The contributions of this paper are

• a complexity model for the on-line recog-
nition problem,

• an analytic representation for digital ink
that may be computed online as the stroke
is written, requiring only a constant num-
ber of operations for each sample point,
and

• experimental results that show this repre-
sentation is as good as that obtained by
earlier stroke-at-once methods.

The rest of the paper is organized as follows:
Section 2 gives the background context. Sec-
tion 3 introduces our complexity model that
formalizes the notion that computing during
pen movement is in some sense free, while time
from pen up is precious. Section 4 states in
an exact way the problem of whether there is

a functional representation that could be com-
puted stroke-online. Section 5 presents a nu-
merical integration method to compute the mo-
ments of an input signal. Section 6 shows how
the Legendre series coefficients may be com-
puted in constant time from moments that are
integrated on-line. Section 7 summarizes our
experimental results on the quality of approxi-
mation by this method. Section 8 summarizes
the main results, outlines future work and con-
cludes the paper.

2 Preliminaries

We present several basic ideas that are used
throughout the paper.

Series of orthogonal functions

We say a family of functions {hi} is orthogonal
with respect to a functional inner product 〈·, ·〉
with weight w(t) on domain [a, b ] if

〈hi, hj〉 ≡
∫ b

a

hi(t)hj(t)w(t)dt = 0 when i 6= j.

Under certain conditions, a function f of some
general class may be expressed as a linear com-
bination of elements of the family {hi}. In this
case we call the family a functional basis, and
for many classes of functions this basis is count-
ably infinite, so we may write

f(t) =
∞∑

i=0

αihi(t).

For an orthogonal functional basis, the coeffi-
cients αi may be computed by inner products

αi = 〈f, hi〉/〈hi, hi〉

because

〈f, hi〉 =
〈 ∞∑

j=0

αjhj(t), hi(t)
〉

=
∞∑

j=0

αj〈hj , hi〉 = αi〈hi, hi〉.



Chebyshev representation

Earlier work [2] showed how the X and Y co-
ordinate functions of handwritten characters
could be written as truncated series of Cheby-
shev polynomials of the first kind, Tn(t) =
cos(n arccos t). The Tn are orthogonal on
[−1, 1] for weight w(t) = 1/

√
1− t2. It was

found that the Chebyshev series coefficients
provided a succinct characterization of the co-
ordinate functions. For series truncated at or-
der d, the approximations were

X(t) ≈
d∑

i=0

αiTi(t), Y (t) ≈
d∑

i=0

βiTi(t).

Classification was obtained by measur-
ing the Euclidean distance from the point
(α0, . . . , αd, β0, . . . , βd) to centers of clusters
obtained from handwriting samples.

Moments and the Hausdorff problem

The moments of a function f defined on the
interval [a, b] are the integrals

µk =
∫ b

a

tkf(t)dt.

Central moments replace tk by (t−µ0)k in the
integrand and are sometimes more useful.

A key aspect of our approach is to recover a
function from its moments. This is the Haus-
dorff moment problem [4, 5], known to be ill-
conditioned. It has been determined that a
function can be reliably recovered from the mo-
ments only if it is well approximated by the
first few orthogonal polynomials (e.g. order ≤
15 with double precision). An algorithm for
computing the coefficients of the Legendre se-
ries from moments has been proposed in [7] to-
gether with an analysis of accuracy and stabil-
ity. As the order increases, accuracy will also
increase, but stability will decrease. This al-
gorithm is essentially the same as the step we
perform when the pen is raised. Improvements
of stability have been proposed in [6] and in [3].
In the first paper the order is decreased using
fractional moments, and in the second paper
the Hankel matrices that arise in the Hausdorff
moment problem are preconditioned.

3 Complexity Model

We wish to capture the notions of useful com-
putation that can be performed as an ink trace
is collected and the remaining computation
necessary when the pen is lifted.

