
Universal logic circuits and their modular realizations

by S. S. YAU and C. K. TANG
Northwestern University
Evanston, Illinois

INTRODUCTION

In order to achieve the great economic advantage of
utilizing integrated circuits in computer circuitry, it
is desirable to design a circuit which can realize any
logic function of a fixed number of variables by simply
varying its input terminal connections. Such a circuit
is called a universal logic circuit (ULC). When the
number of variables becomes large, a ULC may be
too complex to be built in a single package economi
cally. Hence, it is preferred to use ULC's of a small
number of variables as the modules to build a ULC of
a large number of variables. Such modules are called
universal logic modules (ULM's). In this paper, we
shall first present a three-variable ULC, which has a
fan-in for each logic gate not exceeding four, and con
sists of only 7 I/O pins. Then, we shall extend the
ULC's to four or more variables. There are 12 I/O
pins in a ULC of four variables, and several models
with different fan-in limitations will be given. The
logic gates in the ULC's may be all NAND or all
NOR gates. Then, a simple technique for designing a
ULC of any large number of variables using the
ULC's of a small number of variables, say three vari
ables, as the ULM's will be established. It will be
seen that the ULC obtained by this technique will
require a small number of ULM's. Moreover, the
fault-detection tests for ULM's and a diagnostic .pro
cedure for locating all the faulty ULM's in the modu
lar realization of a ULC realizing a given logic func
tion will be presented. Finally, a method for improving
the reliability of a ULC using an error-correcting
code will be demonstrated.

Universal logic circuits of three variables

The problem of designing a ULC was first treated
by Forslund and Waxman,1 and later by Ellison, et al.2

and Elspas, et al.3 They employed the concept of
equivalence classes to reduce the number of all
possible logic functions of a given number of variables
to the number of the equivalence classes. An equiva
lence class is a set of logic functions that may be ob

tained from a particular network by only manipulating
the application of variables' to the input terminals of
the network. One of the most common constraints on
these manipulations is that only true variables are
available with the permutation of the variables at the
input terminals permitted. With this restriction, Hel-
lerman4 partitioned the 223 = 256 three-variable logic
functions into 80 equivalence classes. In order to
reduce the number of equivalence classes, Forslund
and Waxman1 assumed that both true and complement
variables are available at the input, and true and com
plement logic functions are both available at the output
(two output terminals). In addition, biasing (to a logi
cal 1 or 0) and duplication of input variables to the
input terminals are also permitted. The equivalence
classes defined this way reduces its number from 80
to 10 for three-variable logic functions. In this paper,
the same constraints are to be placed on the manip
ulations of input terminals, except that only one
output terminal will be required and that the biasing
"0" and " 1 " are not necessary. We shall employ a
different approach to obtain the ULC.

It is noted that a logic function f(x, y, z) of three
variables x, y, z can always be expanded with respect
to any two of the three variables x, y, z as follows:

f(x,y,z) = xyf(0,0,z) + xyf(0,l ,z)
+ xyf(l,0,z) + xyf(l , l ,z) , (1)

where the functions f(0, 0, z), f(0, 1, z), f(l, 0, z) and
f(l, 1, z) are functions of z only, and each of these
functions assumes one of the four values: z, z, 0 or 1.
Hence, a circuit shown in Fig. 1 can realize any ar
bitrary three-variable logic function f(x, y, z) if the
side terminals Cx and C2 are connected to x and y
respectively and the four front terminals A0, Ai:,
A2, and A3 are connected to the appropriate values
z, z, 0, and 1. Based on (1) we obtain a ULC of three
variables consisting of AND, OR and INVERTER
gates shown in Fig. 1. It is noted that the biasing "0"
and " 1 " are not necessary. In Fig. 1, for example,
if f(0, 0, z) = 0, connecting terminal A0 to biasing
"0" is the same as connecting A0 to input variable y;

297

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1468075.1468120&domain=pdf&date_stamp=1968-04-30

298 Spring Joint Computer Conference, 1968

and if f(0, 0, z) = 1, connecting terminal A0 to biasing
" 1 " is the same as connecting A0 to input variable y.
Similar arguments apply to terminals At, A2, and A3.

