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ABSTRACT 

A perturbation method of computing optimum t ra jec tor ies  is described. 

This method uses fast - t i m e  repe t i t ive  computations i n  determining control 

impulse response functions and requires only dynamic solutions of the  

state equations. The solution of additional l inear  adjoint equations 

i s  not required. 

Both a lqybrid and a d i g i t a l  computer mechanization of t h i s  impulse 

response method a r e  described. 

nization are presented, using the  same problem formulation i n  each case. 

The problem constraints were tha t  a reentry vehicle t r ave l  a specified 

range, that the  control remain within specified limits, and tha t  the  

heat input t o  t h e  vehicle be minimized. 

Sample solutions fo r  each computer mecha- 

A comparison is  made between 

t h e  hybrid computer and the d i g i t a l  corrrputer mechanizations, each computed 

near optimum t ra jec tor ies  i n  about 2 minutes and f u l l  optimum t r a j ec -  

t o r i e s  i n  about 5 minutes of computer t i m e .  
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INTRODUCTION 

Space vehicle t r a j ec to r i e s  must be near optimum i n  t h e  sense t h a t  

some parameter i s  either a maximum or  a minimum; for example, i n  reentry 

the  t ra jec tory  t o  desired terminal conditions i s  near opt5mum when the  

t o t a l  aerodynamic heating i s  a minimum. 

such as the  calculus of variations,  applications of the  maximum principle ,  

Several perturbation methods ,' 

and d i rec t  steepest  descent, have been considered fo r  determining t h e  

t i m e  h i s tor ies  of nonlinear controls that  correspond t o  optimum t r a j e c -  

t o r i e s .  

The computations* i n  these previous optimization studies involved 

the  dynamic solut ion of two sets of equations: 

equations and (2) l inear  adjoint equations. An a l t e rna te  perturbation 

computation technique - t h e  impulse response method3 - will be discussed 

(1) nonlinear state 

here. T h i s  method differs from previous s tudies  i n  that  only the  solu- 

t i o n  of t h e  nonlinear s ta te  equations i s  used. The response of given 

functions (e.g., terminal e r ror  or quantity to be optimized) to a con- 

trol impulse i s  determined along the t ra jec tory  by fast-time repe t i t i ve  

computations rather than by a solut ion of adjoint  equations. This 

impulse response method enables t h e  investigator to r e t a i n  an in tu i t i ve  

understanding of the  optimization process. Furthermore, since adjoint 

equations are not required, the state equations or cost functions need 

not be amenable to l inear izat ion.  The impulse response method does 

require many solutions of t he  state equations; however, the programming 

i s  straightforward and the  task of coqu t ing  a large number of dynamic 

solutions i s  ideal ly  su i ted  t o  modern high-speed computers. 
, 
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NOTATION 

The following notation i s  used i n  the body of the  text. Additional 

symbols a re  described as they are introduced. 

control value of lift -drag r a t i o  

number of storage points i n  control t i m e  history 

time 

final time 

i n i t i a l  t i m e  

t i m e  increment of control impulse 

control 

height of control impulse 

cost at  f i n a l  time 

change i n  cost a t  f i n a l  t i m e  due t o  control impulses at time t 

state value at f inal  time 

desired s t a t e  value a t  f i n a l  t i m e  

change i n  s t a t e  value at  f inal  time due t o  control impulses at 

time t 

GENEEKL OUTLINE OF MEIIHOD 

The impulse response method, as discussed i n  t h i s  report ,  uses the  

steepest descent optimization proces s . 4-7 The process commences with 

any nonoptimal t ra jectory from which a s l igh t ly  improved one is  derived. 

