
A GENERAL PURPOSE PROGRAMMING SYSTEM FOR 

RANDOM ACCESS MEMORIES 
C. W. Bachman 

General Electric Company 
Phoenix, Arizona 

and 
S. B. Williams 

General Electric Company 
New York, New York 

I. INTRODUCTION 

During the past ten years, information proc­
essing technology has made significant advances 
in many directions. Faster, less expensive, more 
flexible hardware has been continually an­
nounced by the various computer manufactur­
ers. In the software area, the FORTRAN, 
ALGOL, and COBOL languages have been de­
veloped and improved and more efficient com­
pilers are now available. Applications now 
include the complete spectrum ranging from 
free-standing analytical programs to large com­
plex information processing systems. 

Computers have been applied to business in­
formation processing problems with varying 
degrees of success. Many accounting operations 
and facets of historical record-keeping have 
been mechanized with proven time, cost, and 
accuracy benefits. Those types of business op­
erations dealing with planning and control (or 
command and control if you are part of a mili­
tary establishment) are receiving considerable 
attention from the mechanization standpoint. 
While many mechanization attempts have been 
made in this area, the proven successes are few. 
To some extent this can be attributed to the 
greater complexity of these classes of problems 
and the fact that information must be stored, 

retrieved, communicated, and processed concur­
rent with the flow of orders and materials. 

The information processing field seems to be 
moving exponentially in the direction of "real 
time" and total or highly integrated informa­
tion systems. This movement has been acceler­
ated by the introduction of larger, faster, and 
more economical mass random access memory 
devices coupled with faster computers and bet­
ter communication equipment. These new facili­
ties offer the information system designer a 
new opportunity 1) to organize his information 
files with minimum duplication and redundancy, 
2) to provide a better man-machine interface 
by giving people quick access to information, 
3) to store, retrieve, and process information 
when the need arises rather than when the 
computer schedules dictate, 4) to provide a 
single data base for many applications as op­
posed to the arbitrary sequencing of single files 
for each particular application. 

Any attempt to exploit the opportunities pre­
sented by the new mass memory devices places 
a high burden on the information system de­
signers and programmers. This is true because 
it is difficult to structure and organize complex 
information relationships within the parame­
ters of the mass memory devices. It is also 

411 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1464052.1464088&domain=pdf&date_stamp=1964-10-27


412 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964 

very difficult to write computer programs to 
store, maintain, retrieve, and process the com­
plex data. To date there has been little if any 
software available to facilitate these problems. 

The General Electric Company through its 
Corporate Services has been conducting a con­
tinuing research program on the manufactur­
ing control problem since 1956. The decision 
table and TABSOL techniques resulting from 
this research work were described to the in­
formation processing world in, I960.1 During 
the past four years a considerable effort has 
gone into studying the information require­
ments for manufacturing control and how the 
information might be organized and processed 
more effectively by using mass memory devices. 
As a result of this work, a new approach has 
been developed—the Integrated Data Store. 

II. THE INTEGRATED DATA STORE— 
A NEW APPROACH' 

The purpose of this paper is to introduce the 
Integrated Data Store, a general purpose pro­
gramming system for mass random access stor­
age devices. The particular implementation 
that will be described is now being installed at 
several General Electric sites using a GE-215 or 
GE-225 computer. The Integrated Data Store 
language and functions will be available early 
in 1965 as extensions to the COBOL compilers 
for the new GE-400 and 600 series computers. 
The principles involved, however, are com­
pletely general purpose and could be readily 
adapted to any general purpose computer to 
which a mass memory device can be attached. 

The Integrated Data Store has been designed 
from a user's point of view by users. Further­
more, it is a product that draws upon the inter­
est and ideas of many General Electric-people 
with vast and diverse experience as users of 
computers in business. Particular credit is due 
Homer Carney of the New York Information 
Processing Center (GE Computer Department) 
who long served as the senior programmer on 
the project and Irv Burch and Bill Helgeson of 
the Internal Automation Operation whose 
ideas heavily influenced the current organiza­
tion of the system. Jerry Aman, Ed Dodge, Phil 
Farmer, John Gallagher, Jane Gilbane, George 
Hess, Dave Johnson, Dave Lattemore, Ron 
Pulfer, and Tom Waldron are others who have 

had a significant impact upon the specification 
or programming of the system. Many others 
have been helpful since the beginning of the 
Integrated Data Store work in 1961. 

III. INTEGRATED DATA S T O R E -
ADVANTAGES 

The original Integrated Data Store software 
package was used in mid 1963 to make compari­
sons against conventional random access pro­
gramming techniques in systems design effort, 
programming effort, file utilization, and com­
puter running time. The IDS compared very 
favorable on all counts. Since that time, further 
refinements have been made to the software 
package. 

