
An Efficient Algorithm for a Task Allocation Problem

A. BILLIONNET

CEDRIC, Institut d ‘Inforrnaliqae d’En treprise, Evry, France

M. C. COSTA

CEDRIC, Conservatoire National des Arts et Mktiers, Paris, France

AND

A. SUTTER

France Telecom, Issy-Les-Moulineau.r, France

Abstract. This paper presents an efficient algorithm to solve one of the task allocation problems. Task
assignment m an heterogeneous multlple processors system is investigated. The cost function M
formulated m order to measure the mtertask communication and processing costs in an uncapaclted

network. A formulation of the problem in terms of the minimization of a submodular quadratic

pseudo-Boolean function with assignment constraints is then presented. The use of a branch-and-bound

algorlthm using a Lagrangean relaxation of these constraints M proposed. The lower bound M the value
of an approximate solution to the Lagrange an dual problem. A zero-dudlity gap, that is, a saddle point,
is characterized by checking the consistency of a pseudo-Boolean equation. A solution N found for

large-scale problems (e.g., 20 processors. 50 tasks, and 200 task communications or 10 processors.
100 tasks, and 300 task communications). Excellent experimental results were obtained which are due

to the weak frequency of a duality gap and the efficient characterization of the zero-gap (for practical

purposes. this M achieved m hnear time). Moreover, from the saddle point, It is possible to derive the
optimal task assignment.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of Systems
— modeling techniques, D 4.1 [Operating Systems] Process Management — rrzzdtlprocessmg; D 47

[Operating Systems]: Orgmization and Design–distributed systems; G.?. 1 [Discrete Mathematics]:
Combinatorics— combinatorial algorithms

General Terms: Algorithms, Design, Measurement, Performance

Additional Key Words and Phrases Branch-and-bound algorlthm, interprocessor communication,
Lagrangean relaxation, quadratic O-1 optimization, task allocation

Authors’ addresses: A. Billionnet, CEDRIC, Institut d’Informatique d’Entreprise, 18 Al16e Jean
Rostand. 91025 Evry Cedex, France; M. C Costa, CEDRIC, Conservatoire National des Arts et
M(itlers, 292 rue Saint Martin, 75141 Paris Cedex 03, France: A. Sutter, France Telecom, Centre
National d’Etudes des T61Scommunications, CNET/PAA/ATR, 38-40 rue du G6n&al Leclerc, 9213 I
Issy-Les-Moulineaux, Cedex, France.

Permission to copy without fee all or part of thn material is granted prowded that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for

Computmg Machinery. To copy otherwise, or to repubhsh, requires a fee and/or specific permission.
C] 1992 ACM 0004-5411 /92/0700-0502 $01.50

Journal of the AwocLatlon for Computing Machinery, VOI 39. No 3, July 1992. w 50-518

http://crossmark.crossref.org/dialog/?doi=10.1145%2F146637.146646&domain=pdf&date_stamp=1992-07-01

An Efficient Algorithm for a Task A [location Problem 503

1. Introduction

An important problem that arises in distributed computer systems is the
so-called task allocation problem. Many heuristic approaches that provide
suboptimal solutions have been attempted in a number of studies (3 –7, 9– 13,
15, 16]. However, for practical problems, it is difficult to evaluate how
accurate these solutions are, because one does not know efficient algorithms
that generate an exact solution. Indeed, up to now, all the exact allocation
algorithms were limited to very-small-sized problems.

We describe in this paper an exact algorithm applicable to large-sized
problems. It has been developed to solve this task allocation problem in a
distributed computer system that meets the following specifications:

a) the processors of the system are heterogeneous. A single program module, if
executed on different processors, will therefore require different amounts of
running time;

b) identical communication links are used by the processors for message
transmission. This means identical messages, even if transmitted through
different communication links, will have identical transmission times:

c) the capacities of processors and links are assumed to be unlimited.

In the case of a two-processors system, it has been shown that the optimal
assignment may be found very efficiently [17] by a polynomial-time algorithm.
However, for an arbitrary number of processors, the problem is known to be
NP-complete [10].