The improved t ra jectory i s  then used as a new nominal t ra jectory,  and 

the procedure i s  repeated u n t i l  the  optimum or 'nearly optimum trajectory 

i s  found. 
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The i t e r a t i v e  procedure is: 

control program; (2) determine impulse response functions t h a t  indicate  

(1) estimate a reasonable nominal 

t he  best  method of making small changes i n  the  control  tha t  w i l l  decrease 

the  cost  ( the quantity t o  be minimized); (3) compute a new nominal con- 

t r o l  by adding t h i s  change i n  control t o  t h e  previous nominal control  

( t h i s  r e su l t s  i n  a new t ra jec tory  w i t h  a decreased cos t ) ;  (4) repeat 

s tep  2. This i t e r a t i v e  process continues u n t i l  t he  change i n  cost  fo r  

each new t ra jec tory  i s  very small; the  control i s  then very near a 

loca l  optimum. If a t  any point along the  t ra jec tory  a l i m i t  value of 

the  control i s  reached before the  cost i s  completely minimized, no 

fur ther  optimization i s  possible at t h a t  point.  I n  t h i s  case, the  pro- 

cess continues u n t i l  at  each point on t h e  t ra jec tory  e i ther  a loca l  

optimum or the control l i m i t  i s  reached. 

Computation of Impulse Response Functions 

The technique by which the  impulse response function i s  determined 

i s  the  most important fea ture  of t h e  impulse response method. Figure 1 Fig. 1 

i l l u s t r a t e s  the  manner i n  which t h e  influence of small control changes 

on t h e  cost  a r e  calculated. 

w i t h  a posi t ive control impulse at t i m e  

control. During the  next solut ion of t he  equations of motion, a nega- 

t i v e  control  impulse of t h e  same magnitude is  inser ted a t  time t. The 

impulse response, 4, is  derived f romthese  two solutions.  I n  a similar 

manner, t he  impulse response i s  determined at  successive times along 

t h e  t ra jec tory .  

t i m e  h is tory of @. Its computation fo r  the same control  impulse at  

< 
The equations of motion are first solved 

t superimposed upon the  nominal 

The impulse response function, @(t), i s  the complete 
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different  times along the  t ra jec tory  i s  defined as one i t e r a t ion .  

This corresponds t o  previous optimization s t ~ d i e s ~ - ~  tha t  used one itera- 

t i o n  of the  adjoint equations t o  compute essent ia l ly  t h e  same impulse 

response function along t h e  t ra jec tory .  

Calculation of Minimum Cost 

When the  cost  i s  t o  be minimized and there  i s  no terminal constraint ,  

t he  impulse response function i s  used i n  the  steepest  descent technique 

t o  modify the control  toward 

Nominal = [ 1 I t r o )  

the  optimum i n  t h e  following manner: 

(1) 

The gain I$, weights the  impulse response function f o r  the cost; 

i ts  s ign is  negative t o  decrease t h e  cost .  The magnitude of K is  deter-  

mined experimentally f o r  each problem: 

i n s t a b i l i t y  i n  the  convergence procedure, while too  small a gain may 

extend t h e  time of convergence. 

cp 
too l a rge  a gain may cause 

< A representative sample of w h a t  one may expect w i t h  t h i s  type of 

optimization procedure is  sketched i n  f igure 2. D u r i n g  t h e  first i t e r a -  Fig. 2 

t ion ,  the  r epe t i t i ve  solutions determine the  impulse response function, 

@(t). T h i s  @(t) i s  added t o  t h e  nominal control with an appropriate 

gain K+ and the  new nominal control  time his tory,  as shown i n  the  center 

of f igure  2, i s  obtained. The iterative process i s  repeated u n t i l  t h e  

optimum control  i s  reached. The optimum control may take on e i ther  or 

both of the  properties i l l u s t r a t e d  i n  t h e  f ina l  i t e r a t i o n  of f igure 2. 

I n  the  region (A) t he  impulse response function is, f o r  a l l  p rac t i ca l  
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purposes, zero. This implies t h a t  a small change i n  control  i n  t h i s  

region w i l l  not modify the  cost; thus the  control  i s  a t  a loca l  optimum. 

I n  region (B) t h e  control i s  at  the  l imit ing constraints,  and t h e  

impulse response function indicates that  only control  beyond t h e  con- 

s t r a i n t  w i l l  decrease the  cost .  Thus, on the  constraint ,  the  control 

i s  at  a l o c a l  optimum. 

