
Humanizing industrial control software 

by J. B. NEBLETT and D. J. BREVIK 
Honeywell Computer Control Division 
Framingham, Massachusetts 

INTRODUCTION 
Process control by computer is common enough 
today to justify postulating an industrywide basic 
software system to aid in the* implementation of 
control systems. There have been many successful 
industrial control systems; however, the main em­
phasis of this paper is directed toward the problems 
that prevented some other systems from attaining 
really successful operation. The reasons presented 
are mainly concerned with the software of pro­
gramming aspects and not with the suitability of 
hardware or the basic financial justification for 
the computerized system. 

Let's assume that the basic application justifies 
the installation of a computerized set of hardware, 
that the hardware itself is matched to the process 
problem in general and that the basic hardware is 
operational and can be maintained operational. 
What then is the underlying problem in getting a 
system of hardware-software and application knowl­
edge meshed together into an operating process 
control computer system? 

The "meshing" process is, of course, the pro­
gramming of the system, and it has been common 
to regard this task as a mechanical one. Functional 
specs are laid down, then implemented. The re­
sulting program(s) is checked out and put into op­
eration. 

The whole system now goes into service and 
usually, although it meets specifications, falls short 
of the user's expectations as an automatic controller 
(or operator) of his plant. Furthermore, he usually 
finds that the system is surprisingly difficult and 
expensive to change to meet the requirements 
spelled out by using it for a while. 

This whole experience is analogous to taking a 
new graduate in engineering, assigning him a major 
design responsibility and finding his performance 
falls short of expectations. The point, of course, is 
that the new graduate needs a period of TRAINING 

between leaving college and the assumption of heavy 
responsibility. 

The authors believe the approach to programming 
a control computer application should recognize this 
TRAINING phase as being just as desirable for the 
automatic operator as for the human operator. 

In the following discussion the reasons for this 
view are explained. 

The supplier's software 

The programming language in the past has been 
very primitive. The basic software approach was: 

1. To train the user to speak the language of the 
machine whether it be basic octal or symbolic 
assembly language. 

2. To cause the user to learn the idiosyncrasies 
of the particular piece of equipment that he was 
attempting to apply. 

3. To be sure the user had an intimate knowledge 
of the process to be controlled. 

Systems in the past have reflected a notorious 
lack of a systematic approach to the programming 
problem. Software systems in the past reflected 
a definite lack of consideration for the inevitable 
reprogramming requirement common in process 
control applications. The poor documentation 
associated with software systems intensified the prob­
lem of the programming and reprogramming as well. 

We believe that these problems can be overcome 
if both the supplier and the user regard the hard­
ware-software system as resembling the charac­
teristics of the human operator to be trained to do 
the job. This constitutes a large measure of common 
ground in that both the supplier and the user are 
familiar with the training of human beings and the 
terminology and techniques used in such training. 
The supplier wants to amortize the cost of develop­
ment of his software over a maximum number of 
systems while the user wants to apply software 

783 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1465482.1465610&domain=pdf&date_stamp=1967-04-18


784 Spring Joint Computer Conf., 1967 

without major modification to that basic software. 
Few suppliers have the experience of their cus­
tomers in the customers' applications. They cannot 
foresee every use, every possibility, without risking 
either extensive specialization or overgeneralization 
of software. Few users agree entirely with the sup­
pliers' conclusions that are implicit in the software 
design. A common meeting ground appears to be in 
regarding the computer as a human operator. 

Software designers of the past have hinted about 
"humanizing" software. Rarely, if ever, have they 
admitted a whole-hearted swing toward identifying 
human operator characteristics with the computer 
and its software. Our contention is that software 
should be humanized to the fullest extent possible 
and that this tactic would be the most common 
meeting ground of both the user and the supplier. 
We believe that a remarkable degree of humanization 
is desirable and possible. 

Many times in the past, problem-oriented languages 
have been designed directly toward one specific 
type of user, e.g., the civil engineer, the simulation 
engineer, etc. The field of process control is so 
diversified that a supplier, without risking over-
specialization, cannot afford to concentrate on only 
one type of process control or to generate problem-
oriented languages dedicated and restricted to that 
type. There must be a common meeting ground where 
the supplier can make the equipment usable for the 
great majority and the user can economically make 
that equipment fulfill his special-purpose require­
ments. 

This approach must include a basis for generating 
the problem-oriented language in much the same way 
that a supervisor would train his operator to think, 
speak, and respond in terms of the problem at hand. 

Composite software for the composite user 

Who is the User? 

