Check for
Updates

An Efficient Algorithm for a Task Allocation Problem

A. BILLIONNET

CEDRIC, Institut d’Informatique d’Entreprise, Evry, France

M. C. COSTA

CEDRIC, Conservatoire National des Arts et Métiers, Paris, France
AND

A. SUTTER

France Telecom, Issy-Les-Moulineaux, France

Abstract. This paper presents an efficient algorithm to solve one of the task allocation problems. Task
assignment 1 an heterogeneous multiple processors system is investigated. The cost function 1s
formulated 1 order to measure the intertask communication and processing costs in an uncapacited
network. A formulation of the problem in terms of the minimization of a submodular quadratic
pseudo-Boolean function with assignment constraints is then presented. The use of a branch-and-bound
algorithm using a Lagrangean relaxation of these constraints 1s proposed. The lower bound 1s the value
of an approximate solution to the Lagrangean dual problem. A zero-duality gap, that is, a saddle point,
is characterized by checking the consistency of a pseudo-Boolean equation. A solution 1s found for
large-scale problems (e.g., 20 processors, 50 tasks, and 200 task communications or 10 processors,
100 tasks, and 300 task communications). Excellent experimental results were obtained which are due
to the weak frequency of a duality gap and the efficient characterization of the zero-gap (for practical
purposes. this 1s achieved 1n linear time). Moreover, from the saddle point, 1t is possible to derive the
optimal task assignment.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems
—modeling techniques, D 4.1 [Operating Systems] - Process Management—multiprocessing; D 4 7
[Operating Systems]: Organization and Design—distributed systems; G.2.1 [Discrete Mathematics}:
Combinatorics—combinatorial algorithms

General Terms: Algorithms, Design, Measurement, Performance

Additional Key Words and Phrases Branch-and-bound algorithm, interprocessor communication.
Lagrangean relaxation, quadratic 0—1 optimization, task allocation

Authors’ addresses: A. Billionnet, CEDRIC, Institut d’Informatique d'Entreprise, 18 Allée Jean
Rostand. 91025 Evry Cedex, France; M. C Costa, CEDRIC, Conservatoire National des Arts et
Meétiers, 292 rue Samnt Martin, 75141 Paris Cedex 03, France: A. Sutter, France Telecom, Centre
National d’Etudes des Télécommunications., CNET/PAA /ATR, 38-40 rue du Général Leclerc, 92131
Issy-Les-Moulineaux, Cedex, France.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machimery. To copy otherwise, or to republish, requires a fee and/or specific permussion.
© 1992 ACM 0004-5411 /92 /0700-0502 $01.50

Journal of the Association for Computing Machinery, Vol 39, No 3, July 1992, pp 502-518

http://crossmark.crossref.org/dialog/?doi=10.1145%2F146637.146646&domain=pdf&date_stamp=1992-07-01

An Efficient Algorithim for a Task Allocation Problem 503
1. Introduction

An important problem that arises in distributed computer systems is the
so-called task allocation problem. Many heuristic approaches that provide
suboptimal solutions have been attempted in a number of studies (3-7, 9-13,
15, 16]. However, for practical problems, it is difficult to evaluate how
accurate these solutions are, because one does not know efficient algorithms
that generate an exact solution. Indeed, up to now, all the exact allocation
algorithms were limited to very-small-sized problems.

We describe in this paper an exact algorithm applicable to large-sized
problems. It has been developed to solve this task allocation problem in a
distributed computer system that meets the following specifications:

a) the processors of the system are heterogeneous. A single program module, if
executed on different processors, will therefore require different amounts of
running time;

b) identical communication links are used by the processors for message
transmission. This means identical messages, even if transmitted through
different communication links, will have identical transmission times;

¢) the capacities of processors and links are assumed to be unlimited.

In the case of a two-processors system, it has been shown that the optimal
assignment may be found very efficiently [17] by a polynomial-time algorithm.
However, for an arbitrary number of processors, the problem is known to be
NP-complete [10].