We consider a general model of online com-
putational complexity where input is received
over a span of time during which computation
can occur. The computation may use only the
input seen so far, with no look-ahead. After
receiving the last input, further computation
can occur and the output can be given. We do
not specify the underlying model of computa-
tion (e.g. k-tape Turing machine, RAM, etc.).
Machine-specific models of real-time computa-
tion have been studied dating back to the be-
ginnings of complexity theory [8] and the sub-
ject continues to be of interest, e.g. [1].

We consider the input to be a sequence of N
values received over time at a uniform rate. If
the real problem does not give its values uni-
formly over time, then dummy values can be
inserted. The size of the problem is N and, be-
cause the input values are received uniformly,
input values can also be taken to mark time
steps. We characterize the time for a prob-
lem or of an algorithm by giving the number
of computational steps at the n-th input and
after the last input. If T∆(n) operations are re-
quired at the n-th input step and additionally
TF (n) are required after the last input (when
n = N), then we write the online time complex-
ity as OLn[T∆(n), TF (n)]. For example, linear
insertion sort takes online time OLn[O(n), 0].
Building a heap and printing it requires time
OLn[O(log n), O(n)]. Similar definitions can be
made for average online time, maximum online
time, online space complexity, average online
energy consumption, etc. An algorithm that
takes online time OLn[T∆(n), TF (n)] takes to-
tal time

∑N
i=0 T∆(i) + TF (N).

If an algorithm uses time OLn[T∆(n), TF (n)],
where T∆ and TF do not depend on n, then we
say the algorithm takes online constant time.
The functions T∆ and TF may depend on other
parameters of the problem, but not n.

For digital ink, n gives the number of points
seen so far in an ink trace. We are interested in
what features we can characterize in constant
online time and space as a stroke is written.



4 Series Representation for
Online Computation

Motivated by the approach of Char and Watt
and wishing to find a true online method, we
pose the following question:

Problem Is there a functional basis for digital
ink traces for which the series coefficients can
be computed in online constant time? If so,
show how the coefficients can be computed.

We answer this question positively.
One of the obstacles to computing Cheby-

shev series directly in a stroke-online manner
is the algebraic form of their weight function
w(t) = 1/

√
1− t2. We therefore consider in-

stead the Legendre polynomials, a family of
orthogonal polynomials with the simplest pos-
sible weight function.

The Legendre polynomials may be defined as

Pn(t) =
1

2nn!
dn

dtn
(t2 − 1)n. (1)

These are orthogonal on [−1, 1] with respect to
the weight function w(t) = 1. These are usually
normalized so that Pn(1) = 1 and we have

〈Pi, Pj〉 =
∫ 1

−1

Pi(τ)Pj(τ)dτ =
2

2n + 1
δij ,

where δij = 1 if i = j and zero otherwise.
When we collect digital ink we receive func-

tion values for the coordinates xi(λ) for values
of the parameter λ from 0 to some point L.
Typically L is known only at the time the pen
is lifted.

We show in the following sections how a func-
tion defined on [0, L] can be scaled to domain
[−1, 1] and range [a, b] and can have its Leg-
endre series coefficients computed to solve our
stated problem. We prove the following:

Theorem (Online Legendre series).
Given a sequence of n values of a function f(λ)
at equally spaced values of λ, received one at a
time, it is possible to compute the first d coef-
ficients of the truncated Legendre series for f ,
normalized to a desired range and domain, in
online time OLn[O(d), O(d2)].

We then show by experimental results how
representing characters as truncated Legendre
series provides models of the same practical
quality as the Chebyshev series used previously.

5 Numerical Moment
Computation

For our purposes, the moments of a function f
are defined over an unbounded half-line since
the curve may be traced over an arbitrary
length:

µk(f, `) =
∫ `

0

λkf(λ)dλ. (2)

The moments of the function may be deter-
mined on-line numerically either by hardware
integrators or a software implementation.

In our application we assume that discrete
sample values of f are received as a real-time
signal. We use these values to compute approx-
imate values for the moment integrals. To have
a constant bound on the number of arithmetic
operations for each sample value of f , we use a
finite order integration method. We assume the
sample points are equally spaced with ∆λ = 1.

