
An advanced computer system for medical research
by WILLIAM J. SANDERS, G. BREITBARD,
D. CUMMINS, R. FLEXER, K. HOLTZ, J.
MILLER and G. WIEDERHOLD
ACME Project, Stanford Medical Center

Stanford, California

INTRODUCTION

The ACME project

The Stanford University School of Medicine is located
on the main campus of Stanford University, in Palo
Alto, California. It was moved from San Francisco to
the Palo Alto campus in 1959, with the purpose of
more closely integrating medical research and educa­
tion with the other activities of the University. It
shares, with other departments of the University, the-
computing facilities of the Stanford Computation Cen­
ter. These facilities include an IBM 7090, a Bur­
roughs B-5500, and a recently delivered IBM/360-67.
In addition, there are currently four PDP-8, four LINC,
and one LINC-8 computers in use within the medical
school. Although this collection of computers repre­
sents a great deal of computing power, its distribution
was such that the research needs of the medical school
were not being fully met.

The Stanford Computation Center is dedicated to
serving the broad needs of the University community.
With the current batch-processing systems on the 7090
and B-5500 and the planned time-sharing system on
the 360-67, the Computation Center is obliged to pro­
vide general-purpose computing to a large number of
users with quite diverse interests. Inevitably, the needs
of any special group cannot be entirely satisfied. In
particular, many of the needs of the medical research
program are such that a general purpose computing
system is not satisfactory. Among these needs are:

1. Analog-to-digital and digital-to-analog conversion
2. Real-time data collection and analysis
3. On-line control of experiments
4. High-speed data acquisition and distribution
5. Support of satellite computers.

The small computers within the medical school pro­
vide some relief, in that they are equipped for analog-
digital conversion and are being used for data collec­
tion and analysis and for control of experiments. How­
ever, being small and having few peripheral units, they
are hrnited in the amount of data analysis they can do
economically. They are also more difficult to program,
since their software is generally quite primitive. In ad­
dition, not all research projects can afford the luxury
of having their own computer nor the specialized man­
power to program it.

In order to determine how the needs of the medical
school research program could best be met, a medical
school computer policy committee was formed. The
committee worked actively with the medical school
computer user's group, the Stanford Computer Sciences
Department, and the Stanford Computation Center. The
result of the committee's work was a proposal for the
ACME (Advanced Computer for Medical Research)
Project. Initial funding for the Project was a planning
grant from the Josiah Macy Foundation, while on­
going support has been provided by a grant from the
National Institute of Health, the Macy Foundation, and
sharing of costs with other projects at the Stanford
Medical School.

The purpose of the Project is to provide a computer
system specifically designed for medical research. The
ACME system is designed to act as a complement to
currently existing facilities. It is assumed that a great
deal of data-processing still will be done using the
facilities of the Computation Center. By providing data
storage and analysis facilities for the small computers,
their capabilities will be greatly enhanced. In addition,
by providing central signal-processing equipment, the
system will support researchers that do not have their
own computers.

497

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1465611.1465676&domain=pdf&date_stamp=1967-11-14

498 Fall Joint Computer Conference, 1967

A unique aspect of the Project is that it is a research
project in support of research projects. In order to
provide the medical school with the computational
facilities necessary to do research, much development
must be done by the project. It is planned that the
ACME system will always be in a state of flux. As
the more general-purpose computer systems are able
to provide a service that is also being nrovtded bv
ACME, that service will be dropped by ACME in
favor of the other systems. At the time a need is found
for a service not then available, that need will be met
be extensions to the system. Thus, it is planned that
the ACME system will be constantly devoted to the
new and untried areas of computation, and in this way
also will be a complement to existing facilities.

Within the ACME project, there is equal emphasis
on hardware and software development. Hardware
development is mainly concerned with interfacing the
ACME system with the users and their experiments.
Software development is concerned with providing non-
computer oriented researchers with the tools necessary
to do their work in a rapid and convenient manner.
There has been a great deal of effort expended in
developing a hardware/software complex where the
hardware and software closely match both each other
and the user and his experiment. Much effort has also
been devoted to developing more suitable, and often
less expensive, alternatives to manufacturer supplied
hardware and software.

Both in terms of size and budget, the ACME Proj­
ect is modest compared to many. But because of the
fact that its goal is also relatively modest, that of
providing a specialized set of services to a small and
quite homogeneous set of users, it has already made
a great deal of progress toward achieving that goal.

ACME system

The main purpose of the ACME system is the ac­
quisition, analysis, storage, and retrieval of medical
research data. In addition, there will be writing and
debugging of programs necessary to support these
activities. In the light of these requirements, it was
decided that the most reasonable mode of operation
for the ACME system would be time sharing; with
emphasis on real-time data acquisition, and data stor­
age and retrieval. This is an area where equipment that
is currently available is very weak. Only very large
specialized systems, mainly in military and space ex­
ploration environments, have achieved operational sta­
tus. In order to make program writing and debugging
as easy as possible it was decided that a compiler for a
simple, yet relatively powerful programming language,
would be written specifically for the ACME system.