M i n i m  Cost With T e r m i n a l  Constraint 

When a terminal constraint  (or destination) i s  to be reached, 

while minimizing the  cost ,  t he  i t e r a t i o n  procedure i s  performed as 

follows : 

where $ denotes t h e  s t a t e  var iable  at t h e  f inal  time. The quantity 

A$(t) represents the  change i n  t h e  state var iable  due to control impulses, 

and is  evalmted i n  the  same manner as &(t). 

Gains Kq and % a re  constants f o r  each i t e r a t ion .  Gain Kv 

weights the  impulse response function for  cost;  i t s  s ign i s  negative 

to decrease the  cost .  Gain K must be calculated fo r  each i t e r a t ion  

so t h a t  t h e  term K 

the  optimizing term, Kcp acp( t ) ,  and correct any te rmina l  displacement 

e r ror  from the previous i t e r a t ion .  

$ 

A$(t) w i l l  account fo r  terminal displacement due to 9 
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The equation f o r  K$ is: 

f f  Cup( t ) A$( t ) dt 

f A$2 ( t ) dt 

t 0  $d - $ 

K$= 'E4p + 2 nu A t  

ff A$*(t) d t  

~ t o  v J \ t o  v f 

Steepest des cent Terminal error 
optimization term correction t e r m  

(3) 

The derivation of t h i s  equation can be found i n  appendix A. Au 

is  t h e  height of each control impulse; A t  

each control impulse; $d 

represents any terminal displacement error from each previous itera- 

t ion.  

i s  the  t i m e  in te rva l  of 

i s  the  desired end-point value; and $6 - $ 

T h i s  equation gives the general form of the  steepest descent 

computations; t he  computer mechanization of t h i s  method w i l l  be dis-  

cussed next. 

COMPUTEB M E C m I Z A T I O N  AND RESULTS 

The impulse response method has been mechanized on both a hybrid 

and a d i g i t a l  computer to determine the  optimal time history of t he  

l i f t -drag  r a t i o  (control L/D) tha t  must be flown for  a v&icle re turn-  

ing in to  the ear th 's  atmosphere. The example problem requires tha t  

(1) the  cost, cp, which is the  heat input t o  t he  vehicle, be minimized, 

(2) the  vehicle a r r ive  at  a terminal constraint, $d,' (destination), 

and (3) the  control t i m e  history remain within specified L i m i t s .  The 

solution t o  t h i s  particulaz problem i s  known a p r i o r i  t o  be a bang- 

bang control; therefore, the f i n a l  r e su l t s  can be verified.  

The equations of motion are presented i n  appendix B. The vehicle 

character is t ics  and f l i g h t  conditions were those of a manned capsule 

returning from ear th  orb i t  and having the  following parameters: 
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I n i t i a l  conditions : a l t i t u d e  

horizontal  velocity 

v e r t i c a l  velocity 

range t o  destination 

Stopping conditions : a l t i t u d e  

Control l i m i t s  : L/D 

250J000 f t  

25,000 fpS 

748 fps 

1,000 miles 

100,000 ft 

The computer systems used i n  the  two mechanizations are described 

i n  ap-pendix C .  

Wbrid Computer Mechanization 

The major elements of t he  hybrid computer consisted of: (1) an 

analog computer t o  solve t h e  t ra jec tory  equations, (2) pa ra l l e l  d ig i -  

t a l  logic  uni ts  t o  control the computer program, (3) delay l i n e  memories 

t o  s to re  t h e  control t i m e  history,  and (4) D-A and A-D converters t o  

t ransfer  t he  control  t i m e  h is tory between the  analog computer and the  

delay l i n e  memory. 

The L/D t i m e  h is tory was stored i n  64 word serial delay l i n e  

memories w i t h  a resolut ion of 13 b i t s .  The access t i m e  of the  serial 

memory was 128 psec. To permit a complete solut ion of the t ra jec tory  

equations within t h e  128 psec, t h e  analog computer w a s  time-scaled at 

3750 t o  1. 

The mechanization of t h i s  problem on t h e  hybrid computer i s  

illus-t;rated i n  f igures  3 and 4: 

and f igure  4 illustrates the logic  used i n  controll ing t h e  problem. 