C2

An f(0.0>2)

A, f(OJ.z)

A, f(«,0,2)

A- f (l . l . z)

^h

D-

^ } -AND gate

OR gate

•f— INVERTER

^=p) fU.Y.z)

Figure 1 —A ULC of three variables consisting of AND, OR and
NOT gates

It is well-known5 that a two-level AND and OR cir
cuit can be replaced by a NAND-gate circuit of the
same configuration. Thus, the circuit shown in Fig. 2
is also a ULC of three variables employing NAND
gates only.

w

Figure 2 —A ULC of three variables consisting of NAND gates
only

A ULC of three variables consisting of NOR gates
can be obtained by using the dual relationship between
NAND's and NOR's, and is given in Fig. 3. It is
noted that the configurations of the ULC with NAND
gates and the ULC with NOR gates are identical,
and the only difference between these two circuits
is the permutation of the input values for the front
terminals. Another realization is shown in Fig. 4

using NAND, OR and INVERTER gates. This
circuit is more desirable than those shown in Figs. 2
and 3, since it requires only 16 diodes and 3 transis
tors, while the circuits shown in Figs. 2 and 3 need
16 diodes and 7 transistors. Furthermore; the cir
cuit shown in Fig. 4 is more reliable because fewer
transistors are used. A similar circuit can be obtained
using AND, NOR and INVERTER gates. In each
of the above circuits, a total of 7 I/O pins is required.

An f (l . l , z)

A 2 f(l,Q,z)

A. f(o.'.z)

An f(O.O.Z)

V V
|£>— NOR gate

>

>

>J =£>
f(x,y,z)

>

Figure 3 —A ULC of three variables consisting of NOR gates only

T(1.1.2)

^>_NANDgote T (| - f t z)

f(o.i.z)

7(o.o,z)

m
3d

&

m>
&

f(x,y,z)

Figure 4 —A ULC of three variables consisting of OR, NAND and
INVERTER gates

To evaluate the ULC given above, a comparison
with the results given by Forslund and Waxman1

is made as follows: Consider the circuit shown in
Fig. 2 as a minimum-pin ULC. Since gates G6 and
G7 are included in the ULC, the circuit has 7 pins,
7 gates, and 3 levels. The minimum-pin ULC of three
variables given by Forslund and Waxman also has
7 pins, but it requires 10 gates and has 5 levels. The
ULC given in Fig. 2 also has the advantage that only
one complement input is required, whereas the mini
mum-pin ULC given by Forslund and Waxman re
quires two complement inputs. If the circuit shown in
Fig. 2 is considered as a minimum-gate ULC, gates

TTni versa! Logic Circuits and Their Modular Realizations

G6 and G7 should be excluded from the ULC at the
expense of adding two more pins. Consequently, it
ends up with a minimum-gate ULC of 5 gates, 9 pins
and 2 levels. The minimum-gate ULC of Forslund
and Waxman has 6 gates, 9 pins and 4 levels, and can
realize only the logic functions in nine out of the ten
equivalence classes. It is seen that 5 is the absolute
minimum number of gates required for any ULC of 3
variables, since the realization of the exclusive-or
function of 3 variables alone requires a minimum of 5
NAND gates.6

Universal logic circuits of four and more variables

The problem of designing a ULC of four or more
variables was also treated by Forslund and Waxman1,
using the same idea of equivalence classes as in the
case of three-variable ULC. Due to the large amount
of computations required, it is prohibitive to obtain
such a ULC by that method. However, the approach
used in the last section for obtaining the ULC of three
variables can readily be extended to four or more
variables. Since a logic function f(x, y, z, w) of four
variables can be written in the form

f(x, y, z, w) = x y z f(0,0,0, w) + x y z f(0, 0, 1,w)
+ x y z f(0, 1,0, w) + x y z f(0, 1, l,w)
+ x y z f(l, 0, 0,w) + x y z f(l, 0, l,w)
+ xy zf(l, l , 0 , w) + x y zf(l, 1, l,w),

