
An experimental automatic
informational station AIST-0
by A. P. ERSHOV, G. I. KOZHUKHIN,
G. P. MAKAROV, M. I. NECHERPUtfNKO
and I. V. POTTOSIN

Computing Center of the Siberian Division
of the USSR Academy of Sciences
Novosibirsk, USSR

INTRODUCTION
AIST-O is an experimental middle-scale time-sharing
system. The name Automatic Informational Station
(AIST) has been chosen to stress, by analogy, some
new possibilities presented by time-sharing systems
which give to a computation service some features
of public informational and computational utility.

The development of the AIST-O station is being
done in the Computing Center as a part of a more
general activity known under the title "AIST project."
The goal of this five-year program is (I) to provide the
Computing Center by 1970 with adequate and modern
centralized computing facilities which share their
resources among many concurrently working users,
(2) to find out what recommendations standard auto-*
matic informational stations and their software should
have, and then transmit these recommendations to
hardware manufactures and software designers. The
"AIST project" activity has been stimulated to a
great extent by the success of the time sharing de­
velopment in the USA. One of the authors was
acquainted with this development during his visit to
this country in 1965. Some specific works in the field,
namely: MAC Project CTSS/ Stanford Time-Sharing
Project,2 and RAND's JOSS system,3 also influenced
our approach.

The main task which has to be solved by the
AIST-O construction is to obtain an initial experience
in time-sharing system construction and the corre­
sponding software development. At the same time it
has to be a working system which will be in everyday
use. Programming systems for AIST-O should cover
to some extent all of the most interesting fields of
applications of time-sharing. A special concern is to
provide for the possibility of collecting various sta­
tistical characteristics of the system's functioning.

Hardware
From the engineering point of view it is not the

goal to provide an optimal structure for the station.
Our approach was defined, first of all, by the available
equipment. Standard computers, Minsk-22, as a moni­
tor, and two M-20 type computers, as working pro­
cessors, are used. Recently a project on a multi­
processor computer system for batch processing has
been elaborated in the Computing Center.4 Many
results of this project have been used in the AIST-O
station for the control of the exchange with the

Control words tranudsaion

Figure 1 - T h e AIST-O station structure

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1465482.1465577&domain=pdf&date_stamp=1967-04-18

5 7 8 Spring Joint Computer Conf., 1967

secondary memory, for internal channel switching
and external channel switching. Figure I shows the
AIST-O structure.

The commutator connects through information
channels the active units of the station (processors,
exchange bank, secondary memory selector) with
the passive ones (memory banks, and external channel
selector). Working frequency of the commutator is
I megacycle, the speed of channel switching is about
100 /usee. The information channels have 45 infor­
mation bits, 14 address bits and some number of
bits for a reserve and parity check. The information
channels between the working processors and the
monitor, transfer the content of the control registers
when the processors are interrupted or started. The
information channels between the monitor and other
units (commutator, secondary memory selector,
exchange bank) are used to load control words into
them and to start them. An active unit having been
started, operates independently and after finishing
its job sends a signal of its readiness to receive the
next job. The external channel selector is treated in
the same manner as the memory banks are from the
point of view of information transmission. The "write
into the buffer" signal is also a signal to transmit the
information to the corresponding channel. When the
buffer has been filled an interruption of the monitor
occurs, but the actual transfer of the information from
the buffer is performed under the monitor control.

The external channel selector (ECS) consists of
a buffer memory, multiplexing block, and a control.
The buffer memory is distributed among the following
external channels:

10 telegraph channels with frequency of 60 bauds,
3 telephone channels with frequency of 600

bauds,
1 card reader channel with speed of 120 45-bit

words per sec ,
2 card punch or line printer channels with speed

of 60 words per sec. for printing and of 12
words per sec. for punching.

Every channel is connected with the interruption
system and ends with an intermediate register.

The buffer memory is distributed among the chan­
nels in the following way.

Telegraph - 8 words
Telephone - 32 words
Card input - 64 words
Print and card output - 64 words

The telegraph and telephone channels are connected
through a communication junction with a standard
communication network.

The ECS control consists of the buffer control,
channel number decoder, serial-to-parallel and vice

versa transformers, the decoder which transforms
control characters (carriage return, end of text) into
interruption signals and buffer counters. The ECS
interrupts the monitor when transfer from a buffer
zone has been finished and when half a buffer has
been filled (the channel buffer works as a swing:
while one half of a buffer is receiving information
from the channel, the other half transfers its contents
to the internal channel, then both halves change their
roles).