It should be noted that the design criteria for the

ACME system are relatively different from those of
most other time sharing systems. Because of the de­
mands of real time data acquisition, emphasis is not on
giving fair and equitable service to a large group of
users. Rather, it is to give high performance service to
a relatively small group of users, while also answering
the lighter demands of on-line program creation and
debugging. Because of the demands of rcal-tirne opera­
tion, it is often better to refuse service to a user (tell­
ing him to try again later) than to offer a service that
is degraded beyond usefulness to him or others using
the system. Special provisions in the hardware and
software have been made to reflect this philosophy.

Hardware for the ACME system

A general sketch of the ACME system is shown in
Figure 1. The central processor for the ACME system
is an IBM/360-50. This was chosen for several rea­
sons. First, it is supported by a large amount of IBM-
supplied software. Inasmuch as is possible, this soft­
ware is used in preference to expending the effort to
create similar software. Second, it is supported by a
large variety of peripheral units, both mass-storage and
input/output. Third, it provides a large measure of
computing power and I /O versatility for a relatively
low cost. Fourth, it provides upward-and-downward-
compatibility with a broad line of computers, so that
the system can be easily up-graded or down-graded to
meet future conditions. Finally, it is highly compatible
with the 360-67 at the Computation Center.

In order to provide real-time capability in a straight­
forward manner, it is necessary that the user program
and data areas can be accessed very rapidly in a random
manner. Core memory is the only device satisfying this
requirement.

Estimates of the amount of memory required led
to the following balance of the core memory versus
number of users.
Assumptions:

(1) A control system of 7090 size.
(2) A resident compiler, library and input/output

system, requiring 3 times the available memory
of a 7090.

(3) User problem size distribution as on current
large machines (i.e., IBM 7090's etc.) leading
to an average of 14,000 words. See Figure 2.

(4) Program writing and translation will occupy
the system 25% of the time.

With these assumptions:
Memory required = 6000 + 3 x 26000 + n

X .75 x 14000 + n x .25 x 6000
or 84000 + n x 12000

This meant that a balance could be achieved at 15
users and 264000 words of memory.

An Advanced Computer System for Medical Research 499

7 a 9
track tapes

Archive
Data.

System

w
Disks

231

(\ System . >

Index V_y

User Programs
and Data

Resident
Programs

Fast Memory

2702

Data Cell
2321

Main processor
360-50

Log
andTS
User
Output

4.10 8

characters

Analogue and

Digital
Devices
50 poss.
20 active

Commands

Data < I Kc

User Commands
User Buffers
Resident

Program

1800 Aux, Proc.
Data > I Kc

Data>IOKc

Typewriter Stations

50 poss. 30 active

nitially 32 poss. 15 active

8 poss. A

1 active A

4 connected

1- poss.

1- active

Figure 1—Sketch of ACME system

500 Fall Joint Computer Conference, 1967

Words of Memory

32,000
24,000
18,000
12,000
6 , 0 0 0

II

1 /

' / /control

III

/ U s e r
Programs

IV

^m

. Vte™ ///'/,
65 .75 1.0

Cumulative fraction of use
NOTES:

I.This region represents users using facilities on data stored
in files, or doing desk calculator level work.

II. This region represents the normal computing workload.
Much of this is used for data array storage. Declared
arrays are generally only partially filled, leading to the
apparent steepness of the curve.

III. Some percentage of users find that they tend to exceed
the capabilities of the system and operate just below
the maximum.

IV. During translation, program text and symbol tables
very rarely exceed 6000 words.

Figure 2—User program size distribution

In order to get this amount of memory economically,
it was decided that a minimum amount of relatively
expensive fast memory would be obtained. The fast
memory is used for residence of the 360 operating
system and the most frequently used portions of the
ACME software.

The major portion of the memory for the ACME
system consists of a one million byte Large-Capacity
Storage unit. This is attached to the central processor,
and is addressable contiguously to the fast memory.
Although its cycle time is much slower (8 \L sec vs. 2 fi
sec), its cost per bit is about one-fourth of the central
processor memory. Furthermore, the processor of the
Model 50 can do some parts of a process without core
references, and tests have indicated a factor at 2.3
performance degradation. In this way, enough memory
could be obtained to keep the entire ACME system
and all active user programs core-resident at all times.
This is extremely important to the philosophy of pro­
viding high-performance service and is possible be­
cause of the small number of users. Because an active
program is always core-resident, it is always executable,
and hence can respond rapidly to real-time demands.
Because all active programs are core-resident, memory
allocation problems are minimized and such techniques
as program relocation become unnecessary. The lack
of memory swapping, paging, and concomitant prob­
lems such as special I /O buffering, greatly reduces
system overhead.