In Section 2 of this paper, we present a precise definition of the task
allocation problem and we formulate it as the minimization of a quadratic
pseudo-Boolean function with linear constraints. In Section 3, we study the
Lagrangean dual problem and we show how it can be written as a continuous
linear program. In Section 4, we propose an algorithm for computing an
approximate dual solution and in Section 5, a procedure for testing the
nonexistence of a duality gap (i. e., is the lower bound, computed in Section 4,
actually equal to the optimum?). In Section 6, we describe the task assignment
algorithm. It is of the branch-and-bound type that makes use of the previous
theoretical results. Experimental results for a ~umber of pseudo-randomly
generated test cases are tabulated. It appears that our algorithm is applicable to
large-size problems (e.g., 20 processors, 50 tasks, and 200 pairs of communi-
cating tasks or 10 processors, 100 tasks, and 300 communicating tasks).

2. Problem Definition and Modeling

Let P={pl, Pz, ..., Pm} be the set of the nonidentical processors of the
distributed system. A distributed process is defined as the set of tasks T =

{T,, Tz, ..., T.} to be run on the distributed system. Some of these tasks have
to communicate. These intertask communications are represented by the graph
G= ({l,..., n}, U) where [i, j] c U if and only if tasks T, and Ty
communicate with each other.

Let

c,,, ([t, t’] e U) be the communication cost between two tasks T, e T and
Tf, e T if they are assigned to different processors. We assume that the
communication cost between two tasks executed by the same processor is
negligible;

qtp (tc{l,n}. peal,..., m}) be the execution cost of task Tf when

504

Xtp

A. BILLIONNET ET AL.

it is assigned to processor Pp:
(te{l,. ... n}, p = { 1, . . , m}) be the decision Boolean variable that is
equal to 1 if task T* is assigned to processor PP and O, otherwise; 1 – XtP
is denoted by itp.

We can now formulate the O-1 programming problem to be solved:

Min 2 f q,pxrp + x ~ Cr,rxtpil!p
t=l p=l t,f’such that p= 1

[r, t’]Eu, t<t’ I

subject to ~ X,P = 1 (f=l,..., n)

1

(2.1)

p=l

Xtpe{o, l} (t=l,..., n;p=l, m)., m).

The first summation term of the objective function represents the global
processing cost; the second the intertask communication costs. The constraints
are assignment constraints; that is, each task must be assigned to one and only
one processor. Our purpose is to make the best use of resources in this
distributed system, that is, for a given distributed process to minimize execution
and communication costs. We do not therefore take into account precedence
relationships among tasks. In the distributed system considered, the transmis-
sion cost of a given message between two processors does not depend upon
these processors because either the network is a completely meshed network or
it is a local network, and the differences between the costs are negligible. The
cost of communication between two modules assigned to different processors is
not therefore a function of the processors to which the modules are assigned.

Let us show that Program (2.1) can be stated as the minimization with
constraints of a pseudo-Boolean function whose coefficients of the nonlinear
terms are negative. Replacing 2t, p by 1 – xt, ~ and denoting

ltp = 4*p + E c,,’
t’ such that

[t, t’]Eu, t<t’

Program (2. 1) can be written as follows:

subject to ~$1 Xtp = 1 (f=l,..., n) (2.2.1)

1

(2.2)

xtp~{o, l} (t=l,..., n;p=l, m), m).

It is known [14] that the minimum of the objective function in (2.2), without
constraints, can be efficiently computed by using a maximum-flow algorithm on
a bipartite graph. It seems natural. therefore, to consider the classical La-
grangean dual problem of (2.2) obtained by dualizing the assignment con-
straints. That will be considered in the following section.

