
TWO-DIMENSIONAL ITERATIVE LOGIC* 

Rudd H. Canaday 
Bell Telephone Laboratories, Incorporated 

Whippany, New Jersey 

INTRODUCTION 

It is well known that given a suitable Boolean 
function, a large number of "gates" or "elements," 
each producing this function, can be interconnected 
in a regular structure, or "array," to realize any giv
en Boolean function. Furthermore, the structure of 
the array can be invariant to the function being 
realized. 

One of the simplest such structures is the two-di
mensional array of three-input one-output elements 
shown in Fig. 1. In this paper two methods are 
presented for using this structure in the synthesis of 
arbitrary Boolean functions. The following assump
tions will be adhered to throughout this paper: 

1. All elements in the array are identical. 

2. The interconnections between elements in 
the array are fixed. They cannot be broken 
or changed in any way. 

*The material presented in this report is based on a thesis 
submitted in partial fulfillment of the requirements for the 
Doctor of Philosophy Degree in Electrical Engineering at 
the Massachusetts Institute of Technology, September 1964. 

The research reported was made possible through the 
support extended to the M.I.T. Electronic Systems Labora
tory by the U.S. Air Force Avionics Laboratory, Naviga
tion and Guidance Division, under Contract AF-33(657)-
11311 and, in the earlier phases of this research, under 
Contract AF-33 (657)-8932. 

3. The array will be used as a single output 
circuit. Only the output of the lower right 
element of the array is accessible to the 
outside world. 

4. Every element in the array realizes the 
"majority" function 

f(A,B,C) = AB+AC + BC 
of its three inputs.* 

As a consequence of assumptions (1) , (2) , and 
(4) , an array can be described completely in terms 
of its width w and height h. Such an array will be 
called a "MAJority Array" or "MAJA." 

In the remainder of this paper it will be shown, 
first, how to synthesize an arbitrary "self-dual" 
function in a MAJA. Then this result will be ex
tended to arbitrary functions and some examples 
will be given. This is "intersection synthesis." Next 
a second synthesis technique, "factorization synthe
sis," will be described, first in a canonic form, 
through examples, and then in a more general form. 

*It is easy to prove1 that all of the results given here 
extend directly to arrays of "minority" elements: 

f(A,B,C) = ..AB + AC + BC 

This paper is based on the author's Ph.D. thesis.1 In the 
present paper space limitations preclude statements of all 
theorems and proofs on which the synthesis methods are 
based. These do appear, together with extensions of the 
results presented here, in reference 1. 
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Figure 1. A 4 X 6 array of 3-input elements. 

Both synthesis techniques lead to arrays of reason
able size, and embody new synthesis techniques 
which may prove to be applicable in other forms of 
synthesis also. 

PRELIMINARY DISCUSSION 

Before discussing array synthesis, it is necessary 
to define some terminology for arrays. 

Each element in an array has three inputs, which 
will be denoted "top," "center," and "left" inputs 
(signal flow in an array is always left-to-right and 
top-to-bottom). 

The w inputs (for an array of width w ) consist
ing of the top input to each element in the top row 
of the array form the "top boundary" inputs to the 
array. 

Similarly, the h inputs (for an array of height h), 
consisting of the left input to each element in the 
leftmost column of the array, form the "left boun
dary" inputs to the array. 

One particular type of array proves to be of par
ticular interest. This array has, in effect, all top 
boundary inputs wired together, and all left boun
dary inputs similarly wired together. 

Definition : An " XY Standard Boundary Condi
tion majority array" ( XY SBC MAJA) is a 
MAJA all of whose top boundary inputs carry 
the signal Y where Y can be a variable or a 
constant, and all of whose left boundary inputs 
carry the signal X, where X can be a variable 
or a constant. 

Fig. 2 is an example of an XY SBC MAJA. The 
two synthesis methods to be presented both apply to 
the SBC MAJA. 

Intersection synthesis is given first for self-dual 
functions, as defined below. 

Definition: Given a Boolean function f(x\, . . . , xn), 
then the dual fd(xi,..., xn) of the function / is 
defined as: 

f(Xi, . . . ,Xn) = f(Xi, X2, . . . ,Xn) 

By applying deMorgan's theorem one can easily see 
that if / is expressed using only the operations + 
(OR), • (AND) and - (NOT), then f is obtained 
by interchanging + and • throughout the expression 
for /. 