The ECS internal channel connecting the ECS and
the commutator operates as a multiplexor under the
guidance of the multiplexing block. The block con­
tains an input register with one bit per channel. The
external channel bits receive a "one" during every
loading of the intermediate register of the channel.
The internal channel bit receives a warning "one"
6 /usee, before an information transfer. The input
register bits are tested in a revert-and cyclic order,
i.e., the internal channel bit is tested after every
testing of the next external channel bit in turn. The
speed of a test is 1 /xsec. per channel, the service time
is 8 /usee, per 1-word portion of information from an
external channel and 8 x p /usee, per p-words portion
from the internal channel. Since p =s 32 the service
time for the high priority internal channel is no more
than 300 /usee, which is much less than the speed of
every external channel.

The memory banks are standard M-20 type memory
modules (4K, 6 /usee, access time). Every commutator
channel has up to 4 banks, so the general information
capacity of the station is expendable up to 80 K words.

The exchange bank is introduced as a fast buffer
and as a means for an exchange between memory
banks. The exchange bank has its own control which
permits it to operate independently on the monitor
after receiving from it an exchange instruction.

The secondary memory selector (SMS) permits a
concurrent exchange of up to 6 memory units (tape,
drum) with any memory bank or ECS buffer. The SMS
has a high-speed buffer (0.8 /usee, access time), 4
drum and 4 tape channels, a control and a multi­
plexing block for internal channel (between the SMS
and the commutator). Every external (drum or tape)
channel has 3 52-bit locations in the buffer. The first
location is a buffer proper, the second one contains
a control word, and the third stores a current location
address in the memory bank involved in the exchange.

The multiplexing block contains an 8-bit register
for a cyclic input of the external channels. One input
of a channel takes 1 /usee. This time is enough to
transfer the buffer content either into a secondary
memory unit or the input register of a memory bank.
Thus, the input of all the channels takes 8 /usee. This

An Experimental Automatic Informational Station AIST-O 579

time is small enough in comparison with the transfer
speed through any of the external channels.

The working processors are central processors of
the M-20 type computers with some modifications.

• an additional register for connection with the
monitor,

• possibility of internal interruptions (traps and
control transfer to the monitor),

• possibility of being started by the monitor.
The monitor is a Minsk-22 type computer with the

following modifications.
• additional registers for communication with

memory banks and other station units,
• an interruption "system" instructions (control

word transfer, starting active units, communi­
cation with interruption system registers, transfer
of 45-bit words into memory banks, connection
with the clock).

The clock has a timer and several interval timers,
i.e., reverse time-counters which, decreasing by one
with every timer signal, send an interruption signal
when reaching zero.

Software

General organization. All the program support is
organized by a hierarchical principle. Elements of
the hierarchical structure are called "system pro­
grams." For every i-th level system program there are
several (i+I)-th level system programs available to
it. This means that calls for some (i + I)-th level pro­
grams make sense and can be executed by i-th level
program instructions. Every system program interacts
with an external channel. The system may be in one
of the three modes with respect to a text coming from
the channel —a text execution mode, text processing
mode, and text transmission mode. Furthermore,
being in one of the first two modes, a program can
understand or not understand a text. A program in a
transmission mode simply passes a text without any
analysis to an (i + I)-th level program which is con­
nected with the corresponding external channel. If
a program in a processing mode understands a text,
then it can assimilate or analyze the coming text.
Some special symbols in the text can switch the pro­
gram to an execution mode. If a text contains an error
(i.e., it becomes non-understandable), then the pro­
gram sends a message to the external channel and
turns into an execution mode.

A program in an execution mode tries to under­
stand a text as an instruction for immediate execution.
If the text is clear then the corresponding instruction
is executed. If the text is not understood, then an
(i — I)-th level program connected with the given one
is switched to the execution mode and tries to execute

the text. If the text is not understood even by a first-
level program (dispatcher), then a message is sent to
the external channel.

If an i-th level program A in an execution mode
executes a call for an (i + I)-th level program B, then
the program turns into the mode of a transmission of
the text to the program B which turns into an ex­
ecution mode.