In Section 2 of this paper, we present a precise definition of the task
allocation problem and we formulate it as the minimization of a quadratic
pseudo-Boolean function with linear constraints. In Section 3, we study the
Lagrangean dual problem and we show how it can be written as a continuous
linear program. In Section 4, we propose an algorithm for computing an
approximate dual solution and in Section S, a procedure for testing the
nonexistence of a duality gap (i.e., is the lower bound, computed in Section 4,
actually equal to the optimum?). In Section 6, we describe the task assignment
algorithm. It is of the branch-and-bound type that makes use of the previous
theoretical results. Experimental results for a number of pseudo-randomly
generated test cases are tabulated. It appears that our algorithm is applicable to
large-size problems (e.g., 20 processors, 50 tasks, and 200 pairs of communi-
cating tasks or 10 processors, 100 tasks, and 300 communicating tasks).

2. Problem Definition and Modeling

Let P={P,, P,,..., P,} be the set of the nonidentical processors of the
distributed system. A distributed process is defined as the set of tasks T =
{T,, T,,...,T,} tobe run on the distributed system. Some of these tasks have
to communicate. These intertask communications are represented by the graph
G=({1,...,n}, U) where [i, jleU if and only if tasks 7, and 7,
communicate with each other.

Let

¢, ([t, t1eU) be the communication cost between two tasks 7,€T and
T, €T if they are assigned to different processors. We assume that the
communication cost between two tasks executed by the same processor is
negligible;

q,, (te{l,...,n}, pe{l,..., m}) be the execution cost of task 7, when

504 A. BILLIONNET ET AL.

it is assigned to processor P,
, (tef{l,...,n}, pe{l,..., m})be the decision Boolean variable that is

equal to 1 if task 7, is assigned to processor P, and 0, otherwise; 1 — x
is denoted by X,

Xy

tp

We can now formulate the 0-1 programming problem to be solved:

m

Min Z Z dipX, > 2 Cyx

t=1 p=1 t.t’suchthat p=1

(rtlet i<t

m 2.1
subjectto Y x,=1 (t=1,....n) (2.1)

p=1

e {0,1} (t=1,....,n;p=1,....m).

The first summation term of the objective function represents the global
processing cost; the second the intertask communication costs. The constraints
are assignment constraints; that is, each task must be assigned to one and only
one processor. Our purpose is to make the best use of resources in this
distributed system, that is, for a given distributed process to minimize execution
and communication costs. We do not therefore take into account precedence
relationships among tasks. In the distributed system considered, the transmis-
sion cost of a given message between two processors does not depend upon
these processors because either the network is a completely meshed network or
it is a local network, and the differences between the costs are negligible. The
cost of communication between two modules assigned to different processors is
not therefore a function of the processors to which the modules are assigned.

Let us show that Program (2.1) can be stated as the minimization with
constraints of a pseudo-Boolean function whose coefficients of the nonlinear
terms are negative. Replacing X, , by 1 — x,., and denoting

ltp = qtp + Z Ctt’
t" such that
[r.t]elU, r<t’

Program (2.1) can be written as follows:

m

Min Z Z [tpxtp - Z z Cip X
t=1 p=1 t,t’ suchthat p=1
[£,teU.t<t’
m 2.2
subjectto Y X, =1 (t=1,....n) (2.2.1) 22)
p=1
€{0,1} (t=1....,n;p=1,...,m).

It is known [14] that the minimum of the objective function in (2.2), without
constraints, can be efficiently computed by using a maximum-flow algorithm on
a bipartite graph. It seems natural. therefore, to consider the classical La-
grangean dual problem of (2.2) obtained by dualizing the assignment con-
straints. That will be considered in the following section.

