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ABSTRACT

A perturbation method of computing optimum trajectories is described.
This method uses fast-time repetitive computations in determining control
impulse response functions and requires 6nly dynamic solutions of the
state equations.

The solution of additional linear adjoint eguations

is not required.

Both a hybrid and a digital computer mechanization of this impulse

response method are described. Sample solutions for each computer mecha-

nization are presented, using the same problem formulation in each case.
The problem constraints were that a reentry vehicle travel a specified
range, that the control remain within specified limits, and that the

heat input to the vehicle be minimized. A comparison is made between

the hybrid computer and the digital compubter mechanizations, each computed
near optimum trajectories in about 2 minutes and full optimum trajec-

tories in about 5 minutes of computer time.
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INTRODUCTION

Space vehicle trajectories must be near optimumbin the sense that
some parameter is either a maximum or a minimum; for example, in reentry
the trajectory to desired terminal conditions is near optimum when the
total aerodynamic heating is a minimum. Several perturbation methods ,*
such as the calculus of variations, applications of the maximum principle,
and direct steepest descent, have been considered for determining the
time histories of nonlinear controls that correspond to optimum trajec-
tories.

The computations2 in these previous optimization studies invelved
the dynamic solution of two sets of equations: (1) nonlinear state
equations and (2) linear adjoint equations. An alternate perturbation
computation technique ~ the impulse respénse method® - will be discussed
here. This method differs from previous studies in that only the solu-
tion of the nonlinear state equations is used. The response of given
functions (e.g., terminal error or quantity to be optimized) to a con-
trol impulse 1s determined along the trajectory by fast-time repetitive
computations rather than by a solution of adjoint eguations. This
impulse response method enables the investigator to retain an intuitive
understanding of the optimization process. Furthermore, since adjoint
equations are not required, the state equations or cost functions need
not be amenable to linearization. The impulse response method does
require many solutions of the state equations; however, the programming
is straightforward and the task of computing a large number of dynamic

[y

solubtions is ideally suited to modern high-speed computers.
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NOTATTION

The following notation is used in the body of the text. Additional

symbols are described as they are introduced.

L/D
n

4
tr
tO
Y

u

control value of 1ift-drag ratio

number of storage points in control time history

time

final time

initial time

time increment of control impulse

control

height of control impulse

cost at final time

change in cost at final time due to control impulses at fime t
state value at final time

desired state value at final time

change in state value at final time due to control impulses at

time t

GENERAT, OUTLINE OF METHOD

The impulse response method, as discussed in this report, uses the

steepest descent optimization process.4'7 The process commences with

any nonoptimal trajectory from which a slightly improved one is derived.

The improved trajectory is then used as a new nominal trajectory, and

the procedure is repeated until the optimum or nearly optimum trajectory

ieg found.
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The iterative procedure is: (1) estimate a reasonable nominal

control program; (2) determine impulse response functions that indicate

the best method of making smwall changes in the control that will decrease

the cost (the quantity to be minimized); (3) compute a new nominal con-
trol by adding this change in control to the previous nominal control
(this results in a new trajectory with a decreased cost); (4) repeat
step 2. This iterative process continues until the change in cost for
each new trajectory is very small; the control is then very near a
local optimum. If at any point along the trajectory a limit value of
the control is reached before the cost is completély minimized, no
further optimization is possible at that point. In this case, the pro-
cess continues until at each point on the trajectory either a local

optimum or the control 1limit is reached.

Computation of Impulse Response Functions
The technique by which the impulse response function is determined
is the most important feature of the impulse response method. Figure 1
illustrates the manner in which the influence of small control changes

on the cost are calculated. The equations of motion are first solved

@.1

with a positive control impulse at time + superimposed upon the nominal

control. During the next solution of the equations of motion, a nega-
tive control impulse of the same magnitude is inserted at time +t. The
impulse response, Ap, is derived from these two solutions. In a similar
manner, the impulse response 1ls determined at successive times along
the trajectory. The impulse response functibn, Am(t), is the complete

time history of Ap. Ibts computation for the same control impulse at
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different times along the trajectory is defined as one iteration.
This corresponds to previous optimization studies®* ™7 that used one itera-
tion of the adjoint equations to compute essentially the same impulse

response function along the trajectory.