The total swapping time for one memory bank is
400 msec, in AIST-O. So a special care is taken to
maximally reduce the net swapping time. Following
are the main aids to it:

• switching working processors among various
memory banks,

• overlapping a swapping in one memory bank with
a working usage of another bank,

• distribution of the stream of jobs among two pro­
cessors for separation of long jobs from short
ones,

• floating time quantum and scheduling based on
an analysis of the job stream statistics (see below).

Some psychological measures will be taken to com­
pensate a possible lack of reactivity. First, the station
will be polite in the sense that if the time to execute
a job is much more than the average waiting time, then
the station will immediately send to the channel a
calming request to wait a little. Second, some system
programs will make the station slightly talkative.
More wordy comments will reduce the frequency of
inquiries and, moveover, will cause some thankful
feeling of comfort because owing to detailed com­
ments of the station a user himself can answer in a
more laconic and convenient form.

The dispatcher is composed of first level system
programs. The dispatcher programs are executed by
the monitor.

From the organizational point of view the dis­
patcher is considered as a collection of subroutines
serving as the primary reaction for interruptions plus
several subroutines controlling other station units.
The primary reaction is the minimal action necessary
to save control registers and to identify a system
program or a service subroutine responsible for the
main actions which have to be initiated by the in­
terruption.

Here is a list of the main service subroutines:
• The interpreter of system instructions and calls

for the dispatcher. System instructions are those
which are sent to the dispatcher from a console
when the dispatcher is in an execution mode with
respect to the corresponding channel. Calls for
the dispatcher are those calls for its subroutines
which come from system or users' programs.

5 8 0 Spring Joint Computer Conf., 1967

• The physical exchange organizer. This subroutine
receives data coming from other dispatcher
subroutines and, using these data, forms control
words, sends them to the commutator and the
active station units and then starts them.

• The secretary. This subroutine keeps all operative
records for users on line. Its main functions are
identification of users, establishing correspon­
dence between array and program names and
their physical addresses, calculating the time and
other operative accounting information.

• The scheduler. This program estimates quantita­
tive parameters of inquiries of service, organizes
a line of jobs and appoints the working processors
for the service. A special feature of the dispatcher
is a strict separation of the process of defining
or specifying inquiry parameters from the process
of line formation. This makes it possible to
experiment with various schedules (see below).

• The editor. On the dispatcher level there will be
only minimal editing of the text (character re-
coding, output line formation, printing of mes­
sages sent to the consoles by the dispatcher,
etc.).

• The failure control. This subroutine periodically
investigates station units and responds to inter­
ruptions caused by the information transmission
check.

The system programs. The hierarchic structure of
the program support makes it expandable so the list
given below is incomplete and lists only those pro­
grams which are under construction now.

• The bookkeeper. This program keeps accounts
of all the computational and informational service
given to the users. Every user is considered by
the station as himself as well as a member of a
certain group, which is treated by the station as
one whole from some point of view. For example,
the summation of the computer time is done for
every user individually but the time quota is
given to all the group as a whole.

The information kept by the bookkeeper in­
cludes means of identification of users and their
groups and all the accumulated information. The
bookkeeper works as a part of the dispatcher
and as a separate system program making some
accounting operations directly for a user.

• The file maintenance program. It is difficult to
establish a comfortable file system without disk-
file units. The users are supposed, however, to
have a tape-oriented file system which will
permit them to have individual files with pos­
sibilities to store, accumulate and change alpha-
numerical and binary information organized in

lines, words, and pages. Files will usually be
identified by their names. Physical addressing
will be also available but in this case a user
must keep in mind some constraints imposed by
the station.

There will be intermediate buffering files on
the drum to reduce the interaction time.

• The batch processor. This program will be a
supervisor for batched background programs. It
is appropriate to mention that there exists no
"user program" notion for the dispatcher. All
the jobs, both background and foreground, are
executed under the supervision of some system
program.

• The console symbolic debugging system. In
addition to standard characteristics of such sys­
tems we would like to mention one specific
feature.

It is well known that experienced programmers
or console operators can greatly help a program
author without any knowledge of the essence of
a problem to be solved. This is because ex­
perienced programmers have a universal strategy
of searching for bugs in programs. Such a pro­
grammer, following this strategy and combining
it with a specific information taken from the
author's answers given to the questions put by
the programmer, leads the author in a way which
permits him to find out the error.

The problem is to try to discover this universal
strategy and to implement it in a system pro­
gram which could be called a consultant. The
consultant will come to help by a user's request
and, working in a conversational mode, will
lead the user to success through a sequence of
debugging operations.