The supplier would design the software as a com­
posite of the best operator features known. He 
would also design it to be used by the best com­
posite user known. This does not assume that the 
ultimate user is an absolute genius in all aspects of 
solving the problem but instead assumes that the 
user is actually many people—the process engineer, 
the production manager, the plant dispatcher, and 
perhaps even the accountant. To put it simply, the 
software is usable by specialists typical in the pro­
cess control field. The user takes an engineering 
approach to the problem at hand and recognizes the 
potential of improvement within the process. While 
he is not necessarily an expert in computers and 
instrumentation, he regards the computer and pro­

gramming as a means to improve his operating process 
economically. 

The user has a general understanding of pro­
gramming or, at least, is capable of absorbing the 
principles of programming. He has had experience 
in personnel training and evaluation. He works 
with people and is capable of working with new 
people introduced to his environment. He is not 
averse to working with the computer if necessary 
and has no mental blocks against learning how to 
deal with the computer. He rarely has the time to 
learn all the intimate idiosyncrasies of a particular 
computer much as he rarely has the opportunity 
to learn all the intimate idiosyncrasies of his process. 
He depends upon others within his sphere to provide 
him with straightforward answers. He does not want 
to be an expert in their field. He is likely to regard 
the computer as an interloper into his particular do­
main unless the computer is easy to converse with, 
produces meaningful results, and does not usurp 
his job. 

What is the user's problem? 
The user's problem is to cause a digital computer 

to sample, interpret, and act upon information ob­
tained from the process or from operating or man­
agement personnel concerned with the process. Pre­
sumably the application of the computer results in 
an improved economic picture. 

His problem should not be to master a new dis­
cipline. He should not be required to learn the 
esoteric information concerned with programming, 
computer maintenance, and the peculiarities of 
the particular computer. We suspect he's in enough 
trouble keeping up with the changing demands of 
his own discipline. 

Instinctive approaches to solutions of problems 

An instinctive approach to the solution of the user's 
problems is based on making possible his communi­
cation with the computer as if it were a human 
person or at least something with many recognizable 
human characteristics. 

While it is clearly not possible in the present state 
of technology to program the digital computer to act 
like a human being who is completely conversant 
in the specialty of the user, it is possible to pro­
gram it as an "ideal" operator that can: 

1. Understand currently known engineering facts 
of the process, 

2. Understand how to apply good operating 
practices, 

3. Make sound engineering decisions, and 
4. Make management decisions regarding the 

economical approach to production. 



Humanizing Industrial Control Software 785 

Traits are what you look for in hiring an operator. 
These are the characteristics of the individual that 
indicate how well he can learn new abilities. On 
the other hand, most abilities are bonuses when you 
are interviewing an operator. An operator or a poten­
tial operator who has the desirable traits and, in 
addition, has some desirable abilities is a good 
prospective employee. Similarly an operator with 
the desirable traits but without the abilities is still 
a desirable nrosnective employee. Conversely a 
candidate with abilities but without the correct 
traits is a poor prospective employee. The worst 
case is an operator who has bad traits and bad abilities 
(that is, preconceived notions). 

Similarly, the software system accompanying an 
industrial control computer must be judged on its 
traits rather than the abilities taught to it by the 
supplier. The desirable traits are not always self-
evident. Among them should be included the ease of 
trainability so that the ideal operator can learn 
the abilities required for his job. Other traits, such as 
honesty, integrity, reliability and so forth, are essential 
to the operator but are frequently overlooked or taken 
for granted in industrial control software. 

With regard to these traits, consider the points of 
evaluation of a human operator during the pre-employ­
ment interview, training, day-by-day operation, 
and finally, the qualifications for advancement. 
Important qualifications of an applicant for an 
operating position would be: 

1. Adaptability to the working environment. 
2. Basic knowledge of the particular process. 
3. Capacity for learning new procedures. 
4. Logical rather than emotional judgement in 

response to process control situations 
The candidate must be reliable and consistent and 

must exercise discretion when called for. He must 
have a high degree of retention, and must perform 
his work accurately. It goes without saying that he 
must possess a sense of time, and along with this he 
must have a high sense of urgency in categorizing 
the relative importance of his functions. In other 
words, he must recognize that he can't do all things 
simultaneously but must schedule his activities when 
many things have to be done almost simultaneously. 

While the operator is being trained, he must have 
a certain rapport with the instructor so that he can 
indicate lack of understanding when necessary. He 
should be honest and indicate that he is reaching 
the limit of his capabilities and is approaching satu­
ration. Along with this, he should be easily retrain-
able so that when the instructor tells him to forget 
a procedure which may be erroneous, he will forget 
and will be able to learn an alternate procedure. He 

must be capable of learning at a reasonable rate of 
instruction so that the instructor does not get frus­
trated and impatient with a slow pupil. 

