
UC Irvine
ICS Technical Reports

Title
Expanded delta networks for very large parallel computers

Permalink
https://escholarship.org/uc/item/9f873379

Authors
Alleyne, Brian D.
Scherson, Isaac D.

Publication Date
1992-01-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9f873379
https://escholarship.org
http://www.cdlib.org/

~i

f
-!..',
,,I

Expanded Delta Networks for --Very Large Parallel Computer§_

Brian D. Alleyne--r
~-

Department of Electrical Engineering
Princeton University

Princeton, New Jersey 08544

Isaac D. Scherson .
Department of Information and Computer Science

University of California
Irvine, California 92717

Technical Report #92-02

January 7, 1992

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Expanded Delta Networks for Very Large Parallel Computers+

Brian D. Alleyne
Department of Electrical Engineering

Princeton University
Princeton, New Jersey 08544

(714) 856-7713
alleyne@ics.uci.edu

Isaac D. Scherson
Department of Information and Computer Science

University of California, Irvine
Irvine, California 92717

(714) 856-8144
isaac@ics.uci.edu

Abstract

In this paper we analyze a generalization of the traditional delta network, introduced by
Patel [21], and dubbed Expanded Delta Network (EDN). These networks provide in general
multiple paths that can be exploited to reduce contention in the network resulting in increased
performance. The crossbar and traditional delta networks are limiting cases of this class of
networks. However, the delta network does not provide the multiple paths that the more general
expanded delta networks provide, and crossbars are to costly to use for large networks. The
EDNs are analyzed with respect to their routing capabilities in the MIMD and SIMD models
of computation.

The concepts of capacity and clustering are also addressed. In massively parallel SIMD com
puters, it is the trend to put a larger number J?rDCessors on a chip, but due to I/O constraints
only a subset of the total number of processors may have access to the network. This is in
troduced as a Restricted Access Expanded Delta Network of which the MasPar MP-1 router
network is an example.

Keywords: interconnection networks, delta networks, crossbar, hyper bar, clustering, ca
pacity, MIMD, SIMD.

•we gratefully acknowledge Tom Blank and Russ Tuck of Maspar Corporation for sharing with us the inner
workings of the Maspar MP-1 router network. Their contributions and discussions were invaluable to this work.

tThis research was supported in part by the Air Force Office of Scientific Research under grant number AFOSR-
90-0144 and NSF under grant number MIP9106949.

0

~i

1 Introduction

Multistage interconnection networks have been extensively investigated over the past 40 years.

Initially, they were used as building blocks for telephone switching networks [7, 5). Later, they

were studied as an alternative to the crossbar and spanning bus for interconnecting processors and

memories in multiprocessor systems. Many families of these networks were proposed and studied,

including the "Omega network" [14), the "Delta network" [21), and variants of the "Multistage

cube" networks [26, 3, 1). Many of these networks were eventually incorporated into MIMD and

SIMD parallel computers. Examples of these include the Maspar MP-1 [18] the IBM RP-3 [22],

the NYU Ultracomputer [8] and the GPlOOO by BBN Advanced Computers Inc. [4]. This paper

analyzes the Expanded Delta Network (EDN) which is a generalization of the traditional delta

network introduced by Patel [21]. EDNs share the digit controlled routing strategy of delta networks

so that no global controller is necessary to set up the switches of the network. However, unlike

delta networks, EDNs contain multiple paths (multipath) between any input and output. This fact

can be used to reduce conflicts or Non Uniform Traffic Spots (NUTS) [13] that occur within the

network.

The concept of.capacity (defined later) is similar to the concept of "dilation" [28, 29] in that the

networks are "multipath". However the number ~f wires between stages in a d-dialated network is

d times the number of wires of the equivalent stage of an EDN with the same number of inputs,

resulting in a much less space efficient network.

In Section 2 the Expanded Delta Network is defined and some of its properties are described.
;

Section 3 deals with the general performance of t'he EDN. Section 4 expands the analysis to that of

MIMD processor memory or processor systems. In Section 5 the EDN is used as a restricted access

network [31] in an SIMD environment. Concluding remarks are presented in Section 6.

2 Description of the Expanded Delta Network

This section is divided into three main portions: The characterization of the switch used in the

Expanded Delta Networks (EDN s), the characterization of the interconnection permutation between

stages, and the question of routing data through the network.

1

~I

The MP-1 massively parallel processor, produced by Maspar Corporation, uses a unique switch

in its router network called a hyperbar switch [6]. The generalized version of this switch is the

main building block of the Expanded Delta Network (EDN). A detailed analysis of this switch is

presented in [17].

The Hyperbar switch is defined as follows:

Deiinition 1 A hyperbar, denoted by H (a ~ b x c) is a switch that connects a inputs labeled

0, 1, 2, ···,a - 1 to b x c outputs labeled 0, 1, 2, · · ·, (b x c) - 1. The outputs are labelled such that

every group of c outputs has a label in the range [O to b-1]. There are b output groups (or buckets)

each with capacity c. A control digit d of base-b is supplied by each input. This digit indicates which

of the b output groups they are to be connected to. Since each of the b output groups contains only

c wires, if more than c inputs request to be connected to a particular output group, exactly c are

accepted and the rest are rejected (See Figure 1).

The degenerate case H (a ~ b x 1) is a traditional a x b cross bar. In Figure 2 we show a

H(8 ~ 4 x 2) hyperbar. In this case, only log2(4) = 2 bits are needed at each input to determine

the appropriate output bucket. A sample switch routing is shown in Figure 2. Note that some the

inputs to be discarded since their destination buckets were already full. Assuming that inputs are

prioritized according to their input label (0, 1, 2, ·; ·, 7), inputs 5 and 7 are discarded.

