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INTRODUCTION 

In order to achieve the great economic advantage of 
utilizing integrated circuits in computer circuitry, it 
is desirable to design a circuit which can realize any 
logic function of a fixed number of variables by simply 
varying its input terminal connections. Such a circuit 
is called a universal logic circuit (ULC). When the 
number of variables becomes large, a ULC may be 
too complex to be built in a single package economi
cally. Hence, it is preferred to use ULC's of a small 
number of variables as the modules to build a ULC of 
a large number of variables. Such modules are called 
universal logic modules (ULM's). In this paper, we 
shall first present a three-variable ULC, which has a 
fan-in for each logic gate not exceeding four, and con
sists of only 7 I/O pins. Then, we shall extend the 
ULC's to four or more variables. There are 12 I/O 
pins in a ULC of four variables, and several models 
with different fan-in limitations will be given. The 
logic gates in the ULC's may be all NAND or all 
NOR gates. Then, a simple technique for designing a 
ULC of any large number of variables using the 
ULC's of a small number of variables, say three vari
ables, as the ULM's will be established. It will be 
seen that the ULC obtained by this technique will 
require a small number of ULM's. Moreover, the 
fault-detection tests for ULM's and a diagnostic .pro
cedure for locating all the faulty ULM's in the modu
lar realization of a ULC realizing a given logic func
tion will be presented. Finally, a method for improving 
the reliability of a ULC using an error-correcting 
code will be demonstrated. 

Universal logic circuits of three variables 

The problem of designing a ULC was first treated 
by Forslund and Waxman,1 and later by Ellison, et al.2 

and Elspas, et al.3 They employed the concept of 
equivalence classes to reduce the number of all 
possible logic functions of a given number of variables 
to the number of the equivalence classes. An equiva
lence class is a set of logic functions that may be ob

tained from a particular network by only manipulating 
the application of variables' to the input terminals of 
the network. One of the most common constraints on 
these manipulations is that only true variables are 
available with the permutation of the variables at the 
input terminals permitted. With this restriction, Hel-
lerman4 partitioned the 223 = 256 three-variable logic 
functions into 80 equivalence classes. In order to 
reduce the number of equivalence classes, Forslund 
and Waxman1 assumed that both true and complement 
variables are available at the input, and true and com
plement logic functions are both available at the output 
(two output terminals). In addition, biasing (to a logi
cal 1 or 0) and duplication of input variables to the 
input terminals are also permitted. The equivalence 
classes defined this way reduces its number from 80 
to 10 for three-variable logic functions. In this paper, 
the same constraints are to be placed on the manip
ulations of input terminals, except that only one 
output terminal will be required and that the biasing 
"0" and " 1 " are not necessary. We shall employ a 
different approach to obtain the ULC. 

It is noted that a logic function f(x, y, z) of three 
variables x, y, z can always be expanded with respect 
to any two of the three variables x, y, z as follows: 

f(x,y,z) = xyf(0,0,z) + xyf(0,l ,z) 
+ xyf(l,0,z) + xyf( l , l ,z) , (1) 

where the functions f(0, 0, z), f(0, 1, z), f(l, 0, z) and 
f(l, 1, z) are functions of z only, and each of these 
functions assumes one of the four values: z, z, 0 or 1. 
Hence, a circuit shown in Fig. 1 can realize any ar
bitrary three-variable logic function f(x, y, z) if the 
side terminals Cx and C2 are connected to x and y 
respectively and the four front terminals A0, Ai:, 
A2, and A3 are connected to the appropriate values 
z, z, 0, and 1. Based on (1) we obtain a ULC of three 
variables consisting of AND, OR and INVERTER 
gates shown in Fig. 1. It is noted that the biasing "0" 
and " 1 " are not necessary. In Fig. 1, for example, 
if f(0, 0, z) = 0, connecting terminal A0 to biasing 
"0" is the same as connecting A0 to input variable y; 
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and if f(0, 0, z) = 1, connecting terminal A0 to biasing 
" 1 " is the same as connecting A0 to input variable y. 
Similar arguments apply to terminals At, A2, and A3. 
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Figure 1 —A ULC of three variables consisting of AND, OR and 
NOT gates 

It is well-known5 that a two-level AND and OR cir
cuit can be replaced by a NAND-gate circuit of the 
same configuration. Thus, the circuit shown in Fig. 2 
is also a ULC of three variables employing NAND 
gates only. 

