
TWO-DIMENSIONAL ITERATIVE LOGIC*

Rudd H. Canaday
Bell Telephone Laboratories, Incorporated

Whippany, New Jersey

INTRODUCTION

It is well known that given a suitable Boolean
function, a large number of "gates" or "elements,"
each producing this function, can be interconnected
in a regular structure, or "array," to realize any giv­
en Boolean function. Furthermore, the structure of
the array can be invariant to the function being
realized.

One of the simplest such structures is the two-di­
mensional array of three-input one-output elements
shown in Fig. 1. In this paper two methods are
presented for using this structure in the synthesis of
arbitrary Boolean functions. The following assump­
tions will be adhered to throughout this paper:

1. All elements in the array are identical.

2. The interconnections between elements in
the array are fixed. They cannot be broken
or changed in any way.

*The material presented in this report is based on a thesis
submitted in partial fulfillment of the requirements for the
Doctor of Philosophy Degree in Electrical Engineering at
the Massachusetts Institute of Technology, September 1964.

The research reported was made possible through the
support extended to the M.I.T. Electronic Systems Labora­
tory by the U.S. Air Force Avionics Laboratory, Naviga­
tion and Guidance Division, under Contract AF-33(657)-
11311 and, in the earlier phases of this research, under
Contract AF-33 (657)-8932.

3. The array will be used as a single output
circuit. Only the output of the lower right
element of the array is accessible to the
outside world.

4. Every element in the array realizes the
"majority" function

f(A,B,C) = AB+AC + BC
of its three inputs.*

As a consequence of assumptions (1) , (2) , and
(4) , an array can be described completely in terms
of its width w and height h. Such an array will be
called a "MAJority Array" or "MAJA."

In the remainder of this paper it will be shown,
first, how to synthesize an arbitrary "self-dual"
function in a MAJA. Then this result will be ex­
tended to arbitrary functions and some examples
will be given. This is "intersection synthesis." Next
a second synthesis technique, "factorization synthe­
sis," will be described, first in a canonic form,
through examples, and then in a more general form.

*It is easy to prove1 that all of the results given here
extend directly to arrays of "minority" elements:

f(A,B,C) = ..AB + AC + BC

This paper is based on the author's Ph.D. thesis.1 In the
present paper space limitations preclude statements of all
theorems and proofs on which the synthesis methods are
based. These do appear, together with extensions of the
results presented here, in reference 1.

343

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1463891.1463931&domain=pdf&date_stamp=1965-11-30

344 PROCEEDINGS FALL JOINT COMPUTER CONFERANCE, 1 9 6 5

Figure 1. A 4 X 6 array of 3-input elements.

Both synthesis techniques lead to arrays of reason­
able size, and embody new synthesis techniques
which may prove to be applicable in other forms of
synthesis also.

PRELIMINARY DISCUSSION

Before discussing array synthesis, it is necessary
to define some terminology for arrays.

Each element in an array has three inputs, which
will be denoted "top," "center," and "left" inputs
(signal flow in an array is always left-to-right and
top-to-bottom).

The w inputs (for an array of width w) consist­
ing of the top input to each element in the top row
of the array form the "top boundary" inputs to the
array.

Similarly, the h inputs (for an array of height h),
consisting of the left input to each element in the
leftmost column of the array, form the "left boun­
dary" inputs to the array.

One particular type of array proves to be of par­
ticular interest. This array has, in effect, all top
boundary inputs wired together, and all left boun­
dary inputs similarly wired together.

Definition : An " XY Standard Boundary Condi­
tion majority array" (XY SBC MAJA) is a
MAJA all of whose top boundary inputs carry
the signal Y where Y can be a variable or a
constant, and all of whose left boundary inputs
carry the signal X, where X can be a variable
or a constant.

Fig. 2 is an example of an XY SBC MAJA. The
two synthesis methods to be presented both apply to
the SBC MAJA.

Intersection synthesis is given first for self-dual
functions, as defined below.

Definition: Given a Boolean function f(x\, . . . , xn),
then the dual fd(xi,..., xn) of the function / is
defined as:

f(Xi, . . . ,Xn) = f(Xi, X2, . . . ,Xn)

By applying deMorgan's theorem one can easily see
that if / is expressed using only the operations +
(OR), • (AND) and - (NOT), then f is obtained
by interchanging + and • throughout the expression
for /.