• The incremental ALGOL compiler. The follow­
ing goals stand for the incremental compiler:
to make the compilation time imperceptible to
a user, to inform him immediately about any
syntactical and semantic errors that appear, to
formulate and put questions to a user in such a
form which permits the user to correct an error
or to supply the compiler with a missing informa­
tion in a more laconic and compact form than
required by the ALGOL syntax.

It is supposed that the syntax analysis, state­
ment decomposition and a partial semantic analy­
sis will be done during the conversation. The
linking and final assembling in an absolute or
relocatable form will be performed when the
program has been composed and put into the
station. The object program can be immediately
executed or transferred to an individual file.

An Experimental Automatic Informational Station AIST.O 58 i

The incremental compiler itself will be a
separate and shareable program interruptable
at any moment.

• The analytic manipulation system. This system
program is being developed by request of the
mathematical departments at the Computing
Center. Executive instructions in the system are
requirements for various analytical manipula­
tions (differentiation, integration with the help
of integral tables, operations over polynomials,
substitutions, simplifications, parenthesis ex­
pansion and so on). It will be a universal pro­
gram working in a conversational mode when
the general control is in the user's hands. The
system, however, will be able to accumulate the
analytical instructions for their later automatic
execution in an interpretative mode of operation.

Scheduling and time slicing. A multiprocessor
structure of the AIST-O station offers many possi­
bilities for experimentation in selecting scheduling
algorithms. A general approach to the scheduling
algorithm analysis, simulation and implementation
is briefly described below.

Let us describe an environment in which the
scheduler S operates (for simplicity only one working
processor P is considered). In the following, a "job"
is understood to be a part of a real task which requires
continuous work of the processor. This means that
if a job J has been interrupted (because of either ex­
change operation or any other reason) then the job
J is considered to be finished and the necessity to
continue the job is then considered as a new job J1.

The scheduler S contains a list Q of jobs J ; , . . . ,Jn

standing in a line. Every job Jt has a set TTX of param­
eters which are necessary for the schedule composi­
tion. The processor P at the moment is running with
a job J with parameters 77-. The job J has begun to run
at the time t and has a time quantum A. Following
are the external events for the scheduler S:

(a) Adding a new job J* to Q. A possible scheduler
reaction is to interrupt job J, transform it into a job
J1 with parameters TT1. The job J* is sent to the pro­
cessor P with a time quantum A* = A* (n*, Q). The
job J ; is added to Q.

(b) Rejection of a job from Q. A possible scheduler
reaction may be an increase of A for the executed
job J.

(c) Finishing the job J (stop or internal interruption).
An obligatory scheduler reaction is sending a new job
J from Q and an appointment of a time quantum
A = A(7r,Q)toit.

(d) Exhaustion of the time quantum A. An ob­
ligatory scheduler reaction is either an increase of
A as in (b) or interrupt of J as in (a).

Let us consider in more detail a possible list of
parameters of a job J. It has to be noted that some
parameters characterize J not only as such but also
as a part of some general task T. We consider the
following characteristics to be useful.

• time tl of entering the task T into the station,
• net processor time t2 spent to run the task T,
• number n of previous interrupts of the task T,
• supposed time t3 of completion of the task T,
• value V of the task T,
• time
• time t4 of entering job J in the list Q,
• supposed time t5 of completion of the job J,
• value C of the job J,
• time t6 for interruption and swapping of the

job J.
A few words should be said of the sources and con­

tents of these parameters. Some of the parameters
(tl, t2, n, t4, t6) are directly defined by the dispatcher
itself. The sources of the other parameters are system
programs responsible for running the job J and the
task Q. The sense of the parameters t3 and t5 is
obvious and the only problem is to reliably predict
them. The sense and quantification of V and C is
much less clear a priori. Any inherent features of
the tasks which may be important for better schedul­
ing (for example, an absolute priority, the program
length, etc.) can be related to V and C. Actually V
and C can be a collection of scalar quantities.

The great degree of freedom in scheduling algo­
rithms makes it difficult to select criteria for compari­
son or absolute evaluation of the algorithms. Com­
parison becomes more concrete if there exists a
functional over a set of schedules. A degree of mini­
mization of the functional value permits the estima­
tion of the quality of the scheduler. Some possible
alternatives for such functions are considered below.