For simplicity we shall assume that a, b, care all powers of 2. However, the analysis can easily

be expanded to the more general case.

The hyperbar switch is the basic building bldck for EDNs which are defined as follows:

Definition 2 An EDN(a,b,c,l} is an (l + 1) stage interconnection network. The first O· · ·(l- 1)

stages consist of H(a ~ b x c) hyperbar switches, and the last stage consists of c x c crossbar (or

H (c ~ c x 1)) switches. All paths from any input to any output have constant length, and none of

the switches have unconnected terminals. All of the output terminals from one stage are connected

to input terminals of the next stage.

An EDN network will have (a/c)1c inputs and b1c outputs. At the output of the ith stage

(1 ~ i ~ l) there are (a/ c)1-ibic wires. The ith stage has (a/ c)1-ibi-I hyper bars, and the l + 1 stage

has b1 crossbars. Let the switches be named 0, 1, 2, ···from top to bottom (Figure 3).

2

~i

Block Representation of Hyperbar

Vl
:;
c..
.s
ca

H(a .. bxc)

0 ~
::J e
Cl

~ ·;:
0

b-1 .c

Crosspoint Representation of Hyperbar

Crosspoint Switch

b c-wire groups

Intersection of lines represents a crosspoint switch
=::::> Hyperbar contains abc crosspoints

Figure 1: A H(a--)- bx c) hyperbar

d=3

d•2

d-3

(/) d-1

1B.
,!;
OJ cf..2

d•2

d=O

d•3

Figure 2: A H(8 --)- 4 x 2) hyperbar

3

I

H(a .. b1c)

0

Cl)
1

+"" H(a .. b1c)
:J
a. 1 c
{.) ,.....,_
{.)

cu ..._

1

H(a .. b•c)

Stage 1

c
0

+:i
~

+""
:J
E
"-
CD a.
C'-

Hyperbars

H(a .. b•c)

0

H(a .. bac)

1

Stage 2

c
0
+:i
ctj
+""
:J
E
"-
Q)
a.
?--

Figure 3: An EDN(a,b,c,l)

4

H(a .. b1c)

0

H(a .. b1c)

1

H(a .. b1c)

Crossbars

Cl)
+""
:J
a.
+-'
:::J
0

, p
;o

Stage L Stage (L + 1)

To define the connectivity rule between stages we define a I permutation:

Definition 3 Permutation 1],k(Y) is defined on an n-bit label y as follows:

1) Fix the j least significant bits of the label

2) Left cyclic shift by k the remaining (n - j) bits

This function is related to the "segment shuffle" defined by Lenfant [16]. /o,l (0 ::; i < 2n) is the

well-known shuffle of 2n labels. 1;,log
2

(q) (0 ~ i < 2n) is a q-shuffie of 2n objects defined by Patel

(21]. /~,0 (0 ~ i < 2n) is the identity permutation.

At the output of stage i and the input of stage (i + 1), there are Wi = (a/ c)1-ibic wires. Let y

be any output of stage i, y E {O, 1, 2, · · ·, (a/c)1-ibic}, and let y be represented by a binary string

of length log2((a/c)1-ibic). Then y is connected to input z of stage (i + 1) if and only if

(1)

The generalized EDN is shown in Figure 3, and a specific instance is shown in Figure 4. Note that

at the lth stage, each of the b1 buckets are sent directly to a c x c crossbar.

Before proving that an EDN is indeed "connected" let us first illustrate how routing is performed

on EDNs. At every source a (l x log2 (b) + log2 (c)) destination tag is used for routing. At each

hyper bar stage, log2(b) bits are used for routing, and at the final c x c crossbar stage, log2 (c) bits

are used. Let the destination tag be written as D = d1-1d1_ 2 • · • d0 x where the di's are digits in

a base-b system, and x is a digit in a base-c system. After the destination tags pass through the

network, then some sources are connected to some destinations. At this point data is transmitted

through the network.

Routing in the EDN is performed as follows:

1. At stage i, (1 ::; i ~ l), the digit dr-i of the destination tag D = d1-1dz-2 · · · dax determines

which of the output buckets of a hyperbar a message should be connected to. For example,

if a particular message has dt-i = 1 at stage i, then that message should be routed to the 1st

output bucket of the hyperbar it is passing through. It does not matter on which of the c

wires of the output bucket the message is placed. Thus, there are c possible choices of output

at every stage. If more than c messages require to be routed to any particular bucket, only c

5

H(16-)4x4) H(16-)4x4) 4x4 crossbars

+ + i
so so

'-An thick lines crsist of 4 parallel wires

S1 S1
en Cf) :::J

:::J Cl.. Cl..
c :::J

0
~ ~ co co

S2 S2

S3 S3

d_O
2 bits 2bits

Where bits are retired for routing

Fig1ue 4: An EDN(16,4,4,2)

6

are accommodated, and the rest discarded. Since each d1-i is used once during the routing

and are never considered again, we liken this to "retiring" and say that bits dt-i of D are

"retired" at stage i.

2. At stage (l + 1), the messages are inputs to a c x c crossbar. At this point the digit x of the

routing tag D = dz-idz_ 2 • • • dox is used to determine to which output the message is to be

routed. Similarly, we say that bits x of D are "retired" at stage l + 1.

Lemma 1 An EDN(a,b,c,l) can connect any source S to any destination D = d1-id1-2 · · ·dox by

retiring dz-i of D at stage i (1 ~ i ~ l) and by retiring x at stage l + 1.