Example. Let us consider a task allocation problem with three processors
and four tasks. Figure 1 gives the execution costs and the intertask communica-

An Efficient Algorithm for a Task A llocation Problem 505

tion graph including the communication costs. The primal problem is

Min Ilxll + 12xIZ + 16x13 + 17xZI + 8XZZ + 9Xz~ + loxgl

+3X32 + X33 + 3X41 + 4X42 + X43 – 10X11X41 – 10X,2X42

– 10X13X43 – 2X21X41 – 2X22X42 – ‘2X,3X43 – 5X21X3,

– 5X22 X32 – 5X23 X33

subject to ~ x,, = 1 (t=l,2,3,4)
p=l

Xtp= {o, 1} (t=l,2,3,4; P=l,2,3)

3. The Lagrangean Dual Problem

The solution of the Lagrangean dual problem gives a lower bound for the
primal problem (2.2), which will be used in a branch-and-bound algorithm. Let
us associate the Lagrange multipliers n-f = R (t = 1, ..., n) with the constraints
(2.2.1). The Lagrangean function is:

n n m

L(x, m) = – ~ m,+ ~ ~ (l,P+ rt)x,P
t=l t=l p=l

-x F c,, Xtpx,p
t,t’ such that. p=]
[t, t’]eu, t<r’

with mER” and XC {O, l}”~.
Then, the Lagrangean dual problem is:

First, we show that, without loss of generality, we can suppose that all the
linear terms of L(x, r) are positive.

LEMMA 3.1

LD* = Max [Min L(x, m)l.
Zc!fln such that xe{O,l}n m

[tp+7rt20
(t=l,n)

(p=l,m)

PROOF. Let LD* = L(x*, T*) where X*

Min L(x,
Xe{o,l}” m

with

is an optimal solution of

T*)

1top” + 7r; <0.

Let

~=
(

*
7r:>. ..,7rr1,1,)–1 Ir;+,,lr. .

fOPo ‘

506 A. BILLIONNET ET AL.

‘1- ,
/ (2) 4

T

\

2

(5) ~

‘3

(a)

FIG. 1. (a) Task graph with intertask

P P P
123

T 126
1

L
T 10 1 2

2

T 10 3 1
3

T 3 41
4

(b)

communication costs. (b) Execution costs

Now, we prove that

LD* = Min L(x. z).
.K{o>l}n m

Since l,OPO+ r; <0 and Cfl, 20, we get x~PO = 1. Moreover, since ltOPU+

~ to = O, we can suppose that y~PO = 1 for an optimum solution y* of

Min L(x, m).
XG{O,I}” m

For all x in {O, l}n* with

xtoPO
= 1, L(X> 7r) - L(X57r*) = $, - (l,opo + T:)xtop 20.

p #p~

Then

Min L(x, m) = Min L(x, T)
Xe{o,l}” m .K{o,l)” m

such that xtOPO= 1

> Min L(x, n-*) = LD*. ❑
x={o,l}m m

such that xf(,PO= 1

For any m in R“, such that l~p+Tt> O(t=l,n) and (p=
1, m), the Lagrangean function 1s a “positive-negative” one. It has been
proved [14] that minimizing such a function can be performed polynomially via
maximum network flow computation. Let us now describe the network R.
associated with the problem

Min L(x, x).
x

The network Rfl is defined as follows: the vertices are the source {, the sink
i! and the two set of vertices X = {.itP : t = 1,....n; p = 1,....m},

f= {itpitrp:[t,t’]● u, t <t’; p = 1,..., ??1}.
The flow on the arc (~tp,

.-
.i?fp.izrp) (resp., (xfP, XtPXtJp)) is denoted by o~

(resp., Off). On Figure 2. the upper-capacity bounds are indicated between

An Efficient A lgorithm for a Task A Ilocation Problem 507

.

[ttp+ lrtl ; .