Calculation of Minimum Cost
When the cost is to be minimized and there is no terminal constraint,
the impulse response function is used in the steepest descent technigue

to modify the control toward the optimum in the following manner:

New Previous
Nominal| = | Nominal | + Kg Xo(t) (1)
Control Control

The gain K¢ weights the impulse response function for the-costg
its sign is negative to decrease the cost. The magnitude of K¢ is deter-
mined experimentally for each problem: tdo large a gain may cause
instability in the convergence procedure, while too small a gain may
extend the time of convergence.

A representative sample of what one may expect with this type of
optimization procedure is sketched in figure 2. During the first itera- \(Fig.
tion, the repetitive solutions determine the impulse response function,
&p(t). This Ap(t) is added to the nominal control with an appropriate
gain Kw, and the new nominal control time history, as shown in the center
of figure 2, is obbtained. The iterative process is repeated until the
optimum control is réached. The optimum control may take on either or

both of the properties illustrated in the final iteration of figure 2.

In the region (A) the impulse response function is, for all practical
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purposes, zero. This implies that a small change in control in this
region will not modify the cost; thus the control is at a local optimum.
In region (B) the control is at the limiting constraints, and the
impulse response function indicates that only control beyond the con-
straint will decrease the cost. Thus, on the constraint, the control

is at a local optimum.

Minimum Cost With Terminal Constraint
When a terminal constraint (or destination) is to be reached,

while minimizing the cost, the iteration procedure is performed as

follows:
New Previous
Nominal | = Nominal + Kp 2p(t) + Ky AY(t) | (2)
Control/ Control

where Vv denotes the state variable at the final time. The quantity
AV(t) represents the change in the state variable due to control impulses,
and is evaluated in the same maﬁner as Aop(t).

Gains K¢ and KW are constants for each iteration.  Gain Ko
weights the impulse response function for cost; its sign is negative
to decrease the cost. Gain KW must be calculated for gach iteration

so that the term KW A(t) will account for terminal displacement due to

the optimizing term, KQ Ap(t), and correct any terminal displacement

error from the previous iteration.
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The equation for KW is:

tr
|7 co(s)av(t)at
tO \Ifd - \lf
Ky ="Ky + 2 MO (3)

L 2 be 2
5 s (s)at [ v (v)as

Lgto ~ -/ \:bo . 7

Steepest descent Terminal error

optimization term correction term

The derivation of this equation can be found in appendix A. Au
is the height of each control impulse; At 1is the time interval of
each control impulse; Vg 1s the desired end-point value; and Vg - ¥
represents any terminal displacement error from each previous itera-
tion. This equation gives the general form of the steepest descent
computations; the computer mechanization of this method will be dis-
cussed next.

COMPUTER MECHANIZATION AND RESULTS

The impulse response method has been mechanized on both a hybrid
and a digital computer to determine the optimal time history of the
1ift -drag ratio (control I,/D) that must be flown for a vehicle return-
ing into the earth's atmosphere. The example problem requires that
(1) the cost, ©, which is the heat input to the vehicle, be minimized,
(2) the vehicle arrive at a terminal constraint, Vg, (destination),
and (3) the control time history remain within specified limits. The
solution to this particular problem is known a priori to be a bang-
bang control; therefore, the final results can.be verified.

The equations of motion are presented in appendix B. The vehicle
characteristics and flight conditions were those of a manned capsule

returning from earth orbit and having the following parameters:
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Initial conditions: altitude 250,000 £t
horizontal velocity 25,000 fps
vertical velocity T48 fps
range to destination 1,000 miles

Stopping conditions: altitude 100,000 ft

Control limits: L/D 0<L/D<0.5

The computer systems used in the two mechanizations are described
in appendix C.