Experience to date using IDS has demon­
strated the following advantages: 

1. Greater insight and understanding of in­
formation relationships. 

2. Reduced time and cost to design, program, 
and* test comparable applications. 

3. More efficient computer processing. 
4. Better data storage unit utilization 

through redundancy elimination. 

IV. INTEGRATED DATA S T O R E -
ORGANIZATION 

The IDS can be described best if it is divided 
into three areas of discussion: 

a. Data Organization—Technique for Mass 
Memory 

b. Data and Procedural Language 
c. Input/Output Controller 

Data Organization refers to the establish­
ment of inter record relationships within the 
IDS. This association is achieved through the 
use of chains which provide cross reference 
linkages between records. These chains provide 
the integrated force which is implied in the 
name, "Integrated Data Store." 

Data and Procedural Language refers to the 
definition of records and their chain associa­
tions, and the procedural verbs by which these 
records are stored and retrieved. 

The Input/Output Controller refers to the 
physical manipulation of the mass random ac­
cess device and the buffering and housekeeping 



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 413 

associated with temporarily storing blocks of 
data in core memory. 

A. Data Organization. The record is the 
major unit of data organization in the Inte­
grated Data Store. 

This is a record in the GECOM (General 
Compiler) and COBOL sense. It contains a set 
of data fields which collectively describe the 
event, thing, status, or plan that the record 
represents. The Integrated Data Store aug­
ments these records with additional fields called 
chain fields which contain the address of other 
Integrated Data Store records. The chain fields 
point from one record to the next creating a 
serial association of records. 

This association is constructed according to 
the data definitions and the executed procedural 
commands. The chain is the record organiza­
tion technique used by the IDS for meaningful 
associations of records. 

B. Data and Procedural Language. The In­
tegrated Data Store provides its user with the 
ability and requirement to predefine his rec­
ords, their data fields, and their chain fields. 
Once these records and fields have been defined, 
the user is free to operate upon the records 
without concern for the physical aspects of in­
put or output, the linking of records into chains, 
or the protection of the data from erroneous 
access. 

A RECORD CONSISTS OF 
DATA FIELDS 
CHAIN FIELDS 

DESCRIBING AN EVENT 

A THING 
PLAN 

STATUS 

CHAIN FIELDS 

Figure 1. Record Definition. 

A CHAIN CONSISTS OF 
A SERIAL ASSOCIATION 

OF RECORDS 

Figure 2. Chain Definition. 

The user has four new commands or pro­
cedural verbs at his disposal. These verbs 
provide for the execution of the four basic 
record processing functions and are comple­
mentary to existing COBOL and FORTRAN 
procedural verbs. These are; "PUT" to store a 
new record into the file and link it into chains 
as specified in the data description, "GET" to 
retrieve a record already in the system, 
"MODIFY" to change the content of one or sev­
eral data fields with automatic relinking of 
chains, if necessary, and "DELETE" to delink 
a record from its chains and remove it from 
the file. 

C. Input/Output Controller. The Input/ 
Output Controller of the IDS controls the data 
storage device. 

It transfers data blocks in and out of core in 
response to commands to retrieve a specific 
record, to store a specific record, or to expand 
or contract a specific record. In order to mini­
mize the data storage device seek and transfer 
time, an inventory of data blocks is maintained 
in core memory. These blocks are stored in 
numerous buffers in core. The,number of buff­
ers depends on the amount of space available 
after the IDS subroutines and the problem solv­
ing routine have been loaded. The larger the 
number of data blocks stored in core, the greater 



414 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964 

Input/Output Controller 

disc memory 

IDS 

Progrom 

Jk 
data block 

core memory 

Figure 3. Input/Output Controller. 

of the maximum block. Every block begins 
with a block header record. The block header 
record contains several data fields used by the 
system. One indicates the space available in 
the block for additional records, or record ex­
pansion within the block. Another indicates 
whether the block has been altered since re­
trieval. Still another is a chain field which 
indicates the address of the first record of a 
chain of records, all of which randomized to 
that block. 

VI. DATA RECORDS AND FIELDS 

The records of the IDS are fixed format, fixed 
length records in the GECOM, COBOL tradi­
tion, i.e. a specific type of record such as a pay­
roll or inventory record has a fixed length and 
format. Variability in the conventional sense 
of record length is automatically achieved 
through the IDS techniques of data structuring. 
A master record is used with a variable num­
ber of detail records. 