Definition: A Boolean function f(xi, . .., xn) is self-
dual if and only if 

fd(Xl, . . . ,Xn) = f(Xl, . . . , Xn) 

Note that by this definition of dual and self-dual, a 
function which is a constant is not self-dual since, 
if / = 1 then f = f = 0. 

Any n-variable Boolean function f(x\, .. . ,xn) can 
be factored as 

f(Xi, . . . , Xn) = Xfo + Yft (1) 
with X and Y chosen from {xi, X\, . . ., xn, xn}. 

If / is a self-dual function, then the existence of 
the factorization (1) implies that / can be factored 
as 

f = Xf0+ Yf0
d + XY (2) 

where X, Y, and /0 are the same as in Eq. (1) . 
Equation (2) is basic to the synthesis algorithm, 

which is presented in the following two definitions 
and Theorem 1 below. 
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Figure 2. An XY SBC MAJA. 

INTERSECTION SYNTHESIS 

Definition: Given two Boolean functions fa and fb, 
and given a sum of products expression for 
each: fa — n + r% + . . . + rk\ 

h = h + h + 
. . . + tm, then an intersection matrix of fa X fb 

is a matrix with k rows and m columns, in which 
each entry e%$ is the intersection of the literals in 
n with the literals in tj (i.e., e%j contains a literal 
y if and only if y is in both n and tj). 

Note that the intersection matrix for a given fa and 
fb is not unique. It is unique for given sum-of-
products expressions (including the ordering of their 
terms) for both fa and fb. Now it is possible to define 
an SBC MAJA to realize any given self-dual function. 

Definition: Given a self-dual function fsd = XY + 
Xf0 + Xfod, and given a k X m intersection mat
rix /o X f0

d, with rows corresponding to terms of 
/o, then an XY intersection MAJA for fsd is a 
k X m XY SBC MAJA with the center inputto 
the ijth element chosen to be any one of the 
literals in entry ey of the intersection matrix, for 
all i, j : 1 < i < k, 1 < / < m. 

Again note that one function /sd may have many inter
section MAJAs for each factorization (each choice 
of Z a n d Y). 

Theorem 1: Given any XY intersection MAJA for a 
self-dual function fsd, then the output of the 
MAJA realizes the function fsd. 

that the MAJA produces all the ones of fsd, 
since a MAJA without constant inputs must 
realize a self-dual function.1 It is easy to prove 
that if the term XY is one the array output is 
one. Now let a term Xn in Xf0 be one. Then 
every literal in the term is one. Then every left 
boundary input, and the center input to every 

element in the /th row, is one. It is not difficult 
to prove that this condition suffices to insure 
that the array output is one. Thus the array 
output is one for every term in Xf0. Similarly 
if a term Yu in Yf0

d is one then every center 
input to the ith column, as well as every top 
boundary input, is one. Again this suffices to 
insure that the array output is one. Thus every 
one of fsd = XY + Xf0 + Yf0

d is realized at the 
output of an intersection MAJA for /sd and so 
the MAJA realizes fsd. 

The synthesis algorithm just presented allows one 
to synthesize any self-dual Boolean function. To 
extend the result to any arbitrary Boolean function, 
the "self-dual expression" for a function is defined. 

Definition: Given any n-variable Boolean function 
f(xi, . . . , xn), and a variable U independent of 
(xi, . . . , xn), the Self-Dual Expression fsd for / 
is defined as the (n -PI )-variable_function:t 

fsd(U,Xt,. ..,Xn)= Vf(Xx, ...,Xn)+ Ufd(xU . . . , Xn). 

*The proof given here is very sketchy. The detailed proof, 
which depends on a number of theorems not given here, is 
in reference 1. 

Proof:* By construction the MAJA has no con
stant inputs. Therefore it is sufficient to prove tThis is a reformulation of work done by S. B. Akers.2 
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It is trivial to prove that the self-dual expression 
for any function is a self-dual function. Also, if / is 
a selfdual function, then 

jsd(U,Xx> ...,Xn) = f(xh . . . , Xn). 