Hybrid Computer Mechanization

The major elements of the hybrid computer consisted of: (1) an
analog computer to solve the trajectory equations, (2) parallel digi-
tal logic units to control the computer program, (3) delay 1ine_memories
to store the control time history, and (&) D-A and A-D converters to
transfer the control time history between the analog compuber and the
delay line memory.

The L/D time history was stored in 6L word serial delay line
memories with a resolution of 13 bits. The access time of the serial
memory was 128 psec. To permit a complete solution of the trajectory
equations within the 128 psec, the analog computer was time-scaled at
3750 to 1.

The mechanization of this problem on the hybrid computer is
illustrated in figures 3 and 4: TFigure 3 is the problem flow chart,
and Tigure 4 illustrates the logic used in controlling the problem. Figs. i and
The serial memory unit is continuously driven'by counter pulses (Logic
No. 1). The output of the serial memory is the nominal control time

history with n points. This time history is used, together with the
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appropriate control impulse, to solve the trajectory equations. These
equations are started at the specified initial conditions with Logic
No. 2, and stopped with Logic No. 3 when the trajectory reaches the
specified end condition on altitude. The final values of the cost
quantity (heat) and the state quantity (range) are stored at the
end of each run as indicated by Logic Nos. 4 and 5. The positive or
negative control impulse is added to the nominal control input with
Logic Nos. 6 and 7, respectively. ILogic No. 8 inserts the modifying
control (Ko Ap(t) + Ky AMV(t)) into the serial memory. This procedure
runs in essentially a continuocus manner, that is, one point out of the
n points in the nominal control history is updated after each two repet-
itive computations. After 2n repetitive computations (one iteration),
every point in storage has been modified and the process is repeated.
For each iteration, gains K¢ and K@ are held constant. As previously
mentioned, gain K¢ determines the relative speed and stability of*the
convergence onto the optimum. The corresponding value of K¢ to be used
with each new iteration is calculated by equation (3) as a function of
the terminal error from each previous iteration (Wd - V) and the follow-
ing two integrated quantities from each previous iteration:

t

J £ Hp(t)av(t)dt (%)

and

%
i f AP (%) at ] (5)
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Time +to was represented by a logic signal at the first repetitive
computation in an iteration cycle and time +ty was represented by a
logic signal at the last computation in an iteration cycle. It should
be noted that during those parts of the trajectory when the control was
at a constraint limit, no further optimization was possible and the
integration of equations (4) and (5) was not carried out during those
times.

Hybrid Computer Results

The results obtained from the hybrid simuvlation are illustrated in

figures 5 and 6. TFigure 5 shows a portion of one iteration, while fig- <:§E§s.
: and
€

ure 6 shows the convergence to the optimum control L/D.

In the upper trace of figure 5, the control impulses are super-
imposed upon the initial nominal control. Each control impulse had a
megnitude of L/D = #0.25 and a time increment of one clock pulse
(0.002 sec). This control impulse was chosen because it gave variation
in the final range and heat load on the order of %5 percent. The inte-
grated heat loads along each of the repetitive trajectories are presented
in the next trace. The difference between the final quantities for each
pair of subsequent runs is Ap, and represents the heat load impulse
response.

In figure 6, the first few iterations of the converging optimization
procedure are illustrated together with the thirtieth iteration. In the
upper trace the nominal control is recorded as it i1s read out of serial
memory every 128 +1 counter pulse (with Logic No. 8). This gives a con-
venient time histbry to show the manner in which the control has been mod-

ified during each iteration. Notice that the control is limited within

£

-
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0< L/D < 0.5. This was achieved by simply limiting the output of the
serial memory to these values. The modifying control shown in the lower
trace of figure 6 is the sum, Ko ap(t) + Ky AY(t). For this series of
runs, a constant K¢ = —2.5x10‘3/Btu/ft2 permitted fairly rapid conver-
gence while program stability was maintained. The value of KW was
calculated for each iteration by equation (3) to be that value which
kept the final value of range near 1,000 miles.

As can be seen in figure 6, the optimum control variation for this
particular example was a bang-bang control. With the steepest descent
method, it was found that near-optimum control could be achieved in the
first few iterations, but to "square up the corner™ and achieve full
optimum control required more iterations (20 to 30).