Proof: A similar approach to that used by Patel [21) to prove that a delta network can connect

any source to any destination is used for this proof.

Consider a source S that needs a connection to destination D. The destination address is

represented as dz-idz_ 2 • • • dox, where the di's are digits of a base-b system, and x is a digit in a

base-c system. Let S be represented as sz-i sz-2 · · ·sax' where the si' s are digits of a base-(a/ c)

system and x' is a digit in a base-c system. At each stage, let the switches be named 0, 1, 2, · · ·

from top to bottom. At the input and output of each stage, let the lines be named 0, 1, 2, ···from

top to bottom.

At the input to the network, S is connected to hyper bar number l S /a J. The input is now

routed to bucket dz-i, since dz-i is used for routing at stage 1. Thus, the source is connected to

line

where 0 ~ Ki < c. Ki cannot be determined since we do not know to which output of bucket dt-i

the source S will be switched.

In order to compute l S /a J, we make the observation that the least significant digit of S is x'

which is a digit in base-c, and thus consists of log2(c) bits, and the next significant digit, so, is

a digit in base-(a/c) which consists of log2(a/c) bits. Thus sax' has log2(a/c) + log2(c) = log2 (a)

bits. LS/aj is now computed by right-shifting S by log2 (a) bits, which is equivalent to dropping

sax' from S yielding sz-i sz-2 · · · s1.

7

And so

Now we have to compute Li, the input to stage 2. Using the definition of the interconnection

between stage 1 and stage 2, we get a line number:

Now, ((sz_ 1sz-2 · · ·s1)b+dz-1)c is strictly greater than c, and K1 is strictly less than c. This means

that the 'Y function which fixes the least log2(c) bits leaves the K 1 portion of L1 unchanged, and

cyclicly shifts the bit string ((sz-1s1-2 · · · s1)b + dz-1) by log2(a/c), giving ((sz_ 2sz_3 · · ·s1)ab/c +
s z-1 + dz-1 a/ c). Collecting these terms:

which is the input to stage 2. This line is connected to switch lLi/aJ of stage 2 and then routed

to output dz-2c + K2 (where 0 ~ K2 < c) of that switch and becomes line L2 where

Now

lLi/aJ = l((sz-2sz_3 · · ·s1)ab + dz-1a + sz-1c + K1)/aj

= (sz-2sz_3 · · ·s1)b + d1-1 + l(sz-ic + K1)/aJ

= (s1-2sz_3 · · · s1)b + d1-1

since (sz_1 c + K1) < a. Substituting into L2 we get

In general, after the ith stage, the input to the network is line

Since all di's are digits in base-b, this expression can be shortened to:

8

(0 ~ Kz < c)

-!.-',

"'

In particular, at the lth stage

Li = (d1-1d1-2 · · · do)c +Ki

At the final stage the message is sent to the l Li/ c J crossbar of the final stage, and routing in

the crossbar is effected by the last digit x in base-c. So,

Lout =(lLz/cJ)c+x

= (l((d1-1d1-2 · · ·do)c + K1)/cJ)c + x

= (d1-1d1-2 .. · da)c + x

= d1-1d1-2 · · · dox

Thus the input is routed to the required destination DQ .E.D.

Theorem 1 An EDN is always connected.

Proof: Follows constructively from Lemma 1 DQ .E .D.

(0 s; K1 < c)

Corollary 1 A renaming of the inputs of an EDN or a permutation of its inputs does not prevent

a source from connecting to destination D = d1_ 1dz_ 2 · · · dax.

Proof: By Theorem 1, an EDN(a,b,c,l) is always connected. If a path exists we can connect

source to destination D = dz_ 1di_ 2 • • • d0 x by Lemma 1, irrespective of where the message origi

nated. Thus renaming the inputs, or permuting}he inputs, only puts D = d1-1d1-2 · · · dox onto a

different input to the network. From this input it is routed according to the routing algorithm to

the appropriate destination. DQ.E.D.

Corollary 2 If the bits of D = dz_ 1d1-2 · · · dox are retired in a different order, say d/_i at stage i,

then the source with destination tag di-1 d1-2 · · · dox will be routed to destination D' = d/_1 d/_ 2 · · · dcix'.

Proof: The above statement is equivalent to saying that the bits o_f dt-l d1-2 · · · dox are re

ordered such that F(d1-1 d1-2 · · · dox) = d/_1 d/_ 2 · · · dcix' before being fed to the network. In this

case since the routing tag d/_1 d/_ 2 · • • dcix' is applied to the network, the input will be routed to

D' = d/_1 d/_ 2 · · · dcix' by Theorem 1. But D' = F(dt-1 d1-2 · · · dox) = F(D). Thus to retire the

9

aO

a1023

• so
•
•

• S1
• •

• S15 •
• • • •

so

S1

• ,S15
• •

4x7ssbars

• • •

•
•
•

• • •

Figure 5: An EDN(64,16,4,2)

10

• •
•

• • •

•
• •

ao

a1023

• • •
so

• S1
•
•

0-3
4-7

• S15 •
• • • •

so

81

• 815
• •

• • •
• • •

Inverse permutation
to that defined by the
re-arrangement of
the bits of routing tag

Figure 6: An EDN(64,16,4,2) modified to perform the identity permutation

11

t
,-&\
.,1

bits in different order, while preserving the destination D = dt-l dt_ 2 • · • d0 x, the permut<1 ti on p-l

must be performed at the output of the network. DQ.E.D.