w 

Figure 2 —A ULC of three variables consisting of NAND gates 
only 

A ULC of three variables consisting of NOR gates 
can be obtained by using the dual relationship between 
NAND's and NOR's, and is given in Fig. 3. It is 
noted that the configurations of the ULC with NAND 
gates and the ULC with NOR gates are identical, 
and the only difference between these two circuits 
is the permutation of the input values for the front 
terminals. Another realization is shown in Fig. 4 

using NAND, OR and INVERTER gates. This 
circuit is more desirable than those shown in Figs. 2 
and 3, since it requires only 16 diodes and 3 transis
tors, while the circuits shown in Figs. 2 and 3 need 
16 diodes and 7 transistors. Furthermore; the cir
cuit shown in Fig. 4 is more reliable because fewer 
transistors are used. A similar circuit can be obtained 
using AND, NOR and INVERTER gates. In each 
of the above circuits, a total of 7 I/O pins is required. 
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Figure 3 —A ULC of three variables consisting of NOR gates only 
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Figure 4 —A ULC of three variables consisting of OR, NAND and 
INVERTER gates 

To evaluate the ULC given above, a comparison 
with the results given by Forslund and Waxman1 

is made as follows: Consider the circuit shown in 
Fig. 2 as a minimum-pin ULC. Since gates G6 and 
G7 are included in the ULC, the circuit has 7 pins, 
7 gates, and 3 levels. The minimum-pin ULC of three 
variables given by Forslund and Waxman also has 
7 pins, but it requires 10 gates and has 5 levels. The 
ULC given in Fig. 2 also has the advantage that only 
one complement input is required, whereas the mini
mum-pin ULC given by Forslund and Waxman re
quires two complement inputs. If the circuit shown in 
Fig. 2 is considered as a minimum-gate ULC, gates 
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G6 and G7 should be excluded from the ULC at the 
expense of adding two more pins. Consequently, it 
ends up with a minimum-gate ULC of 5 gates, 9 pins 
and 2 levels. The minimum-gate ULC of Forslund 
and Waxman has 6 gates, 9 pins and 4 levels, and can 
realize only the logic functions in nine out of the ten 
equivalence classes. It is seen that 5 is the absolute 
minimum number of gates required for any ULC of 3 
variables, since the realization of the exclusive-or 
function of 3 variables alone requires a minimum of 5 
NAND gates.6 

Universal logic circuits of four and more variables 

The problem of designing a ULC of four or more 
variables was also treated by Forslund and Waxman1, 
using the same idea of equivalence classes as in the 
case of three-variable ULC. Due to the large amount 
of computations required, it is prohibitive to obtain 
such a ULC by that method. However, the approach 
used in the last section for obtaining the ULC of three 
variables can readily be extended to four or more 
variables. Since a logic function f(x, y, z, w) of four 
variables can be written in the form 

f(x, y, z, w) = x y z f(0,0,0, w) + x y z f(0, 0, 1,w) 
+ x y z f(0, 1,0, w) + x y z f(0, 1, l,w) 
+ x y z f(l, 0, 0,w) + x y z f(l, 0, l,w) 
+ xy zf(l, l , 0 , w ) + x y zf(l, 1, l,w), 

(2) 

the ULC of four variables shown in Fig. 5 is obtained. 
It is noted that there is a NAND gate with a fan-in 
of 8 in this realization. Two other NAND realiza
tions with smaller fan-in limitations and more gates 
are given in Figs. 6 and 7. Similar to the case of 
three-variable ULC's, the corresponding NOR reali
zations of Figs. 5-7 can easily be shown that they have 
the same configurations of the original NAND real-

A f(Q.O.O.w) 
A, f(o,0,l,w) 
A2 f(Q.I.OrW) 
A3 f ( 0 , U , w ) 

A - fd.o.o.w) 

AT fO. l . l .w) 

J=E^f(x,y,z,w) 

izations with their input terminal connections per
muted. The rule of permutation on the residue func
tions of one variable for the NOR realization is to 
replace 1 by 0 and 0 by 1 in the residue functions for 
a NAND realization. For instance, f(0, 1, 0, w) in 
Fig. 5 should be replaced by f(l, 0, 1, w) for the 
corresponding NOR realization. 