Digital Computer Mechanization

The major elements of the digital computer system consisted of:

(1) a digital computer to solve the trajectory equations, perform the
logical control of the program,and store the control L/D time histo-
ries; (2) a line printer to print hard copies of the results; and

(3) D-A converters and a strip chart recorder for fast observation of
trends.

The digital program was written in floating point symbolic language.
Since the optimization technique requires repetitive computation of the
trajectory, the choice of an integration routine was very important. A
fast, stable, and fairly accurate roubtine was needed. These requirements
conflict to some éxtent;8’9 however, the fourth-order Adams-Bashford inte-

gration algorithm gave satisfactory results at a step size of 5 seconds,
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provided a setisfactory starter was used. The starter used the lower
order Adams-Bashford algorithms with a step size of 1 second.

The program flow is as follows (see fig. T7): (1) A nominal control \\Fig.
time history is used to calculate the nominal trajectory. (2) This tra-
jectory is stored for use as the iniltial conditions for the repetitive
computations of the trajectory. (3) At the initial point along the nom-
inal trajectory, the control is perturbed with a positive pulse, and a
new trajectory is calculated. (4) At this same point on the trajectory,
the control is perturbed with a negative pulse and another new trajectory
calculated. (5) From these two repetitive computations of the trajectory
the heat impulse response, AP, and the range impulse response, AV, are
calculated. (6) The program is then advanced to new initial conditions
along the nominal trajectory by the length of the integration step size.

(7) Steps (3) through (6) are repeated until the initial altitude reaches
the stopping condition (100,000 ft). (8) At this time, a new nominal
control time history is computed using equations (2) and (3). (9) Steps
(1) through (8) are repeated. This iterative computation continues until
an optimum trajectory is reached.

Digital Computer Results

The first five iterations and the twentieth iteration of the
digital simulation are iliustrated in figure 8. The upper tréce of <:§Eg- 8
figure 8 shows the control L/D time history. During the first itera-
tion, the control L/D was a constant 0.25; at the end of this itera-
tion it was modified by equations (2) and (3). By the fifth iteration
the control L/D was approaching bang-bang and by the twentieth iteration it
was essentially bang-bang. The pulse used to perturb the trajectory

had a height of 0.25 L/D and a width equal to one integration
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step size. For this pulse, a constant value of XKy = J?.5X10'?/Btu/ft2
permitted a fairly rapid convergence and the computation remained quite
stable.

The second trace of figure 8 shows the variation in heat from one
iteration to the next. The heat, which is the cost in this example,
decreases markedly during the first five iterations and nearly reaches its
final value by the end of the fifth iteration. Tables I, II, and III give
the results in tabular form. The range 1s shown to remain near 1,000 miles
while the heat is reduced from 23,491 Btu/fta, at the end of iteration 1,
to 21,517 Btu/ft2 at the end of iteration 5. The major change during iter-
ations 5 through 20 was to "square up" the L/D control and achieve the
full optimum control. At the end of iteration 20, the final range achieved
was 999.9 miles and the heat 20,966 Btu/ft2. During the optimization pro-
cedure the range varied slightly about the desired value of 1,000 miles
and the heat load was reduced about 10 percent.

Discussion of Hybrid and Digital Results

It was interesting to observe that both the hybrid and the digital
simulations required approximately the same amount of computer time,
approximately 2 minutes to obtain near optimum trajectories and approx-
imately 5 minutes to obtain full optimum trajectories. However, it
should be pointed out that no real attempt was made to minimize either
of these computing times. There are several methods for reducing the
computer time required to obtain optimum trajectories. One method would
be to select the gain K@ automatically for each iteration instead of
using a constant value for the entire computing run. This would cause
the solution to converge to an .optimum in fewer iterations at the expense

of complicating the computer program. Another method of decreasing
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the computation time would be to decrease the number of points used to
store the control time history which would decrease the number of repet-
itive compubations required for each iteration.

The results obtained by both the hybrid and the digital computer
appear satisfactory for engineering purposes. The final values of range
and heat computed by the two simulations agree to within approximately
1 percent and both similations arrived at the same bang-bang control time
histories.