There may be many teachers, many instructors 
training this operator, so he must be able to recognize 
gross conflicts of information and facts fed to him. 
Furthermore, there may be a hierarchy of teachers. 
After all, we don't want him listening to the janitor 
in preference to the production supervisor. He must 
exercise discretion about the information he is given; 
certain facts may be proprietary, not for everybody 
to know. Therefore, he must have a sense of secrecy. 
In short, he must have a keen sense of the meaning 

of an organization chart of authority. 
If an operator becomes ill, he should notify his 

superior and perhaps provide some degree of self-
diagnosis. This, of course, allows the supervisor to 
take alternative action, perhaps even replacing him 
temporarily. An absolutely ideal operator would be 
able to notify his co-workers that he was going 
berserk. 

If an unnatural operating situation has arisen, one 
that was unforeseen, he should be able to tell his 
supervisor what actions he had taken up to and 
during the emergency situation. This enables an 
analysis or a post-mortem of the event in order to 
improve future operating procedures. 

He must be able to accept responsibility as it is 
handed to him. While it is not reasonable to expect 
him to assume complete responsibility at the very 
beginning, it should be possible to gradually increase 
his responsibility as his skills evolve. As a corollary, 
if he has not been able to absorb a new responsibility — 
perhaps because of poor training—he should be 
perfectly willing arid able to surrender that responsi­
bility and to be retrained in that function. 

Training and developing the operator 
Given an operator with these traits, the user must 

train and develop his abilities methodically. There is 
a step-by-step procedure by which the instructor sets 
the pace according to the reactions of the student 
while learning, with a continual, informal evaluation 
of his performance on the job at each step of the way. 

How might this be accomplished? 
First, the new operator might be shown the control 

room and the basic nomenclature and jargon used in 
the plant explained to him. Certain basic procedures 
are described — such as how to read the instrument 
panels, how to contact the laboratory for analysis 
results pertaining to his job, whom to contact for 
production goals. At each of these steps, he is tested 
to determine whether he has learned properly — which 
may be a reflection upon either the operator or the 
teacher. 



786 Spring Joint Computer Conf., 1967 

After being told how to read the instruments, he 
is tested and asked to read a few instruments while 
the instructor- notes his performance. Likewise, as 
each step of data acquisition is explained to him, he 
is tested informally to determine whether he is 
truly following the correct procedure. The first step 
of this teaching process is to make him aware of his 
surroundings, the sources of basic information avail­
able to him and their uses. Perhaps he has not yet 
been told what to do with this information but only 
how to get it. 

After this, he may be asked to record periodically 
or log the information he receives. It may be nec­
essary at this point to explain to him the meaning of 
the word "log." This is possibly the first piece of 
responsibility he must assume. After he has done this 
for a period of time, his performance is evaluated: 
Is he performing the procedure that was explained 
to him? Is he extemporizing? Is he doing precisely 
what was expected of him? If not, why? Eventually 
he masters that skill, perhaps after a short period of 
retraining if some deficiencies have been found. 

Having mastered one skill, the operator starts 
to learn the next one and his responsibilities will 
be increased. The next step may be one of accessing 
the information he has been taught to get, and com­
paring it with some rudimentary limits or constraints 
of operation and reporting violations to his immedi­
ate supervisor. Note that he is exercising nothing more 
than mechanical judgment rather than control or 
engineering judgment. 

The skill he was taught in warning his supervisor 
when constraints were violated depended upon his 
previous mastery of an old skill, that of accessing 
the data needed. Throughout the learning process, 
new skills are usually dependent upon mastery of 
old skills. At every point, when a new skill —or 
procedure —is being taught to this operator, he is 
tested to make sure he is absorbing the instructions 
properly and is performing according to the stand­
ards set for him. 

At any time, new data may be introduced to the 
operator such as a newly installed recorder, but the 
skill associated with the data remains unchanged. 
At any time, the operator should be capable of under­
standing that new readings or constraints or data 
are being introduced to replace those he once knew. 
As a general rule, the procedures he uses, once learned 
are quite inflexible. This does not preclude the possi­
bility that an operator must be retrained to new pro­
cedures. 

As the ideal operator progresses, and learns the 
basic skills of his trade, it is desirable to go beyond 
the mere mechanical manipulation of the process into 

a more detailed explanation of the phenomena taking 
place. We want him to become a practical engineer. 
This training would be accomplished by a senior 
operator who has had years of experience in knowing 
the idiosyncrasies of the process, and who can 
give a good layman's explanation to the operator. 
This senior operator knows the control character­
istics and can anticipate the reaction to any change 
he imposes upon the system. If the trainee were 
truly the ideal operator with an engineering back­
ground, an engineer could train him in engineering 
terms. 