Records of many different types, each with dif­
fering length ancl format may be used in the 
system and may be stored within the same 

the possibility that the one needed next will 
already be in core. To improve the probability 
of finding the block desired in core, the I/O 
Controller keeps track of the sequence of blodk 
retrieval and utilization and holds the most 
recently active data blocks in the buffers. Blocks 
which are not frequently accessed are retired 
from core to make room as others are called in. 
The I/O Controller notes which blocks have 
been modified and writes only the modified 
blocks back to the data storage unit. The IDS 
data block manipulation is analogous to the 
program block "page turning" of the Ferranti 
Atlas computer. 

V. DATA BLOCKS 

Looking closer at IDS data blocks, the fol­
lowing characteristics should be observed. 

They have a fixed maximum size which is an 
environmental constant. They consist of one 
or more data records which collectively repre­
sent the actual size of the block. The maximum 
number of data records is controlled by the size 

Record 0 

Record 17 

Record 1 

Record 2 

Record 5 Record 7 

Record 8 

Record 9 

Empty Space 

Figure 4. IDS Data Block. 



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 415 

Reference 

Address 

Record 
type 

Record 
length 

DATA 
FIELD 

Figure 5. IDS Record Structure. 

block. In order that control may be maintained, 
each record has the same three fields at the 
very beginning. These fields are the reference 
code (block number and intra-block record 
number), the record type, and the record length. 
The balance of the record consists of data and 
chain fields in the number and variety to suit 
the application requirements. Data fields may 
be defined as being in a logical mode (bits), 
signed binary numeric mode (one or two 
words) or an alphanumeric mode (characters). 
Fields may vary in size from a one bit switch 
up to many characters for a drawing and part 
number or a man's name. These fields will be 
specified by the systems designer. 

Chain fields are defined for each chain in 
which a record participates. Experience in IDS 
systems indicates that the average record is in 
only two chains, and an occasional pivotal rec­
ord in the information integration may be in 
six or eight chains. There is no upper limit on 
data or chain fields except that which is pro­
vided by the maximum block size. The average 
record in installations today has been eight to 
twelve words in total length, with an occasional 

record type in the forty to sixty word size. 
These are twenty bit, three character words. 

The reference codes in the IDS chain fields 
are not physical addresses which specify par­
ticular discs, tracks and heads. They are more 
properly described as relative addresses which 
indicate a relative position in the total environ­
ment of mass storage. Therefore, an expansion 
or contraction of the number or size of the data 
storage units does not destroy the. existing ref­
erence codes. It merely changes the mapping 
function which translates a particular reference 
code into its disc, track, and head number. 

The IDS Records are stored only once in 
the IDS. 

This has three important advantages. First, 
the additional space required for duplicate rec­
ords is eliminated, resulting in a reduction in 
the total storage capacity required. Second, the 
work of data maintenance is greatly reduced as 
there is only one record to retrieve and modify. 
This eliminates the possibility that one of the 
copies of a record will not be properly modified. 
As there is only one copy of a record, all users 

Have any number of 

data fields. 

May be linked into any 

number of chains. 

Are stored only once 

in the I D S 

Chain B 

Figure 6. IDS Record/Chain Structure. 



416 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964 

have their eyes on it and incorrect information 
will be quickly spotted and corrected. Finally, 
all reports, drawn from the file, will be con­
sistent since there is only one set of facts 
(records). 

VII. CHAINS 

The IDS chains have several structural 
aspects which should be emphasized. 

Each chain has only one master record. The 
record type of the master is specified when the 
chain is defined in the data definitions. When­
ever a master record in "PUT" into the IDS, 
a chain is created which has no details in it. 
The chain field in the master record stores the 
reference code of the next record in the chain, 
which initially is the reference code of the 
master record itself. As-/additional records, 
that are specified as details, are "PUT" into 
the file, they are linked into the chain. How­
ever, the chain always closes back on its master. 
The position in the chain of a new detail de­
pends on the chain specifications. 

• Have one master record 

and any number of details. 

• Link records together in 

an endless loop. 

• Associate related records 

in meaningful sequences. 

It was previously stated that a record may be 
in any number of chains. Now it is worth ex­
panding this statement to read that a record 
may serve as a master or detail in any number 
of chains. The only restraint is that no record 
may be a detail of itself directly, or through the 
interaction of several chains. 

VIII. DATA STRUCTURE SHORTHAND 

It is frequently desirable to display pictori-
ally the relationship between records. This is 
particularly important in developing an overall 
view when planning an information system. A 
special graphic technique has been developed to 
display records and their master-detail (chain) 
relationships. 