The ULC's of five or more variables can be derived 
in a similar way. It can be shown that a ULC of n 
variables obtained by this method has p input pins, 
where 

p = 2n~1 + n - l . (3) 

With a fan-in limitation of four, this approach will 
yield a ULC of n variables, n 2= 2, which ha's q gates 
and {levels, where 
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Figure 6 — A U LC of four variables with 5 levels and a fan-in 4 

f(x,y,z,w) 

Figure 5 - A ULC of four variables with 3 levels and a fan-in 8 Figure 7 - A ULC of four variables with 4 levels and a fan-in 5 
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- (2n-x - 1) + (n - 1) when n is odd The number p of input pins of a ULC and King's upper bound on p. 

10 
(2 n-2 _ 1) + (n + 2) when n is even 

n + 1 when n is even. 

(4) 

(5) 

For example, a ULC of five variables with a fan-in 
limitation of four is shown in Fig. 8. The numbers 
given by (4) and (5) can certainly be reduced if a 
larger fan-in is permitted. It is noted that for any n 
only one complementary input variable is required 
and all others can be true input variables in a ULC 
obtained by this method. 

n 

P 

King's upper bound 

2 

3 

6 

3 

6 

11 

4 

11 

20 

5 

20 

37 

6 

37 

70 

TABLE I-The number p of input pins of a ULC and King's upper 
bound on p. 

(n + 3)p-(?)(n + 2)p + (£)(n+l)p-(£)np 

+. . . + (-l)n
n(£)3p. 

The number of possible distinct connections must 
not be smaller than the number of logic functions of 
n variables. Hence, the following inequality is ob
tained. 

(n + 3)p - (?) (n + 2)p + (?) (n + l)p - °g)np 

+. . . + (-l)n(S)3p^22 . 

The minimum p satisfying the inequality (6) is a lower 
bound on p, which is listed in Table II. It is noted 
that Elspas, et al,3 have derived a ULC of 4 variables 
with a total of 9 I/O pins, and by decomposition a 
ULC of 5 variables with a total of 19 I/O pins was ob
tained. For n 2s 6, their result requires exactly the 
same number of input pins given by (3). They have 
also derived a lower bound for p, which is smaller 
than that listed in Table II, because all complemen
tary inputs are allowed in their derivation. 

TABLE 11 — The lower bound on p calculated according to (6). 

n 

Lower bound 

2 3 4 5 6 

3 5 7 12 21 

Figure 8 —A ULC of five variables 

A comparison of the number of input pins required 
here and the upper bound of the number of input pins 
required for a ULC given by King7 is shown in Table 
I. The upper bound given by King is for the ULC de
fined in a slightly different way, namely only true in
puts are used, while in this paper one complementary 
input is allowed. It is seen that the values of p are 
considerably lower than King's upper bound. A lower 
bound on the number of required input pins is derived 
here with the restriction that only one complementary 
input is allowed. First we calculate the number of 
possible distinct connections of p input pins to the set 
of values {0, 1, x1 ;x2 , . . . , xn,xn} such that every 
Xj, 1 =s i =s n, is connected to at least one pin. It can 
be shown that this number is given by 

Realization of a universal logic circuit using 
universal logic modules 

We have shown in the last section that a ULC of 
any large number of variables can be found. However, 
it follows from (3)-(5) that the complexity of the 
ULC increases rapidly as the number of variables 
increases. From either economical point of view or 
maintenance point of view, it becomes prohibitive 
to build ULC's of various large numbers of variables 
in individual integrated circuit packages. Hence, we 
would like to present a technique for realizing a ULC 
of a large number of variables using identical ULC's 
of a small number of variables as modules, which 
are called universal logic modules (ULM's). Ob
viously, there are two great advantages of this tech
nique. First, we only need a large quantity of identical 
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ULM's to build ULC's of various numbers of vari
ables. Secondly, when there are faults in a ULC, we 
only need replace the faulty ULM's instead of the 
whole ULC. 

To derive the modular realization of a ULC of n 
variables using ULC's of 3 variables as the ULM's 
(denoted by ULM-3's), let us first consider the 
case when n is odd. Since any logic function f(x1? 

x 2 , . . . , xn) of n variables, n s* 3, can be expanded to 
the form 

f(Xi, x 2 , . . . , xn) = Xjx/CO, 0, x3 , . . . , xn) 
+ x1x2f(0, l ,x 3 , . . . ,x n ) 
+ x1x2f(l,0,x3,...,xn) 
+ x2x2f(l, l ,x 3 , . . . ,x n ) , (7) 

it can be realized by a ULM-3, provided that the side 
terminals d and C2 and the front terminals A0, A1? 