(2)

the ULC of four variables shown in Fig. 5 is obtained.
It is noted that there is a NAND gate with a fan-in
of 8 in this realization. Two other NAND realiza
tions with smaller fan-in limitations and more gates
are given in Figs. 6 and 7. Similar to the case of
three-variable ULC's, the corresponding NOR reali
zations of Figs. 5-7 can easily be shown that they have
the same configurations of the original NAND real-

A f(Q.O.O.w)
A, f(o,0,l,w)
A2 f(Q.I.OrW)
A3 f (0 , U , w)

A - fd.o.o.w)

AT fO. l . l .w)

J=E^f(x,y,z,w)

izations with their input terminal connections per
muted. The rule of permutation on the residue func
tions of one variable for the NOR realization is to
replace 1 by 0 and 0 by 1 in the residue functions for
a NAND realization. For instance, f(0, 1, 0, w) in
Fig. 5 should be replaced by f(l, 0, 1, w) for the
corresponding NOR realization.

The ULC's of five or more variables can be derived
in a similar way. It can be shown that a ULC of n
variables obtained by this method has p input pins,
where

p = 2n~1 + n - l . (3)

With a fan-in limitation of four, this approach will
yield a ULC of n variables, n 2= 2, which ha's q gates
and {levels, where

C3 C2

V^7
An f(Q.O.O.w)

A, f(O.O.I.w)
f(o,i,o,w)

A, f (O.U.w)

A l f(i,o,o,w)

A5 f(l.O.l.w)

Ae f(' . ' .Q.w)
AT f (l . l . l . w) -

£u
^7

^L Dh

4>i

H> <(x,y,z,w)

M>J

Figure 6 — A U LC of four variables with 5 levels and a fan-in 4

f(x,y,z,w)

Figure 5 - A ULC of four variables with 3 levels and a fan-in 8 Figure 7 - A ULC of four variables with 4 levels and a fan-in 5

300 Spring Joint Computer Conference, 1968

- (2n-x - 1) + (n - 1) when n is odd The number p of input pins of a ULC and King's upper bound on p.

10
(2 n-2 _ 1) + (n + 2) when n is even

n + 1 when n is even.

(4)

(5)

For example, a ULC of five variables with a fan-in
limitation of four is shown in Fig. 8. The numbers
given by (4) and (5) can certainly be reduced if a
larger fan-in is permitted. It is noted that for any n
only one complementary input variable is required
and all others can be true input variables in a ULC
obtained by this method.

n

P

King's upper bound

2

3

6

3

6

11

4

11

20

5

20

37

6

37

70

TABLE I-The number p of input pins of a ULC and King's upper
bound on p.

(n + 3)p-(?)(n + 2)p + (£)(n+l)p-(£)np

+. . . + (-l)n
n(£)3p.

The number of possible distinct connections must
not be smaller than the number of logic functions of
n variables. Hence, the following inequality is ob
tained.

(n + 3)p - (?) (n + 2)p + (?) (n + l)p - °g)np

+. . . + (-l)n(S)3p^22 .

The minimum p satisfying the inequality (6) is a lower
bound on p, which is listed in Table II. It is noted
that Elspas, et al,3 have derived a ULC of 4 variables
with a total of 9 I/O pins, and by decomposition a
ULC of 5 variables with a total of 19 I/O pins was ob
tained. For n 2s 6, their result requires exactly the
same number of input pins given by (3). They have
also derived a lower bound for p, which is smaller
than that listed in Table II, because all complemen
tary inputs are allowed in their derivation.