Throughout this training process a methodology 
is developed. The operator is told procedure, is 
tested and if found satisfactory is given more re­
sponsibility which requires exercising the newest 
skill as well as other skills previously learned. This 
cycle is repeated until the operator is fully capable 
of performing what was originally expected of him. 
And also, at any point in his training or even after he 
is fully trained, he must be retrainable with a mini­
mum of difficulty. 
Traits inherent to the digital computer 

There are certain traits desirable in the operator 
which are inherent to the digital computer. These are: 

1. Reliability. — Computer technology has advanced 
to a state where extremely high reliability should 
be expected in any solid-state computer and 
peripheral real-time equipment. 

2. Accuracy.—The inherent accuracy of a digital 
computer is generally superior to the sources 
of information from instrumentation and the 
typical accuracy attainable by normal operating 
personnel. 

3. Retention of Intormation. — The computer is 
superior in its capability of retaining details as­
sociated with information. Typically, however, a 
human being has more overall capacities for in­
formation retention. 

4. Speed.—The computer will typically be able 
to react and solve a problem more rapidly than 
a human operator. 

5. Diligence. —A computer system is inherently 
more diligent than an operator and is unlikely 
to be found sneaking off to a smoking area at a 
critical time in the operating cycle. 

6. Consistency. — A computer reflects no quirks 
or aberrations, but consistently executes what it 
has been told to accomplish. A human operator 
may be inclined to experiment without authori­
zation; a computer system has no such ego and 
will consistently do what it has been told to do. 

7. Flexibility. — A computer system which operates 
with a stored program has a flexibility somewhat 



Humanizing Industrial Control Software 787 

similar to that of the human memory and mind. 
8. Emotional Stability. —The computer has no 

family problems to interfere with its control of 
a process system. The computer bears no grudge 
against the boss or ambitious fellow-operators. 

9. Raw Senses. — Synonymous with the five senses 
of a human operator, the real-time computer has 
a capability of sensing external stimuli such as 
time, interrupts, raw instrument readings, and 
indicators from the process. 

There are certain desirable and valuable traits of 
a human operator which are very weak or lacking 
in a computer system. They do not preclude the 
utilization of a computer as a substitute for the 
operator. 

1. Curiosity. —A good operator is typically curious 
and probing to find out more about what is going 
on in a surrounding situation. A computer system 
is curious only when it is told to be curious and 
about those things that it has been instructed 
to probe further. Curiosity is valuable in an 
operator because questions associated with the 
operation of a process may be the first reflection 
of a possible abnormality within the process 
operation. 

2. Heuristics.—The human being has the latent 
capability of learning which a computer system 
does not have. Although there are currently 
very active investigations into heuristic type 
software, it has not yet reached the state where 
we feel it is practical to include it in the dis­
cussion of a computerized process control. The 
heuristic capability of a human operator provides 
a capability of self-training which is not inherent 
in a computer system. A computer learns only 
what it is specifically taught and told. 

3. Limited Communications. —Over the years, 
human beings learned to communicate not only 
by words or tone of voice but by the facial ex­
pressions and gestures that are typical in a con­
versation. The computer system is somewhat 
stilted in its communication and consequently 
cannot fully match the dialogue attainable by 
two human beings. 

4. Self-Diagnosis. —A human being can usually 
detect when he is getting sick whereas a com­
puter often reacts in an instantaneous and cata­
strophic fashion to a malfunction similar to the 
effects of a heart attach on a human being. Be­
cause of the nature of the malfunctions associ­
ated with a computer, it is often meaningless 
to advise a supervisor of pending "immediate" 
diaster, but is more logical to provide redun­
dancy and/or external holding circuitry which 

can buffer instantaneous malfunction from the 
process. This allows a more leisurely take-over 
of control by a human operator. 

5. Mobility. —In case of disaster, such as a fire 
within the process, an operator can run out and 
escape; but a computer is immovable and pos­
sibly will be destroyed in the blaze. 

The above discussion is concerned with the basic 
inherent traits of a computer, both strong and weak. 
Given these traits and a basic command repertoire, 
it is possible to program certain abilities into a com­
puter hardware-software system. These abilities 
should be analogous to the abilities we have de­
scribed for a human operator. 

We are about to suggest a computer hardware-
software system with traits and abilities of an ideal 
operator. To distinguish between a human operator 
and the thing that is the computer software system 
we have chosen the term "android" for the latter. 
Strictly speaking, what we are describing is closer 
to a robot, but the term "robot" has certain over­
tones of sensationalism in the yellow journals. On 
the other hand, the term android is somewhat of a 
misnomer since the dictionary definition is that an 
android is an "automaton of human form." An autom­
aton is a terribly clumsy form of human activity; 
a robot is a more sophisticated form, while in the 
science fiction literature magazines the android is the 
highest form. We have no pretentions of describing 
the highest form of android, but wish to avoid the 
visualization of a mechanical monster from Mars 
clanging down the aisles. We wish to avoid the typical 
connotation of a robot with mobility that is able to 
walk from place to place and having the manual dex­
terity typical of human beings. Our term, android, 
covers only certain mental characteristics or traits 
common to a human operator. 