A2 and A3 shown in Fig. 1, 2, or 3 are connected to 
the input variables xt and x2 and the residue func
tions f(0,0,x3,... ,xn), f(0,1 ,x3,... ,xn), f(l ,0,x3,..., xn) 
and f(l,l, x 3 , . . . ,x n ) respectively. This ULM-3 
forms the first level of the modular realization of the 
ULC. Since we can repeat this process to each of the 
residue functions, the second level of the modular 
realization consists of four ULM-3's whose side 
terminals are connected to the input variables x3 

and x4 and front terminals connected to appropriate 
residue functions of n —4 variables. Continue this 
process until the residue functions become functions 
of the variable xn. Because n is odd, and because each 
expansion reduces the number of variables of the 
residue functions by exactly 2, it requires a total of 
(n — l)/2 expansions. This implies that f(x!,...,xn) 
can be realized by using ULM-3's in a tree structure 
consisting of (n — l)/2 levels as shown in Fig. 9. It is 
seen that there are 4j_1 ULM-3's in the j-th level of the 
tree structure. Each of the front terminals of the 
ULM-3's in the last level is connected to one of the 
four values 0, 1, xn and xn defined by the correspond
ing residue function of variable xn, which can be 
found as follows: Trace the path from the output ter
minal F to the front terminal in the last level in ques
tion in the tree structure, and use two bits to write 
the binary representation of the subscript h for the 
front terminal A,, of the ULM-3 in each level. Then, 
the concentration of the Vi{n— 1) 2-tuples in the order 
of the path forms the argument of the residue function 
for the front terminal. For instance, if the path from 
the output terminal to a front terminal in the last 
level in a modular ULC of 5 levels passes through 
the front terminals Alt A2, A0, A3, At of the ULM-3's 
in the 1st, 2nd,...,5th levels respectively, the residue 
function for this terminal is f(0,1,1,0,0,0,l,l,0,l,xn). 
For convenience, we shall call the front terminal 

of a ULM-3 in the last level P4 if it is connected to 
the residue function with the binary argument whose 
decimal representation is i. It is obvious that there 
are 2n_1 front terminals of the ULM-3's in the last 
level for a modular ULC of n variables. Fig. 10 shows 
the modular realization of a ULC of 7 variables using 
ULM-3's. 

xn-i *n-2 

X4 X3 

x2 X| 

ULM-3 

: = JULM^3}^ £0. 
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L t n-O™ I . . . . I 
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I ST 
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Figure 9—The modular realization of a ULC of n variables when n 
is odd 

When n is even and when only ULM-3's can be 
used in the modular realization, only slight modifica
tion in the first level is required. Instead of expanding 
the logic function according to (7) for the first level, 
we only expand the logic function as follows: 

f(x„ x 2 , . . . , xn) = Xi f(0, x 2 , . . . , xn) + Xi f(l, x2,.. .,xn). 
(8) 

It is easily seen that (8) can be realized by a ULM-3, 
provided that the side terminals d and C2 are both 
connected to the input variable x1? the front terminals 
A0 and A3 connected to the residue functions f(0, x2, 
. . . , xn) and f(l, x 2 , . . . , xn) respectively, and the 
connections for Ai and A2 are don't-care. Then, each 
of the residue functions in (8) is a function of an 
odd number of variables and hence can be realized 
by the previous method. The residue functions for 
the front terminals of the ULM-3's in the last level 
can be found in the same way as before except that 
only the first bit in the binary argument of the residue 
function corresponds to the subscript of the front 
terminal of the ULM-3 in the first level. The first 
bit is 0 or 1 depending upon whether the front terminal 
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x,x4 
X» Xi 

pMtH F 

t*— . _.^P. — pi)««— .2..'® 
LEVEL LEVEL 

*» I w 1 jturif 

Figure 10—The modular realization of a ULC of 7 variables 

of the ULM-3 in the first level in the path is A0 

or A3 respectively. Fig. 11 shows such a modular 
realization of a ULC of 6 variables. It is noted that 
in this case we have not used the full capacity of the 
ULM-3 in the first level. In fact, if we are not restrict
ed to use ULM-3's only in the modular realization, 
the three ULM-3's in the first and second levels can 
be substituted by a ULM-4 as shown in Fig. 12. 
The terminal connections and the residue functions 
for the front terminals of the ULM-4 in the last 
level can be found by considering the ULM-4 shown 
in Fig. 5 or 6 and the expansion of f(x1? x 2 , . . . , x„) 
with respect to the variables xx, x2, and x3. 