Definition: A Boolean function f(xi, . .., xn) is self-
dual if and only if

fd(Xl, . . . ,Xn) = f(Xl, . . . , Xn)

Note that by this definition of dual and self-dual, a
function which is a constant is not self-dual since,
if / = 1 then f = f = 0.

Any n-variable Boolean function f(x\, .. . ,xn) can
be factored as

f(Xi, . . . , Xn) = Xfo + Yft (1)
with X and Y chosen from {xi, X\, . . ., xn, xn}.

If / is a self-dual function, then the existence of
the factorization (1) implies that / can be factored
as

f = Xf0+ Yf0
d + XY (2)

where X, Y, and /0 are the same as in Eq. (1) .
Equation (2) is basic to the synthesis algorithm,

which is presented in the following two definitions
and Theorem 1 below.

TWO-DIMENSIONAL ITERATIVE LOGIC 345

Figure 2. An XY SBC MAJA.

INTERSECTION SYNTHESIS

Definition: Given two Boolean functions fa and fb,
and given a sum of products expression for
each: fa — n + r% + . . . + rk\

h = h + h +
. . . + tm, then an intersection matrix of fa X fb

is a matrix with k rows and m columns, in which
each entry e%$ is the intersection of the literals in
n with the literals in tj (i.e., e%j contains a literal
y if and only if y is in both n and tj).

Note that the intersection matrix for a given fa and
fb is not unique. It is unique for given sum-of-
products expressions (including the ordering of their
terms) for both fa and fb. Now it is possible to define
an SBC MAJA to realize any given self-dual function.

Definition: Given a self-dual function fsd = XY +
Xf0 + Xfod, and given a k X m intersection mat­
rix /o X f0

d, with rows corresponding to terms of
/o, then an XY intersection MAJA for fsd is a
k X m XY SBC MAJA with the center inputto
the ijth element chosen to be any one of the
literals in entry ey of the intersection matrix, for
all i, j : 1 < i < k, 1 < / < m.

Again note that one function /sd may have many inter­
section MAJAs for each factorization (each choice
of Z a n d Y).

Theorem 1: Given any XY intersection MAJA for a
self-dual function fsd, then the output of the
MAJA realizes the function fsd.

that the MAJA produces all the ones of fsd,
since a MAJA without constant inputs must
realize a self-dual function.1 It is easy to prove
that if the term XY is one the array output is
one. Now let a term Xn in Xf0 be one. Then
every literal in the term is one. Then every left
boundary input, and the center input to every

element in the /th row, is one. It is not difficult
to prove that this condition suffices to insure
that the array output is one. Thus the array
output is one for every term in Xf0. Similarly
if a term Yu in Yf0

d is one then every center
input to the ith column, as well as every top
boundary input, is one. Again this suffices to
insure that the array output is one. Thus every
one of fsd = XY + Xf0 + Yf0

d is realized at the
output of an intersection MAJA for /sd and so
the MAJA realizes fsd.

The synthesis algorithm just presented allows one
to synthesize any self-dual Boolean function. To
extend the result to any arbitrary Boolean function,
the "self-dual expression" for a function is defined.

Definition: Given any n-variable Boolean function
f(xi, . . . , xn), and a variable U independent of
(xi, . . . , xn), the Self-Dual Expression fsd for /
is defined as the (n -PI)-variable_function:t

fsd(U,Xt,. ..,Xn)= Vf(Xx, ...,Xn)+ Ufd(xU . . . , Xn).

*The proof given here is very sketchy. The detailed proof,
which depends on a number of theorems not given here, is
in reference 1.

Proof:* By construction the MAJA has no con­
stant inputs. Therefore it is sufficient to prove tThis is a reformulation of work done by S. B. Akers.2

346 PROCEEDINGS FALL JOINT COMPUTER CONFERANCE, 1 9 6 5

It is trivial to prove that the self-dual expression
for any function is a self-dual function. Also, if / is
a selfdual function, then

jsd(U,Xx> ...,Xn) = f(xh . . . , Xn).