,~ :’> ;t: ,t,p ‘Ctt] ,

~i ,Wl ,,
[tt, p+ 7ct,l .t’p t’t

.

t

FIG. 2. R~.

square brackets. By using Rhy’s results [14], it is easy to prove that

I~NInmL(x, 7) = – f 7rt + V((jn) –p “ E c,,
f=l t, f’ such that

[t, t’]Eu, t<t’

where $= is a maximum flow on R. and V(O.) the value of this flow.
Moreover, a solution X* is given by the labeling algorithm of Ford and
Fulkerson [8] in the following way: X~P = O if the vertex ZtP is labeled (+) or

(–), and x~P = 1, otherwise.
Therefore, the Lagrangean dual problem can be written as:

LD* = Max

[1

-&+v(rjJ-P. ~ c,, .
TGRn such that /tP + Zr >0 t=l t, t’such that

(t=ln) [t. t’]eu, t<t’

This last problem can be written as the following linear programming problem:

Max - i ~,+ 2 f (@fi + 4$, - cl,)
~=1 t,t’such that p= 1

[t, t’]eu, t<t’

subject to c)~, + Ofts ctt
([t,t’] eu; t<t’; p=l,..., m)

-7r*+ E 4$~ltp

(3.1.1)

t’ such that
[f, f’]dl

(t=l,..., n;p=l, m), rn) (3.1.2)

0$ =o,~t=R

(p=l ,. ... rn; [t, t’]e U;t=l,n)

(3.1)

508 A, BILLIONNET ET AL.

LEMMA 3.2. There exists an optimum solution to (3.1) such that

PROOF. Let (@, m) be an optimum solution to (3.1) with r$~’jh + ~~:o < Ctotfi
and e = cfOt&– (~~?~ + Ofi,) with c >0.

Let us consider (p, m’) such that:

(_

~t”— 7rfo+e; 7r; = 7rl (t#to; t=l,..., n)

([t,t’] cu; t<t’; p= l... m;[t, t’] # [tO, t&] orp#pO).

It is clear that (p, T’) is an optimum solution to (3.1) with

By Lemma 3.2, the linear programming problem (3.1) can be simplified and
written as:

Max

\

(3.2.1)

-7rt+- ~ d$~[tp)

t’ such that
[t, t’]eu

(t=l,..., n;p=l, m)., m) (3.2.2)

O;f 20. 7rt GFd

(p= l,..., m;[t, t’]e U;t=l,rz)
J
(3.2)

Example (continued). R* is represented in Figure 3. The optimum solution
to (3.2) is given by T = (–5, – 5, 0, 1) and the flow o which is indicated on
the figure (between parentheses). Therefore, the optimum value of the La-
grangean dual is 9 and by Ford and Fulkerson’s labeling algorithm, we get
X1l = X41 = X43 = X23 = X33 = 1, the other variables being equal to O. Let us
note that this solution is not a primal one.

4. Approximate Solution to the Lagrangean Dual Problem

We have seen that the optimum dual solution can be computed as a linear
programming problem (see (3.2)). Unfortunately this program involves a huge
number of variables and constraints. Indeed for a primal problem with 20
processors (m = 20), 50 tasks (n = 50), and 200 intertask communications
(I U I = 200,) the program (3.2) includes 8050 variables, 4000 constraints of
type (3.2. 1), and 1000 constraints of type (3.2.2). Therefore, we have prefered
a suboptimal procedure which uses the specificity of R ~. From Lemma 3.2, for

An Efficient A Igorithm for a Task A [location Problem 509

n

8

u

Ix

“k

510 A. BILLIONNETET AL.

any r, we only consider the maximum flow $= on R ~, which saturates the
arcs incident to the sink ~. Therefore,

Min L(x, z) = – ~ xl
XG{O,l}” m t=l

and we denote this quantity by L(~).
The proof of the following proposition gives a way for constructing

(ok. mk)k={l, ,K} with L(x~+l) > L(m~).

PROPOSITION4.1. Let @ be a max flow on R. and ~t = { Z,P : p-=
1,. ... m}. Ifthere exists tOin {l,..., n} such that all the vertices of XIO

are labeled by the Ford and Fulkerson algorithm, then there exists a dual
solution (~’, ~’) such that L(T’) > L(m).

PROOF. Forallpin {l,..., m}, It,p k labeled by (+) or (–).

Case 1. 2rOP is labeled by (+). Let eP be the residual capacity of (F, It,P)

that is l*OP+ mtOminus the flow on this arc. We have CP >0.