The above modular realization technique can 
easily be extended to using ULM's of any variables. 
If only ULM's of a fixed number of variables can be 
used, it is often necessary to have some don't-care 
terminal connections to some of the ULM's and hence 
some of the ULM's are not utilized to their full 
capacity. It can be shown that if only ULM-4's 
are used in the modular realization, there will be 
no don't-care terminal connections to any ULM-4 

Figure 11 — A modular realization of a ULC of six variables using 
ULM-3's only 

X4X5 XsXgX, 

1 f{x,.Xt,...,x«) 

Figure 12 —A modular realization of a ULC of six variables using 
ULM-3's and a ULM-4 

for a ULC of n variables, where n = 3a + 4 and a 
is a nonnegative integer. However, if both ULM-3 
and ULM-4 are used in the modular realization, 
the don't-care terminal connections can always be 
avoided. Furthermore, it is noted that the tree struc
ture of the modular realization of a ULC of n variables 
using ULM-k's always has 2n_1 front terminals in the 
last level for any k. 

Fault-detection test for ULM's and a fault-
diagnostic procedure for modular ULC's 

The problem of developing a practical fault-diagnos
tic procedure for a logic circuit of a large number of 
variables is still far from being solved.812 When 
integrated circuit packages are used for logical design, 
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so far there is no practical method of deriving a set 
of minimal fault diagnostic tests which can locate the 
faulty packages. At present, it is possible to find a 
set of tests to detect all faults and to locate most of 
the faults to within a reasonable number of packages.13 

In this section, we shall present the fault-detection 
tests for ULM's and a diagnostic procedure locating 
all the faulty ULM's in the modular realization of 
a ULC realizing a given logic function. 

Fault-detection tests for ULM's 
For a ULM built in an integrated circuit package, 

a defective unit usually means that a set of gates and 
possibly several connecting wires are burnt or 
broken. If we make no assumptions about the types 
of the faults in ULM's — whether they are due to 
single- or multiple-component failures, open- or 
short-circuit wires or gates, etc. —it is obvious that 
the fault-detection tests for ULM's must exhaust 
all possible combinations of the input terminals. 
Hence, for a ULM with p input terminals, where p 
is given by (3), it requires 2P tests to detect all possible 
faults in a ULM. It is seen that a ULM-3 requires 
64 tests* and a ULM-4 requires 2048 tests. 

A diagnostic procedure to locate all the 
faulty ULM's in a ULC 

Consider a ULC of n variables made of ULM-k's. 
Because a set of tests corresponding to all possible 
combinations of the n input variables will definitely 
detect all the faults in a logic circuit realizing a specific 
function, we need at most 2n tests for detecting faults 
in the ULC realizing a given logic function.! If there 
are no restrictions on the type of possible faults in 
the ULM-k's, the 2n tests also form the minimum 
test set. 

Let a test applied to a ULC of n variables be 
represented by the n-tuple (bu b 2 , . . . , bn) of binary 
components, where b/ is the value of the input 
variable x/, / = 1, 2 , . . . , n, employed in the test. 
Let Tj and TV be the tests (b1( b 2 , . . . , bn_!, 0) and (bx, 
b 2 , . . . , bn_!, 1) respectively, where (bu b 2 , . . . , b ^ ) 

*If the faults are restricted to "stuck-at-1" and "stuck-at-0" types, 
and if we assume that only a single fault can occur at a time in a 
ULM9,11, it can be shown that the set of minimum tests for a 
ULM-3 consists of only 8 tests. 

fit h noted that passing the 2" tests only guarantees that the ULC 
will realize the logic function under consideration, but does not 
guarantee that the ULC will realize any logic function of n var
iables correctly. Similar to the fault-detection tests for a ULM, 
the set of tests required to ensure a ULC realizing any logic func
tion of n variables correctly will have 2q tests, where q is the num
ber of input terminals of the ULC. However, if we assume that 
there is only a single faulty module in a ULC at a time, then the 
minimum number of tests required to ensure the ULC realizing 
any logic function of n variables correctly is 2n+3. 