The serial  memory unit  is continuously driven by counter pulses (Logic 

No. 1). 

his tory with n points. This t i m e  his tory i s  used, together w i t h  t he  

Figure 3 i s  the problem flow chart, 

Figs. 3 and 
< 4  

The output of the serial memory i s  the nominal control  t i m e  
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appropriate control impulse, t o  solve the t ra jec tory  equations. These 

equations are s tar ted at  t h e  specif ied i n i t i a l  conditions with Logic 

No. 2, and stopped w i t h  Logic No. 3 when the  t ra jec tory  reaches t h e  

specified end condition on a l t i tude .  

quantity (heat) 

end of each run as indicated by Logic Nos. 4 and 5. 

negative control impulse i s  added t o  t h e  nominal control input with 

Logic Nos. 6 and 7, respectively. 

control (Kip &(t) 3- K$ AQ(t)) i n t o  t h e  serial memory. 

The f ina l  values of the cos t  

and t h e  state quantity (range) are s tored at the 

The posi t ive or 

Logic No. 8 inse r t s  the modifying 

This procedure 

runs i n  essent ia l ly  a continuous Manner, tha t  is, one point out of t h e  

n points i n  the  nominal control his tory is  updated after each two repe t -  

i t i v e  computations. A f t e r  2n r epe t i t i ve  computations (one i t e r a t ion ) ,  

every point i n  storage has been modified and t h e  process i s  repeated. 

For each i te ra t ion ,  gains % and K,,, are held constant. As  previously 

mentioned, gain % determines the  r e l a t ive  speed and s t a b i l i t y  of i the  

convergence onto the  optimum. The corresponding value of K,,, t o  be used 

with each new i t e r a t i o n  i s  calculated by equation (3) as a function of 

t he  terminal error from each previous i t e r a t i o n  

i n g  two integrated quant i t ies  from each previous i te ra t ion :  

- $) and the  follow- 

and 

.if AQ2 (t ) at (5) 
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Time to was represented by a logic s igna l  at the  first r epe t i t i ve  

computation i n  an i t e r a t i o n  cycle and time 

logic  s ignal  at the  last computation i n  an i t e r a t i o n  cycle. 

be noted tha t  during those par t s  of t h e  t ra jec tory  when t h e  control was 

at  a constraint  limit, no fur ther  optimization was possible and the  

integrat ion of equations (4) and (5) w a s  not carr ied out during those 

tf w a s  represented by a 

It should 

times . 
Hybrid Computer Results 

The r e su l t s  obtained from the  hybrid simulation axe i l l u s t r a t e d  i n  

f igures 5 and 6. Figure 5 shows a portion of one i te ra t ion ,  while f i g -  +;id: 

t ure 6 shows the  convergence t o  t h e  optimum control L/D. 

I n  t h e  upper t r ace  of f igure 5, t he  control impulses are  super- 

imposed upon t h e  initial nominal control. Each control impulse had a 

magnitude of L/D = L-0.25 and a t i m e  increment of one clock pulse 

(0.002 sec) 

i n  the f inal  range and heat load on the  order of J-5 percent. 

This control impulse w a s  chosen because it gave var ia t ion 

The in t e -  

grated heat loads along each of the  r epe t i t i ve  t r a j ec to r i e s  a re  presented 

i n  the next t race .  The difference between the  final quantit ies f o r  each 

pa i r  of subsequent runs is  4, and represents the  heat load impulse 

response. 

I n  f igure 6, t he  first f e w  i te ra t ions  of t h e  converging optimization 

procedure a re  i l l u s t r a t e d  together with the  t h i r t i e t h  i te ra t ion .  

upper t r ace  the  nominal cor,trol i s  recorded as it i s  read out of serial 

memory every 128 +l counter pulse (with Logic No. 8). 

venient t i m e  h is tory t o  show t h e  manner i n  which the  control has been mod- 

i f i e d  during each i te ra t ion .  Notice tha t  t h e  control is limited within 

I n  t h e  

This gives a con- 
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0 < - L/D < - 0.5. 

serial memory t o  these values. 