To illustrate the usefulness of Corollary 2, consider the EDN(64,16,4,2) shown in Figure 5. This

network is incapable of performing the identity permutation in one pass. However, by retiring the

bits of the routing tag in a different order, and then adding an additional permutation stage to

compensate, the modified EDN in Figure 6 is obtained. It should be noted that these networks will

perform identically in the average case, while very differently for specific permutations.

Theorem 2 An EDN(a,b,c,l) has cl different paths from any input to any output.

Proof: At each stage i, digit dt-i in D = d1-1 d1-2 · · · dax determines to which bucket the source

is switched. However, it can be put onto any one of the c wires of the bucket, ie. the source can be

put onto wires d1-ic, d1-ic + 1, · · ·, d1-ic + (c - 1). Thus, there are c alternate paths that the source

can be switched to at each stage. Since this occurs in l stages., there are,c1 possible paths that the

source can take to any one output. DQ.E.D.

There are two special cases of EDNs worthy of mention. An EDN(a,b,1,1) is an ax b crossbar.

An EDN(a,b,1,l) is an a1 x b1 delta network [21]. In both of these cases, c = 1 and so by Theorem 2

there is a unique path from any input to any output.

3 General Analysis of EDNs

3.1 Cost of EDNs

The number of crosspoint switches (Cs(a, b, c, l)) required to build the network is a possible measure

of the cost of the EDN(a,b,c,l). This is a reasonable measure since the number of crosspoints give

an idea of the layout area necessary to realize the network. Thus, an a x b crossbar containing ab

crosspoint switches has an associated cost of ab, and an H(a-+ bx c) hyperbar with abc crosspoint

switches has a cost of abc. The EDN(a,b,c,l) consists of 1 stages of hyperbars, and one stage of

crossbars. For each stage i (1 ::; i < l), there are (a/c) 1-ibi-l H(a-+ bx c) hyperbars, and in the

final stage there are b1 c x c crossbars. In total, there are

l
l:) a/ c)l-ibi-1

i=l

_ (a/c) 1-b1

- (a/c)-b

12

(a/c)f-b

(a/c) = b

hyperbars and b1 crossbars. Thus the crosspoint switch cost of an EDN(a,b,c,l) is

C (a b C l) - (a/c)1-b1 abc + blc2
s ' ' ' - (a/c)-b

= lb1+1c + b1c2

(a/c)-j;b

(a/c)=b

(2)

Another measure of cost of the EDN(a,b,c,l) is the wire cost Cw(a, b, c, l), that is the number

of wires required to connect all the hyperbars and crossbars that constitute the network. This is

important, since this cost provides an estimate of PC board area, the number of pins and, in some

cases, the number of connections needed across the backplane. The number of wires between stage

i and i + 1 is (a/c)1-ibic. Thus, the total number of wires between stages is

l

°L(a/c)1-ibic
i=l

- (a/c)l-bl be
- (a/c)-b (a/c)-f;b

(a/c)=b

The number of inputs and outputs to the network is (a/ c)1 and b1c respectively. A wire is

counted for each of these. Thus, the wire cost of an EDN(a,b,c,l) is

()
(a/c)

1
b
1

· (/)l l Cw a, b, c,l =(a:/c):=b be+ a c c + b c (a/c) f::. b (3)

=(l+2)b1c (a/c)=b

3.2 Performance of EDN's

Theorem 1 showed that an EDN(a,b,c,l) is capable of routing any input to any output. However,

if many inputs require to be routed simultaneously, there is the possibility that some of the inputs

will not be routed. This occurs due to two reasons:

1. Two or more inputs may contend for the same output. In this case all but one of these inputs

will be blocked (not accepted).

2. Even if there is no contention for an output, an input may be blocked as it makes its way

through the network itself. This will not occur only in the special case where the EDN is a

crossbar. As a result, even if the inputs form a permutation (in which case a crossbar would

13

be able to route all inputs), in general there is no guarantee that all the inputs will be routed

by the EDN.

A cycle is defined as the time required for a request at any input to propagate through the

network to an output (if not blocked), plus the time for the corresponding message to propagate

through the network. It is assumed that the network is circuit-switched, and so there are no buffers

or queues in the network. At the beginning of each cycle, the network attempts to accommodate

all the requests presented at the inputs. Some of the requests are blocked, and so the number of

requests actually satisfied is a fraction of the requests issued. The probability of acceptance PA is

defined as the ratio of the expected number of requests satisfied per cycle to the expected number

of requests generated per cycle. We will proceed to derive PA for EDNs.

For the purpose of analysis, the following assumptions are made about the nature of the requests

generated:

1. inputs are uniformly and independently distributed over the outputs. Thus at each cycle, the

probability that any input should be connected to a particular output is the same.

2. At the beginning of each cycle, the probability that there is a request on an input line is r.

3. The requests which are blocked are ignored,· and do not affect the requests generated at the

next cycle. ie. the requests generated at each cycle are independent of the inputs blocked in

previous cycles.

Theorem 3 If the inputs to the network are uniformly and independently distributed over the

outputs, then the inputs to every hyperbar in the network are uniformly and independently distributed

over the output buckets of the hyperbars at stage i {l ~ i :::; l), and the inputs to the crossbars at

stage l + 1 are uniformly distributed over their outputs.

Proof: Each stage of the EDN is controlled by a distinct digit of the destination tag. In

particular, stage i (1 :::; i ~ l) is controlled by di, and stage l + 1 is controlled by c (destination

tag represented as in Section 2). The inputs to the network are uniformly and independently .