Example. Let us consider a task allocation problem with three processors
and four tasks. Figure 1 gives the execution costs and the intertask communica-

An Efficient Algorithm for a Task Allocation Problem 505

tion graph including the communication costs. The primal problem is

Min x) + 12x, + 16x,5 + 17X, + 8xy, + 9x,; + 10x5,
+3x3 + X33+ 3x,, +4x, + x5 — 10x,,x,, — 10x,, X,
—10X3043 = 225,04 — 2Xp Xy — 2Xp3 X5 — 5Xp Xy,
=5X5 X3 = SXp3 X5,

3
subjectto »_ x, =1 (t=1,2,3,4)
p=1

x,,€1{0,1} (t=1,2,3,4; p=1,2,3)

3. The Lagrangean Dual Problem

The solution of the Lagrangean dual problem gives a lower bound for the
primal problem (2.2), which will be used in a branch-and-bound algorithm. Let
us associate the Lagrange multipliers 7, € R (¢ = 1,..., n) with the constraints
(2.2.1). The Lagrangean function is:

L(x,r) = — Z T, + Z 2_: (ltp + 7r,)x,p
m
- Z Z Corr xtpxt’p

t,t" suchthat, p=1
[t,t1eU.t<t’

with 7eR” and x€e {0, 1}" ™.
Then, the Lagrangean dual problem is:

LD*=Max[Min L(x,w)].

7eR” Lxe{0,1}" "™

First, we show that, without loss of generality, we can suppose that all the
linear terms of L(x,) are positive.

Lemma 3.1
LD* = Max | Min L(x,r)].
7 €R” such that L xe{0,1}" "
lip+m,=0
(t=1,..., n)
(p=1,..., m)

Proor. Let LD* = L(x™*, 7*) where x* is an optimal solution of

Min L(x, 7%

xe{0,1}" ™
with
£
Lipy T Ty < 0.
Let
Y * * *
= (7r1,...,7rto_1, —lt0p0,7r,0+1,...,7rn).

506 A. BILLIONNET ET AL.

P P P
1\\

T T 1 2 &

(2) 4 1
T 10 1 2

T 2
2 T 10 3 1

(5) . 3
T 3 4 1

3 4

(a) ()]

Fic. 1. (a) Task graph with intertask communication costs. (b) Execution costs

Now, we prove that

LD* = Min L(x.7).
xe{0,1}" "

Since /, , + 7r, < 0 and ¢, 2 0, we get xy, = 1. Moreover, smce Lip
7, = 0. we can suppose that yr *p, = 1 for an optimum solution y* of

Min L(x,).
xe{0,1}" ™

For all x in {0, 1}"™ with

m
= 1’ L(X, 71') - L(X’ W*) = Z - (ltopo + WZ)X%[] = 0.

xtopo 1
Pp*po
Then
Min L(x,w) = Min L(x,)
xe{0,1}" " xe{0,1}" ™"
such thatx, , =1
= Min L(x,7*) = LD*. (I
xe{0,1}" ™
such that x, , =1
For any = in R", such that / , +7rt 0 (t=1,...,n and (p=
1, ..., m), the Lagrangean function is a "‘positive- negatlve one. It has been

proved [14] that minimizing such a function can be performed polynomially via
maximum network flow computation. Let us now describe the network R,
associated with the problem

Min L(x, 7).
X
The network R, is defined as follows: the vertices are the source §, the sink
f and the two set of vertices X ={%,:t=1,....n p= 1,...,my},
—{xx e, 'leUe<t'yp=1,....m}.

The flow on the arc (X, X, %X,) (resp (X, ,, X;,%,,)) is denoted by ¢/,
(resp., ¢Z,). On Figure 2, the upper-capacity bounds are indicated between

An Efficient Algorithin for a Task Allocation Problem 507

Y

>

square brackets. By using Rhy’s results [14], it is easy to prove that

n
Min L(x,7)=—-> m+V(¢,)—p- D ¢
xe{0.13 ™ r=1 i tz/']séllcjh fhat,

where ¢, is a maximum flow on R, and V(¢,) the value of this flow.
Moreover, a solution x™ is given by the labeling algorithm of Ford and
Fulkerson [8] in the following way: x;"p = 0 if the vertex X,, is labeled (+) or
(=), and x7, = 1, otherwise.