Clearly this is true if and only if / is self-dual. 
To synthesize an arbitrary n-variable function, 

proceed as follows: 

1. Find the (n + 1)-variable self-dual expres

sion, fsd, for the function /. 

2. Synthesize fsd(U,xi, . . ., xn). 
3. Replace every input U to the array by the 

constant input 1 (one) and every input U 
by the constant 0 (zero). 

The resulting array realizes f(xi, . . ., xn) since fsd(l, 
X\ • . . , Xn ) = f(xu . . . , Xn) by construction. 

The examples to follow show arrays with the in
puts U and U. Thus these arrays, as shown, realize 
the self-dual expression of the given function. 
Wherever the inputs U and U occur, they can be 
replaced by 1 and 0 as discussed above to obtain 
the array for the given function. 

Note that the array for a self-dual function con
tains, by construction, no constant inputs. It can be 
shown that in any MAJA constant inputs are re
quired if and only if the function being synthesized 
is non-self-dual. 

In an intersection MAJA for a function, every 
term in the factored expression for the function cor
responds to a single row or column in the MAJA. It 
can be shown1 that terms in the output function of 
an SBC MAJA can correspond not only to single 
rows and columns, but also to inputs (or elements) 
which do not form a single row or column. Thus it 
seems that the intersection matrix construction does 
not make maximum use of the MAJA. In other 
words, by realizing some terms in the function us
ing a set of elements not from a single row or co
lumn, it is possible to realize many functions in an 
SBC MAJA considerably smaller than an intersec
tion MAJA for the function. By extensions to this 
work, reduced non-SBC arrays can be derived also, 
but the methods become much messier and less al
gorithmic. 

It is not possible in the space available here to 
discuss reduction techniques. However, the follow
ing examples show some arrays in reduced form, as 
well as the original intersection arrays. 

While it is possible to construct an intersection 

array from any factorization of the form 

fed = XY + Xf0 + Yf0
d 

with /o and fod each expressed as a sum of product 
terms, it is obvious that the smallest array results 
from choosing X and Y and the expressions for /o 
and fod to minimize the number of terms in /o and in 
fod. This is done in the following examples. 

SYNTHESIS EXAMPLES 

Before giving examples of synthesis by Theorem 
1, it is useful to define a notation which will be 
used in examples throughout the rest of this work. 

In the many examples to follow in this and suc
ceeding sections it is necessary to show arrays with 
variables assigned to the inputs. Since the interele-
ment connections in an array are fixed, an array 
with inputs can be completely specified by giving 
each boundary input and the center input to each 
element of the array. These inputs are presented as 
a matrix, with a line separating top and left boun
dary variables from the center input variables. Thus 
the array of Fig. 3 is represented by 

B 
B 
B 
B 
B 

B 
U 
D 
C 
C 
C 

B 
C 
C 
A 
A 
D 

B 
C 
C 
A 
A 
U 

B 
D 
U 
D 
U 
D 

B 
A 
A 
C 
C 

c 
Clearly this representation is completely general; 

it is not restricted to SBC arrays. 

Example 1: /(,4,fl,C,D)=20,l,4,6,7,8,ll,12,13,14.* 

A minimum Sum of Products (MSP) form of the 
Self-Dual Expression for this function is: 

fsd=BCDU + ABCDU + ABCD + ABCD + ABC 
+ ABCU + ABCU + ABCDU + BDU + CDU 

This function can be factored on BB or CC without 
increasing the number of product terms (10) in_the 
expression, since the term BDU can be written BCDU 
or CDU can be written BCDU, without changing fsd. 
Arbitrarily choose the BB factorization. 

*This notation, defined in Caldwell,3 defined the rows of 
the truth table for which the function is one. 
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f(A.B.C.D) 

Figure 3. SBC MAJA for Example 1. 