Through numerical experiments with curves
having 200 sample points we have found that
the standard first and second order Newton-
Cotes integration (trapezoids and Simpson’s
rule) do not yield sufficiently accurate values
for the moments µk as k increases. Further-
more, methods that require a priori knowledge
of L cannot be applied in this context. We have
found that instead a specialized first order in-
tegration method gives suitable results.

To compute the integral
∫ L

0
λkf(λ)dλ, we

use the following approximation for each inter-
val [i, i + 1] and sum the results:

∫ i+1

i

λkf(λ)dλ ≈

(i + 1)k+1 − ik+1

k + 1
× f(i + 1) + f(i)

2
. (3)

This formula represents the exact integral of λk

on [i, i+1] multiplied by the mean value of the
function at the end points.



Combining formulas (3) for all i from 0 to
L−1 and rearranging the terms, we obtain the
following integration formula:∫ L

0

λkf(λ)dλ ≈

L−1∑
i=1

ik+1

k + 1
× f(i− 1)− f(i + 1)

2
+

Lk+1

k + 1
× f(L− 1) + f(L)

2
.

We can update the the sums
∑L−1

i=1 (. . .) for all
orders 0 to d online, as soon as the value f(i+1)
is available, in 2(d + 2) arithmetic operations.
Thus, the online complexity is

T∆ = 2(d + 2),

which is constant in the number of points L.
We then need 2(d + 2) additional operations
to compute the last term when the value f(L)
arrives and pen is lifted up, which is part of
the computation after the last input analysed
in the next section.

This integration method can easily be
adapted for points non-uniformly separated in
time or parametrized by arc-length rather than
time. Since parametrization by arc length is
intrinsic to the curve (i.e., not affected by the
variations in the speed with which the curve is
traced out) and invariant with respect to the
Euclidean transformations, it may be prefer-
able to the time parametrization for the pur-
pose of character recognition and classification.
Also, higher order methods based on this idea
can be used instead if desired.

6 Legendre Coefficients
from Moments

After a curve is traced, we will have computed
its moments over some length L, with L known
only at the time the pen is lifted. The prob-
lem is now to scale L to a standard interval
and compute the truncated Legendre series co-
efficients for the scaled function from the mo-
ments of the unscaled function, µk(f, L). We
show how this can be done, and that it requires

a number of arithmetic operations depending
only on the desired number of terms of the Leg-
endre series.

Suppose f(λ) is defined on [0, L] and let
f̂(τ) = f

(
(τ + 1)L/2

)
be the scaled version

defined on [−1, 1]. If f̂(τ) =
∑∞

k=0 α̂kPk(τ),
we may compute the α̂k as follows:

α̂k =
(
k +

1
2
) ∫ 1

−1

f̂(τ)Pk(τ) dτ

=
2k + 1

L

∫ L

0

f(λ)Pk(2λ/L− 1) dλ

=
2k + 1

L

k∑
i=0

[ti]Pk(2t− 1)
∫ L

0

f(λ) (λ/L)i dλ

=
2k + 1

L

k∑
i=0

[ti]Pk(2t− 1)
Li

µi(f, L).

Here [ti](·) denotes the coefficient of ti. The
polynomials P̃k(t) = Pk(2t − 1) are known
as the “shifted Legendre polynomials” and are
given explicitly by

P̃n(t) = (−1)n
n∑

i=0

(
n

i

)(
n + i

i

)
(−t)i.

We therefore have

α̂k = (−1)k 2k + 1
L

×
k∑

i=0

(
−1
L

)i (
k

i

)(
k + i

i

)
µi(f, L) (4)

Note that the coefficients (−1)i
(
k
i

)(
k+i

i

)
are in-

dependent of the problem and may be com-
puted as constants in advance.

Given the first k moments of f and the first
k− 1 powers of L, we may compute α̂k and Lk

in a number of arithmetic operations depend-
ing only on k: Computing Lk can be done with
one multiplication. The first term of the sum is
given. Adding each of the k subsequent terms
to the sum can be done with three operations
(one division, one multiplication and one ad-
dition). Multiplication by (2k + 1)/L can be
done with two additional operations if 2k+1 is
a pre-computed constant. In all, we have 3k+3
operations to compute αk and Lk.