Clearly this is true if and only if / is self-dual.
To synthesize an arbitrary n-variable function,

proceed as follows:

1. Find the (n + 1)-variable self-dual expres­

sion, fsd, for the function /.

2. Synthesize fsd(U,xi, . . ., xn).
3. Replace every input U to the array by the

constant input 1 (one) and every input U
by the constant 0 (zero).

The resulting array realizes f(xi, . . ., xn) since fsd(l,
X\ • . . , Xn) = f(xu . . . , Xn) by construction.

The examples to follow show arrays with the in­
puts U and U. Thus these arrays, as shown, realize
the self-dual expression of the given function.
Wherever the inputs U and U occur, they can be
replaced by 1 and 0 as discussed above to obtain
the array for the given function.

Note that the array for a self-dual function con­
tains, by construction, no constant inputs. It can be
shown that in any MAJA constant inputs are re­
quired if and only if the function being synthesized
is non-self-dual.

In an intersection MAJA for a function, every
term in the factored expression for the function cor­
responds to a single row or column in the MAJA. It
can be shown1 that terms in the output function of
an SBC MAJA can correspond not only to single
rows and columns, but also to inputs (or elements)
which do not form a single row or column. Thus it
seems that the intersection matrix construction does
not make maximum use of the MAJA. In other
words, by realizing some terms in the function us­
ing a set of elements not from a single row or co­
lumn, it is possible to realize many functions in an
SBC MAJA considerably smaller than an intersec­
tion MAJA for the function. By extensions to this
work, reduced non-SBC arrays can be derived also,
but the methods become much messier and less al­
gorithmic.

It is not possible in the space available here to
discuss reduction techniques. However, the follow­
ing examples show some arrays in reduced form, as
well as the original intersection arrays.

While it is possible to construct an intersection

array from any factorization of the form

fed = XY + Xf0 + Yf0
d

with /o and fod each expressed as a sum of product
terms, it is obvious that the smallest array results
from choosing X and Y and the expressions for /o
and fod to minimize the number of terms in /o and in
fod. This is done in the following examples.

SYNTHESIS EXAMPLES

Before giving examples of synthesis by Theorem
1, it is useful to define a notation which will be
used in examples throughout the rest of this work.

In the many examples to follow in this and suc­
ceeding sections it is necessary to show arrays with
variables assigned to the inputs. Since the interele-
ment connections in an array are fixed, an array
with inputs can be completely specified by giving
each boundary input and the center input to each
element of the array. These inputs are presented as
a matrix, with a line separating top and left boun­
dary variables from the center input variables. Thus
the array of Fig. 3 is represented by

B
B
B
B
B

B
U
D
C
C
C

B
C
C
A
A
D

B
C
C
A
A
U

B
D
U
D
U
D

B
A
A
C
C

c
Clearly this representation is completely general;

it is not restricted to SBC arrays.

Example 1: /(,4,fl,C,D)=20,l,4,6,7,8,ll,12,13,14.*

A minimum Sum of Products (MSP) form of the
Self-Dual Expression for this function is:

fsd=BCDU + ABCDU + ABCD + ABCD + ABC
+ ABCU + ABCU + ABCDU + BDU + CDU

This function can be factored on BB or CC without
increasing the number of product terms (10) in_the
expression, since the term BDU can be written BCDU
or CDU can be written BCDU, without changing fsd.
Arbitrarily choose the BB factorization.

*This notation, defined in Caldwell,3 defined the rows of
the truth table for which the function is one.

TWO-DIMENSIONAL ITERATIVE LOGIC 347

f(A.B.C.D)

Figure 3. SBC MAJA for Example 1.

The intersection matrix is

B
(CDU) (ACD) (ACU) (DU) (AC)
(U)
(D)
(C)
(C)
(C)

(CD)
(C)
(AD)
(A)
(D)

(C)
(CU)
(A)
(AU)
(V)

(D)
(U)
(D)
(U)
(DU)

(A)
(A)
(Q)
(C)
(C)

(ACDU)
(ACDU)
(ACD)
(ACU)
(CDU)

One intersection MAJA is

B
B
B
B
B

B
U
D
C
C
C

B
C
C
A
A
D

B
C
C
A
A
U

B
D
U
D
U
D

B
A
A
C
C

c

c U
A

B
A
C

D
U
B

By reduction techniques! described elsewhere,1 a
2X3 non-SBC array can be found to realize this
function:

D
A

A 2X3 array is known to be the smallest array
capable of realizing this function since no smaller ar­
ray has enough terminals. The 2X3 array shown
here has one element which performs no logical
function because it has two identical (A) inputs.
The 5-element network resulting from removal of
element 21 has the adsolute minimum number of

tThese techniquees are heuristic, and results obtained
depend to some extent on the experience of the person
doing the reduction.