The intersection matrix is 

B 
(CDU) (ACD) (ACU) (DU) (AC) 
(U) 
(D) 
(C) 
(C) 
(C) 

(CD) 
(C) 
(AD) 
(A) 
(D) 

(C) 
(CU) 
(A) 
(AU) 
(V) 

(D) 
(U) 
(D) 
(U) 
(DU) 

(A) 
(A) 
(Q) 
(C) 
(C) 

(ACDU) 
(ACDU) 
(ACD) 
(ACU) 
(CDU) 

One intersection MAJA is 

B 
B 
B 
B 
B 

B 
U 
D 
C 
C 
C 

B 
C 
C 
A 
A 
D 

B 
C 
C 
A 
A 
U 

B 
D 
U 
D 
U 
D 

B 
A 
A 
C 
C 

c 

c U 
A 

B 
A 
C 

D 
U 
B 

By reduction techniques! described elsewhere,1 a 
2X3 non-SBC array can be found to realize this 
function: 

D 
A 

A 2X3 array is known to be the smallest array 
capable of realizing this function since no smaller ar
ray has enough terminals. The 2X3 array shown 
here has one element which performs no logical 
function because it has two identical (A) inputs. 
The 5-element network resulting from removal of 
element 21 has the adsolute minimum number of 

tThese techniquees are heuristic, and results obtained 
depend to some extent on the experience of the person 
doing the reduction. 

3-input elements for any network capable of realizing 
this function. 

Example 2: f(A,B,C,D) = 21,4,5,6/7,9,11,12,13,15 

MSP fsd = BD+ ACD + ABC + ABU 
+ ADU can be writteji aŝ  

fsd = BD + B(AC+AU) + D(AC+AU) 
The SBC MAJA is 

D D 
B 
B 

A 
U A 

This is the smallest SBC MAJA which can possibly 
realize this function, since six different literals must 
appear as inputs, and no smaller SBC array has six 
inputs. 
Example 3: j(A,B,C,D) = 21,2,5,7,11 

M S P _ _ f_* = ~ACD_+ ABD + ABCD + 
ABCD ±AJ1CDU + BDU + CDU 

+ABU+ACU 

Factor on DD for the minimum number of product 
terms in the factored expression 

fsd = D(ABC+ABCU+ABU+ACU) 
+ D(AC+AB+ABC+BU+CU) 

A corresponding SBC intersection MAJA is: 

D 
D 
D 
D 

D 
X 
c 
A 
A 

D 
X 
B 
A 
A 

D 
C 
A 
B 
C 

D 
B 
U 

u 
u 

D 
C 

u 
u 
u 
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By reshuffling rows and colums, it becomes pos
sible to remove the row corresponding to term ACDU 
and the column corresponding to term CDU 

D 
T 
A 
C 
B 

D 

r B 
A 

u 

D 

X 
A 
B 
U 

The term CDU is realized by the center inputs to 
elements VL^ 42, and 43, and the left boundary. The 
term ACDU is realized by the center inputs to ele
ments 11, 21, 31, 42, and the top boundary. This 
is the smallest known SBC array for this function. 
However, there exists a 2X3 non-SBC majority ar
ray for the function: 

C C_ D_ 
B. I A. 5 U 
U B B A 

Arrays of size 2X3 or 3X3 appear to be typical 
for non-self-dual functions of four variables.1 

THE CANONIC ARRAY 

The two major disadvantages of the synthesis 
method presented above are: 

1. The lack of reasonable bounds on the size 
of array needed to realize an arbitrary 
function. 

2. The inability to apply reduction proce
dures to functions of more than five or six 
variables.* 

The development of a canonic form for arrays for 
arbitrary functions of n variables as is done below 
obviates these disadvantages. This canonic form has 
the following properties: 

1. The canonic array for n variables, for a 
given n, is an array of fixed size, with 
some inputs fixed and the rest of the in
puts chosen for the specific function (typi
cally, well over half of the inputs are 
fixed). This array will realize any given 
function of n variables if the nonfixed in-

*Note, however, that the basic synthesis algorithm (Theo
rem 1) can be applied to arbitrarily large functions, though 
the resulting arrays generally are unreasonably large. 
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puts are properly chosen. An algorithm for 
determining the inputs needed to realize 
any given function exists. 

2. An algorithm exists for generating the ca
nonic array for any given n. 

3. The canonic array for n variables is the 
smallest known array to realize the checker
board (worst-case) function of n varia
bles, for n even. 