One excellent feature of the digital simulation was the program
documentation obtained by using the on-line typewriter and line printer.
The typewriter documented every change made during the time the program
was in the computer, and the line printer permitted the analysis of each
variable at specific points along the trajectory. Equally valuable was
the strip chart recording normally obtained in hybrid computation. It
was obtained in the digital program by D-A conversion of the digital
variables. This "quick look" capability made it possible to observe
trends not readily apparent in numerical printouts.

The result of this test example was no surprise. In simulations
that require complicated logic control of the program and a moderate amount
of storage, there is a distinet advantage to using a digital computer.

It proved reasonable to use a digital compubter in this simuwlation because
there was only a moderate number of simplified equations to be solved.
If the number of equations were increased, the time to solve them on the

digital computer ﬁould, of course, also increase.
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COMPARISON WITH ADJOINT STEEPEST DESCENT

A current reentry optimization study at Ames Research Center is using
both the impulse response method of this report and the standsrd adjoint
steepest descent compubting method. This study is of interest because the
two methods have been programmed on the same computer (IBM TO9%4) and their
ability to solve several identical problems has been compared.

Representative solutions obtained from the two methods are illustrated
in figure 9. This particular example is for the same reentry vehicle and ig. §
initial flight conditions used in the previous example of this report.
However, the cost function is of the form:

te :
@ = f [ (Heat rate) + (Drag)®lat
o
and there is no terminal constraint. 7This was chosen in order to illus-
trate a problem formulation that does not represent a bang-bang optimal
control result.

The results of the twentieth iteration are shown in figure 9. The
upper curve shows that the control solutions are almost identical. In
the lower curve the impulse response function Ap(t) has been normalized®
for comparison with the corresponding results obtained by the adjoint
solutions. Figure 9 demonstrates that the two methods arrive.at essentially
the same final solution.

For reentry problems similar to the one presented herein, it has been
found that the computing time required with the adjoint method is about
one order of magnitude less than that required by the impulse response

method. Because the adjoint method uses less compuber time, it has been
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the more desirable method for production runs that require a large number

of optimized trajectories. However, because the impulse method is straight-
. forward to program and because the engineer is able to retain an intuitive
understanding of the optimization procedure, the impulse method has been
the more desirable method for initial problem mechanization. Furthermore,
adjoint equations require linearization and, therefore, cannot be used in
some problem formulations. For example, in reenbry problem formulations
with complicated heat -balance equations,lo rather than the simple heating
expression shown in appendix B, the heat rate cannot be linearized. Iﬁ

this type of formulation, the impulse responsé method has provided the

only practical solution.*

*Dynamic programming was also tried for this problem but the computer
time was found to be excessive, one to two orders of magnitude greater

than that required with the impulse response method.

CONCLUSIONS

This paper has described reentry trajectory optimization using the
impulse response method. The method requires that the computer perform
a large number of fast-time repetitive computations in solving the state
equations and in determining impulse response functions. These repeti-
tive computations are readily perfbrmed by both hybrid and digital
computers.

The mechanization of the impulse response method on both hybrid and

digital computers was found to be straightforward. Near optimum reentry
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trajectories were obtained in approximately 2 minutes and full optimum
reentry trajectories in approximstely 5 minutes of computer time. The
solutions obtained from either mechanization agreed to within approximately
1 percent.

The impulse response method has been compared with the adjoint steepest
descent method. The solutions obtained by either method were essentially
identical. The adjoint method requires less computef time; however, the
impulse response method does not require familiarization with or use of
an auxiliary set of linear adjoint equations. Furthermore, for problem
formulations that are not amenable to linearization, the impulse response

method may be the only practical method.
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APPENDIX A