TABLE 11 — The lower bound on p calculated according to (6).

n

Lower bound

2 3 4 5 6

3 5 7 12 21

Figure 8 —A ULC of five variables

A comparison of the number of input pins required
here and the upper bound of the number of input pins
required for a ULC given by King7 is shown in Table
I. The upper bound given by King is for the ULC de
fined in a slightly different way, namely only true in
puts are used, while in this paper one complementary
input is allowed. It is seen that the values of p are
considerably lower than King's upper bound. A lower
bound on the number of required input pins is derived
here with the restriction that only one complementary
input is allowed. First we calculate the number of
possible distinct connections of p input pins to the set
of values {0, 1, x1 ;x2 , . . . , xn,xn} such that every
Xj, 1 =s i =s n, is connected to at least one pin. It can
be shown that this number is given by

Realization of a universal logic circuit using
universal logic modules

We have shown in the last section that a ULC of
any large number of variables can be found. However,
it follows from (3)-(5) that the complexity of the
ULC increases rapidly as the number of variables
increases. From either economical point of view or
maintenance point of view, it becomes prohibitive
to build ULC's of various large numbers of variables
in individual integrated circuit packages. Hence, we
would like to present a technique for realizing a ULC
of a large number of variables using identical ULC's
of a small number of variables as modules, which
are called universal logic modules (ULM's). Ob
viously, there are two great advantages of this tech
nique. First, we only need a large quantity of identical

Universal Logic Circuits and Their modular Realizations 301

ULM's to build ULC's of various numbers of vari
ables. Secondly, when there are faults in a ULC, we
only need replace the faulty ULM's instead of the
whole ULC.

To derive the modular realization of a ULC of n
variables using ULC's of 3 variables as the ULM's
(denoted by ULM-3's), let us first consider the
case when n is odd. Since any logic function f(x1?

x 2 , . . . , xn) of n variables, n s* 3, can be expanded to
the form

f(Xi, x 2 , . . . , xn) = Xjx/CO, 0, x3 , . . . , xn)
+ x1x2f(0, l ,x 3 , . . . ,x n)
+ x1x2f(l,0,x3,...,xn)
+ x2x2f(l, l ,x 3 , . . . ,x n) , (7)

it can be realized by a ULM-3, provided that the side
terminals d and C2 and the front terminals A0, A1?

A2 and A3 shown in Fig. 1, 2, or 3 are connected to
the input variables xt and x2 and the residue func
tions f(0,0,x3,... ,xn), f(0,1 ,x3,... ,xn), f(l ,0,x3,..., xn)
and f(l,l, x 3 , . . . ,x n) respectively. This ULM-3
forms the first level of the modular realization of the
ULC. Since we can repeat this process to each of the
residue functions, the second level of the modular
realization consists of four ULM-3's whose side
terminals are connected to the input variables x3

and x4 and front terminals connected to appropriate
residue functions of n —4 variables. Continue this
process until the residue functions become functions
of the variable xn. Because n is odd, and because each
expansion reduces the number of variables of the
residue functions by exactly 2, it requires a total of
(n — l)/2 expansions. This implies that f(x!,...,xn)
can be realized by using ULM-3's in a tree structure
consisting of (n — l)/2 levels as shown in Fig. 9. It is
seen that there are 4j_1 ULM-3's in the j-th level of the
tree structure. Each of the front terminals of the
ULM-3's in the last level is connected to one of the
four values 0, 1, xn and xn defined by the correspond
ing residue function of variable xn, which can be
found as follows: Trace the path from the output ter
minal F to the front terminal in the last level in ques
tion in the tree structure, and use two bits to write
the binary representation of the subscript h for the
front terminal A,, of the ULM-3 in each level. Then,
the concentration of the Vi{n— 1) 2-tuples in the order
of the path forms the argument of the residue function
for the front terminal. For instance, if the path from
the output terminal to a front terminal in the last
level in a modular ULC of 5 levels passes through
the front terminals Alt A2, A0, A3, At of the ULM-3's
in the 1st, 2nd,...,5th levels respectively, the residue
function for this terminal is f(0,1,1,0,0,0,l,l,0,l,xn).
For convenience, we shall call the front terminal

of a ULM-3 in the last level P4 if it is connected to
the residue function with the binary argument whose
decimal representation is i. It is obvious that there
are 2n_1 front terminals of the ULM-3's in the last
level for a modular ULC of n variables. Fig. 10 shows
the modular realization of a ULC of 7 variables using
ULM-3's.