·distributed over the outputs, which implies that the destination tags are uniformly and indepen

dently distributed. This in turn implies that the digits di and c are uniformly and independently

14

distributed. Since the digits di are used as routing tags determine which output bucket of the hy

perbar the message is routed to, then the inputs to the hyperbars are uniformly and independently

distributed over the output buckets of the hyper bar. Since the digit c 1s used as as a routing tag

to the crossbars of the network, then the inputs to the crossbars are uniformly and independently

distributed. DQ .E .D.

We will now derive an expression for PA using Theorem 3. Let us consider a hyper bar H (a -r

b x c), in which the requests are independently and uniformly distributed over the output buckets.

For each of the a inputs of the hyper bar, the probability that there is a request is r. The probability

that a request is destined for any of the b output buckets is 1/b. Thus the probability that a request

originates on an input line and is destined for a particular output bucket is r/b. Given that there

are a inputs, each with probability r /b of requesting an output bucket,

the probability of e_xactly n requests for any bucket

0 for n >a

Since each bucket has a capacity of c, requests beyond c will be discarded·. Thus the expected

number of requests accepted per bucket is

which simplifies to:

Thus the probability that there is a request at an output of the hyper bar is E(r) / c.

Using Theorem 3, if Tin is the request rate at the inputs of any stage of hyperbars and Tout is the

request rate at the outputs, then Tin = E(rout)· In particular, Ti+i = E(Ti)/ c for 0 ::; i < l, ro = r.

·rz is the input to the c x c crossbar stage of the network. By Theorem 3, these inputs are uniformly

and independently distributed over the outputs of the crossbar. Since the probability of a request

at every input is r1, and by Theorem 3, these inputs are uniformly and independently d1stributed

over the outputs of the crossbar, the probability that there will not be a request at a particular

15

output by any of the c inputs is (1 - rtf c)c. So the probability that a message was routed is

1 - (1 - rtf c)c = Tjinal·

The probability of acceptance PA is defined as the ratio of the expected number of requests

routed per cycle ((number of outputs Xrfinal) = b1c X rfinal) to the expected number of requests

generated per cycle ((number of inputs xr) = (a/c)'c x r). Thus

P (r) = b
1
cxr[inal = (bac)

1
r1ir·nal

A (a/c) cxr (4)

where r 0 = r and for 0 ~ i < l

= (i - (i -~n + ~(~ -1) (:) cir (i - ~rn
r final =l-(1-rtfcY

In Figures 7,8 plots are presented which compare the performance of various EDNs. The

performance of a crossbar network is also included as reference. In Figure 7, all families EDNs

generated with 8 inputs 8 outputs hyperbars are featured. As expected, the EDN(8,8,l,*) which

· correspond to the family of delta networks performs the worse. In addition, as the capacity is

increased, the performance of the networks improves. The performance of the family of EDNs

generated by the 16 inputs 16 outputs hyperbars also performs better than the family of EDNs

generated by the 8 inputs 8 outputs hyperbars.

3.2.1 Permutation Routing

Let us now assume that the input requests to the EDN form a permutation on the outputs of the

network.

Lemma 2 If the input requests to an EDN form a permutation, there will be· no blocking at the

final two stages.

Proof: Since the input requests form a permutation, there will never be a contention for an

output of the network. The outputs of the last stage switches are also outputs of the network, and

so no contention will occur at these switches.

16

~(1)

0.8

0. 6

0.4

o. 2

Full Crossbar-+
EDN(8, 2,4, •) -+
EDN(8, 4 ,2, •) -&
EDN(B ,8,1, •) -

0 .__ ____ __. ____ -'-_______ ___._......_ ____i~--.......J

1 10 100 1000 10000 100000 la+06

Number of Inputs

Figure 7: Performance of EDNs with 8 input/output hyperbars

~(1)

0. 8

0. 6

0. 4

0. 2

Full crossbar -+
EDN (16, 2, 8, •)-+
EON (16 , 4 , 4 , •) -&-
EDN (16, 8, 2, *) -
EDN(16,16,l,•) ~

0 1--.-.. "'6MJ.__.-.... -&..--........ _.......,_ ___ ___......_..__.......,j.__.-.,

1 10 100 1000 10000 100 000 la+06

Number of Inputs

Figure 8: Performance of EDN's with 16 input/output hyperbars

17

Each of the b output groups of the second-to-la.st stage is connected directly to a c x c crossbar

switch. This c x c crossbar is connected directly to c outputs of the network. Therefore, if a

permutation is being routed, there will never be more than c requests for any c x c crossbar. Thus

there will be never more than c requests to each of the b output groups of the second-to-last stage,

and so all requests can be accommodated at the second-to-last stage. Thus there are no conflicts

in the last two stages. DQ.E.D.

Let us denote the probability of acceptance PA in the special case where the inputs form a

permutation as PAp· PAp can be derived from PA by modifying the equation for PA to take into

account that there will be no blocking in the last two stages by Lemma 2. Thus

(5)

where ro = r and for 0 ~ i < l - 2

((r.) a) c n (a) (r.) n (r.) a-n
1- 1 - ; +];(~ - 1) n ; 1 - ;

In the following two sections we turn our atte:ntion to computing systems in which EDN s are

likely to be imbedded, namely MIMD and SIMD machines.

4 Analysis of the EDNs in MIMD Computers

In this section a processor-memory multiprocessor system is assumed. Examples of such systems

are the Cedar System [12] and the NYU Ultracomputer [9]. These systems can support a maximum

of 1024 and 256 processors respectively. It is further assumed that each node has direct access to

the network.