Mass storage for the ACME system consists of
three hierarchical levels. The lowest level is magnetic

tape, which will be used for archival purposes. One 7-
track unit is provided for compatibility with the 7090
and B-5500. One 9-track unit is provided, because of
its higher performance and because it is necessary
for generating the 360 operating system.

The next level of mass storage is the 2321 data
cell. It has a storage capacity of 400 million bytes, with
an average access time of 600 ms. This is the main
storage device for the ACME system. On it, all user
source programs and data are stored. Its capacity is
large enough that it is expected that all programs and
data will be permanently resident in the data cell, with
no need to dump or reload from tape, except for back­
up purposes. Special programming techniques have
been developed to minimize the effect of its relatively
slow access rate and to take advantage of its large
capacity.

Another level of mass storage is the 2311 disc stor­
age drive, of which there are only two in the ACME
system. No user storage is provided here. One disc
drive is used to store the non-core-resident portions
of the 360 operating system. The other disc drive is
used for two purposes. First, all of the ACME software
is stored there, for initial loading when the system is
started. The second, and most important, function
of the drive is to store indices to information on the
data cell. Whenever a user file on the data cell is
opened, its location is determined from a catalog. An
index to all records in the file is then moved from the
data cell to the disc. Subsequent references to records
in the file are then made using the disc-resident index.

An Advanced Computer System for Medical Research 501

Figure 3—Terminal indicator panel

When the file is closed, the up-dated index is copied
back from the disc to the data cell.

Each user of the ACME system has an IBM 2741
terminal. This is the device used to input programs,
debug them, and control their execution. Since it is
basically a modified Selectric typewriter, it has the
advantage of being familiar and easy to use for non-
computer oriented users. ACME has modified its 2741
by the addition of a 4 light indicator panel (Figure 3).
Lights on the indicator panel are controlled by non­
printing characters transmitted to the 2741. There is
one light that reads, "ACME IS ON." It is driven by
the transmission control signals to indicate that the
system is operational. Another light reads, "YOU ARE
ON." It is pulsed at a rate proportional to the amount
of computing time the user is getting. The flicker rate
thus indicates the performance of the system with re­
spect to that user. Another light reads, "WAITING
FOR YOU." It is on whenever the system is expect­
ing input from the user. The final light reads, "SPE­
CIAL RUN ON." It is on whenever a high demand,
reaLtime data transmission process is active. It in­
dicates that severely degraded terminal performance
can be expected.

Most of the 274l's are connected directly by cables
to the ACME system. Because of the fact that most of
the 274l's are within 2000 feet of the system, no in­
tervening cable drivers are necessary. The cables termi­
nate in a switchboard-like patch panel (Figure 4).
When a user wants to use his terminal, he telephones a
computer operator, who connects his terminal to the
system via the patch panel. Initially, there are 32
terminals with the possibility of 15 active at one time.
Because of this low ratio, and the fact that terminal
sessions are expected to be lengthy, manual switching

Figure 4—Switchboard

is feasible at a great reduction in cost over other modes
of operation. Communication with the 274l's is pro­
cessed by a 2702 communication multiplexor.

The need for other than typewriter output devices
has been obvious for a long time. But the cost of
commercial devices in a medical environment is such
that they are scarcely defensible in comparison to other
medical aids.

However, two Sanders Associates character-oriented
CRT displays have been ordered as experimental ad­
juncts to the ACME system. These will be used for
development in areas of text editing and information
retrieval. Because of the high data rate necessary to
support these devices, they will be connected to the
ACME system via a 2701 with a parallel data adapter.
The interface to the 2701 is being supplied by Sanders
Associates.

A special CRT display has been designed and built
by the ACME Project for the input/output of graphical
data (Figure 5). It is driven by vector-drawing logic
and a core refresh memory. This unit is capable of
displaying 2046 vectors simultaneously. It was built
from integrated circuits, and the component cost, in­
cluding the memory, was about $8,500. It will be con­
nected to the ACME system via another parallel data
adapter on the 2701.

A need still exists for a silent hard copy device for
developing data distribution to hospital wards.

For the processing of user analog and slow (less
than 1 Kc; i.e., 1000 samples per second) digital data
an IBM 1800 computer is used. The 1800 is a small
process control computer with a large complement of
signal processing attachments. It will be used to do
analog-to-digital and digital-to-analog conversions, as
well as some primitive signal processing such as smooth-

502 F a l l Joint Computer Conference, 1967

Figure 5—Prototype of graphical display

ing and validity checking. It is connected to the central
processor via a high speed data channel so that it
behaves essentially like an input/output device as far
as the system is concerned. When relatively low band­
width analog signals are transmitted, and no more than
8 bits of accuracy is needed, analog-digital conversion
is done on the 1800. For more demanding signal pro­
cessing, the analog-digital conversion has to be done
in the laboratory and digital data is transmitted to the
1800. There are currently 32 analog-to-digital inputs,
8 digital-to-analog converters, 20 digital inputs, 12
digital outputs, and 80 process interrupt lines on the
1800. The timing of the data acquisition and distribu­
tion is user controlled through the process interrupt lines
so that no synchronization of multiple experiment data
rates is required. All analog and digital transmission
equipment was designed and built by the ACME Proj­
ect. One of the most interesting pieces of analog
transmission equipment is an FM analog transmitter
and receiver that is magnetically and acoustically
coupled to an ordinary telephone. This will be used
to process analog signals over distance or where no
cables have been pulled.