(A) Cost functions. Let us suppose that at a moment
in the list Q there appear at once n jobs Jj,...Jn.
The solution time tt and the cost Q of storing J4 in
the station during a time unit are known for every
job. Then the total cost <£ of the solution of all the
jobs is equal to

n

0 = 2 QT,

where Tj is the time of finishing the job J,.
It is known (for example5 that <E> is minimized by

such a schedule when all jobs are solved in turn and
if they are ordered in Q by the values of the coefficient
Xj where \j = tj/'Q.

This algorithm is very attractive because of its
simplicity but it has some serious deficiencies. The
most obvious ones are difficulties in prediction of

582 Spring Joint Computer Conf., 1967

times tj and in an objective choice of the job values
Q. Besides this, as it has been shown by one of the
authors, appearance of a new job 3n+1 in the list Q dur­
ing previous job running can destroy the optimum
*"£» d f k £» ̂ l-** / +V*£k n r o i M A i i c i^£*r»ici/-\r\c o H\r\iit t ritf* m h c iCctWuCli u y Liiw p v v i u u o u w i o i i / n j d u v u t n i v j» /̂«-/o

J,,. . . , j n . It means that to save the t/C algorithm it
is necessary to be able to predict the entrance of the
new jobs. Sometimes it is really possible. For example,
it is possible to make some predictions about the jobs
which appear after finishing the exchange operations
— such jobs are simply continuations of the old inter­
rupted tasks.

(B) Preference principles. Sometimes a scheduler
tactic is formulated as a principle which sounds like
something similar to "shortest programs should be
served first" or "the longer a job is in the station, the
higher is its priority" and so on. A typical example of
such an algorithm is a well-known "Corbato algo­
rithm."6 If A-type algorithms may be called "eco­
nomical ones" then B-type algorithms may be called
"political ones." These algorithms, without raising
the problem of functional minimization, guarantee a
minimum station sociability with respect to users.

(C) Combination of A- and B-type algorithms.
The great number of degrees of freedom and the con­
venient computational form of the t/C algorithm per­
mits the organization, within the frame of a cost
function, pseudo minimization, of various scheduling
algorithms. A variant of the algorithm will be formed
by an appropriate choice of the values Q and an ap­
pointment of the times tj. History accumulation can
be realized by an appropriate change of Q as a func­
tion of the time. This approach has convenient,
practical considerations because by properly choosing
t and C it is possible to change the algorithm's tactics
witu respect to a class of jobs served by the station,
without changing the algorithm itself or its tactics
with respect to other jobs. The possibility of adapta­
tion of the t/C algorithm to various scheduling tactics
has also been mentioned.5

(D) Statistical scheduling algorithms. Let us sup­
pose that the station deals with a stationary job stream
with a known net service time distribution law.
Then, if for a given time t there exists a positive
n r r k h n f l i l i t v tr> h a v e ir»hc w i t h tfw» n p t c<=»r\/ir*f» t i m f i t
f-'M. v> *-r*A.i-r A4* i.j ».vy H i * » W J V U U *? l i n b l l V A1WI hJ^rl » AWW U111V I.,

it is possible to develop a mathematical expectation
F(t) of the actual service time for these jobs. Natural­
ly, F(t) ss for every t. Considering F(t) and t in some
interval of t it is possible to introduce various func-
tionals characterizing the "distance" between t and
F(t). These functional should be of an integral type,
and they will differ from each other, for example,
in time scale (logarithmic or linear scale) and in the
weight function <I> (t) which multiplies the distance
between t and F(t), for example, F(t)—t. A functional
having been fixed, it is possible to compare and
evaluate various sciieuunng algorithms. One of the
possible formulations of the problem is: having an a
priori given function F(t) one must try to find a
scheduling algorithm satisfying this function.

The authors believe that this approach may be
convenient for a scheduler evaluation based on real
statistics of jobs coming to the station.

REFERENCES

1 The compatible time-sharing system: A programmer's guide
MIT Cambridge 1965

2 Stanford time-sharing project STSP
Memos 1-33 Stanford University Stanford 1963 1965

3 J C SHAW
JOSS: A designer's view of an experimental on-line comput­
ing system
FJCC Proceedings 1964

4 Some problems of multiprocessing in computing systems
A Collection Nauka Novosibirsk in Russian 1965

5 M GREENBERGER
Priority problem
Project MAC report Cambridge 1966

6 I C PYLE
A n outline of the MA C time-sharing system
STSP Memo 27 Stanford 1965