Therefore, the Lagrangean dual problem can be written as:

n
*
LD" = Y Max - T, + V(o) —p- > Cor
meR” such that /,,+ 7, =0 t=1 ¢.# such that
r=1,..., n) [t.t]eU. t<t’

and ¢, max flow on R

This last problem can be written as the following linear programming problem:

n m
Max - Z LY + Z Z (d)tpt' + ¢z1’71 - Ctt’)
t=1 t,t’suchthat p=1
[£,telU,t<t’
subjectto ¢f. + ¢Z, < c,,
([t.t]eUst<t;p=1,...,m) (3.1.1)
-7, + Z oL =1/,
t’ such that
[z,¢1el
(t=1,...,n;p=1, , m) (3.1.2)
£ =20, m,eR
(p=1,....m[t,t|eU;t=1,...,n)

(3.1)

508 A. BILLIONNET ET AL.

Lemma 3.2. There exists an optimum solution to (3.1) such that
oL + ol =c([t.t]eUt<t;p=1....,m).
Proor. Let (¢,) be an optimum solution to (3.1) with ¢5, + ¢/% < ¢

and € = ¢, , — (¢ + &f5) with € > 0.
Let us consider (¢, 7} such that:

toth

[. LA . —
T, =T, € T, = T, (t#tt=1,...,n)
Py — po, M J 2 p
Prot folp + e P = d)tt’
J 2 p— Po J 2 p
Pirt, = ¢’z510 Cri = bry

([t.0leUst<t;p=1-m[t, '] # [ty 1] or p # py).
It is clear that (¢, 7') is an optimum solution to (3.1) with
‘pt[(:?é + SO[??O = Croty o

By Lemma 3.2, the linear programming problem (3.1) can be simplified and
written as:

n
Max -3
=1
subjectto of. + ¢f, =
([t.t]eUst<tsp=1....,m) (3.2.1)
-7, + Z d)fj,sl,p
t’ such that
[7,F]el
(t=1,...,m;p=1,...,m) (3.2.2)
¢f =20.m,eR
(p=1,....m;[t,0|eU;t=1....,n)

(3.2)

Example (continued). R is represented in Figure 3. The optimum solution
to (3.2) is given by m = (=5, —5, 0, 1) and the flow ¢ which is indicated on
the figure (between parentheses). Therefore, the optimum value of the La-
grangean dual is 9 and by Ford and Fulkerson’s labeling algorithm, we get
X[= X4 = X43 = X3 = X33 = 1, the other variables being equal to 0. Let us
note that this solution is not a primal one.

4. Approximate Solution to the Lagrangean Dual Problem

We have seen that the optimum dual solution can be computed as a linear
programming problem (see (3.2)). Unfortunately this program involves a huge
number of variables and constraints. Indeed for a primal problem with 20
processors (m = 20), 50 tasks (n = 50), and 200 intertask communications
(|U| = 200) the program (3.2) includes 8050 variables, 4000 constraints of
type (3.2.1), and 1000 constraints of type (3.2.2). Therefore, we have prefered
a suboptimal procedure which uses the specificity of R . From Lemma 3.2, for

509

An Efficient Algorithm for a Task Allocation Problem

4y jo odwexo Uy ¢ OLI

(@ev, . (2)
o~ (2)
(2)zv_ 4 (5)
($) €€ X
§) €e_¢€2 =
(0) 1% 4 (p)
hJ

{v]

(1)
(11
£ {2)
+~ (€]
{0)

(o) mx
+~ "[o1]
g

4o
(p)EC_ o (b)

.

0 ~ [¥]
(greze (£)
X
0) -~ " [g]
Amvﬁmxﬁ (L)

27+~

(01) €¥_€T

X X
(01} +~ ~ €1
(0T) 2v_21 X
+x b4 (0T) +~
1
(0T) 1% 11 X
o1) X X (L) -~
b 4
(9} ~ " (9]
[o]
X X

510 A. BILLIONNET ET AL.

any w, we only consider the maximum flow ¢_ on R_, which saturates the
arcs incident to the sink f¢. Therefore,

Min L(x,w)=—> m,
xe{0,1}" ™ =1
and we denote this quantity by L(w).

The proof of the following proposition gives a way for constructing
(6 . T) pept. gy with L(x*F1) > L(x%).