3-input elements for any network capable of realizing
this function.

Example 2: f(A,B,C,D) = 21,4,5,6/7,9,11,12,13,15

MSP fsd = BD+ ACD + ABC + ABU
+ ADU can be writteji aŝ

fsd = BD + B(AC+AU) + D(AC+AU)
The SBC MAJA is

D D
B
B

A
U A

This is the smallest SBC MAJA which can possibly
realize this function, since six different literals must
appear as inputs, and no smaller SBC array has six
inputs.
Example 3: j(A,B,C,D) = 21,2,5,7,11

M S P _ _ f_* = ~ACD_+ ABD + ABCD +
ABCD ±AJ1CDU + BDU + CDU

+ABU+ACU

Factor on DD for the minimum number of product
terms in the factored expression

fsd = D(ABC+ABCU+ABU+ACU)
+ D(AC+AB+ABC+BU+CU)

A corresponding SBC intersection MAJA is:

D
D
D
D

D
X
c
A
A

D
X
B
A
A

D
C
A
B
C

D
B
U

u
u

D
C

u
u
u

348 PROCEEDINGS FALL JOINT

By reshuffling rows and colums, it becomes pos­
sible to remove the row corresponding to term ACDU
and the column corresponding to term CDU

D
T
A
C
B

D

r B
A

u

D

X
A
B
U

The term CDU is realized by the center inputs to
elements VL^ 42, and 43, and the left boundary. The
term ACDU is realized by the center inputs to ele­
ments 11, 21, 31, 42, and the top boundary. This
is the smallest known SBC array for this function.
However, there exists a 2X3 non-SBC majority ar­
ray for the function:

C C_ D_
B. I A. 5 U
U B B A

Arrays of size 2X3 or 3X3 appear to be typical
for non-self-dual functions of four variables.1

THE CANONIC ARRAY

The two major disadvantages of the synthesis
method presented above are:

1. The lack of reasonable bounds on the size
of array needed to realize an arbitrary
function.

2. The inability to apply reduction proce­
dures to functions of more than five or six
variables.*

The development of a canonic form for arrays for
arbitrary functions of n variables as is done below
obviates these disadvantages. This canonic form has
the following properties:

1. The canonic array for n variables, for a
given n, is an array of fixed size, with
some inputs fixed and the rest of the in­
puts chosen for the specific function (typi­
cally, well over half of the inputs are
fixed). This array will realize any given
function of n variables if the nonfixed in-

*Note, however, that the basic synthesis algorithm (Theo­
rem 1) can be applied to arbitrarily large functions, though
the resulting arrays generally are unreasonably large.

COMPUTER CONFERANCE, 1965

puts are properly chosen. An algorithm for
determining the inputs needed to realize
any given function exists.

2. An algorithm exists for generating the ca­
nonic array for any given n.

3. The canonic array for n variables is the
smallest known array to realize the checker­
board (worst-case) function of n varia­
bles, for n even.

4. For most given functions the canonic array
is reducible (by methods given in reference
1).

5. The canonic array embodies a technique
for embedding arrays within larger arrays,
which shows great promise for future work
in multiple output arrays and in nonmajor-
ity (nonminority) arrays.

The disadvantage of the canonic array is that the
array required for a given function usually is larger
than the array produced by intersection synthesis
and reduction, assuming that the function is small
enough to make that synthesis-reduction technique
feasible, f

The size of the canonic array is shown in Table 1
as a function of n , the number of variables in the
function to be synthesized. In addition a "connec­
tion count" is shown for each n. This is the num­
ber of connections to the array which are not in­
variant over all functions of n variables, plus one
connection for each variable whose input connec­
tions are invariant. One can envision building the
array with all invariant connections wired together
at the time of manufacture. Then the "connection
count" is just the number of input terminals to the
array to allow it to realize any function of n varia­
bles.