Case 2. i,OD is labeled by (–). In this case, one can find a path from 3 to
2 ~oPlike it is presented in Figure 4. The interesting flows are indicated between
parentheses.

Let us denote

We have EP >0. Now let

~= Min (cP);
p=l, ,m

we have c > 0. For all vertices of ~t,l labeled by (–), the flow + is modified
as indicated by Figure 5.

Let o’ be the new flow obtained. Note that the set of arcs corresponding to p
and p’, with p # p’, are disjoint. Therefore, the modifications that are carried
out for all values of p are independent. Then, we put x~O= ~tO – e, m; = Tr
(t # to).It is easy to see that o’ is a feasible flow on R.. Since ~’ saturates
the arcs incident to ~, it is a maximum flow on R ~. Moreover,

We only use this proposition for iteratively-improving the feasible dual solution.
However, when for all tc {1, n}, X, includes at least one vertex that is
not labeled by (+) or (–), we use a heuristic method to find another feasible
dual solution (~’, x? with I,(m) = L(~~ and such that the number of labeled
vertices according to +’ on R ~, is strictly greater than the number of labeled
vertices to ~ on R ~. By iteratively using this heuristic, we hope it will be
possible to apply again Proposition 4.1.

5. Duality Gap

We are going to show that the coincidence of the primal and dual optimum
values can be checked by verifying the existence of a solution to a pseudo-

An Efficient Algorithm for a Task Allocation Problem

● ✎☛☛✎

JJ

lx

.
0
A

?-!
I

S&

+ \

Tfl
r-i

i

Q
. . . lx

u
/x 4

511

ttn

512 A. BILLIONNET ET AL.

d
u

. lx

4-J
/x

I

d
+-- &

fx 1X

04
0

. . .
& u

/x lx

1(0”

An Efficient Algorithm for a Task Allocation Problem 513

Boolean equation T(x, 1) = O where T is a homogeneous posiform. (A
similar result is obtained in [1] for unconstrained O – 1 optimization.) If such a
solution exists. it gives an optimum solution to the primal problem. Solving the
equation T(x, 2) = O belongs to the class of the NP-complete problems. But in
our particular problem the computational tests have shown that, for practical
purposes, T was often a quadratic posiform. That is very interesting because,
in this case, the question “Is there a solution to T(x, 1) = O?” can be
answered in a time proportional to the number of terms of T (see [2]).

Classically, for a given dual solution (~, r), there is no duality gap if and
only if there exists x* e {O, 1}‘ ‘“ such that

(i) Min L(x, ~) = L(x*, T) = – ~ T,,
x&{o,l}” m r=l

(ii) 5X:,=1 (t=l,..., n),
p=]

(iii) X:PG{O, l} (f=l,..., n;p=l, m), m).

Moreover, if there exists such an x*, it is an optimum primal solution.

LEMMA 5.1. Let (~, ~) be a dual solution and rfP be the residual
capacity of the arc (S, IiP) (t = 1,. ... n; p = 1, . . . ,rn); there is no
duality gap if and only ~ there exists x G {O, 1}” m such that T(x, 1) = O
with

T(x, Z) = ~ Xtp+ ~ x ~,p~t’p
t, P such that t,t’such that
t=l,n.

p such that
[t>r’]eu. p=l, ,,, ,~:

p= l,.. ,m;

rtp>o.
(pgf>o.

+ fj ~ ~,;ch that Xtp Xtp’ + ,~, p, ~tp “

~! =,, , m;
Jz=l,nz.

p<p’.

PROOF. Since

~xtpsl+ ZxtPx,p=O (t=l,..., n)
p=l p<p’

and

bxtP~l*p~l~rp=O (t=l,. ... n),
p=l

we have to prove:

L(x, x)= –&@ ~ Xtp+ ~ z X,pirrp = o.
t=l t ,J2 such that t,t’such that p such that

t=l [t.t’]eu.p=l,, ,,, ,~;
p= l:.:::%; +;>0.

rcp>o.