xn-i *n-2

X4 X3

x2 X|

ULM-3

: = JULM^3}^ £0.

ULM-3 f^fc
ULM-3

ULM-3

ULM-3]—
p;.-, «•-•-1

L t n-O™ I I
P LEVEL —J • ' • |—

2ND
LEVEL

I ST
LEVEL H

Figure 9—The modular realization of a ULC of n variables when n
is odd

When n is even and when only ULM-3's can be
used in the modular realization, only slight modifica
tion in the first level is required. Instead of expanding
the logic function according to (7) for the first level,
we only expand the logic function as follows:

f(x„ x 2 , . . . , xn) = Xi f(0, x 2 , . . . , xn) + Xi f(l, x2,.. .,xn).
(8)

It is easily seen that (8) can be realized by a ULM-3,
provided that the side terminals d and C2 are both
connected to the input variable x1? the front terminals
A0 and A3 connected to the residue functions f(0, x2,
. . . , xn) and f(l, x 2 , . . . , xn) respectively, and the
connections for Ai and A2 are don't-care. Then, each
of the residue functions in (8) is a function of an
odd number of variables and hence can be realized
by the previous method. The residue functions for
the front terminals of the ULM-3's in the last level
can be found in the same way as before except that
only the first bit in the binary argument of the residue
function corresponds to the subscript of the front
terminal of the ULM-3 in the first level. The first
bit is 0 or 1 depending upon whether the front terminal

302 Spring Joint Computer Conference, 1968

x,x4
X» Xi

pMtH F

t*— . _.^P. — pi)««— .2..'®
LEVEL LEVEL

*» I w 1 jturif

Figure 10—The modular realization of a ULC of 7 variables

of the ULM-3 in the first level in the path is A0

or A3 respectively. Fig. 11 shows such a modular
realization of a ULC of 6 variables. It is noted that
in this case we have not used the full capacity of the
ULM-3 in the first level. In fact, if we are not restrict
ed to use ULM-3's only in the modular realization,
the three ULM-3's in the first and second levels can
be substituted by a ULM-4 as shown in Fig. 12.
The terminal connections and the residue functions
for the front terminals of the ULM-4 in the last
level can be found by considering the ULM-4 shown
in Fig. 5 or 6 and the expansion of f(x1? x 2 , . . . , x„)
with respect to the variables xx, x2, and x3.

The above modular realization technique can
easily be extended to using ULM's of any variables.
If only ULM's of a fixed number of variables can be
used, it is often necessary to have some don't-care
terminal connections to some of the ULM's and hence
some of the ULM's are not utilized to their full
capacity. It can be shown that if only ULM-4's
are used in the modular realization, there will be
no don't-care terminal connections to any ULM-4

Figure 11 — A modular realization of a ULC of six variables using
ULM-3's only

X4X5 XsXgX,

1 f{x,.Xt,...,x«)

Figure 12 —A modular realization of a ULC of six variables using
ULM-3's and a ULM-4

for a ULC of n variables, where n = 3a + 4 and a
is a nonnegative integer. However, if both ULM-3
and ULM-4 are used in the modular realization,
the don't-care terminal connections can always be
avoided. Furthermore, it is noted that the tree struc
ture of the modular realization of a ULC of n variables
using ULM-k's always has 2n_1 front terminals in the
last level for any k.