Table 1.

n
3
4
5
6
7
8
9

Size
3X3
4X6
7X8
9X14

15X18
19X30
31X38

Connections
10
16
26
44
78

144
274

tReduction is feasible on most functions of five variables
and some functions of six variables.1

TWO-DIMENSIONAL ITERATIVE LOGIC 349

CONSTRUCTION OF CANONIC ARRAYS

In this section the canonic array for n variables
is presented through examples. In the next section
the process of embedding subarrays in an array is
considered more generally.

Consider the MAJA

U_
U

u
A
go

u
gl
A Array 1

in which go and gx are input literals chosen from the
set {B,B,U,U}. This array, as straightforward analy­
sis will show, realizes the self-dual function

fsd = u[Ag0+Agi] + U[Agi+Ago]

number of variables, it is necessary to define a con­
struction method which will result in the canonic
array for any given n. Here the approach taken is
inductive. Given the canonic factorization array for
(n - 1) variables, it will be shown how to construct
the array for n variables. This will be done by em­
bedding two arrays for (n - 1 variables in the factori­
zation array for n variables. Consider first the case
of n = 4. The array for (« - 1) = 3 variables is
known (Array 2) . Take two of them:

U
U
U

Array 3, with U = 1, realizes

u
B
gooo

C

U

gou

C
gooi

U

c
goio

B Array 3

which can be any self-dual function of the three
variables (A,B,U). If U = 1, Eq. (3) becomes

/ - Ago + Agi _ (4)
which, if go and gi are chosen from {B,B,0,1}, can
be any function of the two variables (A,B). Thus
Array 1 is the canonic factorization array for n = 2
variables. It is called a "factorization" array because
Eq. (4) is a factorization of the function. It is called
"canonic" because it is in a standard form, as will
become clear later.

Now consider the MAJA

u
A
goo

B

U

gu

B
goi

U
B
gio
A

U
U

If U = 1, this array realizes the function

Array 2

f = ABgoo + ABgoi + ABg10 + ABgu (5)

If goo, got, gio, and gu are chosen from {C,C,0,1},
then Eq. (5) can be any function of the three vari­
ables (A,B,C). Array 2 is called the canonic factori­
zation array for n = 3 variables even though its
form differs slightly from the canonic construction
to be defined.

It would be possible to continue thus to define
arrays to realize any function of n variables for
n — 4,5,6, and so on. However, if one wishes to
define a canonic factorization array for an arbitrary

go = BCgooo + BCgooi + BCgoio + BCgou

u u u

(6)

u
u
u

B
gioo

C

gm

c
gioi

C
gno

B Array 4

Array 4, with U = 1, realizes

gi = BCgioo + BCgwo + BCguo + BCgm (7)

Combine Array 3 and Array 4 in the canonic fac­
torization array for n = 4

U
£
U
U

u
A
B
gooo

C

U

A
gou

C
gooi

U
A
C
goio

B

U
B

iglOO

\c
•A

U

gin

c
gioi

A

U
B
gno

B
A

Array 5

where dotted lines have been shown only to clarify
the construction of the array. It should be empha­
sized that Array 5 is a 4 X 6 IJU SBC MAJA, with
no modification of its structure. The array contains
subarrays only in the sense that the input pattern to
portions of the array can be identified with the input
patterns to Array 3 and Array 4.

Array 5, with U = 1, realizes the function

/ = Ago + Agi (8)

350 PROCEEDINGS — FALL JOINT COMPUTER CONFERANCE, 1965

where go and gx are the arbitrary 3-variable func­
tions realized by Array 3 and Array 4. To see this,
let U = 1 (and U = 0, of course). Then if A = 1,
the subarray corresponding to Array 4 (elements
14,15,16,24,25,26,34,35, and 36) has one on its
top boundary (elements 14,15,16), and zero on its
left boundary (elements 14,24,34). It is not difficult
to see that with A = 1, Array 5 has the same output
as Array 4. Similarly, if A = 0, then the subarray
corresponding to Array 3 has zero on its left bound­
ary (elements 21,31,41) and one on its top bound­
ary (elements 21,22,23) and it can be shown that
Array 5 has the same output as Array 3. Thus
Eq. (8) is vertified.