Prorosmrion 4.1. Let ¢ be a max flow on R_ and X = {x
l,...,m}. If there exists t, in {1, ..., n} such that all the vertices ofX
are labeled by the Ford and Fulkerson algorithm, then there exists a dual
solution (¢’, 7’y such that L(x") > L(x).

Proor. Forall pin {l,..., m}, X, , is labeled by (+) or ().

Case 1. X, , is labeled by (+). Let ¢, be the residual capacity of (3, X, ,)
that is /, , + m, minus the flow on this arc. We have ¢, > 0.

Case 2. X, , is labeled by (—). In this case, one can find a path from § to
X, ,p like it is presented in Figure 4. The interesting flows are indicated between
parentheses

Let us denote

e, =Min((l,, +7,) — ¢, Min (s)).

We have €, > 0. Now let

e= Min (e,):
p=1t, . m
we have e > 0. For all vertices of X labeled by (—), the flow ¢ is modified
as indicated by Figure 5.

Let qb be the new flow obtained. Note that the set of arcs corresponding to p
and p’, with p # p’, are disjoint. Therefore, the modifications that are carried
out for all values of p are mdependent Then, we put m; = m, —¢, m; = w,
(t # ty). It is easy to see that ¢’ is a feasible flow on R . Since ¢’ saturates
the arcs incident to 7, it is a2 maximum flow on R, Moreover

L(ny=~> m =e— > m,=L(x)+e>L(x). O

We only use this proposition for iteratively improving the feasible dual solution.
However, when for all te{1,..., n}, X, includes at least one vertex that is
not labeled by (+) or (—), we use a heuristic method to find another feasible
dual solution (¢’, ©') with L(w) = L(=’) and such that the number of labeled
vertices according to ¢’ on R _. is strictly greater than the number of labeled
vertices to ¢ on R_. By iteratively using this heuristic. we hope it will be
possible to apply again Proposition 4.1.

5. Duality Gap

We are going to show that the coincidence of the primal and dual optimum
values can be checked by verifying the existence of a solution to a pseudo-

An Efficient Algorithm for a Task Allocation Problem

O
2 +
~ -t
t »
(o} Ix
—
) Q«o
Uv 2
] e
o
—
o
A — -
- (=} o
o7 2o
-
S S S-
S St e
Tl Toa
—~— — S "
s
1 % 5

FiG. 4. An augmenting path on R,

511

BILLIONNET ET AL.

A.

512

aﬁu

(+)

d 3
(+)

.

X

d

"¢ MO[} JO UOTIBULIOJSUBLY,

o
d 3

=)

o]
d 1
X

\A
X 3 + ats
\\

=)

~

)

3 + mTwu
(-)
3 =
1-b V
uN Qvu
3 + +

ESE |

X

-~

X

X

X

An Efficient Algorithm for a Task Allocation Problem 513

Boolean equation 7(x, X) = 0 where T is a homogeneous posiform. (A
similar result is obtained in [1] for unconstrained O — 1 optimization.) If such a
solution exists, it gives an optimum solution to the primal problem. Solving the
equation T(x, x) = O belongs to the class of the NP-complete problems. But in
our particular problem the computational tests have shown that, for practical
purposes, T' was often a quadratic posiform. That is very interesting because,
in this case, the question ‘‘Is there a solution to 7(x, X) = 07" can be
answered in a time proportional to the number of terms of 7" (see [2]).

Classically, for a given dual solution (¢,), there is no duality gap if and
only if there exists x* e {0, 1}”” such that

(i) Min L(x,w)=L(x* =)= - =,
xe{0,1}" ™" =1
(ii) >oxi, =1 (t=1,...,n),
p=1
(iii) x}, {0, 1} (t=1,...,n;p=1,...,m).

Moreover, if there exists such an x*, it is an optimum primal solution.