Fault-detection test for ULM's and a fault-
diagnostic procedure for modular ULC's

The problem of developing a practical fault-diagnos
tic procedure for a logic circuit of a large number of
variables is still far from being solved.812 When
integrated circuit packages are used for logical design,

Universal Logic Circuits and Their Modular Realizations 303

so far there is no practical method of deriving a set
of minimal fault diagnostic tests which can locate the
faulty packages. At present, it is possible to find a
set of tests to detect all faults and to locate most of
the faults to within a reasonable number of packages.13

In this section, we shall present the fault-detection
tests for ULM's and a diagnostic procedure locating
all the faulty ULM's in the modular realization of
a ULC realizing a given logic function.

Fault-detection tests for ULM's
For a ULM built in an integrated circuit package,

a defective unit usually means that a set of gates and
possibly several connecting wires are burnt or
broken. If we make no assumptions about the types
of the faults in ULM's — whether they are due to
single- or multiple-component failures, open- or
short-circuit wires or gates, etc. —it is obvious that
the fault-detection tests for ULM's must exhaust
all possible combinations of the input terminals.
Hence, for a ULM with p input terminals, where p
is given by (3), it requires 2P tests to detect all possible
faults in a ULM. It is seen that a ULM-3 requires
64 tests* and a ULM-4 requires 2048 tests.

A diagnostic procedure to locate all the
faulty ULM's in a ULC

Consider a ULC of n variables made of ULM-k's.
Because a set of tests corresponding to all possible
combinations of the n input variables will definitely
detect all the faults in a logic circuit realizing a specific
function, we need at most 2n tests for detecting faults
in the ULC realizing a given logic function.! If there
are no restrictions on the type of possible faults in
the ULM-k's, the 2n tests also form the minimum
test set.

Let a test applied to a ULC of n variables be
represented by the n-tuple (bu b 2 , . . . , bn) of binary
components, where b/ is the value of the input
variable x/, / = 1, 2 , . . . , n, employed in the test.
Let Tj and TV be the tests (b1(b 2 , . . . , bn_!, 0) and (bx,
b 2 , . . . , bn_!, 1) respectively, where (bu b 2 , . . . , b ^)

*If the faults are restricted to "stuck-at-1" and "stuck-at-0" types,
and if we assume that only a single fault can occur at a time in a
ULM9,11, it can be shown that the set of minimum tests for a
ULM-3 consists of only 8 tests.

fit h noted that passing the 2" tests only guarantees that the ULC
will realize the logic function under consideration, but does not
guarantee that the ULC will realize any logic function of n var
iables correctly. Similar to the fault-detection tests for a ULM,
the set of tests required to ensure a ULC realizing any logic func
tion of n variables correctly will have 2q tests, where q is the num
ber of input terminals of the ULC. However, if we assume that
there is only a single faulty module in a ULC at a time, then the
minimum number of tests required to ensure the ULC realizing
any logic function of n variables correctly is 2n+3.

has the decimal representation i. It follows from th0
tree structure of the modular realization of a ULC
that if there are no faults in the ULC, the tests T{ and
Tj will make the output terminal F logically connected
to the front terminal P} in the last level of the tree
structure, where Pi is connected to the residue
function f(b1? b 2 , . . . , bn_i, xn). Hence, the output ter
minal F and the terminal Pj should have the same val
ue under the tests Tj and Tj'. When F and Pj have dif
ferent values under test Tj or T{ or both, the terminal
Pi is said to have a faulty test. Furthermore, when
we say that apply tests to terminal P{, it implies
that apply tests Tj and T{ to the ULC. Because of the
tree structure of the ULC, it is obvious that there is
one and only one path from ohe output terminal
F to each terminal Pb and the path contains one
and only one ULM-k in each level of the ULC.
If a ULM-k Mr (of any level) is the paths terminat
ing at the terminals Ps, P i + 1 , . . . , Pi+d, we shall say
that Mr covers the terminals Pj, Pj+i,..., Pj+d-

Now, the diagnostic procedure to locate all the
faulty ULM-k's in a ULC of n variables can be
summarized as follows:

1) Apply tests to terminals Pb i = 0, 1 , . . . , 2n~1-l.
If there exists no terminals with faulty tests, go to
Step 4);otherwise, go to the next step.