By substitution of Eqs. (6) and (7) into Eq. (8) ,
one obtains

/ = ABCgooo + ABCgooi + . . .

+ ABCgno + ABCgui (9)

If gooo through gm are chosen from {D,D,0,1}, then
equation (9) can be any function of the four vari­
ables (A,B,C,D).

By interchanging rows and columns in Array 5
and then interchanging U and U and changing the
subscripts on the g inputs appropriately, one obtains
the MAJA,

U
u_
u_
u
u
u

which realizes the same function, Eq. (9) , as does
Array 5. This is the flipped canonic factorization
array for four variables, "flipped" because it corre­
sponds to Array 5 flipped about its main diagonal
(and with U, U interchanged and the g's renum­
bered).

To construct the canonic factorization array for
five variables one embeds two 4-variable subarrays
in a factorization array in exactly the same manner
in which Array 5 was constructed. If one uses as
subarrays two copies of Array 5, the resulting 5-
variable array is 5 X 12, with 60 elements. If,
however, one uses the flipped array, Array 6, the
resulting 5-variable array is 7 X 8 with 56 elements:

u
A
A
A
B
gooo

C

U
i _

-5
• gioo

\c
gou

C
gooi

U

gin

C
._£ioi .

C
goio

B

U

c
guo
B

] A
1 A
] A Array 6

U
U

u
u
u
u
u

u
A
B
B
B
C
goooo

D

U
A
C
goioo

D
goo n

D
goooi

U
A
gom

D
goioi

D
gooio

C

U

A
D
gono

c
B

B
B

U

B
B
B

c
giooo

*>
A

U

c
gnoi
D
#1011

D
giooi
A

U

gun

D
gnoi
D
#1010

C
A

U

D
g m o

c
B
B
B
A

Array 7

Again, the dotted lines are included to clarify the
construction. Array 7 realizes the function

/ = ABCDgoooo + ABCDgoooi 7 + ABCDguu

u
A
B
D
C

U
A
D
C
D

U
A
C
D
B

U
B
D
C
A

U
D
C
D
A

U
C
D
B
A

It is interesting to note that the canonic factoriza­
tion array is the smallest array known which realizes
the "checkerboard" function f(A,B,C,D) = A + B
+ C + D.* The canonic factorization array for this
function is

U
U

u
u

However, for five variables no function is known
which cannot be realized in a reduced intersection
MAJA smaller than Array 7. It is true in general
that no function is known to be "worst case" for
n odd, although the "checkerboard" function is
always "worst case" for n even.

The construction of canonic factorization arrays
for higher values of n is carried out by successive
embedding of (n- 1)-variable flipped arrays, as was
just illustrated for n' = 5. Let Hn denote the height
of the canonic factorization array for n variables, and
let its width be Wn. Then, by the construction of the
canonic factorization array

H.3 — 3, W3

and

Hn = Wn-1+ 1, Wn = 2Hn-l for Ti > 3

These array sizes are tabulated in Table 1. Note that
in the canonic factorization array for n variables
{xi,x2, . . . , xn), 2n~1 of the inputs, the g inputs,

*This function is termed "checkerboard" because its Kar­
naugh Map representation resembles a checkerboard.

TWO-DIMENSIONAL ITERATIVE LOGIC 351

depend on the function being realized, while all other
inputs are fixed, independent of the particular func­
tion being realized and equal to one of the 2n
literals {xi ,Xl,X'2fX2, • • • , X(n — 1), U,U} (U, U) being
in fact constants, of course), so that if all identical
fixed inputs are wired together at the time of manu­
facture, only 2n + 2n~1 external connections to the

array need be provided. This "connection count" is
also tabulated in Table 1.