has the decimal representation i. It follows from th0 
tree structure of the modular realization of a ULC 
that if there are no faults in the ULC, the tests T{ and 
Tj will make the output terminal F logically connected 
to the front terminal P} in the last level of the tree 
structure, where Pi is connected to the residue 
function f(b1? b 2 , . . . , bn_i, xn). Hence, the output ter
minal F and the terminal Pj should have the same val
ue under the tests Tj and Tj'. When F and Pj have dif
ferent values under test Tj or T{ or both, the terminal 
Pi is said to have a faulty test. Furthermore, when 
we say that apply tests to terminal P{, it implies 
that apply tests Tj and T{ to the ULC. Because of the 
tree structure of the ULC, it is obvious that there is 
one and only one path from ohe output terminal 
F to each terminal Pb and the path contains one 
and only one ULM-k in each level of the ULC. 
If a ULM-k Mr (of any level) is the paths terminat
ing at the terminals Ps, P i + 1 , . . . , Pi+d, we shall say 
that Mr covers the terminals Pj, Pj+i,..., Pj+d-

Now, the diagnostic procedure to locate all the 
faulty ULM-k's in a ULC of n variables can be 
summarized as follows: 

1) Apply tests to terminals Pb i = 0, 1 , . . . , 2n~1-l. 
If there exists no terminals with faulty tests, go to 
Step 4);otherwise, go to the next step. 

2) Start from 8 = 1. Let L6 be the set of all the 
ULM-k's in the 8th level in which each ULM-k 
covers at least one faulty terminal. Apply the fault-
detection tests to each of the ULM-k's in Ls. If 
all the ULM-k's in L6 are good, go to the next step. 
Otherwise, replace each faulty ULM-k in Lg and 
apply test to all terminals Pj's covered by each 
replaced ULM-k. Record the terminals Pi's with 
the new faulty tests and those terminals with previous 
faulty tests not covered by the replaced ULM-k's, 
and go to the next step. 

3) Increase 8 by 1, and go to Step 2) when 8 is small
er than the number of levels of the tree structure. 
Otherwise, the ULM-k's (in the last level) covering 
at least one terminal with a faulty test are faulty 
and should be replaced, and go to Step 4). 

4) All the ULM-k's in the ULC are good for realiz
ing the logic function under consideration. 

To demonstrate this diagnostic procedure, let us 
consider the ULC shown in Fig. 10. We first apply 
tests to all P/s. Assume that terminals P0, P-i, Ps> P6» 
P7, P31, P56,and P57,be the terminals with faulty tests 
after replacing M17. Hence, we know that P„ P8, 
and assume that we find M2i is good. Then, we have 
to apply fault-detection tests to M17, Mlg and M20 

since each of these ULM-3's covers at least one 
terminal with a faulty test. Suppose we find that M17 

is faulty and that Mi8 and M20 are good. Then, replace 
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M17 and apply tests to terminals P0,P1,...,P15. Let 
Pi, Pg> Pio and P n be the terminals with faulty tests 
after replacing M17. Hence, we know that P,, P8, 
Pio>Pii,P3i,P56>P57 and P63 are all the terminals with 
faulty tests. Since we reach the last level, we know 
M1,M3,M8,M15 and M16 are faulty and should be re
placed. This terminates the procedure. 

Improving the reliability of the modular realization 
of a ULC by an error-correcting code 

The reliability of the modular realization of a ULC 
can be improved by adding redundant ULM's using 
an error-correcting code. In this section, we shall 
demonstrate how to apply Hamming single-error-
correcting code to increase the reliability of the modu
lar realization of a ULC of n variables. The circuit is 
shown in Fig. 13 and the following notations are em
ployed. 

i f(xi>x2,x3,...,xn) 
f0 = f(0,0,x3,...,xn) 
fi = f(0, l,x3,...,xn) 
f2 = f(l,0,x3,...;xn) 
f3 = f(l,l,x3,...,xn) 

(9) 

The four blocks B0,Bi3z and B3 are the modular 
realizations of the ULC's of n-2 variables and have 
the outputs f0,fi,f2 and f3 respectively. The Hamming 
single-error-correcting code with 4 information 
symbols is used, and its parity-check matrix H 
and generator matrix G are given by 

X^ X.X, 

Be 

B, 

B. f. 

B, f. 

B« 

x,x, 

B, 
P. 

DECODER gULM-3 

Bi 
P5 . 