This was achieved by simply l imit ing t h e  output of t h e  

The modif'ying control shown i n  the  lower 

trace of f igure  6 is  t h e  sum, $ @(t) + KQ A $ ( t ) .  

runs, a constant % = - 2 . 5 x 1 0 - 3 / ~ u / f t ~  permitted fairv rapid conver- 

gence while program s t a b i l i t y  was maintained. The value of K$ was 

For t h i s  series of 

calculated fo r  each i t e r a t i o n  by equation (3) t o  be tha t  value which 

kept t h e  f ina l  value of range near 1,000 miles. 

A s  can be seen i n  f igure 6, t h e  optimum control  var ia t ion  fo r  t h i s  

par t icu lar  example was a bang-bang control.  With the  steepest  descent 

method, it was found t h a t  near-optimum control  could be achieved i n  the  

f i rs t  f e w  i te ra t ions ,  but t o  "square up t h e  corner" and achieve fu l l  

optimum control required more i te ra t ions  (20 t o  3 0 ) .  

Digi ta l  Computer Mechanization 

The major elements of t he  d i g i t a l  computer system consisted of: 

(1) a d i g i t a l  computer t o  solve the  t ra jec tory  equations, perform the  

log ica l  control of t h e  program,and s to re  the  control L/D 

ries; (2) a l i n e  pr in te r  t o  p r in t  hard copies of t he  results; and 

(3) D-A converters and a s t r i p  chart  recorder fo r  fast observation of 

trends. 

time h is to-  

The d i g i t a l  program was wri t ten i n  f loa t ing  point symbolic language. 

Since the  optimization technique requires r epe t i t i ve  computation of the  

t ra jectory,  t h e  choice of an integrat ion rout ine was very important. A 

fast, s table ,  and f a i r l y  accurate routine was  needed. These requirements 

conflict  t o  some extent however, t he  fourth-order Adams-Bashford in t e -  

grat ion algorithm gave sat isfactory r e su l t s  at  a s tep  s i z e  of 5 seconds, 



J . S . Raby 4 r a  j ect  ory Optimization 12 

provided a sa t i s fac tory  starter was used. 

order Adam-Bashford algorithms with a s tep  size of 1 second. 

The starter used t h e  lower 

The program flow i s  as follows (see f i g .  7) : (1) A nominal control 

(2) This tra- 

Fig. 7 < 
t i m e  his tory is used t o  calculate  t h e  nominal t ra jec tory .  

jectory i s  s tored for  use as t h e  i n i t i a l  conditions fo r  t h e  r epe t i t i ve  

computations of? the  t ra jec tory .  

i n a l  t ra jectory,  the  control i s  perturbed with a posi t ive pulse, and a 

new t ra jec tory  i s  calculated,  

t he  control is perturbed with a negative pulse and another new t ra jec tory  

calculated. (5) From these two r epe t i t i ve  computations of t h e  t ra jec tory  

the  heat impulse response, bp9 and t h e  range impulse response, A$, are 

calculated. 

along the  nominal t ra jectory by t h e  length of t h e  integration s tep s ize .  

(7) Steps (3) through (6) are repeated u n t i l  t he  i n i t i a l  a l t i t ude  reaches 

t h e  stopping condition (100,000 ft)* 

control time his tory i s  computed using equations (2) and (3). 

(1) through (8) are  repeated. This i t e r a t i v e  computation continues u n t i l  

an optimum t ra jec tory  is  reached. 

(3) A t  t he  init ial  point along t h e  nom- 

(4) A t  t h i s  s a m e  point on the  t ra jectory,  

(6) The program i s  then advanced t o  new i n i t i a l  conditions 

(8) A t  t h i s  time, a new nominal 

(9) Steps 

Digi ta l  Computer Results 

Fig. 8 < The first f ive  i te ra t ions  and the  twentieth i t e r a t i o n  of t he  

d i g i t a l  simulation a re  i l l u s t r a t e d  i n  f igure 8. 

figure 8 shows the  control L/D time history.  During the first itera- 

The upper t r ace  of 

t ion ,  t h e  control L/D was a constant 0.25; at t h e  end of t h i s  i t e r a -  

t i o n  it was modified by equations (2) and (3) e By the  f i f t h  i t e r a t i o n  

the control L/D was approaching bang-bang and by the  twentieth i t e r a t ion  it 

was essent ia l ly  bang-bang. The pulse used t o  perturb the  t ra jectory 

had a height of 0.25 L/D and a width equal t o  one integration 
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step s ize .  For t h i s  pulse, a constant value of Kcp = -7.5X10-2/Btdf't2 

permitted a fairly rapid convergence and t h e  computation remained qui te  

s table .  