The abilities of the computer-operator 

Traits alone are not enough. Traits are a measure 
of the character of the individual as well as the 
character of the computer. Abilities, on the other 
hand, are training patterns that take advantage of 
the traits. As an example, a typical trait of the human 
being is either honesty or dishonesty. An honest 
man can be taught how to operate the cash register 
and become a productive employee. Teaching the 
same ability to a dishonest man is a step toward 
financial disaster. Previously, we have enumerated 
the basic traits which are looked for during the 
interview of a candidate for an operator's position. 

If we puruse the idea of identifying human charac­
teristics with the digital computer in order to more 



788 Spring Joint Computer Conf., 1967 

effectively simulate the human operator, then we must 
consider the abilities that are prerequisites for the 
basic operator. 

Communicating with the computer system 

The language of communication to the computer 
system should be that of a high-level compiler. A 
compiler is specified because it is possible to slant 
language to the user rather than to force the user to 
learn the particular language of the machine. While 
machine language has its place, we do not consider 
this the natural language used in industrial process 
control by an engineer or a chief operator talking to 
a human operator. As with any compiler, the user 
must have the ability to declare a form of data. 
Data takes the form of real, integer. Boolean, and 
logical, plus additional forms of analog, digital, BCD 
and the unique forms found in process operations. 
The data declaration capabilities in a compiler pro­
vide the nouns which can then be utilized to train the 
operator in the process. Future reference to previously 
defined data may then be made in a nomenclature 
familiar to all associated with the process. 

Other nomenclature peculiar to a process where 
verbs can best identify the procedures of the process, 
the supplier should apply a basic set of verbs common 
to all users; however, the capability of defining addi­
tional verbs must be a latent part of the compiler sys­
tem. Procedures consist of nouns and verbs and may 
be defined by another verb. Once defined as a pro­
cedure, future reference to the defined procedure 
can be made in terms of the new verb. 

As the new operator learns the names and pro­
cedures associated with a process, so the computer 
system has this ability to learn such details required 
to operate the system. This simplifies future communi­
cation and once learned, permits much simpler ref­
erence to these previously taught nouns and verbs. 
Certain verbs are basic to the system, such as DO, 
PRINT, CONTINUE, IF, and others found in a 
language such as FORTRAN. New verbs imply a 
sense of urgency, the ability to wait or pause and pro­
ceed, and the ability to suspend at any point until 
the completion of a response to an action. In addition, 
the language must provide the ability to evolve toward 
a problem-oriented system. We do not claim that the 
language modifies itself toward a problem-oriented 
language but that it enables the user to think in a 
problem-oriented fashion. 

There must be a means of indicating the relationship 
of urgency between all procedures. The computer-
much as the operator—cannot be expected to sort 
out the relative emergencies within the system, but 
must be given indicators by the teacher during the 

learning process. These should not be rigid parameters 
of urgency, but relative instead. As new procedures 
are taught, the urgencies of all procedures must be 
sorted out by the computer system rather than have 
the user go through ail the old procedures and re­
define the urgency relationship of all. 

It is natural to assume the operator has a strong 
sense of time and is capable of looking at a clock. 
Similarly, the language should implicitly assume a 
knowledge of time. Statements such as, "at 1100 
hours do the following," etc., should be allowable. 
Statements similar to "every hour on the hour" 
should also be allowable. And statements such as 
"delay ten seconds" should be permissible. The 
sense of time implicit in the system should be the 
same sense of time a human being feels. The user 
should not have to supply long and tedious cal­
culations to represent a next call time for the pro­
cedure. 

A human operator is quite capable of understanding 
the context of a sentence such as "do this and, in 
the meantime while it is completing, go off and do 
something of less urgency but keep your eye on the 
completion of that event that you started because 
when it's dome go back to the more urgent activity." 
It is a natural way of expressing what to do when you 
reach an impasse. An analogy might be "start the 
pump motor and when the tank is full turn off the 
pump; but meanwhile take care of your other duties." 
Here the operator is assumed to have a sense of com­
pletion of an event. He does not have to sit there 
and stare at the tank to determine when it is full. He 
may have to glance periodically at the level indicator 
and, when it begins to approach fullness, turn com­
plete attention to the tank; but while his full attention 
is not needed as the tank is beginning to fill up, he can 
temporarily divert himself to other duties. 