This technique uses a block shape to desig­
nate a record type and an arrow connecting two 
blocks to designate a chain. The arrow points 
from the master to the detail. This picture of 
block, arrow, block carries the following mes­
sage: 1) there are some number of records 
in the system of the master type; 2) each of 
these records is the master of a chain of the 
specified type; 3) there are some number of 
records of the detail type (0, 1, 2, 3 , . . . , n) in 

I detail 
22 _K=a 

P53 

moster 

Chain 

^ 
^ detail 

C53 m— 

1 detail 

moster 

chain 

detail 

Figure 7. IDS Chain Structure. Figure 8. IDS Data Structure Shorthand. 



PEOGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 417 

each such chain. Using this graphic technique, 
very complex data structures may be presented 
in a condensed and understandable form. 

It is believed that the long sought informa­
tion algebra may be developed around this nota­
tion. A new set theory is needed in which the 
master record is represented by the empty set, 
and details represent the ordered members of 
the set. 

X. SAMPLE DATA STRUCTURE 
(PURCHASE ORDER) 

The information contained on a purchase 
order can furnish an example of how informa­
tion might be structured. 

Looking at a purchase order form, three 
groups of information may be seen. One group 
is concerned with information about the vendor, 
i.e. his name, address, and vendor code. Another 
group is concerned with information about the 
order, i.e. the order number, due date, mode of 
transportation, and dollar value. The third 
group is concerned with the information about 
a particular item to be purchased, i.e. its identi­
fication, description, quantity, unit price, and 

Vendor 34692 

Order I47A 

item 1 

Item 2 

item 3 

Vendor Record 

Order Chain 

Order Record 

Item Chain 

1 
Item Record 

extended dollar value. Three different records 
might be designed in order to carry the in­
formation contained in these three groups. 
These three records would be a vendor record, 
order record, and item record. If a purchasing 
information system were established along 
these lines, there would be a vendor record for 
every vendor with whom the business is con­
cerned. The vendor record would be the master 
record of an order chain. There would be an 
order record for each order currently stored in 
the system. It would be a detail in an order 
chain. Each order record would, in turn, be 
the master of an item chain. This item chain 
would contain one or more item records depend­
ing on the number of items on the purchase 
order. This example contains three records and 
two chains. The vendor record is only a master. 
The order record is both a master and a detail. 
Finally, the item record is only a detail. The 
IDS Data Structure Shorthand shows all this 
with only three blocks and two arrows. Very 
complex systems with thirty or more record 
types have been clearly described using the 
IDS shorthand. 

A data description for the sample problem 
is shown in figure 10. Each record must be 
clearly defined as to the data fields which it con­
tains as well as the chains in which it partici­
pates. The appropriate IDS controls for stor­
age and chaining must also be described. 

A look at part of a network created by the 
vendor, order, and item records illustrates both 
the need for the data structure shorthand and 

Di.:-- Type 

Record 
i-ieH 
Fis -d 

Field 
Fic-ld 
etc is.- all fields 
Chain Master 

Record 
Field 
F-.^a 
.- -.aid 
i-.t. for all fields 
Chair. Detail 
C.-.ain Control 
Chain Control 
Chii.-i Master 

Record 
Field 
F-.eiQ 

Field 
Field 
etc. for all fields 
Chain Detail 
Chain Control 
Chain Control 

Record 
Name 

VENDOR 
VENDOR 
VENDOR 
VENDOR 
VENDOR 

in VENDOR 
VENDOR 

ORDER 
ORDER 
ORDER 
ORDER 

in ORDER r< 
ORDER 
ORDER 
ORDER 
ORDER 

ITEM 
ITEM 
ITEM 
ITEM 
ITEM 

in ITEM rec 
ITEM 
ITEM 
ITEM 

Chain 
Name 

record 
ORDERCHAIN 

cord 
ORDERCHAIN 
ORDERCHAIN 
ORDERCHAIN 
ITEMCHAIN 

ITEMCHAIN 
ITEMCHAIN 
ITEMCHAIN 

Field 
Name 

VE;;DORNO 

VENDORNAME 
ADDRESS 
CITY STATE 

VENDORNO 
ORDERNO 
ORDERDATE 

VENDORNO 
ORDERNO 

ORDERNO 
ITEMNO 
MATLIDENT 
ORDERQTY t 

ORDERNO 
ITEMNO 

IDS Controls 

Calculated 
Unique 

Sequenced 

Calculated 
Redundant 
Unique 

Match 
Ascending 
Sequenced 

Secondary 
Unique, Redundant 

Unique 

Prime 
Match 
Ascending 

Field 
Image 

X(6) 
X(1S) 
X(24) 
X,24) 

X(12) 
999 

X(3) 
X(18) 
9999V9 

Figure 9. Purchase Order Data Structure. Figure 10. Purchase Order Data Description. 