A multiprocessor system now considered in which the processors share a main memory through

an EDN(a,b,c,l). Each processor is connected to an input port of the network, and each memory

module to an output port. At each cycle, a processor generates a request to any one of the output

modules with probability r. Such a system is shown in Figure 9. Under the assumptions of Section 3,

the expected bandwidth of the system is given by Equation(4), depending on the request rate r

18

f
.~--'.

·"

.. • .
ADN(a,b,c,I)

• • •

Figure 9: A Multiprocessor System

of the processors. However, a rejected request is generally not discarded, but submitted again on

the following cycle, until it is satisfied. Thi~ causes a net increase in request rate to the network,

and hence a decrease in network performance. We will now consider the magnitude of this effect

on network performance using the method described in [11].

Processors that have to resubmit their requests are considered blocked, since it is reasonable

to assume that they have to wait for the requested data in order to continue processing. At any

given time processors can be in one of two states, active (A) or waiting (W). Let qA and qw be

the steady state probabilities that a processor is active or waiting respectively, and PA_ (r) be the
- ~ .

steady state probability of acceptance of the network. Then the system can be described by the

Markov graph of Figure 10.

We will also assume that the resubmitted requests along with the new requests address the

memory modules uniformly, thus the assumption that the requests are uniformly and independently

distributed is still valid. Solving for qA and qw we obtain

qw

r + PA_ (r) - r PA_ (r)
r(l - PA_(r))

19

(7)

~i

r(1-~'(r))

P,:(r)

Figure 10: Markov graph for computing qA and qw

The request rate to the network is now r', where

r' = rqA + qw = r
(8)

and we have

(9)

where PA(r) is given by Equation 4. PA(r) can be computed iteratively from Equation 9 by

computing the following recursion until conversion:

pA1n+1(r) = P (, r)
A r + pAn(r) - rPAn(r)

(10)

with starting condition P.4°(r) = PA(r)

from which r', qA and qw can be determined usi¥g Equation 8.

In Figure 4 we see the impact that resubmitting rejected requests has on the network perfor

mance in two typical cases.

The efficiency of the shared memory MIMD system in which processors share a main memory

through an EDN(a,b,c,l) over an MIMD system in which any memory request will always be satisfied

is given by

(11)

The extension of the above model to processor-processor interconnection in MIMD systems is

quite straightforward, and is not expanded upon in this paper.

20

~i

~(.5) or ~(.5)

0. 8

0. 6

0. 4

0. 2

ADN(l6,4,4,•) n>jected requests ignored -+
ADN(l6,4,4,•) rejected requests :-esubmittad -+
ADN(4,2,2,•) rejected requests ignorad -a
ADN(4,2,2,•) rejected requests resubmittad -

01--...................... .J-....................L.... __,_ __,,__,_iL-..w
1 10 100 1000 10000 100000 let06

Number of Inputs

Figure 11: Effect of resubmitting rejected requests on PA in EDNs

5 Analysis of the EDNs in SIMD Computers

Currently available Massively Parallel computers such as Thinking Machine's CM-x [10], MasPar's

MP-1 [18] and AMT's DAP [20] have proven the feasibility of systems in which there are more

than 4K processing elements (PEs). Interprocessol communication can be performed in one of two

methods, each of which have their own dedicated communication network. Local communication

is supported by a mesh like interconnection stn,icture, while global communication is generally

performed by a generalized router. The router of the CM is based on a hypercube structure,

while that of the MasPar is based on the restricted delta network described in this paper. In

MIMD architectures different processors may require communication at different times, and so the

"goodness" of the network is based on degree, diameter and bandwidth. However, in an SIMD

system all (or at least a good portion) of the processors usually want to communicate at the same

time. Hence the goal of the router is to route an arbitrary permutation in a reasonable time.

The Connection Machine CM-1 [10] and the Maspar MP-1 [18] have chips containing 16 or 32

processing elements respectively. With the ability to pack more and more processing elements per

processing chip, the I/O bottleneck between processing elements and the interconnection network

is only aggravated. Already systems are available with 64K PEs. As the number of processing

elements continues to grow, it will most certainly be impractical (or impossible) to build inter-

21

connection networks where the network size is equal to the number of PEs. One solution to this

problem is clustering which is used in the architecture of the MasPar MP-1 system, in thinking

Machine's CM-x, and the proposed P 3 system [24, 2, 25]. In clustering, a restricted access net

work is used where a group of processing elements (a cluster) ,as opposed to a single processing

element, has access to the network at any given time. This has been studied in the case where

the interconnection network is a crossbar, Clos or Benes Network[31]. Much research has been

done on permutation routing on multistage networks [5, 14, 15, 27] as well as on static networks

[9, 19, 23, 30] but all these research efforts assume that the network size (i.e., the number of its

input terminals) is equal to the number of processors in the system.

We now generalize our analysis of EDNs to systems which incorporate clustering. We will

compare the performance of. the proposed augmented delta network with that of a crossbar in a

restricted access system when performing arbitrary permutations. Random permutations occur in

SIMD in cases where the communications are data dependent.

5.1 Restricted Access EDNs

We refer to a restricted access augmented delta network and the associated processing elements as

a RA-EDN system. The RA - EDN system consists of p clusters and an interconnection network

of size p. Since the number of inputs and outputs of the EDN are the same, the EDN used can

be repre.sented as EDN(bc,b,c,l), with p = b1c. Each cluster has q processing elements, a single

input port (I) and a single output port (0). For convenience, the clusters are labeled 0, 1, ... ,p- 1

and the input and output ports of cluster i ar~ denoted Ii and Oi and are assumed to be the

input terminal i and output terminal i of the network, respectively. The processors in each cluster

are locally labeled O; 1, ... ,q-1. Thus, every processor in the system is globally labeled with two

digits xy indicating that it is processor y in cluster x, where 0 :::; x :::; p - 1 and 0 :::; y :::; q - 1.