The second t race  of f igure 8 shows t h e  var ia t ion i n  heat from one 

i t e r a t ion  t o  t h e  next. The heat, which is the  cost i n  t h i s  example, 

decreases markedly during the  f i rs t  f ive  i te ra t ions  and nearly reaches i t s  

final value by the end of the  f i f t h  i te ra t ion .  Tables I, 11, and I11 give 

the  results i n  tabular form. The range i s  shown t o  remain near 1,000 miles 

while the heat i s  reduced from 23,491 Btu/ft2, at t he  end of i t e r a t ion  1, 

t o  21,517 Btu/ft2 a t  the  end of i t e ra t ion  5. 

ations 5 through 20 was t o  "square up'' the  

The major change during i ter-  

L/D control and achieve the 

f u l l  optimum control. 

was 999.9 miles and the  heat 20,966 Btu/ft2. 

A t  the  end of i t e r a t ion  20, the final range achieved 

During the optimization pro- 

cedure t h e  range varied s l igh t ly  about the  desired value of 1,000 miles 

and the heat load was reduced abaut 10 percent. 

Discussion of Hybrid and Digi ta l  Results 

It was interest ing t o  observe tha t  both the  hybrid and the  d i g i t a l  

simulations required approximately the same amount of computer time, 

approximately 2 minutes t o  obtain near optimum t ra jec tor ies  and approx- 

imately 5 minutes t o  obtain full  optimum t ra jec tor ies .  However, it 

should be pointed out t ha t  no real attempt was made t o  minimize ei ther  

of these computing times. There a re  several  methods for  reducing the  

computer time required t o  obtain optimum t ra jec tor ies .  One method would 

be t o  select  the gain 

using a constant value fo r  the  en t i re  computing run. 

t he  solution t o  converge t o  an optimum i n  f e w e r  i t e ra t ions  a t  the expense 

of complicating the computer program. Another method of decreasing 

Krp automatically f o r  each i t e r a t ion  instead of 

This would cause 
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the  computation time would be t o  decrease the  number of points used t o  

s tore  the  control time history which would decrease the  number of repet-  

i t i v e  computations required fo r  each i te ra t ion .  

The results obtained by both the  hybrid and the d i g i t a l  computer 

appear sat isfactory for  engineering purposes. 

and heat computed by the  two simulations agree t o  within approximately 

1 percent and both simulations arrived at the  same bang-bang control time 

his tor ies .  

The f ina l  values of range 

One excellent feature of t he  d i g i t a l  simulation was the  program ' 

documentation obtained by using the  on-line typewriter and l i n e  pr in te r .  

The typewriter documented every change made during the  time the  program 

was i n  the computer, and the l i n e  pr inter  permitted the analysis of each 

variable a t  specific points along the t ra jectory.  Equally valuable was 

the  s t r i p  chart recording normally obtained i n  hybrid computation. 

was obtained i n  the  d i g i t a l  program by D-A conversion of the d i g i t a l  

variables. T h i s  "quick look'' capabili ty made it possible t o  o3serve 

trends not readily apparent i n  numerical printouts e 

It 

The r e su l t  of t h i s  t e s t  example was no surprise.  I n  simulations 

that require complicated logic control of the program and a moderate amount 

of storage, there  i s  a d is t inc t  advantage t o  using a d i g i t a l  computer. 

It proved reasonable t o  use a d i g i t a l  computer i n  t h i s  simulation because 

there was only a moderate number of simplified equations t o  be solved. 

If the number of equations w e r e  increased, the t i m e  t o  solve them on the  

d i g i t a l  computer would, of course, a l so  increase. 
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COMPARISON WITH ADJOINT STEEPIBT DESCXIW 

A current reentry optimization s t u e  at Ames Research Center i s  using 

both the  impulse response method of t h i s  report  and the stand-ard adjoint 

steepest descent computing method. 

two methods have been programmed on the  same computer (IBM 7094) and the i r  

a b i l i t y  t o  solve several  ident ical  problems has been compared. 