For transmitting digital data in the speed range be­

tween 1 and 10 kc, a special multiplexor has been de­
signed and constructed by IBM for the ACME Proj­
ect. For lack of a better name, it is called the 270X.
It is capable of multiplexing 8-bit digital transmission
over cables between the ACME system and up to 16
remote units. Each remote unit is called a 270Y. There
are currently four 270Y's. The 270Y's are designed for
laboratory use, and are rack mountabie. Each has bind­
ing posts for 8-bits of input and output, and for timing
and control signals. Each has a push-button to termi­
nate a transmission, and a signal line to cause a central
processor attention interrupt. In addition, each 270Y
has a built-in variable frequency oscillator to control
sampling rate, or the sampling rate may be controlled
via an external line. In addition to the local sampling-
rate oscillator in each 270Y, there is a program-
selectable oscillator in the 270X whose rate is adjusted
to drive a digital incremental plotter. Thus, for ex­
ample, a typical use of the 270X-270Y might be as
follows. The inputs would be connected, via a suitable
analog-to-digital converter, to an instrument such as
a gas chromatograph. The sampling rate would be
determined by the setting of the local oscillator on the
270Y. The outputs would be directly connected to an
incremental plotter. A trial would be run, the data
analyzed by a program that the user has written, and
the results plotted immediately at the experimenters
station. It takes little imagination to see the potential
for this mode of operation.

It is expected that data rates in excess of 10 kc will
be generated only by the CRT displays and the small
computers. These will be connected to a 2701 with
four parallel data adapters. Each parallel data adapter
has a data path 16 bits wide, and is capable of sustain­
ing speeds in excess of any demand now foreseen. Be­
cause of this high data rate, the 2701 has been con­
nected to a central processor selector channel, which
can sustain a high data rate with lower interference
to computation. But since the selector channel can
control only one transmission at a time, there must be a
limit to the amount of time each transmission takes.
Thus, it was decided that the normal mode for high
data rate transmission (i.e., over 10 kc) will be short,
very high speed bursts of data (i.e., 20 kc or higher).
To connect the small computers to the 2701, a special
interface was designed. The interface transmits data
in parallel over cables on a demand/response basis.
Provision has been made for remote computers to gain
the attention of the central processor via an attention
interrupt. In addition, a 25 ms. "dead-man" timer in
the interface limits the time any single burst of data
transmission can take.

The remaining hardware consists of unit record
equipment on the 360 and 1800. This will be used

An Advanced Computer System for Medical Research 503

mainly for batch-mode operation during software
development and checkout. In addition, during the
early stages of time-shared operation the 360 printer
is being used to keep a log of all transmissions to and
from terminals, This should greatly facilitate the detec­
tion of problems that develop in using the system, both
from the point of view of user difficulties and the
detection of bugs in the software.

Software for the ACME system

The software for the ACME system will be divided
into the following categories for purposes of discus­
sion:

1. The 360 Operating System
2. The ACME compiler
3. Resource allocation (including time-slicing)
4. Data-file management
5. Terminal input/output
6. Real-time input/output
7. Library subroutines

One of the early, and significant, decisions in the
design of the ACME system was the decision to use
manufacturer supplied software whenever this was
feasible. Thus, the entire ACME software system was
designed to run as a single job under Operating System/
360. During the operation of the ACME system, OS/
360 provides such services as low-level input/output
management and memory allocation, dynamic sub­
routine loading, and interval timing. This mode of
operation has two significant advantages. First, a great
deal of highly specialized programming can be avoided.
Second, most of the remaining programs are ma­
chine independent, and hence can be written in a
machine-independent manner. In fact, most of the
ACME software has been written in FORTRAN. It
was found that the IBM H-level FORTRAN compiler
is capable of producing very efficient code and thus
there was virtually no advantage in not using this
machine-independent language. The few routines that
were written at an assembly language level were mostly
for such machine-dependent operations as character and
bit-manipulation and for communication with the
Operating System and for machine code skeletons.

Almost no modifications were made to OS/360.
The few exceptions were in areas where the operating
system provides for user-supplied modifications and
these modifications were relatively straight forward
Hence, almost anyone with a similarly configured 360
should be able to use the ACME software with a mini­
mum of effort. In fact, with the multi-programming
versions of OS/360, the ACME software is useable
concurrently with other modes of operation.