4. For most given functions the canonic array 
is reducible (by methods given in reference 
1). 

5. The canonic array embodies a technique 
for embedding arrays within larger arrays, 
which shows great promise for future work 
in multiple output arrays and in nonmajor-
ity (nonminority) arrays. 

The disadvantage of the canonic array is that the 
array required for a given function usually is larger 
than the array produced by intersection synthesis 
and reduction, assuming that the function is small 
enough to make that synthesis-reduction technique 
feasible, f 

The size of the canonic array is shown in Table 1 
as a function of n , the number of variables in the 
function to be synthesized. In addition a "connec
tion count" is shown for each n. This is the num
ber of connections to the array which are not in
variant over all functions of n variables, plus one 
connection for each variable whose input connec
tions are invariant. One can envision building the 
array with all invariant connections wired together 
at the time of manufacture. Then the "connection 
count" is just the number of input terminals to the 
array to allow it to realize any function of n varia
bles. 

Table 1. 

n 
3 
4 
5 
6 
7 
8 
9 

Size 
3X3 
4X6 
7X8 
9X14 

15X18 
19X30 
31X38 

Connections 
10 
16 
26 
44 
78 

144 
274 

tReduction is feasible on most functions of five variables 
and some functions of six variables.1 
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CONSTRUCTION OF CANONIC ARRAYS 

In this section the canonic array for n variables 
is presented through examples. In the next section 
the process of embedding subarrays in an array is 
considered more generally. 

Consider the MAJA 

U_ 
U 

u 
A 
go 

u 
gl 
A Array 1 

in which go and gx are input literals chosen from the 
set {B,B,U,U}. This array, as straightforward analy
sis will show, realizes the self-dual function 

fsd = u[Ag0+Agi] + U[Agi+Ago] 

number of variables, it is necessary to define a con
struction method which will result in the canonic 
array for any given n. Here the approach taken is 
inductive. Given the canonic factorization array for 
(n - 1) variables, it will be shown how to construct 
the array for n variables. This will be done by em
bedding two arrays for (n - 1 variables in the factori
zation array for n variables. Consider first the case 
of n = 4. The array for ( « - 1) = 3 variables is 
known (Array 2) . Take two of them: 

U 
U 
U 

Array 3, with U = 1, realizes 

u 
B 
gooo 

C 

U 

gou 

C 
gooi 

U 

c 
goio 

B Array 3 

which can be any self-dual function of the three 
variables (A,B,U). If U = 1, Eq. (3) becomes 

/ - Ago + Agi _ (4) 
which, if go and gi are chosen from {B,B,0,1}, can 
be any function of the two variables (A,B). Thus 
Array 1 is the canonic factorization array for n = 2 
variables. It is called a "factorization" array because 
Eq. (4) is a factorization of the function. It is called 
"canonic" because it is in a standard form, as will 
become clear later. 

Now consider the MAJA 

u 
A 
goo 

B 

U 

gu 

B 
goi 

U 
B 
gio 
A 

U 
U 

If U = 1, this array realizes the function 

Array 2 

f = ABgoo + ABgoi + ABg10 + ABgu (5) 

If goo, got, gio, and gu are chosen from {C,C,0,1}, 
then Eq. (5) can be any function of the three vari
ables (A,B,C). Array 2 is called the canonic factori
zation array for n = 3 variables even though its 
form differs slightly from the canonic construction 
to be defined. 

It would be possible to continue thus to define 
arrays to realize any function of n variables for 
n — 4,5,6, and so on. However, if one wishes to 
define a canonic factorization array for an arbitrary 

go = BCgooo + BCgooi + BCgoio + BCgou 

u u u 

(6) 

u 
u 
u 

B 
gioo 

C 

gm 

c 
gioi 

C 
gno 

B Array 4 

Array 4, with U = 1, realizes 

gi = BCgioo + BCgwo + BCguo + BCgm (7) 

Combine Array 3 and Array 4 in the canonic fac
torization array for n = 4 

U 
£ 
U 
U 

u 
A 
B 
gooo 

C 

U 

A 
gou 

C 
gooi 

U 
A 
C 
goio 

B 

U 
B 

iglOO 

\c 
•A 

U 

gin 

c 
gioi 

A 

U 
B 
gno 

B 
A 

Array 5 

where dotted lines have been shown only to clarify 
the construction of the array. It should be empha
sized that Array 5 is a 4 X 6 IJU SBC MAJA, with 
no modification of its structure. The array contains 
subarrays only in the sense that the input pattern to 
portions of the array can be identified with the input 
patterns to Array 3 and Array 4. 