All the coefficients of a truncated Legendre
series of order d from can be computed from the



moments with
∑d

i=0(3i+3) = 3(d+2)(d+1)/2
arithmetic operations. This is constant in the
number of points, L. Since the required ap-
proximation order is fixed and small (typically
less than 10), the quadratic appearance of d
can be ignored.

To scale f̂(τ) to range over [a, b] on domain
[−1, 1], we record fmin and fmax, the minimum
and maximum values attained by f(λ). We
then define

ˆ̂
f(τ) =

b− a

fmax − fmin
f̂(τ) +

afmax − bfmin

fmax − fmin

=
∞∑

i=0

ˆ̂αiPi(τ),

where

ˆ̂αi = α̂i
b− a

fmax − fmin
+ δi0

afmax − bfmin

fmax − fmin
. (5)

This takes an additional d + 7 operations, so
we have

TF =
3
2
d2 +

11
2

d + 10.

7 Experimental Results

Our first experiment asks how well the trun-
cated Legendre series computed from moments
approximate the coordinate functions X(t) and
Y (t) of handwritten character curves. The
samples comprised 987 single stroke characters
from a collection of 239 mathematical symbols
taken from 9 test users. Users provided sam-
ples only for the symbols with which they were
familiar and which they would normally write
from time to time.

We computed the moments of their coordi-
nate functions using the algorithm from Sec-
tion 5, and then the coefficients of the trun-
cated Legendre series using the algorithm from
Section 6. We estimated the root mean square
deviation

RMS(φ) =

√√√√ L∑
t=0

||(X(t), Y (t))− φ(t)||22

L + 1

between the handwritten character curves
(X(t), Y (t)) scaled to range [0, 1] and the cor-
responding truncated Legendre series φ(t) of

degrees 3, 4, 6, 8, 10, 15, 17, 18, 19 computed
with double precision. The resulting distribu-
tion of RMS, shown in Table 1 and Figure 1,
is nearly identical to the one obtained for trun-
cated Chebyshev series in [2]. The mean square
deviation decreases until degree 16–17, after
which it begins to increase due to the fact that
higher degree coefficients are computed inaccu-
rately with double precision.

We repeated the same computations for co-
ordinate functions parametrized by arc length.
As Table 2 and Figure 3 show, the RMS errors
for parametrization by arc length are similar to
those by time.

An example of a character and its approxi-
mations by truncated Legendre series is shown
in Figure 2. The time-parametrized approxi-
mation is indistinguishable from the original al-
ready for degree 8, unlike the one parametrized
by arc length, which tends to cut the singu-
lar points (cusps and corners) of the original
curve even for the optimal degree 17. The rea-
son for such behavior is that the coordinate
functions X and Y parametrized by time are
smooth everywhere, and hence better approx-
imated by polynomials, than the coordinate
functions parametrized by arc length, which are
singular at the cusp (see Figure 4). The mis-
match between the character curve and its ap-
proximations by arc length parametrized poly-
nomials is not reflected in the mean square er-
rors, because around the singular points (where
the curves disagree most) the differential of the
arc length vanishes, and hence the contribution
of this region to the RMS is small regardless of
the accuracy of approximation there.

The computations were carried out with dou-
ble precision floating point numbers. To esti-
mate round-off errors, we also computed the
expansion coefficients exactly, using rational
arithmetic, and found the maximal absolute
and average relative errors (defined as the sum
of absolute errors divided by the sum of abso-
lute values), summarized in Table 3. These re-
sults show that double precision floating point
provides sufficient accuracy for computing co-
efficients up to degree 13–14, even though the
errors grow exponentially with the degree.

The maximal absolute value that appears
during the computations for degree 10 is 4 ×
1031, and the minimal non-zero absolute value



Degree < 90% < 95% < 99%
3 .310 .330 .361
4 .240 .264 .323
6 .149 .175 .234
8 .075 .099 .153
10 .034 .048 .097
15 .012 .016 .040
17 .011 .014 .044
18 .013 .017 .060
19 .041 .067 .181

Table 1: Legendre series RMS cutoffs by degree
(curves parametrized by time).