Implied abilities 

The computer system should be self-documenting. 
An operator can be called upon to repeat what he 
has been told. The computer should provide the same 
ability. A computer should be able at any time in 
the future to retell what it has been told. Obviously, 
it should retell in the language of the user and not 
in the natural language of the computer, that is, 
machine language. Everything that has been told the 
computer to date should be readily accessible in the 
user's language as well as in any internal form the 
computer may choose to use. However, a first offering 
might be hard copy produced at source time and con­
sisting of a listing of the source program along with 
the date and the name of the user. This places some 
burden on the user to classify and collate the papers. 



Humanizing Industrial Control Software 789 

The ultimate offering, though, is complete self-con­
tainment in the computer system. 

A human operator is self-organizing, he does not 
have to be told in which part of his brain to store 
information. Such an instruction can be as meaning­
less with computers as with human operators these 
days. A self-organizing computer system is required 
if the computer is to give any indication of potential 
saturation. Otherwise, the users are left on their own 
to update memory maps, and make intuitive judgments 
as to the degree of saturation of the system. 

The ideal operator can be trained on the job and 
does not have to be pulled off of productive work to 
go to a classroom. It is the same with the computer. 
What is known now as background/foreground pro­
cessing is a requirement. 

Background is the place where new skills or pro­
cedures are taught to the computer system, while 
foreground is where previously learned skills and 
previously defined responsibilities are executed. 
The operator is trained methodically and is given 
increasing degrees of responsibility as confidence 
in him in gained. A new procedure introduced to a 
computer is debugged methodically. A self-document­
ing system which states unequivocally the exact pro­
cedure explained to it must also be able to state the 
sequence of execution that actually occurs. This 
documentation must also be in the user's language. 

When an operator is given an explanation of a new 
procedure, he is generally stepped through it by the 
teacher to see if he really understands. He may be 
asked to repeat each step as he does it verbally so 
that the teacher may see whether the operator really 
understands what he is supposed to do. The first few 
times an operator attempts a procedure he is not 
allowed to actually influence the process. He goes 
through the motions and simulates what he is sup­
posed to do. This simulation is expressed by some 
verbal comment such as "and now I twist this valve." 
This is simulation of the operation, and this soft­
ware system should be capable of such simulation. 

The teacher may wish to present a test case or 
test inputs to the operator to determine if he is doing 
the proper thing. He may give a typical problem, such 
as "suppose the temperature of the vessel reaches 
500° what do you do?" The operator then is ex­
pected to go through an explanation of what he would 
do including how he would adjust control points in 
the process. Eventually, he would be allowed to act 
on real input data, but still would be restricted to 
going through the motions and explaining what he 
would do with that real data. 

As the teacher gains confidence in the operator's 
ability to master* the procedure, he increases the 

operator's responsibility. He is permitted to throw 
a switch, or turn a valve, or influence the process in 
some way. He may not be allowed to do everything 
at once but perhaps is permitted to throw the switch 
but not to affect the process in any other way. The 
simulation is graduated and the teacher may choose 
to what degree the operator may affect the process. 
The user must also have the capability in the an­
droid to choose the degree of simulation to be used 
during debug. Eventually the teacher is satisfied that 
the procedure has been mastered by the operator—or 
by the android —and assigns full responsibility. 

The android must be capable of assuming responsi­
bility methodically. A responsible procedure is 
placed in the foreground and becomes part of the 
real-time system. At that point, no interaction should 
be permissible between the background and the fore­
ground. The new procedures that will presumably 
be taught in the future should not be able to influence 
the proven procedures introduced into the real-time 
system unless allowed to by the teacher. 

The android originally must have been taught a 
form of organization chart. Not everyone should be 
permitted access to the background program develop­
ment features in the system. Just because responsi­
bility can be assigned to the computer does not mean 
that anybody can assign it. Each potential teacher 
permitted access to the background features of the 
system should be assigned his own secret recognition 
word known only to him and the android. The com­
puter is responsible only to the individual that in­
troduced a particular procedure and who taught the 
android that procedure. Conflicts of usage can be 
minimized in this fashion. 

There may come a time when something unforeseen 
occurs and the operator will be asked to account for 
his actions. The android should retain a diary of what 
has happened recently for a possible post-mortem 
call. This diary should give a gross account of the 
procedures which have been called over the past few 
moments, the order in which they were called and a 
rough account of the outputs to the process they made. 
This permits a post-mortem to be made so that im­
provement of the procedures can be accomplished. 

CONCLUSIONS 

Certain features of the android are currently avail­
able. Background/foreground processing is offered 
by a great many suppliers. While it is not as sophis­
ticated as proposed in this paper it is a start in the 
right direction. Current background processing 
usually means the ability to compile while fore­
ground programs run real-time. Little emphasis has 
been placed on the ability to methodically link a new 



790 Spring Joint Computer Conf., 1967 

background-produced program into the foreground. 
Much of the currently available abilities pro­

grammed into a industrial process control computer 
have been based upon the supplier's experience in 
specific problems. His background has been in a 
particular marketing area and he has learned some 
general approach which seems to have satisfied his 
previous commitments but which may inherently 
contain what becomes a preconceived notion when 
applied to other industrial control areas. 