418 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964 

its power. The arrows indicate that one record 
"points" to the next record in a chain and that 
each chain "closes" onto the master record of 
the chain. Regardless of how many chains a 
record is in, the record exists in the file only 
once. It may be "pointed at" by many other 
records. 

Still another way of illustrating the data con­
tained in the sample problem is shown in figure 
12. Here the chaining is represented by the 
appropriate reference addresses. 

X. Procedural Commands 
The functional verbs PUT, GET, MODIFY, 

and DELETE, previously introduced, require 
further explanation for better understanding. 
These verbs may be used in a GECOM, COBOL, 
or FORTRAN sense. In fact, there is reason 
to wonder when they will move out of the de­
velopmental world and become part of the in­
dustry standard languages. Perhaps, a better 
phraseology would be to ask whether the indus­
try languages committees will take advantage 
of IDS to catch up with data storage units, real 
time, and command and control systems pro-

Item 
Chain 

VENDOR RECORD 

Item Chain 

Item Record 

REF 
ADORES! 

100 

VENDOR 
NO 

3 4 6 9 2 

VENDOR 
NAME 

ABC CO. ETC 

ORDER 
CHAIN 
NEXT 

322 ETC 

ORDER RECORD 
REF 

ADDRESS 

28S 

ORDER 
NO 

207A ETC 

ORDER 
CHAM 
NEXT 

100 

ITEM 
CHAM 
NEXT 

287 

ORDER RECORD 
REF 

tOORESS 

322 

ORDER 
NO 

I47A ETC 

ORDER 
CHAIN 
NEXT 

289 

ITEM 
CHAM 
NEXT 

333 

ITEM RECORD 
REF 

ADDRESS 

333 

ITEM 
NO 

1 

MATERIAL 
IDENT 

T 5 L 3 8 

QTY 

10 

ITEM 
CHAM 
NEXT 

337 

ITEM RECORD 
REF 

ADDRESS 

337 

ITEM 
NO 

2 

MATERIAL 
IDENT 

I22A93 

QTY 

310 

ITEM 
CHAM 
NEXT 

342 

ITEM RECORD 
REF 

ADDRESS 

342 

ITEM 
NO 

3 

MATERIAL 
IOENT 

46A99PI 

QTY 

2 

ITEM 
CHAM 
NEXT 

322 

Figure 11. Purchase Order Data Structure. 

Figure 12. Purchase Order Data Structure. 

gramming. They are part of the COBOL com­
piler language for the GE-400 and 600 series 
computers now. 

The following are examples of procedural 
statements which would cause the IDS to exe­
cute certain actions. The letters in capitals are 
the required words of the IDS language. The 
lower case letters are data and procedural vari­
ables, i.e. record names, chain names, field 
names, and sentence names. 

A. Example 1—PUT. "PUT vendor REC­
ORD." This command stores a new vendor rec­
ord in accordance with its data description. Its 
fields' values would be picked up from working 
storage and packed into the new record skele­
ton in a data block. The order chain field in the 
new record would be packed with the reference 
code of the new vendor record itself because 
there are no details at this moment and the 
next record in the order chain is the vendor 
record. 

B. Example 2—GET. "GET NEXT order 
RECORD OF order chain, OR IF vendor REC­
ORD GO TO loca t ions ." This command 
would retrieve the next record of the order 
chain and unpack its fields into working stor-



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 419 

age. If the next record is an order record, the 
control would be transferred to the succeeding 
command. If the next record is a vendor rec­
ord, control would be transferred to the com­
mand identified by the sentence name "loca-
tion^a." The actual record retrieved is not 
accessible to the programmer—however, the 
contents of its data fields are unpacked and 
made available in working storage. This serves 
two purposes. First, protection is given to the 
data in the file in a father-son type sense. Sec­
ond, it means that the data from a record will 
remain in working storage until another record 
of the same type is retrieved and unpacked into 
the same working storage fields. For example, 
if an item record were first retrieved, followed 
by its order record, then the order record's 
vendor record, the fields from all three records 
would be simultaneously available in working 
storage for processing. 