As a final illustration, the canonic factorization
array for n = 6, f(A,B,C,D,E,F), is shown below,
with solid lines indicating the two 5-variable sub-
arrays and dotted lines indicating the four 4-variable
sub-subarrays.

u
A
B !
B '

B i
B i
C
D

8
E

U

A
C
D

8
E
C

8
E

8

U

A
C

8
E

8
C
E

8
D

U

A
C
E

8
D
D

8
E
C

U

A
D

8
E
C

8
E

8
C

u
A

8
E

8
C
~E

8
D
C

U

A
E

8
D

C
B
B
B
B

U

B
B

U

C
D

8
-B_l_E_

C C

D 8

8
E
A

E

8
A

U

c
8
E

C

E

8
D
A

U

C

E

8

D

8
E
C
A

U

~D

8
E

8
E

8
C
A

U

8
E

8
C

8
D

c
A

U

~E

8
D

C

B
B
B

A

u_
u
u
£
v_
v_
v_
V

where the 32 nonfixed inputs gooooo through gum are
all denoted simply g.

The factorization array, unless it has prewired
fixed inputs, can often be reduced for a given func­
tion. The factorization array factors a function into
subfunctions, each of which is in turn factored until
eventually each sub-subfunction consists of a single
literal. Each subfunction is realized in a UU SBC
subarray. Many of the subfunctions may have UU
SBC MAJA realizations smaller than the one used
in the factorization array. These can be substituted
for the standard subarray with a corresponding de­
crease in array size.

EMBEDDED SUBARRAYS

In this section the process of embedding sub-
arrays will be considered in general. If one has two
UU SBC MAJA's realizing two self-dual functions

gosd = Ugo + Ugod

and

gisd = Ugi + Ugi°

then these two arrays can be embedded in a WV
SBC MAJA to realize the self-dual function

fsa = VXg0 + VYgl + WXg!d + WYg0
d +

VW + WXY

where X and Y are any single literals. If the array
for gosd is denoted

U

u
8
8

8

U..

8 .
8

8 .

. U

..8

..8 U

where 8 denotes the various inputs of the array for
gosd, and if the array for gisd is denoted, similarly,

U_

u

u
then the array for fd is

W
W

u
e
e

e

U .

e .
€

€ .

. . U

. . €

. . e

w

V
X
8

8

8

V .
X
8
8

8 . .

X
8

. 8

€

e

6

Y

6 .

e

e .
Y .

. V

. e

•

. e

.Y

Array 8

352 PROCEEDINGS — FALL JOINT COMPUTER CONFERANCE, 1 9 6 5

In this illustration the arrays for gosd and gisd

have been assumed to be of equal height. This need
not be true in general.

The formal definition of this construction follows.
Given a self-dual function jsd(xx,X2,. . . , xn), ex­

press it in a VW factorization as fsd = Vg + Wgd +
VW where the function g may or may not be self-
dual. This is always possible, if V and W are prop­
erly chosen from {xx,xx,x%,. . . , xn}. Then factor g
as g = Xgo + Ygx. Again, this is always possible.

Then

gd = Xgxd + Yg0
d + XY

and

fsd = VXg0 + VYgi + WXgid + WYg0
d

+ VW + WXY

with V,W,X, and Y chosen from {xx,xx,X2,..., xn}.
Now construct an SBC UU MAJA to realize

gosd = Ugo + Ugod. Call this array Ao. Let its size
be ho X wo. Similarly construct the SBC UU MAJA
Ax of size hx X wx to realize gisd = Ugx + Ugxd.
Note that there is no restriction on how Ao and Ax
are constructed, or on their size. It will now be
shown that the two arrays Ao and Ax can be em­
bedded in an SBC WV MAJA, A, of size h X
0 0 + wx) which realizes /sd, where h equals the
larger of ho + 1 and hx + 1.

Let the center input to element ij of A o be called
a°ij, defined for all /, /': 1 < i < ho, 1 < / < Wo.
Similarly, let the center input to element // of Ax
be called ah}, defined for all i, j : 1 < / < hx,
1 < /' < wx. Then the inputs to the hx w array A
are assigned as follows, where h = the largest of
ho + 1 and hx + 1 and w = wo + Wx and an denotes
the center input to element ij of A:

For 1 < i < h - ho and 1 < / < w0

OLij = X

For h - ho < i < h and 1 < / < w0

cx-ij — a°ki with k — i- {h-ho)
For 1 < i < hx and w0 < / < w

oca = aVj-vvo)
For hx < i < h and wo < j <w

an = Y

This specifies every input to A in terms of X and Y
and the inputs to Ao and Ax. Array 8 is an example.
It can be proved1 that the array just defined has
as output the function fsd(*i,. . . , xn).