This study i s  of in te res t  because the  

Representative solutions obtained from t h e  two methods are i l l u s t r a t ed  

i n  figure 9. 

i n i t i a l  f l i gh t  conditions used i n  the  previous example of t h i s  report. 

T h i s  par t icular  example i s  f o r  the same reentry vehicle and 

However, the  cost function i s  of t he  form: 

t f 
cp = [(Heat rate) f (rZra,g)*Idt 

t 0  

and there is  no terminal constraint. This w a s  chosen i n  order t o  i l l u s -  

trate a problem formulation tha t  does not represent a bang-bang optimal 

control result. 

The results of t he  twentieth i te ra t ion  a re  shown i n  figure 9. The 

upper curve shows that the  control solutions are almost identical .  

t he  lower curve the  impulse response function Acp(t) has been normalized3 

for  comparison with the  corresponding results obtained by the adjoint 

solutions. 

the  same f inal  solution. 

I n  

Figure 9 demonstrates tha t  the two methods arr ive at  essentially 

For reentry problems similar t o  the one presented herein, it has been 

found tha t  the  computing t i m e  required with the  adjoint method i s  about 

one order of magnitude less than tha t  required by the  impulse response 

method. Because the  adjoint method uses less computer t i m e ,  it has been 
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t he  more desirable method f o r  production runs tha t  require a large number 

of optimized t r a j ec to r i e s .  

forward t o  program and because t h e  engineer i s  able  t o  r e t a i n  an in tu i t i ve  

understanding of t he  optimization procedure, t he  impulse method has been 

the  more desirable method for  initial problem mechanization. 

adjoint equations require  l inear iza t ion  and, therefore,  cannot be used i n  

some problem formulations. For example, i n  reentry problem formulations 

with complicated heat -balance equations ,lo ra ther  than the  simple heating 

However, because the  impulse method i s  s t r a igh t -  

Furthermore, 

expression shown i n  appendix B, t he  heat rate cannot be l inearized. 

t h i s  type of formulation, t he  impulse response method has provided t h e  

only prac t i ca l  solution.* 

I n  

*Dynamic programming was a lso  t r i e d  for  t h i s  problem but t he  computer 

time was found t o  be excessive, one t o  two orders of magnitude greater 

than tha t  required with t h e  impulse response method. 

Th i s  paper has described reentry t ra jec tory  optimization using t h e  

The method requires t h a t  t he  computer perform impulse response method. 

a large number of fast-time r epe t i t i ve  computations i n  solving the  state 

equations and i n  determining impulse response functions. 

t i v e  computations are readily performed by both hybrid and d i g i t a l  

computers. 

These r epe t i -  

The mechanization of t he  impulse response method on both hybrid and 

Near optimum reentry d i g i t a l  computers was found t o  be straightforward. 
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t ra jec tor ies  were obtained i n  approximately 2 minutes and fu l l  optimum 

reentry t ra jec tor ies  i n  approximately 5 minutes of computer time. The 

solutions obtained f’rom e i ther  mechanization agreed t o  within approximately 

1 percent. 

The impulse response method has been compaxed with the  adjoint steepest 

descent method. The solutions obtained by e i ther  method were essent ia l ly  

ident ical .  The adjoint method requires less computer time; however, t h e  

impulse response method does not require familiarization w i t h  o r  use of 

an auxiliary set of l inear  adjoint equations. Furthermore, for  problem 

formulations tha t  a r e  not amenable t o  l inear izat ion,  the  impulse response 

method may be t h e  only prac t ica l  method. 
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APPEDJDIX A 

DERIVATION OF EQUA!l!ION FOR K+ 

Along a normal t ra jectory,  small changes, 6$, i n  t h e  terminal state 

due t o  small changes, 6u( t ) ,  i n  control can be approximated by: 

where nu i s  the  height of each control impulse and A t  i s  the  time 

in te rva l  of each control impulse. 