C. Example 3—MODIFY. "MODIFY CUR­
RENT item RECORD, REPLACE quantity 
FIELD." This command will modify the cur­
rent item record, i.e. the last item record ac­
cessed, regardless of what has transpired since 
it was processed. It will pack the content of the 
working storage field "quantity" into the cor­
responding data field of the record replacing 
the existing value. A modify command will 
modify one or several fields in accordance with 
those specified in the command. Fields may 
also be modified by adding or subtracting the 
contents of working storage to that of a record. 
The appropriate commands would be MODIFY 
recordname RECORD, ADD fieldname FIELD, 
or SUBTRACT fieldname FIELD. 

It was mentioned earlier that fields were fre­
quently used to sequence the detail records in a 
chain. These fields are called sequence control 
fields. If a sequence control field is modified, 
the detail will be automatically delinked from 
its master and relinked to it again in accord­
ance with the new value of its sequence control 
field. 

Fields are also used to control the selection 
of the master records and chains in which to 
insert detail records. These fields are called 
match control fields. If a match control field 
of a detail record is modified, the record will 
automatically be delinked from its old master. 

Its new master will be retrieved, and the record 
linked to its n«w master according to the order­
ing rule specified for the chain. 

D. Example J^—DELETE. "DELETE ven­
dor RECORD, IF ERROR GO TO er ror -a . " 
This command will retrieve the vendor record 
specified by the code stored in the "vendor 
code" field in working storage. If there is no 
vendor record with that specific vendor code, 
the command will respond by setting up an 
error code to specify the nature of the "fault" 
and transfer control to the command identified 
by sentence named, "error <~'a." If the vendor 
record is successfully retrieved, its deletion 
process will begin. If a vendor record is to be 
deleted, its order chain must be deleted too. 
Consequently, if a vendor record is to be de­
leted, its order chain must be searched to ascer­
tain that there are no order records in it. If 
there are order records, they must be deleted 
before the vendor record is deleted. In the 
same manner, an order record may not be de­
leted if there are any item records in its item 
chain. Therefore, all item records in an item 
chain must be deleted before the order record 
is deleted. This makes the deletion command a 
very powerful command and one to be used 
with due respect. 

Two optional features have been provided 
which aid the programmer in using the delete 
command. If the programmer anticipates that 
order records may be linked to the vendor rec­
ord (that a detail may be linked to its master), 
he may wish to print a control report of the 
orders deleted by using the phrase "AND IF 
order RECORD PERFORM reportl ine-1" 
with his delete command. This will cause the 
deletion process to be interrupted everytime 
an order record has been deleted. The subrou­
tine identified by the sentence name, "report-
l ine^ l" will be executed. Because of the fre­
quent desire to produce some form of a control 
report on deletions, the delete command actu­
ally retrieves and unpacks, into working stor­
age, the data fields of a record prior to deleting 
it. 

The second optional feature of the DELETE 
command permits the programmer to attach 
an escape phrase. For example, the program­
mer might attach the phrase, "BUT IF order 



420 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964 

RECORD GO TO s t a t emen t s . " In this case, 
the detection of an order record as a detail to 
the vendor record would immediately terminate 
the deletion command without the order record, 
its item records, or the vendor record being 
deleted. Using the DELETE command in this 
manner, the programmer need not test to deter­
mine the presence of an order record prior to 
initiating the DELETE command. He may 
boldly set out to delete a master record, and 
still escape from the deletion if there is a detail 
that he wants to protect. 

All of the commands, GET, PUT, MODIFY, 
and DELETE, permit the addition of error 
test and branch. The user is urged to use them 
so that he is immediately aware of any fault 
that occurs and the nature of that fault. A typi­
cal fault that could occur during a "PUT" is 
attempting to put a duplicate record which is 
prohibited according to the data definitions. 

XL RECORD RETRIEVAL SPECIFIERS 
AND RULES 

Three of the IDS macro instructions require 
that a record be retrieved so that it may be 
operated on. GET means retrieve a record and 
unpack its data fields into working storage. 
MODIFY means retrieve a record and modify 
specified fields in the record according to the 
command the the contents of working storage. 
DELETE means retrieve a record, unpack its 
data fields into working storage, delete any 
detail records, and finally, delete the specified 
record. Only the PUT command lacks the re­
trieval aspect. It means find space for a new 
record, link it into its chains, and pack its data 
fields from working storage. 

There are six different retrieval rules from 
which the programmer may choose. These rules 
may be used in conjunction with the functional 
processes; GET, MODIFY, and DELETE. Ex­
amples 2, 3, and 4 in Section X used three 
of these rules, respectively, "NEXT OF 
CHAIN," "CURRENT" and the associative re­
trieval rule which is specified by the absence 
of a record specifier adjective. These rules may 
be sub-divided into two classes. The two rules 
which are absolute in their nature, i.e. there is 
only one record that satisfies their specifica­
tions regardless of when they are executed. 
They .will be discussed first. The other four 

rules are relevant to what has transpired pre­
vious to their execution. 