The ACME compiler will be discussed fully in a

future paper, and hence will be only briefly discussed
here. The compiler is for a subset of PL/1 that in­
cludes many of the most useful features of the language.
It is incremental; that is, it compiles one statement at
a time and a program is always capable of execution.
It compiles all the way to machine language, and thus
produces relatively efficiently executing code. All sys­
tem-user communication is processed by the compiler,
hence the system command language is a subset of the
compiler language, with identical syntax. Also included
in the compiler language are text-editing functions for
modification of program texts. For such processes as
input/output, subscript range checking, and the com­
putation of mathematical functions such as SIN, COS,
and standard statistical procedures, the compiler gener­
ates calls to a resident library of subroutines. Some of
these subroutines are also written in FORTRAN, and
in fact use the IBM-supplied FORTRAN subroutine
library for such things as input/output formatting.

Resource allocation consists mainly of memory al­
location and time-sharing. Memory is allocated to users
in 4048 byte (1024 word) quantities called pages.
When a user has logged in he is assigned one such
page in which his file names, etc., are kept. For pro­
gramming two more pages will be assigned for pro­
gram and data storage. More pages are assigned as they
are needed during the compilation of his program.
Memory for object-program arrays is not allocated
until each array is referenced during execution. Hence
there is some saving in memory during the time a user
is creating his program. It is not necessary that the
pages for a user program be contiguous in memory.
Hence the problems of memory allocation are greatly
simplified.

Because most of the ACME software was compiled
under H-level FORTRAN, which is not capable of
producing re-entrant code, allocation of time to users
is not done in the usual manner. Instead of switching
from one user to another at the end of some arbitrary
time interval, switching is done only at so-called "re­
entrant points." A re-entrant point is defined as a
point at which:

1. All required information concerning the current
user is located in storage peculiar to that user.

2. The next operation to be executed on behalf of
the user is a call to a subroutine which will not
return to the calling routine.

These two conditions are sufficient to insure a some­
what limited, but nevertheless adequate form of re­
entrant programming. The scheme relies on the fact
that the H-level FORTRAN compiler generates a pro­
logue which is always executed upon entry to a sub­
routine. This prologue initializes information internal

504 Fall Joint Computer Conference, 1967

to the subroutine, but peculiar to the current invocation
of the subroutine.

The necessity of limiting switching to only certain
points leads to the interesting situation in which the
current user graciously yields his control of the ma­
chine, rather than having it wrested from him. How­
ever, proper etiquette in this regard is assured in sev­
eral ways.

1. When a user is compiling a program, the struc­
ture of the compiler assures a reasonable disci­
pline for user switching.

2. All requests for input/output activity require a
yield.

3. A check is built into the code generated by the
compiler at each GO TO and END statement
for the end of a time interval. A yield will result
if the time interval has elapsed.

In the process of yielding, a "resume routine" is in­
dicated. This routine is entered when the user is next
given control. Yields that accompany input/output re­
quests generally specify a wait until the input activity
is completed, due to the interactive nature of most
system use. Users currently are served in strict order,
on a round-robin basis. There is some probability that
a priority scheme may be introduced later, if experience
indicates that high data-rate experiments cannot be
served with the round-robin scheme.

Because one of the major purposes of the ACME
system is information storage and retrieval, special data
management procedures have been designed to facilitate
these operations. User data, and programs, are stored
in data sets on the data cell. Data sets are ordinarily
catalogued by user name, then by a project name, and
finally by a user assigned data set name. When a data
set name is mentioned in a program, it is automatically
qualified by the user name and project name supplied
at log-on time. This automatic qualification is overrid­
den by explicit qualification of the form USERNAME.-
PROJECTNAME.DATASETNAME. This method of
data set naming is essentially identical to that used by
OS/360, although OS/360 cataloguing procedures are
not used. In addition, certain public data sets will be
available. Among these will be a set of standard user-
oriented programs.

Within the data sets, data is stored in the form of
records. Records may be stored sequentially or ran­
domly and may be retrieved sequentially or randomly.
Records may be of arbitrary length. Data items are
stored and retrieved from records by name. Hence,
data items may be retrieved in an order different from
the one in which they were stored. Moreover, fewer
data items may be retrieved than are stored in a given
record. This mode of operation is unlike that used in

most current programming systems, where item order,
not name, is significant. It is felt that the mode chosen,
although somewhat less flexible, is much more in line
with the thinking of the non-computer oriented per­
sonnel who will be the prime users of the ACME
system.