Array 5, with U = 1, realizes the function 

/ = Ago + Agi (8) 
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where go and gx are the arbitrary 3-variable func
tions realized by Array 3 and Array 4. To see this, 
let U = 1 (and U = 0, of course). Then if A = 1, 
the subarray corresponding to Array 4 (elements 
14,15,16,24,25,26,34,35, and 36) has one on its 
top boundary (elements 14,15,16), and zero on its 
left boundary (elements 14,24,34). It is not difficult 
to see that with A = 1, Array 5 has the same output 
as Array 4. Similarly, if A = 0, then the subarray 
corresponding to Array 3 has zero on its left bound
ary (elements 21,31,41) and one on its top bound
ary (elements 21,22,23) and it can be shown that 
Array 5 has the same output as Array 3. Thus 
Eq. (8) is vertified. 

By substitution of Eqs. (6) and (7) into Eq. (8) , 
one obtains 

/ = ABCgooo + ABCgooi + . . . 

+ ABCgno + ABCgui (9) 

If gooo through gm are chosen from {D,D,0,1}, then 
equation (9) can be any function of the four vari
ables (A,B,C,D). 

By interchanging rows and columns in Array 5 
and then interchanging U and U and changing the 
subscripts on the g inputs appropriately, one obtains 
the MAJA, 

U 
u_ 
u_ 
u 
u 
u 

which realizes the same function, Eq. (9) , as does 
Array 5. This is the flipped canonic factorization 
array for four variables, "flipped" because it corre
sponds to Array 5 flipped about its main diagonal 
(and with U, U interchanged and the g's renum
bered). 

To construct the canonic factorization array for 
five variables one embeds two 4-variable subarrays 
in a factorization array in exactly the same manner 
in which Array 5 was constructed. If one uses as 
subarrays two copies of Array 5, the resulting 5-
variable array is 5 X 12, with 60 elements. If, 
however, one uses the flipped array, Array 6, the 
resulting 5-variable array is 7 X 8 with 56 elements: 

u 
A 
A 
A 
B 
gooo 

C 

U 
i _ 

-5 
• gioo 

\c 
gou 

C 
gooi 

U 

gin 

C 
._£ioi . 

C 
goio 

B 

U 

c 
guo 
B 

] A 
1 A 
] A Array 6 

U 
U 

u 
u 
u 
u 
u 

u 
A 
B 
B 
B 
C 
goooo 

D 

U 
A 
C 
goioo 

D 
goo n 

D 
goooi 

U 
A 
gom 

D 
goioi 

D 
gooio 

C 

U 

A 
D 
gono 

c 
B 

B 
B 

U 

B 
B 
B 

c 
giooo 

*> 
A 

U 

c 
gnoi 
D 
#1011 

D 
giooi 
A 

U 

gun 

D 
gnoi 
D 
#1010 

C 
A 

U 

D 
g m o 

c 
B 
B 
B 
A 

Array 7 

Again, the dotted lines are included to clarify the 
construction. Array 7 realizes the function 

/ = ABCDgoooo + ABCDgoooi 7 + ABCDguu 

u 
A 
B 
D 
C 

U 
A 
D 
C 
D 

U 
A 
C 
D 
B 

U 
B 
D 
C 
A 

U 
D 
C 
D 
A 

U 
C 
D 
B 
A 

It is interesting to note that the canonic factoriza
tion array is the smallest array known which realizes 
the "checkerboard" function f(A,B,C,D) = A + B 
+ C + D.* The canonic factorization array for this 
function is 

U 
U 

u 
u 

However, for five variables no function is known 
which cannot be realized in a reduced intersection 
MAJA smaller than Array 7. It is true in general 
that no function is known to be "worst case" for 
n odd, although the "checkerboard" function is 
always "worst case" for n even. 