DERIVATTON OF EQUATTON FOR Ky

Along a normal trajectory, small changes, 8y, in the terminal state

due to small changes, bu(t), in control can be approximated by:

tp
5y = -2-1-111—25 [ su(t)av(t)dt (A1)

where XAu is the height of each control impulse and At is the time

interval of each control impulse. Substituting Ko &0(t) + Ky Ay(t)

from equation (1) for du(t), we have:

tr
1
SW—EAuAtf

[Kp 2p(t)a¥(t) + Ky av®(t)lat (a2)
to ~

Solving for KW and letting -5¢ = Vg - ¥ (the previous terminal error),
we obtain:

te
] o(e)av(t)at

to 1|f(3_ - \lf
Ky =Ko o + 2 Lu Ot T (A3)
: J“ A2 (t)dt J‘ AV (t)at
te to
— —— J N st

™

Steepest descent

Terminal error
optimization term

correction term
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APPENDIX B
REENTRY TRAJECTORY EQUATIONS
The following simplified equations derived for flight within the
atmosphere were used for the example problem herein. The primary assump-
tions include a spherical nonrotating earth, small flight-path angles, and
a constant gravity term. The derivation of these equations and their

applicability have been considered in a number of reports.tt

.’ V2 CDA‘ 1 2L fl
R EELCR

. CpA\ 1 -
V= -<—fn— 5o
br
y=[7vat
to
b
o = 1.7x107° [~ [Jp v® at
to
where
c
—I—?IAE- drag loading, 2.0 ft2/slug
g local gravitational acceleration, 32.2 ft/sec®
h altitude, £t
%— . control value of lift-drag ratio
T radius from earth center, 21.1x10°% ft
v horizontal velocity, fps
- (o]0]
o atmosphere density, 0.00237 e h/?s,s slug/ft2
® total heat input, Btu/ft2

v final range, ft
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- APPENDIX C

DESCRIPTION OF COMPUTER SYSTEMS

In order to make meaningful s comparison of the results obtained
from the analog and digital simulations, it is necessary to very briefly
describe the computer sysﬁems used.

The analog computer was an EAT 231R-V equipped with electronic
mode control of the amplifiers. The logic element of the hybrid simu-
lation was an EAI DOS 350. The DOS 350 has a patchboard which permits
one to combine logical elements, such as AND gates, flip-flops, shift
registers, countérs, ete., into complicated logic systems. It also has
several delay line memories of various lengths as well as A-D and D-A
converters for communicating between the DOS 350 and the analog computers.

The digital computer was an FAT 8400 mode O computer which had a
2 psec memory access time, an average floating point add time of approx-
imately 13 psec, an average floating point multiply time of approximately

15 psec, and a floating point word size of 32 bits.
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TABLE I.- ALTTTUDE TIME HTSTORIES

Altitude, 10° £t

23

TABLE II.- CONTROL TIME HISTORIES

Control L/D

Time, Iteration Time, Iteration
sec 1 2 10 20 sec 1 2 10 20
0 250 250 250 250 - 0 0.250 0.212 O
60 207 206 197 197 60 250 .192 O
120 . 180 184 160 160 120 .250 .291 . 500 . 500
180 182 18L 212 209 180 .250 .290 . 500 . 500
240 158 165 196 195 240 .250 . 294 Ly . 500
300 125 132 1k2 k2 300 .250 294 . 500 . 500
360 127 127 360 .250 .3kt 75
400 104 110 400 . 254 277
TABLE IIT.- TERMINAL CONDITIONS
Tteration
1 2 5 10 20
Time, sec 34k 358 389 Lot hil
Altitude,
10° £t 99.3 99.9 99.8 99.5 98.8
Range, miles 997.7 1001.5 1003.7 1002.8 999.9
Heat,
Btu/ft® 23491 23197 21517 21025 20966
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Figure 1.-
Figure 2.~
Figure 3.-
Figure k.-
Figure 5.-
Figure 6.-
Figure 7.~
Figure 8.-
Figure 9.~

descent

FIGURE CAPTIONS

Computation of the impulse response.

Computation of the optimal control.

Hybrid computer flow diagram.

Hybrid computer program logic.

Hybrid repetitive computations.

Hybrid computation of the optimal control.

Digital computer flow chart..

Digital computation of the optimal.control.

Comparison of the impulse response and adjoint steepest

methods.

2k
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