The terminal input/output procedures used by the
ACME system were also designed by the ACME Proj­
ect. Output from the system is generally in the form
of a message and a prompt. The message portion is
the result of the last operation performed and the
prompt portion is used to indicate what should be done
next. A question mark (?) is used to indicate the end
of the output. For example, during the log-on procedure
the output from the system is the prompt NAME?
The user then supplies his name. If the name is not
acceptable, the system types an error message and re-
prompts NAME? During compilation, the system
prompts the line number of the next line when compila­
tion of the preceding line is successful. If the compila­
tion of the preceding line is not successful, the com­
piler supplies an error message and re-prompts the
previous line number. Messages are generally quite
long, so that a maximum amount of information can
be conveyed. If a user recognizes a message and does not
want to see it again in its entirety, he pushes the AT­
TENTION button on his terminal, which causes an
ellipsis (. . .) to be typed and the rest of the message
to be skipped.

The prompt portion of a message can usually not
be ignored because it remains in a buffer as part of
the user's next input. All prompts are recognizable
to the compiler as commands, with the question mark
treated as a blank. Hence, if PROJECT? is prompted
and the user types DOGWEIGHTS, the input to the
system is PROJECT DOGWEIGHTS. In fact, the sys­
tem forgets what it has typed out; it only looks at the
next input line to decide what to do next. If the user
wishes to ignore a prompt, he may back-space over
it, which causes it to be deleted, or he may push the
ATTENTION key which causes the current input line
to be ignored and a prompt of ? to be typed. Similarly,
in the case of some syntax errors, the compiler merely
prompts a corrected version of the statement. If the
user wants to use the corrected version, he merely types
carriage return, which causes the prompt to be used
as input.

Real time input/output was also designed to maxi­
mize user convenience. With the exception of the 270X,
which is still in the developmental stage, all real-time
input/output is generated by satellite computers, either
the ACME 1800 or the remote small computers. A com­
munication protocol has been established for all trans­
mission between computers. The protocol is designed

An Advanced Computer System for Medical Research 505

mainly for batch-mode operation during software
development and checkout. In addition, during the
early stages of time-shared operation the 360 printer
is being used to keep a log of all transmissions to and
from terminals. This should greatly facilitate the detec­
tion of problems that develop in using the system, both
from the point of view of user difficulties and the
detection of bugs in the software.

Software for the ACME system

The software for the ACME system will be divided
into the following categories for purposes of discus­
sion:

1. The 360 Operating System
2. The ACME compiler
3. Resource allocation (including time-slicing)
4. Data-file management
5. Terminal input/output
6. Real-time input/output
7. Library subroutines

One of the early, and significant, decisions in the
design of the ACME system was the decision to use
manufacturer supplied software whenever this was
feasible. Thus, the entire ACME software system was
designed to run as a single job under Operating System/
360. During the operation of the ACME system, OS/
360 provides such services as low-level input/output
management and memory allocation, dynamic sub­
routine loading, and interval timing. This mode of
operation has two significant advantages. First, a great
deal of highly specialized programming can be avoided.
Second, most of the remaining programs are ma­
chine independent, and hence can be written in a
machine-independent manner. In fact, most of the
ACME software has been written in FORTRAN. It
was found that the IBM H-level FORTRAN compiler
is capable of producing very efficient code and thus
there was virtually no advantage in not using this
machine-independent language. The few routines that
were written at an assembly language level were mostly
for such machine-dependent operations as character and
bit-manipulation and for communication with the
Operating System and for machine code skeletons.

Almost no modifications were made to OS/ 3 60.
The few exceptions were in areas where the operating
system provides for user-supplied modifications and
these modifications were relatively straight forward
Hence, almost anyone with a similarly configured 360
should be able to use the ACME software with a mini­
mum of effort. In fact, with the multi-programming
versions of OS/3 60, the ACME software is useable
concurrently with other modes of operation.

The ACME compiler will be discussed fully in a

future paper, and hence will be only briefly discussed
here. The compiler is for a subset of PL/1 that in­
cludes many of the most useful features of the language.
It is incremental; that is, it compiles one statement at
a time and a program is always capable of execution.
It compiles all the way to machine language, and thus
produces relatively efficiently executing code. All sys­
tem-user communication is processed by the compiler,
hence the system command language is a subset of the
compiler language, with identical syntax. Also included
in the compiler language are text-editing functions for
modification of program texts. For such processes as
input/output, subscript range checking, and the com­
putation of mathematical functions such as SIN, COS,
and standard statistical procedures, the compiler gener­
ates calls to a resident library of subroutines. Some of
these subroutines are also written in FORTRAN, and
in fact use the IBM-supplied FORTRAN subroutine
library for such things as input/output formatting.

Resource allocation consists mainly of memory al­
location and time-sharing. Memory is allocated to users
in 4048 byte (1024 word) quantities called pages.
When a user has logged in he is assigned one such
page in which his file names, etc., are kept. For pro­
gramming two more pages will be assigned for pro­
gram and data storage. More pages are assigned as they
are needed during the compilation of his program.
Memory for object-program arrays is not allocated
until each array is referenced during execution. Hence
there is some saving in memory during the time a user
is creating his program. It is not necessary that the
pages for a user program be contiguous in memory.
Hence the problems of memory allocation are greatly
simplified.