The construction of canonic factorization arrays 
for higher values of n is carried out by successive 
embedding of (n- 1)-variable flipped arrays, as was 
just illustrated for n' = 5. Let Hn denote the height 
of the canonic factorization array for n variables, and 
let its width be Wn. Then, by the construction of the 
canonic factorization array 

H.3 — 3, W3 

and 

Hn = Wn-1+ 1, Wn = 2Hn-l for Ti > 3 

These array sizes are tabulated in Table 1. Note that 
in the canonic factorization array for n variables 
{xi,x2, . . . , xn), 2n~1 of the inputs, the g inputs, 

*This function is termed "checkerboard" because its Kar
naugh Map representation resembles a checkerboard. 
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depend on the function being realized, while all other 
inputs are fixed, independent of the particular func
tion being realized and equal to one of the 2n 
literals {xi ,Xl,X'2fX2, • • • , X(n — 1), U,U} (U, U) being 
in fact constants, of course), so that if all identical 
fixed inputs are wired together at the time of manu
facture, only 2n + 2n~1 external connections to the 

array need be provided. This "connection count" is 
also tabulated in Table 1. 

As a final illustration, the canonic factorization 
array for n = 6, f(A,B,C,D,E,F), is shown below, 
with solid lines indicating the two 5-variable sub-
arrays and dotted lines indicating the four 4-variable 
sub-subarrays. 
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where the 32 nonfixed inputs gooooo through gum are 
all denoted simply g. 

The factorization array, unless it has prewired 
fixed inputs, can often be reduced for a given func
tion. The factorization array factors a function into 
subfunctions, each of which is in turn factored until 
eventually each sub-subfunction consists of a single 
literal. Each subfunction is realized in a UU SBC 
subarray. Many of the subfunctions may have UU 
SBC MAJA realizations smaller than the one used 
in the factorization array. These can be substituted 
for the standard subarray with a corresponding de
crease in array size. 

EMBEDDED SUBARRAYS 

In this section the process of embedding sub-
arrays will be considered in general. If one has two 
UU SBC MAJA's realizing two self-dual functions 

gosd = Ugo + Ugod 

and 

gisd = Ugi + Ugi° 

then these two arrays can be embedded in a WV 
SBC MAJA to realize the self-dual function 

fsa = VXg0 + VYgl + WXg!d + WYg0
d + 

VW + WXY 

where X and Y are any single literals. If the array 
for gosd is denoted 

U 

u 
8 
8 

8 

U.. 

8 . 
8 

8 . 

. U 

..8 

..8 U 

where 8 denotes the various inputs of the array for 
gosd, and if the array for gisd is denoted, similarly, 

U_ 

u 

u 
then the array for fd is 
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. e 

.Y 

Array 8 
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In this illustration the arrays for gosd and gisd 

have been assumed to be of equal height. This need 
not be true in general. 

The formal definition of this construction follows. 
Given a self-dual function jsd(xx,X2,. . . , xn), ex

press it in a VW factorization as fsd = Vg + Wgd + 
VW where the function g may or may not be self-
dual. This is always possible, if V and W are prop
erly chosen from {xx,xx,x%,. . . , xn}. Then factor g 
as g = Xgo + Ygx. Again, this is always possible. 

Then 

gd = Xgxd + Yg0
d + XY 

and 

fsd = VXg0 + VYgi + WXgid + WYg0
d 

+ VW + WXY 

with V,W,X, and Y chosen from {xx,xx,X2,..., xn}. 
Now construct an SBC UU MAJA to realize 

gosd = Ugo + Ugod. Call this array Ao. Let its size 
be ho X wo. Similarly construct the SBC UU MAJA 
Ax of size hx X wx to realize gisd = Ugx + Ugxd. 
Note that there is no restriction on how Ao and Ax 
are constructed, or on their size. It will now be 
shown that the two arrays Ao and Ax can be em
bedded in an SBC WV MAJA, A, of size h X 
0 0 + wx) which realizes /sd, where h equals the 
larger of ho + 1 and hx + 1. 