In decimal notation, the processors are labeled 0, 1, ... , N - 1, where N = p x q and the decimal

label of processor xy is xp + y. A RA - EDN system so parameterized and labeled is denoted

RA - EDN(b, c, l, q) (Figure 12).

Routing a permutation f of the set SN= {O, 1, ... , N-1} in a system of N processors (0, 1, ... , N-

1) consists of delivering a message from processor i to processor f (i) for every i = O, 1, ... , N - 1.

rn· RA-EDN(b,c,l,q), at most one message from each cluster can be sent at every network cycle (a

22

RA-AON with p input/output ports

0 p-2 p-1

• • •
PE8 PE~ PE~2 PE~1

PEb PE~ PE~2 PE~1

• • • •
• • • • • • •

• • • •
PE3°1 PEt PEr,:1 PEP:.

1
1

pq PEs

Figure 12: Restricted access RA-EDN System

23

~i

network cycle is the time needed to route a permutation of Sp in the network of size p). As there

are q processors (and thus messages) in every cluster, routing J requires at least q network cycles.

Furthermore, a schedule is needed to determine which processor in each cluster is to send at every

cycle. Although it is be desirable that the schedule guarantees that at every cycle the destinations

of the selected processors belong to mutually distinct clusters so that the resulting communication

pattern is a permutation executable by the network in a single cycle, this schedule can be very

expensive to compute [31] even when the network is capable of performing arbitrary permutations.

Thus we assume a random schedule where at every cycle, any processor whose message is not yet

delivered is chosen from each cluster at random. It should be noted that a random schedule on a

fixed permutation is equivalent to a fixed schedule on a random permutation. If there are conflicts

in the network, then some messages will not be delivered and will have to wait for a subsequent

cycle.

At any cycle, at most one processor with an undelivered message is selected per cluster. The

selected processor in every cluster i is then put through a q-to-1 multiplexor in the output register

oi, and the destination address of the selected processor is expressed in its 2-digit form (say XiYi)·

Xi is used as a header and Yi is appended as a trailer. Then, the headers (xi)'s are used to establish

a path between the inputs and outputs of the network of RA-EDN(b, c, l, q). If a path between an

input and output cannot be established due to conflicts in the network, then the affected processor

is deselected. This processor does not participate further in the network cycle. The trailer Yi in

cluster Xi is now used to select the local processor of global label XiYi through a 1-to-q multiplexor.

At this point a path exists between certain selected processors and their destinations, and messages

can be forwarded to their final destinations. Thes~ cycles are repeated until there are no undelivered

messages.

We are interested in the time required to perform a -typical permutation (between the pq pro

cessors), as opposed to memory bandwidth, waiting time and probability of acceptance. In the

remainder of the paper, we will discuss how the RA-EDN system with an augmented delta network

would perform in an SIMD environment.

Conflicts only occur through the EDN, and not after an input has arrived at the destination

cluster. Thus the trailer Yi need not be considered in the analysis. We have assumed for the purpose

of analysis that we are dealing with a random permutation. Thus the headers Xi which are used as

24

the routing tags of the EDN are uniformly although not independently distributed. However the

larger q is, the more closely it approximates a uniform and independent distribution. At the first

cycle, there is an output from each cluster, and there is a request at each input of the network.

Thus r = 1, and the probability of acceptance PA(l) can be worked out by Equation(4). In this

case, it is the fraction of inputs that were routed. The inputs that were not routed are still waiting

in the respective clusters to be routed again. r remains at 1 at least for q cycles, and very close to 1

until there are on average only one processor per cluster with an undelivered message e. Thus the

average time to have less than one processor per cluster with an undelivered message is q/ PA (1).

At this point there are on average P* (1- PA(l)) processors with undelivered messages, and the

probability of a request on any given input is r = (P* (1- PA(l)))/p = (1- PA(l)). Call this first

r, r 1 . Using this value of r, there are p * (1 - PA(r1))(l - PA(l)) = p * (1 - PA(r1))r1 processors

with undelivered messages after the following cycle, giving r2 = (1 - PA (r1))r1 . This is continued

until (rj x p) < 1 for some j, say J. At this point it can be assumed that all data can be routed

in the following cycle.

Thus the expected time to perform the permutation is:

q/ PA(l) + J

where ro = 1

Tj+I = (1- PA(rj))rj

and J is the least value of j + 1 such that Tj+IP < 1

For purpose of illustration, suppose that we have a RA-EDN(16,4,2,16) system, ie., a system

with a two stage EDN, and 1024 clusters of 16 processors each. In this system PA (1) = .544. Solving

the recursion above gives a J of 5. Thus the expected time to route an average permutation will

be about 16/ .544 + 5 = 34.41 network cycles.

6 Conclusions

The Delta network developed by Patel [21] had a much better performance to cost ratio than

the traditional crossbar. However, these networks have a unique path between every input and

output, and therefore suffered from internal conflicts which reduced performance. So, even though

the performance to cost ratio was much higher than the crossbar, the performance relative to the

25

crossbar fell off rapidly with network size.

The Expanded Delta Network describes a family of networks of which the crossbar and the

delta networks are specific cases. Members of the family of EDNs exhibit similar performance

to crossbar switches for a given size network, but with a cost approximating that of the delta

network. In addition, the performance of these networks in an SIMD and MIMD environment is

also discussed.

The router network of the MasPar MP-1 computer with 16K PEs can shown to be logically

equivalent to the RA-EDN(16,4,2,16) [6].