Because most of the ACME software was compiled
under H-level FORTRAN, which is not capable of
producing re-entrant code, allocation of time to users
is not done in the usual manner. Instead of switching
from one user to another at the end of some arbitrary
time interval, switching is done only at so-called "re­
entrant points." A re-entrant point is defined as a
point at which:

1. All required information concerning the current
user is located in storage peculiar to that user.

2. The next operation to be executed on behalf of
the user is a call to a subroutine which will not
return to the calling routine.

These two conditions are sufficient to insure a some­
what limited, but nevertheless adequate form of re­
entrant programming. The scheme relies on the fact
that the H-level FORTRAN compiler generates a pro­
logue which is always executed upon entry to a sub­
routine. This prologue initializes information internal

506 Fall Joint Computer Conference, 1967

to the subroutine, but peculiar to the current invocation
of the subroutine.

The necessity of limiting switching to only certain
points leads to the interesting situation in which the
current user graciously yields his control of the ma­
chine, rather than having it wrested from him. How­
ever, proper etiquette in this regard is assured in sev­
eral ways.

1. When a user is compiling a program, the struc­
ture of the compiler assures a reasonable disci­
pline for user switching.

2. All requests for input/output activity require a
yield.

3. A check is built into the code generated by the
compiler at each GO TO and END statement
for the end of a time interval. A yield will result
if the time interval has elapsed.

In the process of yielding, a "resume routine" is in­
dicated. This routine is entered when the user is next
given control. Yields that accompany input/output re­
quests generally specify a wait until the input activity
is completed, due to the interactive nature of most
system use. Users currently are served in strict order,
on a round-robin basis. There is some probability that
a priority scheme may be introduced later, if experience
indicates that high data-rate experiments cannot be
served with the round-robin scheme.

Because one of the major purposes of the ACME
system is information storage and retrieval, special data
management procedures have been designed to facilitate
these operations. User data, and programs, are stored
in data sets on the data cell. Data sets are ordinarily
catalogued by user name, then by a project name, and
finally by a user assigned data set name. When a data
set name is mentioned in a program, it is automatically
qualified by the user name and project name supplied
at log-on time. This automatic qualification is overrid­
den by explicit qualification of the form USERNAME.-
PROJECTNAME.DATASETNAME. This method of
data set naming is essentially identical to that used by
OS/360, although OS/360 cataloguing procedures are
not used. In addition, certain public data sets will be
available. Among these will be a set of standard user-
oriented programs.

Within the data sets, data is stored in the form of
records. Records may be stored sequentially or ran­
domly and may be retrieved sequentially or randomly.
Records may be of arbitrary length. Data items are
stored and retrieved from records by name. Hence,
data items may be retrieved in an order different from
the one in which they were stored. Moreover, fewer
data items may be retrieved than are stored in a given
record. This mode of operation is unlike that used in

most current programming systems, where item order,
not name, is significant. It is felt that the mode chosen,
although somewhat less flexible, is much more in line
with the thinking of the non-computer oriented per­
sonnel who will be the prime users of the ACME
system.

The terminal input/output procedures used by the
ACME system were also designed by the ACME Proj­
ect. Output from the system is generally in the form
of a message and a prompt. The message portion is
the result of the last operation performed and the
prompt portion is used to indicate what should be done
next. A question mark (?) is used to indicate the end
of the output. For example, during the log-on procedure
the output from the system is the prompt NAME?
The user then supplies his name. If the name is not
acceptable, the system types an error message and re-
prompts NAME? During compilation, the system
prompts the line number of the next line when compila­
tion of the preceding line is successful. If the compila­
tion of the preceding line is not successful, the com­
piler supplies an error message and re-prompts the
previous line number. Messages are generally quite
long, so that a maximum amount of information can
be conveyed. If a user recognizes a message and does not
want to see it again in its entirety, he pushes the AT­
TENTION button on his terminal, which causes an
ellipsis (. . .) to be typed and the rest of the message
to be skipped.

The prompt portion of a message can usually not
be ignored because it remains in a buffer as part of
the user's next input. All prompts are recognizable
to the compiler as commands, with the question mark
treated as a blank. Hence, if PROJECT? is prompted
and the user types DOGWEIGHTS, the input to the
system is PROJECT DOGWEIGHTS. In fact, the sys­
tem forgets what it has typed out; it only looks at the
next input line to decide what to do next. If the user
wishes to ignore a prompt, he may back-space over
it, which causes it to be deleted, or he may push the
ATTENTION key which causes the current input line
to be ignored and a prompt of ? to be typed. Similarly,
in the case of some syntax errors, the compiler merely
prompts a corrected version of the statement. If the
user wants to use the corrected version, he merely types
carriage return, which causes the prompt to be used
as input.