Lemma 5.1. Let (¢, w) be a dual solution and r,, be the residual
capacity of the arc (S, X,,) (t=1, ,n, p=1, , m); there is no
duality gap if and only if there exlsts xe { 0, 137" such that T(x, X\)=0
with

T(X,)_() = Z Xip t Z Z xtp)?t'p

¢, p such that £, such that p such that
t=1,..., n; Te,i'felU. p=1, .. m:
p=1i,.. ,m; 5. >0.

n m
+ > 3 X pX,, + ;1 pIle X,

t=1 p.p’ such that
p =1 L, M
p=1,..., m.
p<p’
Proor. Since
Zx,p_1©2xtpx,p=0 (t=1,...,n)
p<p
and
m m
> x,=le [l ¥,=0 (t=1,...,n),
p=1 p=1

we have to prove:

n
Lix,m) ==Y me > X,+ 2 > x,%.,=0.

t=1 t.p such that [such that p such that
r=1,..., n; Tt.r]eU. p=1,..., m,
p=1,..., m; oh >0.

514 A. BILLIONNET ET AL.

By definition of the Lagrangean function,

(¢,) being a solution to (3.2), we have:
=k +oF, ([r,0]eUst<t;p=1,...,m).

Therefore, we get:

=1 p=1
m
— p —
z d)tt’xtpxt’p_o’
t,t’such that p=1
[t.t]eU.

and by substituting 1 ~ X, , to x, , it follows:

p tU'p?

i

[
NE
A

L(x,)

< Z Z (ltp + 771) - Z of Xip

t=1p=1 t’ such that
fe.t'lelU
m
P T
+ D > ¢ X, X, ,=0.

Since, by definition,

pa— P24 —
(ltp + 71‘[) Z [rtp:
t’ such that
[t,17]eU.

we get finally:

Lix.m) =~

t=1

& D X+ > Y. x,%,,=0. O

t.p such that ¢,¢ such that p such that
1=1..... n; 6.1l p=1, ..m;
p=1,.. ,m: ¢1Pt’>0

An Efficient Algorithm for a Task Allocation Problem 515

Notice that some variables must be equal to 0 in all solutions to
T(x, x) = 0. Let F be the set of these variables. F{ is constructed from
T(x, X) in the following way:

— Fy <~ {x,,:r, >0}, that is, Fy«< {x
R.};

—If x,,eF, and ¢} >0, then F,«< F,J{x,,:[¢t, t1eU; p=
1,....m}.

p - X, 18 labeled (+) for ¢ on

Notice that this second rule corresponds exactly to the labeling of the vertices
of X by (—) (see Figure 2 and [8]). Therefore,

Fy,={x,,: %, is labeled (+) or (—) for ¢ on R }.

We are now in position to state the following theorem for characterizing the
existence of a duality gap.

Tueorem 5.2. Let (¢, w) be a dual solution and N, < {1,..., m}
defined by N, = { pe{l,...,m} : X, is not labeled (+) or (—) for ¢ on
R_}, (t=1,...,n). There is no duality gap if and only if it exists x in

{0, 1} such that T'(x, X) = 0 with:

T’(x,)_c) = Z Z xtp)_(t'p

t,t’sqch that p such that
[£.¢1eU " peN,NN,,

$L.>0.
n n
+ Z Z xtpxtp’ + Z H ti'
t=1 p.p’such that t=1 peN,
DEN;; P eN,:
and p<p’.

Solving the equation 7(x, X) = 0 is an NP-complete problem since T
always includes the terms

143
X, (t=1,...,n)
p=1

of degree m. But in T'(x, X), the terms

II », ((t=1,...,n)

PeN,

are nonquadratic only if | NV,| > 2. The computational experiments (see next
section) have shown that this fact was exceptional. So the question ‘‘Is there a
duality gap?’’ will be often answered by a polynomial-time algorithm (linear in
number of terms in 7). In Section 4, we used Ford and Fulkerson’s labeling
rules to compute an approximate solution to the Lagrangean dual problem.

Again, note the importance of these rules to obtain an efficient characterization
of a zero gap.

Example (continued). We get

N, = {x,}; N, = {x5}; Ny = {x3}; N, = {x4, X3}

516 A. BILLIONNET ET AL.
and
T'(x,X) =X, + Xp3 + X33 + X4y %43
X4 Xay F Xy Xy + X4 Xy
+X03 X33 + X33 X535 + X453 X03.
The quadratic equation 7'(x, X) = 0 admits the solution
X o= xh = x5 = a0 = 1,

the other variables being equal to 0. Therefore, there is no duality gap, and x*
is an optimum primal solution; its value is 9.