References

[1] G.B. Adams III and H.J. Siegel, The extra stage cube: a fault-tolerant interconnection network

for supersystems, IEEE Transactions on Computers, Vol.,C-31, No. 5, pp. 443-454, May 1982.

[2] B.D. Alleyne, David-A. Kramer and Isaac D. Scherson, A bit-Parallel, word-Parallel, massively

Parallel Processor for Scientific Computing, Frontiers of Massively Parallel Processing, pp.

176-185, 1990.

[3] K.E. Batcher, STARAN Series E, 1977 International Conference on Parallel Processing, pp.

140-143, August 1977.

[4] Inside the GP1000 (Cambridge, Massachusetts: BBN Advance.cl Computers Inc., 1988)

[5] V. E. Benes, Mathematical theory on connecting networks and telephone traffic, Academic

Press, New York, 1965.

[6] T. Blank, R. Tuck, Personal Communications, MasPar Computer Corporation, 1991.

[7] C. Clos, A study of non-blocking.switching networks, Bell System Technical Journal, Vol. 32,

pp. 406-424, 1953.

[8] A. Gottlieb et al., The NYU Ultracomputer - Designing an MIMD shared-memory parallel

computer, IEEE Transactions on Computers, Vol. c-32, No. 2, pp. 175-189, February 1983.

[9] A. Gottlieb and C. P. Kruskal, Complexity Results for Permuting Data and Other Computa

tions on.Parallel Processors, Journal of the ACM, Vol. 31, No. 2, pp. 193-209, April 1984.

26

(10) D. Hillis, The Connection Machine, MIT Press, Cambridge, Mass., 1986.

[11) K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing, Chapter 7, Section

7.2.4, McGraw-Hill Press, 1984.

[12) D.J. Kuck at al., Parallel Supercomputing today and the Cedar approach, Science, Vol. 231,

pp. 967-974, February 1986.

[13) T. Lang and L. Kurisaki, Nonuniform Traffic Spots (NUTS) in Multistage Interconnection

Networks, Proceedings of the International Conference on Parallel Processing, pp. 191-195,

August 1988.

[14) D. K. Lawrie, Access and Alignment of Data in an Array Processor, IEEE Transactions on

Computers, C-24, pp. 1145, 1155, Dec. 1975.

[15) K. Y. Lee, A New Benes Network Control Algorithm, IEEE Transactions on Computers, C-36,

pp. 768-772, May 1987.

[16) J. Lenfant, Parallel Permutations of Data: A Benes Network Control Algorithm for Frequently

Used Permutations, IEEE Transactions on Computers, C-27, pp. 637-647, July 1987.

[17) S. Liew and K. Lu, Performance Analysis of .flsymmetric Packet Switch Modules with Channel

Grouping, Frontiers of Massively Parallel Processing, pp. 668-676, 1990.

[18) MasPar Computer Corporation, MasPar Parallel Application Language (MPL) Users Guide,

Software Version 2.0, MasPar Computer Corporation, Sunnyvale California, 1991.

[19) D. Nassimi and S. Sahni, An Optimal Routing Algorithm for Mesh-Connected Parallel Com

puters, J. ACM, Vol. 27, No. 1, pp. 6-29, Jan. 1980.

[20) D. Parkinson, D.J. Hunt, K.S. MacQueen, The ATM DAP 500, Proceedings of the thirty-third

IEEE Computer Society International Conference, pp. 196-199, 1988.

[21) J.H. Patel, Performance of Processor-Memory Interconnections for Multiprocessors IEEE

Transactions on Computers, Vol. C-30, No. 10, pp. 771-780, October 1981.

[22) G.F. Phister at al., The IBM Research Parallel Processor Prototype (RP3): introduction and

architecture, 1985 International Conference on Parallel Processing, pp. 764-771,August 1985.

27

[23) C. S. Raghavendra and V. K. Prasanna Kumar, Permutations on Illiac IV-Type Networks,

IEEE Transactions on Computers, Vol. C-35, No. 7, pp. 662-669, July 1986.

(24) I.D. Scherson, D.A. Kramer and B.D. Alleyne, A Fine-Grain bit-Parallel, word-Parallel,

massively-Parallel Associative Processor, International Conference on Parallel Processing, Vol.

1, pp. 541-544, 1990.

[25] I.D. Scherson, D.A. Kramer and B.D. Alleyne, Bit Parallel Arithmetic in a massively Parallel

Associative Processor, IEEE Transactions on Computers, to appear.

[26] H.J. Siegel and R.J. McMillen, A multistage cube: a versatile interconnection network, Com

puter, Vol. 14, No. 12, pp. 65-76, December 1981.

[27] H.J. Siegel, Interconnection Networks for Large-Scale Parallel Processing, Lexington Books,

1985.

[28] T.H. Szymanski and V.C. Hamacher, On the Permutation Capability of Multistage Intercon

nection Networks, IEEE Transactions on Computers, Vol. C-36, No. 7, pp. 810-822, July 1987.

[29] T.H. Szymanski and V.C. Hamacher, On the Universality of Multipath Multistage Intercon

nection Networks, Journal of Parallel and Distributed Computing, Vol. 7, No. 3, pp. 541-569,

December 1989.

[30] L. G. Valiant, A Scheme for Fast Parallel Communication, SIAM Journal on Computers, Vol.

11, No. 2, pp. 350-361, May 1982.

[31] A. Youssef, B.D. Alleyne, I.D. Scherson, Permutation Routing in Restricted Access Networks,

IPPS 1992, to appear.

28