from equation (1) for 

Substituting &p W ( t )  + % A$(t)  

6u( t ) ,  we have: 

Solving fo r  K,,, and l e t t i ng  -61) = \Ira - $ (the previous terminal e r ror ) ,  

t 0  ,,,a - If + 2 nu at 
f f  A$*(t) d t  

(A3 1 

Steepest descent Terminal error 
optimization t e r m  correction term 
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REENTRY TRAJECTORY EQUATIONS 

The following simplified equations derived for f l i gh t  within the  

atmosphere were used fo r  t he  example problem herein, The primary assump- 

t ions include a spherical  nonrotating earth, small fl ight-path angles, and 

a constant gravity t e r m .  

appl icabi l i ty  have been considered i n  a number of reports.” 

The derivation of these equations and t h e i r  

where 

drag loading, 2.0 ft2/slug 

g loca l  gravi ta t ional  acceleration, 32.2 ft/sec2 

h a l t i tude ,  f t  

control value of l i f t -drag r a t i o  L 
E 

r radius from earth center, 21.lXl06 ft 

V horizontal velocity, fps 

P atmosphere density, 0.00231 e 

9 t o t a l  heat input, Btu/ft2 

If f i n a l  range, ft 

slug/ft2 -h/23,500 
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APPENDIX c 

DESC!FtIPTION OF COMPWER SYSTENS 

I n  order t o  make meaningful a comparison of t h e  results obtained 

from the analog and d i g i t a l  simulations, it i s  necessary t o  very briefly 

describe the  computer systems used. 

The analog computer was an EA1 23l.R-V equipped with electronic 

mode control of the  amplifiers. The logic element of the hybrid simu- 

l a t ion  was an EZLI DDS 350. The DDS 350 has a patchboard which permits 

one t o  combine logical  elements, such as AND gates, f l ip-f lops,  s h i f t  

regis ters ,  counters, e tc . ,  i n to  complicated logic systems. It a lso  has 

several delay l i n e  memories of various lengths as well as A-D and D-A 

converters for  communicating between the DOS 350 and the  analog computers. 

The d i g i t a l  computer w a s  an EA1 8400 mode 0 computer which had a 

2 psec memory access time, an average f loat ing point add time of approx- 

imately 13 psec, an average floating point multiply t i m e  of approximately 

15 psec, and a floating point word s i z e  of 32 b i t s .  

\ 
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TABLE I. - A I f i l ' m  TIME H I S T O R I B  

Altitude, lo3 f't 
Time, I t e r a t ion  

see 1 2 10 20 

60 207 206 ig 19 

180 182 184 212 209 
240 158 165 196 195 

3 60 =7 1g 

- 
0 250 250 250 250 

120 180 184 160 160 

300 125 132 142 142 

400 104 110 

23 

TABLE 11. - CONTROL TIPllE HISTORIES 

Time, I t e r a t ion  
see 1 2 LO 20 

0 0.250 0.212 o 0 
I____. 

60 .250 .192 0 0 

120 -250 .291 .5oo .5oo 
180 .250 .290 .500 -500 

240 -250 .294 .447 .500 
300 .25O .294 .500 .500 
360 .250 ,347 .475 
400 -254 o r 7 7  

TABm 111. - TERMINAL CONDITIONS 

I t e r a t ion  
1 2 5 10 20 
-~ ~~~~~ 

Time, see 344 358 389 407 414 

Altitude, 

io3 ft 99.3 99.9 99.8 99.5 98,8 

Range, miles 997.7 1001.5 1003 e 7 1002.8 999.9 

Heat, 

Btu/ft2 23491 23x97 21517 21025 20966 
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FIGURE CAPTIONS 

Figure 1.- Computation of the impulse response. 

Figure 2.- Computation of the optimal control. 

Figure 3.  - Hybrid computer flow diagram. 

Figure 4. - Hybrid computer program logic. 
Figure 5.- Hybrid repetitive computations. 

Figure 6. - Hybrid computation of the optimal control. 

Figure 7.- Digital computer flow chart. 

Figure 8.- Digital computation of the optimal control. 

Figure 9.- Comparison of the impulse response and adjoint steepest 

descent methods. 
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