514

By definition of the Lagrangean function,

A. BILLIONNET ET AL.

L(x,7r) =

#

(~, ~) being a solution to

ctt’= 4: + 4$,

Therefore, we get:

L(x.7r) =

*

and by substituting 1 – i~P

--&
t=l

f f (k++,,
f=lp=l

- x fctt%+=o.
t,t’ such that p= 1
[t,r’]eu;
t<t’

(3.2), we have:

([t, t’]eu; t<t’; p=l,...,ln)

to X,jp

L(xdr)=–fz

t=l

nm

it follows:

(Lp + %) -
1,,..;,,.,‘fi’‘tp

[f, t’]eu

+ z f Ogx,flxtrp=o.
t,t’ such that p= 1

[t. f’]Gu

Since, by definition,

(~tp+ Z,) - X f+%= T,p,
t‘ such that
[t, t’]eu.

we get finally:

L(x,7r) = –-f I’rt
t=l

@ ~ X,p + t CJ-- that x Xtpxtp=o. ❑
t ,p such that

‘it, t’JGu
p such that

1= 1,..,,72;
p=l, . . ,m:

p=l, ,,m;
@l; >0

rrn>o

An Efficient Algorithm for a Task Allocation Problem 515

Notice that some variables must be equal to O in all solutions to
T(x, 1) = O. Let FO be the set of these variables. F. is constructed from
T(x, 2) in the following way:

— F. - { xrP : rfP > O}, that is, FO - { xrP : Z,P is labeled (+) for ~ on
Rr];

—If x,,P~FO and ~fl, >0, then FO~FOU{X,P: [t, t’l=U, p =
13 ...3 m}.

N~tice that this second rule corresponds exactly to the labeling of the vertices
of X by (–) (see Figure 2 and [8]). Therefore,

FO= {xtP:-i?tP islabeled (+)or(-)for Oon Rn}.

We are now in position to state the following theorem for characterizing the
existence of a duality gap.

THEOREM 5.2. Let ($, ~) be a dual solution and N, G {1, m}
defined by N,={pe {l,..., m} : ~tP is not labeled (+) o; (–’) for @ on
R.}, (t = 1, n). There is no duality gap if and only if it exists x in
{0, I}”n such that T’(x, 1) = O with:

T’(x, i) = ~
f, t1such that

[t, t’]eu

+2
t=l p.p’ such that ‘

PcNr ;P’ eNl ;
and p<p’,

Solving the equation T(x, Z) = O is an NP-complete problem
always includes the terms

since T

ii Z,p (t=l,..., n)
p=l

of degree m. But in T’(x, i), the terms

are nonquadratic only if I Nf / > 2. The computational experiments (see next
section) have shown that this fact was exceptional. So the question “Is there a
duality gap?” will be often answered by a polynomial-time algorithm (linear in
number of terms in T’). In Section 4, we used Ford and Fulkerson’s labeling
rules to compute an approximate solution to the Lagrangean dual problem.
Again, note the importance of these rules to obtain an efficient characterization
of a zero gap.

Example (continued). We get

iy = {XII}; N2 = {x23}; Nq = {X33}; N4 = {X415 X43}

516

and

A. BILLIONNET ET AL.

T’(x, z) = 11, +i23 +X33 +X41X43

+X~~X~.3 + X~I.i41 + X41~11

+ x~q i33 + xq~ X23 + x~~ X23.

The quadratic equation T’(x, 2) = O admits the solution

*=1X:l = X:3 = X:3 = X41 ,

the other variables being equal to O. Therefore, there is no duality gap, and x*
is an optimum primal solution; its value is 9.

6. Algorithm and Computational Results

We use a branch-and-bound algorithm, with best first-branch method, to solve
the primal problem.

The following evaluation and test method shall be used for each node:

– Compute an approximate dual solution (see Section 4);
– Is there a zero gap or is there a solution to T’(x, 2) = O? (see Section 5);
— If there is a zero gap, then stop, and x*, solution to T’ = 0, is an optimum

primal solution for the considered subproblem.