It is very important to observe that the only re­
strictions on the arrays Ao and Ax are

1. That they are SBC arrays with U and U as
boundary variables.

sd d sd

2. That they realize go = Ugo + Ugo and gx =
d

Ugx + Ugx respectively.

Condition (2) is not equivalent to the condition (2 ') :
That when U = 1 and U = 0, Ao and Ax realize go
and gx respectively.

Since the subarrays Ao and Ax can be any UU SBC
sd sd

MAJA's realizing the functions go and gx respectively,
it is possible to construct one or both of Ao and Ax
themselves as factored arrays. In fact, the canonical
factorization array for n variables is just a factored
array with each subarray factored and each sub-sub-
array factored and so on until each sub-sub . . . sub-
array is a 3 X 3 canonical array which realizes a func­
tion of only three variables.

To illustrate the use of factored subarrays in a
sd sd

factored array in the general case, express go and gx
as

sd d d

go=URogoo+USogox +URogox+USogoo+ URoSo

and
sd d d

gx = URxgxo+USxgxx+ URxgxx+USxgxo+ URxSx

and realize each of them in factored UU arrays,
which are used as subarrays in the array for /sd.
Figure 4 shows the construction of the resulting ar­
ray. In this array the function fsd has been factored as

fd= VXRogoo + VXSogox + VYRxgxo
+ VSYxgxx+VYRxSx + WXRxg
+ WYRogox + W YSogoo +WXY+VW

(For the sake of illustration it has been assumed
in Fig. 4 that g00

sd can be realized in a 2X2 SBC UU
MAJA, while goisd, giosd, and gusd, each require a
3X3 SBC UU MAJA.)

A study has been made of two-dimensional arrays
of three-input one-output gates, or elements, each
element realizing the majority function of its three
inputs (f(A,B,C) = AB+AC+BC). These arrays
are functionally equivalent to arrays of minority ele­
ments (/ U ^ C) = AB+AC+BC).

TWO-DIMENSIONAL ITERATIVE LOGIC 353

9v 9v yv

3 x 3
SUBARRAY

FOR
,sd

Figure 4. Four subarrays embedded in an SBC factorization MAJA.

SUMMARY

Two methods are developed for synthesizing any
given Boolean function in an array. The first method
results in an array whose size depends on the par­
ticular function being realized. The second method
results in an array whose size depends only on the
number of variables in the function being realized.
Any 4-variable function, for example, can be realized
in an array of 24 elements or less.

The principle result of this work is a simple al­
gorithmic synthesis procedure with the following
properties:

1. It is based on building blocks (arrays)
which are characterized solely by their
width and height, and which contain only
simple three-input, one-output elements of
one type, with a maximum output load of
two elements each.

2. It results in arrays obeying a known upper
bound on size that seems reasonably small.

3. It permits the synthesis of any Boolean
function of n-variables by specifying no
more than 2(n"1) inputs to the array.

4. It permits the logical decomposition of the
array into subarrays, corresponding to a

decomposition of the function into sub-
functions, with no physical modification of
the array.

5. It results in circuits (arrays) with a longer
delay, and hence lower speed, than conven­
tional logic circuits.

6. It often requires more elements to realize a
given function than do methods less con­
strained in element type and interconnec­
tion.

REFERENCES

1. R. H. Canaday, "Two-Dimensional Iterative
Logic," Report ESL-R-210 Electronic Systems
Laboratory, Massachusetts Institute of Technology,
Cambridge, Mass., (Sept. 1964). The same materi­
al appears in: R. H. Canaday, "Two-Dimensional
Iterative Logic," M.I.T. Department of Electrical
Engineering, Ph.D. Thesis, Sept. 1964.

2. S. B. Akers, Jr., "The Synthesis of Combina­
tional Logic Using Three-Input Majority Gates";
Third Annual Symposium on Switching Circuit
Theory and Logical Design, Chicago, October 7-12,
1962.

3. S. H. Caldwell, Switching Circuits and Logi­
cal Design, Wiley and Sons, New York, 1958.