6. Algorithm and Computational Results

We use a branch-and-bound algorithm, with best first-branch method, to solve
the primal problem.
The following evaluation and test method shall be used for each node:

— Compute an approximate dual solution (see Section 4);

— Is there a zero gap or is there a solution to T'(x, X) = 0? (see Section 5);

— If there is a zero gap, then stop, and x™, solution to 7* = 0, is an optimum
primal solution for the considered subproblem.

The following branching shall be used: When there is no solution to
T'(x, X) = 0, the considered subproblem is divided into several subproblems
as follows:

Let to=Max,_; ,(IN]and{x,,:peN} ={x,,, .. %,}
We have g + 1 subproblems.
Subproblem 1: Xyp =13
Subproblem q: Xipp, = 1
Subproblem g + 1: Xipy = Xppy = 700 = Xyp, = 0.

Our algorithm was coded in Pascal and run on a DEC VAX-780. The
instances are randomly generated. The execution costs are between 1 and B,
and the communication costs between 1 and B,,,. Values of B, and B,
were chosen in such a way that the sum of the execution costs is comparable
with the sum of the communication costs. So, intuitively, an optimum solution
is more difficult to find. For each considered size, 20 instances are generated;
the resuls are shown in Table L.

Table II gives the worst-case results (for the C.P.U. time) on the 20
instances.

7. Concluding Remarks

For one instance with n = 10, m = 101, and |U | = 307, the optimum was
not obtained after 1 hour of C.P.U. time usage and in this case we only have a
very good approximate solution (less than 0.5% from the optimum). This
instance has not been considered for the presentation of the results in Tables 1
and II.

An Efficient Algorithm for a Task Allocation Problem 517

TABLE 1. REsULTS OF ALGORITHM (20 INSTANCES)

Nb. CPU
m n |U| B, By, Er Root Nb Nb, Nb; Nb, Eval (seconds)
10 29 61 23 101 0% 19 2585 3.1 005 O 1.15 17
15 37 113 17 101 0% 14 3365 33 015 0 1.85 52

20 53 229 11 101 0% 11 4575 69 035 0O 2.50 171
10 101 307 29 101 0.2% 10 88.8 105 1 0.7 7.35 876

NOTE: m = number of processors; # = number of tasks; | U | = number of intertask communica-
tions; B, = the communication costs belong to [1. B.yyl: By, = the execution costs belong to [1,
Biroc s Err = relative error between the optimum primal solution and the approximate dual solution at
the root of the tree (mean value on the 20 instances); Root = number of instances such that the
approximate dual solution 1s an optimum dual solution, and there is no duality gap at the root of the
tree; Nby (kK = 1, 2, 3, 4) = number of set IV, (£ = 1,..., n) such that k = | N;| (mean value on
the 20 instances); Nb. Eval = number of nodes that are evaluated in the branch-and-bound algorithm
(mean value on the 20 instances); CPU = C.P.U. time in seconds (mean value on the 20 instances).

TABLE II. WorsT-CasE RESULTS (FOR CPU TiME) (20 INSTANCES)

Nb. CPU
m n Ul Beom Bpoe Eval Sol Nb; Nb, Nby; Nb, Eval (seconds)
10 29 61 23 101 765 766 29 0 0 0 3 27
15 37 113 17 101 1001 1005 33 4 0 0 5 118
20 53 229 11 101 1454 1458 46 7 0 0 11 377
10 101 307 29 101 3569 3583 78 23 0 0 55 3083
NOTE: m = number of processors; # = number of tasks; | U | = number of intertask communica-

tions; B, = the communication costs belong to [1. B.oyl: By, = the execution costs belong to [1,

Biocls Eval = value of the approximate dual solution at the root of the tree; Sol = value of the
optimum primal solution; Nb, (k =1, 2, 3, 4) = number of set N, (f=1,..., n) such that
k = | N,|]: Nb. Eval = number of nodes that are evaluated in the branch-and-bound algorithm;
CPU = C.P.U. time in seconds.