The following branching shall be used: When there is no solution to
T’(x, 2) = O, the considered subproblem is divided into several subproblems
as follows:

Let to= Maxr=l, ,n(l~rl)and{xrop:P=~to} = {~fop,>...txtopq}”

We have q + 1 subproblems.

Subproblem 1: xfOP, = 1;

Subproblem q: xrOP~= 1;

Subproblem q + 1: xto~, = xtoP, = “ “ o = xfo~, = O.

Our algorithm was coded in Pascal and run on a DEC VAX-780. The
instances are randomly generated. The execution costs are between 1 and BP,OC
and the communication costs between 1 and BCU~. Values of B.P,OCand BCO~
were chosen in such a way that the sum of the execution costs 1s comparable
with the sum of the communication costs. So, intuitively, an optimum solution
is more difficult to find. For each considered size, 20 instances are generated:
the resuls are shown in Table I.

Table II gives the worst-case results (for the C.P.U. time) on the 20
instances.

7. Concluding Remarks

For one instance with n = 10, m = 101, and \ U I = 307, the optimum was
not obtained after 1 hour of C .P. U. time usage and in this case we only have a
very good approximate solution (less than 0.5 % from the optimum). This
instance has not been considered for the presentation of the results in Tables I
and II.

An Efficient A lgorithm for a Task Allocation Problem 517

TABLE I. RESULTSOF ALGORITHM (20 INSTANCES)

Nb. CPU
m n IL’ / B,o~ B,,oc Err Root Nbl Nb, Nb3 Nb4 Eval (seconds)

10 29 61 23 101 o% 19 25.85 3.1 0.05 0 1.15 17

15 37 113 17 101 o% 14 33.65 3.3 0.15 0 1.85 52
20 53 229 11 101 o% 11 45.75 6.9 0.35 0 2.50 171
10 101 307 29 101 o,~% 10 88.8 10.5 1 0.7 7.35 876

NOTE: m = number of processors; n = number of tasks; I U I = number of intertask communica-

tions; BCOm= the communication costs belong to [1, BCOm]: BP,OC= the execution costs belong to [1,

BP,OC];Err = relative error between the optimum primal solution and the approximate dual solution at
the root of the tree (mean value on the 20 instances); Root = number of instonces such that the

approximate dual sohrtion M an optimum dual solution, and there is no duality gap at the root of the
tree; Nbk (k= 1, 2, 3, 4) = number of set N, (t = 1, ..., n) such that k = I Nt I (mean vahse on

the 20 instances); Nb. Eval = number of nodes that are evaluated in the branch-and-bound algorithm
(mean value on the 20 instances): CPU = C .P.U. time in seconds (mean value on the 20 instances).

TABLE II. WORST-CASERESULTS(FORCPUTIME) (20 INSTANCES)

Nb. CPU
rn n I U I BcOm BP,OC Eval Sol Nbl Nb2 Nb3 Nb4 Eval (seconds)

10 29 61 23 101 765 766 29 0 0 0 3 27

15 37 113 17 101 1001 1005 33 4 0 0 5 118
20 53 229 11 101 1454 1458 46 7 0 0 11 377

10 101 307 29 101 3569 3583 78 23 0 0 55 3083

NOTE: m = number of processors; n = number of tasks; I U I = number of intertask conlmunica-
tions; BCOm= the communication costs belong to [1, BCOm]; BP,W = the execution costs belong to [1,

BP,M]; Eval = value of the approximate dual solution at the root of the tree; Sol = value of the

optimum primal solution; Nbk (k = 1, 2, 3, 4) = number of set Nt (t = 1. n) such that
k = I N, I : Nb. Eval = number of nodes that are evaluated in the branch-and-bound algorithm;
CPU = C.P. U. time in seconds.