An example is the "generalized scan program" 
which is intended to gather information from the pro­
cess and lay it down in core memory. Typically, 
such a scan program is based upon experience in the 
petro-chemical field. How useful this approach can 
be to other industrial processes is an open question. 
Speaking bluntly, it is an opinionated approach, biased 
by the experience of the supplier in his early marketing 
ventures. Much the same can be said about the gener­
alized logging routines which seem to assume the 
presence of a 30-inch typer. It is very rare when so-
called generalized software of the nature of scan and 
logging programs is accepted readily by the operating 
personnel who actually have to contend with the pro­
cess. How many suppliers have thrown up their hands 
with despair when the software is "modified" by 
the users! The choice has been, in the past, to modify 
the software or extensively retrain the operators or 
ignore the software and start over. But within all 
these software efforts has been the assumption that 
there is something basic to all systems having to do 
with scanning or logging or other operator functions. 

Executive routines have been furnished which have 
a sense of urgency inherent in them. These too are 
based on prior applications. Most executive systems 
require the full understanding of all problems to be 
solved before the first problem can be tackled. The 
typical industrial process changes with time as the 
process engineer improves the production equipment 
or the objectives of the process. Such changes some­
times require a "re-education" of the executive 
routine. 

There are instances in the past of the process con­
trol computer being abandoned because the re-edu­
cation process was too difficult. Perhaps the original 
programmers had drifted away —as programmers are 
prone to do —or the original documentation was in­
complete, or one of a myriad of problems occurred. 
Rather than contend with retraining the beast, the 
computer was downgraded to merely gathering data 
and printing a log. This is an example of the process 
evolving without having easy and economical re-
programming features. 

Android abilities currently attainable 

An extension of the background/foreground scheme 
would allow for methodical insertion of a debugged 
prosram into the real-time svstem. Some currently 
available compilers allow for a source language trace 
of the execution. This can be provided in a compiler 
intended for industrial control use. Self-documen­
tation is also readily attainable but has normally been 
limited to computer systems with dedicated periph­
eral I/O equipment. This feature can be imple­
mented in an industrial control android if the user 
is willing to dedicate certain I/O devices to the pro­
grammer. The self-organization and documentation 
characteristics desirable in the android require a 
certain amount of dedicated hardware capability for 
such a function. Directories of active "programs" 
in the system, drum mapping and core mapping pro­
grams, and other important documentation services 
require memory and time within the system to main­
tain up-to-date documentation. 

It is important that the android system have an 
up-to-date library of all source information within 
the operating system. It must be able to have on 
call any selected program in order that the user can 
be assured of what is in the system and understand 
what the latest version of any program is. One of the 
weakest links within any user and computer system is 
the mismatch between the content of the program the 
user thinks is in the computer system and what the 
computer programs actually contain. If the computer 
system can give back only machine language informa­
tion — a foreign language to the user—it is very difficult 
for the user to interpret this in order to understand the 
current situation. 

The organization chart for recognition and identifi­
cation of authority can be readily programmed into 
a computerized android system. Such a feature re­
quires that the user identify himself prior to any at­
tempt to modify information. Along with the identifi­
cation capability, the computer system can easily be 
programmed to incorporate the corresponding sense 
of discretion required. 

It is not difficult to program the sense of time 
within the computer system. Such statements as 
delay, or start at 11 o'clock may be incorporated 
easily within the android system. Simulation is attain­
able i" Taduated steps. The first sten would be user-
supplied inputs to see if the android is solving the 
problem correctly, then actual field inputs but trapped 
outputs to determine if the model was realistic. If 
all input/output calls are channeled to a central 
monitor, trapping of the actual inputs or outputs and 
substituted simulation is feasible. 



Humanizing Industrial Control Software 791 

Giving to the android the ability to remember 
the last few things it did, so that a post-mortem call 
can be made, is not difficult. Admittedly, it does 
occupy core memory but with a central monitor struc­
ture all activity can be retained up to a certain point. 
This, of course, is especially useful in the early de­
bugging stages. 

A limited degree of self-diagnosis of android prob­
lems is also possible. Potential saturation of core or 
auxiliary memory is nui uui icuu IU prugram anu 10 
announce to the user. The android can even detect 
when it is reaching a saturation of computational 
time. The android can keep rough track of how much 
time is spent in useful programs and how much time 
is spent in training and idle time. Compilers are 
available in current industrial control computers and 
eliminate the conversational problem of the user 
talking to a machine in assembly language. Few com­
piler offerings provide the ultimate in communication 
but are a step in the right direction. FORTRAN-
based compilers offer the engineer the opportunity 
to speak in a mathematical language somewhat akin 
to his; however, none offer the syntax devoted to 
training the human operator. But it can be done if the 
syntax used in training can be defined. 