A. " " specifier. The absence of a 
specifier indicates that the record to be proc­
essed is identified by the data values stored in 
the fields of working storage. The particular 
fields concerned are those fields which have 
been described in the data description of the 
specified record as the unique fields for that 
record. 

B. "DIRECT" specifier. This specifies that the 
record is to be retrieved based on the reference 
code (address) stored in the communications 
field named, "QDIRF" (DIRECT REFER­
ENCE). The programmer may store any ref­
erence code there and then retrieve the rec­
ord associated with that reference code. 

The IDS system is so designed that once the 
reference code is assigned to a record, it is 
permanent. The addition or subtraction of data 
storage units will not affect it. The modifica­
tion of the record to add or delete either data 
or chain fields or modify their content will not 
affect it. In fact, the uniqueness and perma­
nence of the reference codes make them ideal 
candidates for dual use as reference code and 
invoice number, order number, pay number, 
vendor code, customer code, drawing number, 
or stock number. 

C. "CURRENT" specifier. The "CUR­
RENT" record specifier instructs the system 
to reretrieve the last record of that type proc­
essed by a GET, PUT, or MODIFY command. 
If the last command executed for a given rec­
ord type were a DELETE command, the last 
record would have been deleted and it would be 
impossible to retrieve the current record of that 
type because there is none. This would create 
a "fault" and an error would be signalled. 

D. "NEXT" specifier. The "NEXT" speci­
fier is one of a set of three chain processing 
specifiers. These specifiers require that a chain 
name be appended so that the specification 
would be complete. As an example, the com­
mand below specifies that the programmer 
wishes the program to access the next item rec­
ord in the item chain: 

"GET NEXT item RECORD OF item 
CHAIN." The particular record accessed 



PROGRAMMING SYSTEM FOR RANDOM ACCESS MEMORIES 421 

clearly depends upon which record is the cur­
rent record in the item chain when the com­
mand is executed. An IDS command must have 
been executed prior to executing any of the 
chain processing commands. This prior com­
mand must have accessed a record in the de­
sired chain and therefore established the cur­
rent record in the chain. Only then does the 
phrase "NEXT RECORD OF CHAIN" have 
any meaning. 

E. "PRIOR" specifier. The "PRIOR" speci­
fier is used to specify that the chain is to be 
processed in a backward direction. This com­
mand contains the same restraint as the 
"NEXT" specifier, that the current record of 
the chain must have been established. The abil­
ity to process a chain backwards is optional 
and dependent upon the chain having been 
specified in the data description, as a "PRIOR" 
chain. 

F. "MASTER" specifier. The "MASTER" 
specifier directs the chain processing to proceed 
directly to the master record of the specified 
chains, accessing but ignoring all intermediate 
detail records. The optional specification of the 
chain as a "HEADED" chain provides an addi­
tional pointer field in each detail record con­
taining the reference code of the master 
record. In the presence of this option, the 
"MASTER" specifier will proceed directly to 
the master record without accessing the inter­
mediate detail records. As with the other chain 
processing specifiers, the chain must have been 
accessed and a current record established, prior 
to executing a "MASTER" command. 

Alternate Retrieval. The retrieval rules 
using the record specifiers, NEXT, PRIOR, and 
DIRECT exist under conditions where the type 
of record to be retrieved cannot always be pre­
dicted. These commands, therefore, permit the 
insertion of one or more "OR IF recordname 
RECORD GO TO sentence name" phrases. The 
program logic is then able to branch to the 
specified sentence following the execution of 
the functional portion of the command in ac­
cordance with the record retrieved. The use 
of an "IF recordname RECORD GO TO sen­
tence name" phrase (note the "OR" is missing) 
will cause the program logic to branch after 
retrieval, but before the execution of the func­

tional portion of the command. This permits 
the execution of the functional portion of the 
command (GET, MODIFY, or DELETE) 
when using the record specifiers DIRECT, 
NEXT or PRIOR on selected record types and 
the by-passing of the function if other types 
are retrieved. As an example, the following 
command might be used: 

"DELETE NEXT order RECORD OF order 
CHAIN, IF vendor RECORD GO TO sen-
tence^a." 

The repeated use of this command would delete 
successive order records which are in the order 
chain. However, when the vendor record is 
retrieved, it will not be deleted and control will 
be transferred to sentence^a. 