Let the center input to element ij of A o be called 
a°ij, defined for all /, /': 1 < i < ho, 1 < / < Wo. 
Similarly, let the center input to element // of Ax 
be called ah}, defined for all i, j : 1 < / < hx, 
1 < /' < wx. Then the inputs to the hx w array A 
are assigned as follows, where h = the largest of 
ho + 1 and hx + 1 and w = wo + Wx and an denotes 
the center input to element ij of A: 

For 1 < i < h - ho and 1 < / < w0 

OLij = X 

For h - ho < i < h and 1 < / < w0 

cx-ij — a°ki with k — i- {h-ho) 
For 1 < i < hx and w0 < / < w 

oca = aVj-vvo) 
For hx < i < h and wo < j <w 

an = Y 

This specifies every input to A in terms of X and Y 
and the inputs to Ao and Ax. Array 8 is an example. 
It can be proved1 that the array just defined has 
as output the function fsd(*i,. . . , xn). 

It is very important to observe that the only re
strictions on the arrays Ao and Ax are 

1. That they are SBC arrays with U and U as 
boundary variables. 

sd d sd 

2. That they realize go = Ugo + Ugo and gx = 
d 

Ugx + Ugx respectively. 

Condition (2) is not equivalent to the condition (2 ' ) : 
That when U = 1 and U = 0, Ao and Ax realize go 
and gx respectively. 

Since the subarrays Ao and Ax can be any UU SBC 
sd sd 

MAJA's realizing the functions go and gx respectively, 
it is possible to construct one or both of Ao and Ax 
themselves as factored arrays. In fact, the canonical 
factorization array for n variables is just a factored 
array with each subarray factored and each sub-sub-
array factored and so on until each sub-sub . . . sub-
array is a 3 X 3 canonical array which realizes a func
tion of only three variables. 

To illustrate the use of factored subarrays in a 
sd sd 

factored array in the general case, express go and gx 
as 

sd d d 

go=URogoo+USogox +URogox+USogoo+ URoSo 

and 
sd d d 

gx = URxgxo+USxgxx+ URxgxx+USxgxo+ URxSx 

and realize each of them in factored UU arrays, 
which are used as subarrays in the array for /sd. 
Figure 4 shows the construction of the resulting ar
ray. In this array the function fsd has been factored as 

fd= VXRogoo + VXSogox + VYRxgxo 
+ VSYxgxx+VYRxSx + WXRxg 
+ WYRogox + W YSogoo +WXY+VW 

(For the sake of illustration it has been assumed 
in Fig. 4 that g00

sd can be realized in a 2X2 SBC UU 
MAJA, while goisd, giosd, and gusd, each require a 
3X3 SBC UU MAJA.) 

A study has been made of two-dimensional arrays 
of three-input one-output gates, or elements, each 
element realizing the majority function of its three 
inputs (f(A,B,C) = AB+AC+BC). These arrays 
are functionally equivalent to arrays of minority ele
ments ( / U ^ C ) = AB+AC+BC). 
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9v 9v yv 

3 x 3 
SUBARRAY 

FOR 
,sd 

Figure 4. Four subarrays embedded in an SBC factorization MAJA. 

SUMMARY 

Two methods are developed for synthesizing any 
given Boolean function in an array. The first method 
results in an array whose size depends on the par
ticular function being realized. The second method 
results in an array whose size depends only on the 
number of variables in the function being realized. 
Any 4-variable function, for example, can be realized 
in an array of 24 elements or less. 

The principle result of this work is a simple al
gorithmic synthesis procedure with the following 
properties: 

1. It is based on building blocks (arrays) 
which are characterized solely by their 
width and height, and which contain only 
simple three-input, one-output elements of 
one type, with a maximum output load of 
two elements each. 

2. It results in arrays obeying a known upper 
bound on size that seems reasonably small. 

3. It permits the synthesis of any Boolean 
function of n-variables by specifying no 
more than 2(n"1) inputs to the array. 

4. It permits the logical decomposition of the 
array into subarrays, corresponding to a 

decomposition of the function into sub-
functions, with no physical modification of 
the array. 

5. It results in circuits (arrays) with a longer 
delay, and hence lower speed, than conven
tional logic circuits. 

6. It often requires more elements to realize a 
given function than do methods less con
strained in element type and interconnec
tion. 
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