These tables show that the bound given by an approximate dual solution is
excellent and that the relative error is always less than 0.4%. This can be
explained by the weak frequency of duality gaps and by the ability of our
suboptimal procedure to find frequently an optimum dual solution. We also can
remark that the number of terms of degree greater than 3 in 7'(x, Xx) is very
small (see the values of Nb,). So, practically, the existence of a solution to
T'(x, X) = 0 can be checked in linear time.

ACKNOWLEDGMENTs. The authors wish to thank Ingeneer C. Ikhlef of Centre
National d’Etudes des Télécommunications for careful readings of the
manuscript, as well as the referees, for numerous and helpful suggestions and
remarks.

REFERENCES

1. Apams, W. P., BILLIONNET, A., AND SUTTER, A. Unconstrained O-1 optimization and La-
grangean relaxation. Disc. Appl. Math. 29 (1990), pp. 131-142.

2. AspvaLL, B., PLass, M. F., anp Tarian, R. E. A linear-time algorithm for testing the truth of
certain quantified Boolean formulas. Inf. Proc. Lett. 8 (1979), 121-123.

3. BILLIONNET, A., CosTa, M. C., AND SUTTER, A. Les problémes de placement dans les systémes
distribués. Tech. Sci. Inf. 8. 3 (1989), 307-337.

518 A. BILLIONNET ET AL.

10.

12.

13.

15.

16.

17.

. BokHaRri, S. H. Dual processor scheduling with dynamic reassignment IEEE Trans. Softw.

FEng. SE-5. 4 (July 1979), 341-349,

. BokHari, S. H. On the mapping problem. JEEE Trans. Comput. C-30 (Mar 1981), 207-214.
. Cau, W. W., HoLLoway, L. J., Lan, M., anp Erg, K. Task allocation in distributed data

processing Comput. 13. 11 (Nov, 1980), 57-69.

. Ere, K. Heuristic models of task assignment scheduling in distributed systems. Comput. 15

(June 1982), 50-56.

. Forp, L. R., anDp FuLkerson, D. R. Flows in Networks. Princeton University Press, Prince-

ton, N.J., 1962.

. GaBrIELIAN, A., anD TyLer, D. B. Optimal object allocation 1n distributed computing system

In Proceedings of the International Conference on Distributed Computing Systems (San
Francisco, Calif.. May 14-18). 1984, pp. 88-95.

Lo, V. M. Heuristic algonthms for task assignment in distributed systems. In Proceedings of
the International Conference on Distributed Computing Systems (San Francisco, Calif., May
14-18). 1984, pp. 30-39.

. Ma,P R.,LEE.E. Y S., anDp Tsuchica, M. A task allocation model for distributed computing

systems. IEEE Trans. Comput. C-31, 1 (Jan 1982), 41-47.

Price, C. C., AND KRISHNAPRASAD, S. Software allocation models for distributed computing
systems. In Proceedings of the International Conference on Distributed Computing Systems
(San Francisco, Calif., May 14-18). 1984, pp. 40-48.

Rao, G. S., Stong, H. S., anp Hu, T. C. Assignment of tasks n a distributed processor system
with limited memory. IEEE Trans. Comput. C-28, 4 (Apr. 1979), 291-299.

. RAys, J. A selection problem of shared fixed costs and networks. Manage. Sci. 17 (1970).

200-207.

SueN, C.. anp Tsal, W. A graph-matching approach to optimal task assignment 1n distributed
computing systems using a minimax criterion. [EEE Trans. Comput. C-34, 3 (Mar. 1985).
197-203.

SINCLAIR, J. B. Efficient computation of optimal assignments for distributed tasks. J. Paral.
Dist. Comput. 4 (1987), 342-362.

Stong, H. S. Multiprocessor scheduling with the aid of network flow algorithms. IEEE Trans.
Softw. Eng. SE-3 (Jan. 1977), 85-93.

RECEIVED JUNE 1988 REVISED NOVEMBER 1989 AND OCTOBER 1990: ACCEPTED OCTOBER 1990

Journal of the Association for Computing Machinery, Vol 39, No 3, July 1992