These tables show that the bound given by an approximate dual solution is
excellent and that the relative error is always less than O.4 %. This can be
explained by the weak frequency of duality gaps and by the ability of our
suboptimal procedure to find frequently an optimum dual solution. We also can
remark that the number of terms of degree greater than 3 in T’(x, 1) is very
small (see the values of Nbk). So, practically, the existence of a solution to
2“’(x, 2) = O can be checked in linear time.

ACKNOWLEDGMENTS . The authors wish to thank Ingeneer C. Ikhlef of Centre
National d’Etudes des T&16communications for careful readings of the
manuscript, as well as the referees, for numerous and helpful suggestions and
remarks.

REFERENCES

1. ADAMS, W. P., BDLIJONNET, A., AND SUTTER, A. Unconstrained O-1 optimization and La-
grangean relaxation. Disc. App/. Math. 29 (1990), pp. 131-142.

2. ASPVALL, B., PLASS, M. F., AND TASUAN, R. E. A linear-time algorithm for testing the truth of
certain quantified Boolean formulas. Zn~. Proc. Lett. 8 (1979), 121-123.

3. BILLIONNET, A., COSTA, M. C., AND SUTTER, A. Les probl~mes de placement clans les syst$mes
distribute%. Tech. Sci. Znf 8, 3 (1989), 307-337.

518 A. BILLIONNETET AL.

4. BOKHARI, S. H. Dual processor scheduling with dynamic reassignment IEEE l“rans. Soflw.
Eng. SE-5, 4 (July 1979), 341-349.

5. BOKHARI, S. H. On the mapping problem. IEEE Trans. Comput. C-30 (Mar 1981), 207-214.
6. CHU, W. W., HOLLOWAY, L. J., LAN, M., AND EFE, K. Task allocation in distributed data

processing Comput. 13, 11 (Nov. 1980), 57-69,

7. EFE, K. Heuristic models of task assignment scheduhng in distributed systems. Cornpuf. 15
(June 1982), 50-56.

8. FORD, L. R., AND FUL~ERSON, D, R. Flows in Networks. Princeton Unwerslty Press, Princ-
eton, N. J., 1962.

9. GABRIELIAN, A., AND TYLER. D. B. Optimal object allocation m distributed computing system
In Proceedings of the International Conference on Distributed Cornputmg Systems (San
Francisco, Calif., May 14- 18). 1984, pp. 88-95.

10. Lo, V. M. Heuristic algorithms for task assignment in distributed systems. In Proceedings of
the International Conference on Distributed Computing Systems (San Francisco, Cahf., May
14-18). 1984, pp. 30-39.

11. MA, P R., LEE, E. Y S., AND TSUCHIGA, M, A task allocation model for distributed computing

systems. IEEE Trans. Comput. C-31, 1 (Jan 1982), 41-47.

12. PRICE, C. C., AND KRISHNAPRASAD, S. Software allocation models for distributed computmg
systems. In Proceedings of the International Conference on Distributed Computing Systems

(San Francisco, Cahf., May 14- 18). 1984, pp. 40-48.
13, RAO, G, S., STONE, H. S., AND Hu, T. C. Assignment of tasks m a distrlhuted processor system

with limlted memory, IEEE Trans. Cornput. C-28, 4 (Apr. 1979), 291-299.

14. RHYS, J. A selection problem of shared fixed costs and networks. Manage. Sci. 17 (1970).
200-207.

15. SHEN, C., AND TSAI, W. A graph-matching approach to optimal task assignment m distributed
computing systems using a mmimax criterion, IEEE Trans. Comput. C-34. 3 (Mar. 1985),

197-203.
16. SINCLAIR, J. B. Efficient computation of optimal assignments for distributed tasks. J. Paral.

Dist. Compat. 4 (1987), 342-362.
17. STONE, H. S. Multiprocessor scheduhng with the ald of network flow algorithms. IEEE Trans.

Sofrw. Eng. SE-3 (Jan. 1977), 85-93.

RECEIVED JUNE 1988: REVISED NOVEMBER 1989 AND OCTOBER 1990: ACCEPTED OCTOBER 1990

Journal of the Abwcumon tor Computing Machinery, Vd 39. No 3, July 1992