The data structuring abilities of the IDS 
permit the definition of more than one detail 
record type in a chain. In the case of the 
PRIOR and NEXT OF CHAIN retrieval 
actions, unspecified record types in the chain 
will be accessed and skipped over until a record 
of a specified type is retrieved. If the chain is 
completely traversed without the retrieval of 
a specified record type, an error is signalled. 
The retrieval of an unspecified record type by 
the DIRECT specifier will cause an error to be 

Error Conditions. All of the commands of 
the IDS are structured with the provision for 
an error statement. As an example: 

"GET item RECORD, IF ERROR GO TO 
sentenced." 

If this command were attempted and had 
failed because no item record could be retrieved 
with an order number and line number, match­
ing those in working storage, then the program 
control would be transferred to sentenced. 
This permits the program to test whether the 
function has been carried out successfully. If 
the command has not been successful, the error 
condition may be tested to determine the na­
ture of the fault and the appropriate action 
initiated. 

XII. HISTORY OF DEVELOPMENT 

Historically, the IDS's foundation in well 
disciplined data structure goes back to the file 



422 PROCEEDINGS—FALL JOINT COMPUTER CONFERENCE, 1964 

structures developed by General Electric at 
Hanford for their 702 Report Generator and 
File Maintenance System.2 These structures 
reached greater generality and power in the 
SHARE 9PAC system which was largely guided 
and programmed by GE Hanford and sup­
ported by The Dow Chemical Company, Union 
Carbide Company, GE Heavy Military Elec­
tronics Department and others. The delibera­
tions of the SHARE committee on The Theory 
of Information Handling3 also contributed to 
the early thinking on the Integrated Data 
Store. 

The current implementation of the Integrated 
Data Store is based on a set of free standing 
subroutines written in the General Assembly 
Program language for the GE-200 series com­
puters. The original version was prepared as 
an adjunct to GECOM. It had a compiler gen­
erator which processed data definition cards 
and IDS macro instructions and produced 
mixed GECOM and General Assembly Program 
statements which were subsequently compiled 
by GECOM to produce an object program. The 
macro instructions were executed as generated 
in-line coding. IDS was first operated in this 
form in January, 1963, with hand compiled 
macro instructions. The application that it was 
applied to was the IDS compiler-generator 
itself which was used to generate IDS coding 
for subsequent application programs. The first* 
completely generated program was a product 
materials file maintenance and explosion rou­
tine. This routine was used during the summer 
of 1963 to run comparative speed tests with 
another routine performing the identical tasks 
which had been hand coded employing conven­
tional disc programming techniques. The 
machine generated IDS program ran twice as 
fast as the comparison program and used less 
file space to store the data. 

During the Fall of 1963, the current imple­
mentation of the IDS was programmed. This 
version switched from compiled in-line coding 
to an interpretive subroutine organization with 
calling sequences. This is another step in the 
separation of the data structure from pro­
cedural logic and parallels the dictionary used 
by 9PAC which was brought together with the 
procedure at load time. The parametric ver­

sion appears to operate at about the same speed 
as the in-line coding version. 

XIII. SUMMARY 

The Integrated Data Store is an operational 
tool for programming the GE-225 with Disc 
Storage Unit. It automatically processes the 
complex file maintenance and retrieval prob­
lems presented by a data storage unit. It gives 
a high degree of file protection and through 
data structuring and redundancy elimination, 
it accomplishes considerable file compression. 
The user has the option of many storage and 
retrieval techniques. It yields efficient pro­
grams with buffered operation of the disc file. 
The requirement to structure the data before 
programming greatly reduces redesign and de­
bugging problems. IDS provides for the first 
time an effective method for describing the 
complex interrelationships of data present in 
most information systems. It further provides 
the means for efficiently processing and main­
taining these in the environment of a mass 
memory system. It moves list processing tech­
niques out of current limitations of core mem­
ory and thus makes them available for practical 
data processing. 

We challenge the national standards com­
mittees for COBOL, FORTRAN, and ALGOL 
and the designers of the "New Programming 
Language" to survey their current accomplish­
ments, which are many, and to determine 
whether the above capabilities offered by IDS 
should be added to their languages. 

REFERENCES 
1. KAVANAGH, T. F., "TABSOL—A Funda­

mental concept for Systems Oriented Lan­
guages," Eastern Joint Computer Confer­
ence, December, 1960. 

2. MCGEE, W. C, "Generalization—Key to 
Successful Electronic Data Processing," 
Journal ACM, January, 1959. 

3. SHARE Committee on Theory of Informa­
tion Handling, "TIH # 1 Report," 1959. 

4. BACHMAN, C. W., "The Integrated Data 
Store Function Specifications," General 
Electric Co. internal publication, Janu­
ary, 1962. 