Figure 1: RMS error for time parametrization.
% of sample with rms error ≤ given amount
for series truncated at degrees 3, 6, 10, 15.
Curves are in order by degree, with 3 lowest.

Figure 2: Approximations of character “3”
(solid) with Legendre series. Left: time
parametrization, degrees 7 (dotted) and 8
(dashed). Right: arc length parametrization,
degrees 8 (dotted) and 17 (dashed).

Degree < 90% < 95% < 99%
3 .279 .300 .340
4 .189 .223 .292
6 .106 .135 .173
8 .057 .073 .115
10 .036 .047 .074
15 .020 .024 .044
17 .017 .021 .049
18 .017 .021 .067
19 .038 .054 .221

Table 2: Legendre series RMS cutoffs by degree
(curves parametrized by arc length).

Figure 3: RMS error for arc length
parametrization. % of sample with rms
error ≤ given amount for series truncated at
degrees 3, 6, 10, 15. Curves are in order by
degree, with 3 lowest.

Figure 4: Coordinate functions X (left) and Y
(right) parametrized by time (dashed) and arc
length (solid). The parameters are scaled to
span the same interval.



Degree Abs. Error Rel. Error
0 1× 10−11 7× 10−18

1 4× 10−11 4× 10−14

2 5× 10−10 3× 10−13

3 2× 10−9 2× 10−12

4 1× 10−8 1× 10−11

5 5× 10−8 4× 10−11

6 3× 10−7 5× 10−10

7 2× 10−6 3× 10−9

8 9× 10−6 2× 10−8

9 5× 10−5 2× 10−7

10 3× 10−4 2× 10−6

11 1× 10−3 1× 10−5

12 1× 10−2 1× 10−4

13 6× 10−2 9× 10−4

14 3× 10−1 5× 10−3

15 2× 100 4× 10−2

16 1× 101 3× 10−1

Table 3: Maximal absolute and relative round-
off errors for coefficients by degree.

is 1.0. Therefore, if we were to perform the
computations in fixed point arithmetic, 128
bits would be required to compute expansions
of degree 10. With 64-bit fixed point arith-
metic, only expansions of degree 4 can be com-
puted, which do not approximate the character
curves accurately enough. Thus, floating point
numbers are more adequate for our purpose.

Floating point computations with
parametrization by arc length, instead of
time, cause similar round-off errors (not shown
here). Since arc length is usually an irrational
number, we could not compute the expansions
with respect to arc length exactly with rational
arithmetic and used quadruple precision (30
decimal digits) floating point numbers instead.

We conclude that truncated Legendre series
computed from moments with double precision
approximate handwritten character curves just
as closely as truncated Chebyshev series of the
same degree; and the latter, as has been shown
in [2], are visually indistinguishable from the
samples for degree 10. In addition, our experi-
ment has confirmed that for such small degrees
computation of Legendre coefficients from mo-
ments can be carried out reliably with double
precision, even though in general this problem
is ill-conditioned.

8 Conclusions and
Future Work

This article has examined the problem of online
stroke analysis. We have presented a frame-
work in which the computational complexity
of these online algorithms can be meaningfully
modeled, characterizing computation that can
be performed as data is received.

We have demonstrated that a truncated Leg-
endre series representation of ink strokes can be
computed in online time that is constant with
respect to the number of data points, normal-
izing the domain and range of the coordinate
functions as desired.

We have shown experimentally that this Leg-
endre series representation provides models of
the same quality as earlier work with truncated
Chebyshev series. That is, for most characters,
their approximations by Legendre series of or-
der 10 look indistinguishable from the originals.

Having established the utility of this repre-
sentation, it is left to future work to derive fur-
ther characteristics of the ink strokes from the
analytic representation, to build stroke classi-
fiers (e.g. using cluster proximity or SVMs)
based on the series coefficients, and to com-
pare them with other methods (such as elastic
matching) in accuracy and speed.
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