Systematic detection of responsibilities can also 
be programmed now. It is a more difficult thing than 
merely adding responsibilities because the android 
may be simultaneously executing that responsibility 
when the deletion is requested. A deletion of a re­
sponsibility can be permitted only when it does not 
upset current real-time programs. It is not a simple 
matter of erasing a program previously defined. 

Traits that cannot be economically 
programmed now 

Heuristic judgment is currently being programmed 
in large computers, but is not economically attainable 
in small computers such as found in industrial con­
trol. Self-learning ability would be an ideal trait of 
the android but unfortunately must await future tech­
nological development of the state-of-the-art of pro­
gramming. 

An android that can express lack of understanding 
is also somewhat in the future. While it is possible 
and presently attainable for a compiler system to 
issue diagnostics about obvious misuse of the syntax 
and misrepresentation of data declaration, anything 
beyond that is currently unattainable. 

The trait of curiosity is also a heuristic ability. 
The android is only curious about what it has been 
told to be curious about, and that is not true curiosity; 
it is only an expression of the programmers will. 

It may be possible to program the android to ex­
press "curiosity" about everything that occurs by 
causing it to print many messages, but this converts 
the android into a gabby operator to whom no one 
listens. 

There are some aspects of self-diagnosis which are 
beyond programming today. Ideally the android would 
be able to predict that it was going to collapse in the 
near future or that some small aspect of it was in 
trouble now or that it was currently having localized 
problems. Although vendors produce test programs 
for manufacturing personnel to locate problems during 
hardware checkout, these programs have rarely been 
successfully incorporated into a real-time system. 

Some projects are currently investigating a form of 
mobility for the computer. They have attached TV 
cameras as eyes and pseudo limbs as arms and per­
haps some time in the future an economical version 
of a completely mobile android will occur, but not 
now. This android must sense the process from a 
fixed position and must have every input brought 
to it and every output taken from it by electrical 
means. It cannot stroll over to a recorder or to a 
manual station and expect to influence the process. 

The android as a student 

Programming the digital computer requires a me­
thodical approach. First, the source program is in­
troduced and the android as a student must interpret 
what has been told to it and digest it in its own time. 
The android must be able to announce basic mis­
understandings about syntax and data declaration. 
This too can be done by current compilers. Once the 
source program has been accepted by the android, 
a debugging procedure is entered. The teacher does 
not allow the android to assume total responsibility 
and execute the program in real-time affecting the 
process. Rather, the teacher approaches debugging 
in a very cautious way. Artificial inouts are introduced 
to see what the android's program will do about 
them. All outputs are trapped, no output is allowed to 
go through the process. Instead, the output generated 
by the programs are simulated onto a typewriter so 
that the teacher may evaluate them. When the teacher 
is satisfied that synthetic inputs are being satisfac­
torily handled by the android's program it may permit 
the android to accept real inputs but still trap the 
outputs and type them for evaluation. This process 
proceeds at a pace set by the teacher (the program­
mer) who evaluates the programs according to a 
methodical, established debugging pattern. Even­
tually the teacher will allow the android full re­
sponsibility toward this program. The android then 
assumes responsibility. 



792 Spring Joint Computer Conf., 1967 

Background compilation is quite common these 
days and, to some degree, introduction of a back­
ground-produced program to a real-time foreground 
program is permitted. However, a methodical de­
bugging of limited yet expanding responsibility has 
not yet been done. It requires simulation of the in­
puts and output to the process. This can be done with 
today's technology of programming. Programs to 
accomplish that simulation would probably take a 
considerable amount of memory. 

The compilers currently being utilized have the 
ability to accept data declaration and predefined 
verbs as a mechanisfor communication. The lan­
guage requirements of the industrial process user 
dictate the necessity for the user to define new 
verbs to the compiler within a limited syntax. He 
must have the ability to teach the nouns and verbs 

commonly associated with his process in order that 
future communications are in a domain familiar to 
his environment. The associated processing pro­
cedure for such verbs as alarm, read, analog point, 
compare against limit, and set control point must 
be definable in order that future reference is under­
standable. This capability is not impossible because 
a procedural language such as FORTRAN can be 
used to obtain problem-oriented capability. (DYS-
TAL and SNOBAL are typical of such language.) 

The android approach can be to industrial control 
computer programming what FORTRAN was to 
scientific computer programming—a basic system 
usable across the full breadth of the field while still 
permitting adjustment by the user to particular 
applications. 