Figure 13-A modular realization of a ULC of n variables using 
Hamming single-error-correcting code 

H 

G = 

0 0 0 1 1 1 1 

0 1 1 0 0 1 1 

1 0 1 0 1 0 1 

Pi P2 fo P3 fl ?2 fs 

1 1 1 0 0 0 0 
1 0 0 1 1 0 0 
0 1 0 1 0 1 0 
1 1 0 1 0 0 1 

(10) 

(11) 

The 4 information symbols to be encoded are f0,fi,f2 

and f3, which are placed in the 3rd, 5th, 6th and 7th 
positions of the 7-bit code word respectively, while 
the remaining three positions are the parity check 
symbols Pi,p2,p3 as shown in (11). It follows from 
(10) and (11) that the parity-check symbols Pi,p2 

and p3 can be expressed in terms of f0,fi,f2 and f3 

as follows: 

Pi = fof1*3 + foflf3 + foflf3 + foflf 3 

P2 = f0f2f3 + f0f2f3 + W 3 + f o ^ 

p 3 = f,f2f3 + fifJs + f,f2f3+ flf2f3 

(12) 

Since f0,fl5f2 and f3 are functions of the n-2 variables 
x3,...,xn, pi,p2 and p3 are also functions of the same 
n-2 variables x3,...,xn. Thus, each of Pi,p2,p3 can be 
realized by using the modular realization of an ULC 
of n-2 variables. The three ULC's of n-2 variables 
for pj,p2 and p3 are represented by the blocks B4,B5 

and B6 as shown in Fig. 13. The 7 signals f0,fx,f2,f3, 
Pi>p2?P3 are then fed to a decoder followed by a 
ULM-3 which produces the final output f(x1 ? . . . , xn). 
The decoder and the ULM-3 connected to the output 
terminal have to be of high reliability. It is found 
that the decoder will have 7 exclusive-OR gates, 
3 INVERTER'S and 4 AND gates. The decoder can 
be implemented together with the ULM-3 in a 
single reliable package. Let a block containing faulty 
ULM's be called a faulty block. It is seen that such 
a ULC of n variables will give correct output if 
there is only one faulty block. It is also noted that the 
ULC will still give correct output for the case that 
there are more than one faulty block, provided 
that only one erroneous block signal will show up 
at a time (under any input combination). If there 
exists a faulty block in the ULC, the easiest way to 
detect this faulty block is to add three output terminals 
to the decoder showing the syndrome of the code 
words. The faulty block can be located automatically 
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by simply reading the syndrome when the first fault 
occurs during the use of the ULC, and no separate 
test is required. The increase of cost for implementing 
this scheme is that for any n > 3, we have to add 
75% redundant ULC's of n-2 variables and one highly 
reliable decoder-ULM-3 package. It is notes that the 
method illustrated above can easily be extended to 
the use of Hamming code with more than four 
information bits. Furthermore, the error-correcting 
code that can be used for increasing the reliability 
of the ULC is not restricted to the Hamming code, 
and the number of errors that can be corrected is 
not restricted to a single one. 

DISCUSSION 

In this paper, we have presented simple design tech
niques for ULC's, which are especially suitable to the 
use of integrated circuit packages for implementation. 
Various effects, such as the number of pins, the num
ber of logic gates and the number of logic levels in 
a package, on the design of ULC's have been con
sidered. For the ULC's obtained by the modular 
realization method, a diagnostic procedure for locat
ing all the faulty ULM's in a faulty ULC has been 
established. Furthermore, a method for improving 
the reliability of a ULC using error-correcting codes 
has been demonstrated. 

It is noted that an important practical advantage of 
using a ULC to realize a given logic function is that 
we need not find the minimal sum or minimal prod
uct of the logic function, which, however, is required 
for conventional realization methods. The only simpli
fication process necessary to be applied to the logic 
function is to detect whether it can be written in a form 
which involves fewer variables. This result is used 
to determine a ULC of the smallest number of vari
ables for realizing the given logic function. 

It should be pointed out that the ULC's considered 
in this paper are restricted to realizing any single 
logic function. A natural extension of this study is to 
consider the design of a multiple-output ULC for 
realizing any set of m logic function. One way to ob
tain such a multiple-output ULC is simply to connect 
the m ULC's, each of which realizes one of the m logic 
functions, in the form of sharing the common input-
variable terminals. It is quite unlikely that a multiple-
output ULC with fewer I/O terminals can be obtained, 
because in general there are no fixed relations among 
the m logic functions to be realized. 
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