Real time input/output was also designed to maxi­
mize user convenience. With the exception of the 270X,
which is still in the developmental stage, all real-time
input/output is generated by satellite computers, either
the ACME 1800 or the remote small computers. A com­
munication protocol has been established for all trans­
mission between computers. The protocol is designed

An Advanced Computer System for Medical Research 507

around the concept of a conversation between the main
computer and a satellite computer that can be initiated
by either party. Once initiated, the conversation con­
tinues until there is no more data to be transferred in
either direction. Because some satellite computers, such
as the 1800, may be processing several different sets
of input/output concurrently, provisions have been
made for several concurrent conversations between the
same pair of computers.

As far as the user is concerned, real-time input/out­
put is programmed in exactly the same way as data-
file input/output. Each real-time input/output path is
treated as a data set by the ACME system. The data
sets are catalogued in the same way as data-file data
sets and accessed by the same set of commands. Data set
attributes, catalogued with each data set, allow the
software to distinguish between real-time and data-file
sets. Conversion is automatically done by the ACME
software to provide compatability between satellite
computer data formats and ACME system data format.

The subroutine library consists of commonly used
subroutines for such operations as statistical analysis,
graph plotting, etc. Although some subroutines may be
written in the ACME compiler language, the majority
will probabily remain in FORTRAN or assembly lan­
guage, due to the higher object program efficiency that
results. The most commonly used routines will always
be core-resident, with direct linkage provided by the
ACME compiler. These are not re-enterable, so their
execution time must be small. Less frequently used
subroutines, or subroutines with long execution time,
will be dynamically loaded and assigned to individual
users. When these routines are no longer needed, the
memory they occupy will be released and made avail­
able to other users.

CONCLUSION

As of July, 1967, all of the hardware described in this
paper is operational, with the exception of the Sanders
Associates displays which have not been delivered yet.
Connection has been established between the 1800 and
two research laboratories. One small computer has been
connected to the system. The ACME compiler is almost
complete. Timing tests have indicated that its object
code efficiency compares favorably with that of similar
compilers. The resource allocation software is complete
and allows time-shared use of the system. The terminal
input/output routines also have been completed. The
data-file management routines allow only program stor­
age, due to a delay in IBM software support for the
data cell. The real-time input/output routines are in
an advanced stage of development, and currently al­
low primitive real-time input/output. The subroutine

library is partially complete, with work continuing to
expand its scope.

It is hoped that this paper will provide encourage­
ment to those who believe that a successful time-shar­
ing system is possible and is realizable by an organiza­
tion with limited resources.

At a time when many highly-touted time-sharing
systems are proving to be less than successful, the
ACME Project is quite proud of its accomplishments.
If there is any lesson to be learned, it is that a small
group, with specific and well defined goals and a
highly cooperative user community, can quickly and
effectively provide a needed service to that community.

ACKNOWLEDGMENTS

The planning work was sponsored by a Josiah Macy
Foundation planning grant and further funding has
been granted from NIH (Grant No. FR-00311) and
Macy Foundation. Much credit for these ideas and
procedures goes to other computer installations and
other people, notably project MAC at M.I.T., MED-
LAB at the Latter-Day Saints Hospital in Salt Lake
City, the Computer Center and ARPA project at
the University of California, Berkeley; University of
California San Francisco Medical School; U.C.L.A.
Health Sciences, etc., and of course the Computation
Center and the Computer Science Department of Stan­
ford itself.

REFERENCES

1 H D HUSKEY W WATTENBURG
A basic compiler for arithmetic expressions
Communication of the ACM January 1961

2 W KEESE H D HUSKEY
An algorithm for the translation of Algol statements
Proceedings of the IFIP Congress 1962

3 F J CORBATO et al
The compatible time-sharing system
MIT Press 1963

4 G WIEDERHOLD
A proposal for a simple system allowing direct access to
the computer
Internal Paper Berkeley Computation Center 15 May
1963

5 J H SALTZER
TYPSET and RUNOFF
Memorandum editor, MAC Memo 193-2 11 January
1965

6 G WIEDERHOLD
Student, a fast FORTRAN IV compiler
Internal documentation Berkeley Computation Center
1965

7 J SHARP C GRAM B PANZL
Student language manual, The language and the processor
Department of Electrical Eng and Computer Science
Berkeley 1 March 1966

508 Fall Joint Computer Conference, 1967

8 H BERG et al
Report of the SHARE Advanced Language Development
Committee 1 March 1964

9 A J SCHERR
Time sharing measurement
Datamation February 1966

10 G WIEDERHOLD
A summary of the ACME system
Proceedings of the ONR Computer and Fsychobiology

Conference Monterey 17 May 1966
11 G Y BREITBARD et al

ACME notes
Internal documentation Stanford Computation Center
ACME Facility November 1965 to present

12 V WIEDERHOLD
How to use PL/ACME
Document No 80-50-00 Stanford Computation Center
15 July 1967