2) Start from 8 = 1. Let L6 be the set of all the
ULM-k's in the 8th level in which each ULM-k
covers at least one faulty terminal. Apply the fault-
detection tests to each of the ULM-k's in Ls. If
all the ULM-k's in L6 are good, go to the next step.
Otherwise, replace each faulty ULM-k in Lg and
apply test to all terminals Pj's covered by each
replaced ULM-k. Record the terminals Pi's with
the new faulty tests and those terminals with previous
faulty tests not covered by the replaced ULM-k's,
and go to the next step.

3) Increase 8 by 1, and go to Step 2) when 8 is small
er than the number of levels of the tree structure.
Otherwise, the ULM-k's (in the last level) covering
at least one terminal with a faulty test are faulty
and should be replaced, and go to Step 4).

4) All the ULM-k's in the ULC are good for realiz
ing the logic function under consideration.

To demonstrate this diagnostic procedure, let us
consider the ULC shown in Fig. 10. We first apply
tests to all P/s. Assume that terminals P0, P-i, Ps> P6»
P7, P31, P56,and P57,be the terminals with faulty tests
after replacing M17. Hence, we know that P„ P8,
and assume that we find M2i is good. Then, we have
to apply fault-detection tests to M17, Mlg and M20

since each of these ULM-3's covers at least one
terminal with a faulty test. Suppose we find that M17

is faulty and that Mi8 and M20 are good. Then, replace

304 Spring Joint Computer Conference, 1968

M17 and apply tests to terminals P0,P1,...,P15. Let
Pi, Pg> Pio and P n be the terminals with faulty tests
after replacing M17. Hence, we know that P,, P8,
Pio>Pii,P3i,P56>P57 and P63 are all the terminals with
faulty tests. Since we reach the last level, we know
M1,M3,M8,M15 and M16 are faulty and should be re
placed. This terminates the procedure.

Improving the reliability of the modular realization
of a ULC by an error-correcting code

The reliability of the modular realization of a ULC
can be improved by adding redundant ULM's using
an error-correcting code. In this section, we shall
demonstrate how to apply Hamming single-error-
correcting code to increase the reliability of the modu
lar realization of a ULC of n variables. The circuit is
shown in Fig. 13 and the following notations are em
ployed.

i f(xi>x2,x3,...,xn)
f0 = f(0,0,x3,...,xn)
fi = f(0, l,x3,...,xn)
f2 = f(l,0,x3,...;xn)
f3 = f(l,l,x3,...,xn)

(9)

The four blocks B0,Bi3z and B3 are the modular
realizations of the ULC's of n-2 variables and have
the outputs f0,fi,f2 and f3 respectively. The Hamming
single-error-correcting code with 4 information
symbols is used, and its parity-check matrix H
and generator matrix G are given by

X^ X.X,

Be

B,

B. f.

B, f.

B«

x,x,

B,
P.

DECODER gULM-3

Bi
P5 .

Figure 13-A modular realization of a ULC of n variables using
Hamming single-error-correcting code

H

G =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

Pi P2 fo P3 fl ?2 fs

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

(10)

(11)

The 4 information symbols to be encoded are f0,fi,f2

and f3, which are placed in the 3rd, 5th, 6th and 7th
positions of the 7-bit code word respectively, while
the remaining three positions are the parity check
symbols Pi,p2,p3 as shown in (11). It follows from
(10) and (11) that the parity-check symbols Pi,p2

and p3 can be expressed in terms of f0,fi,f2 and f3

as follows:

Pi = fof1*3 + foflf3 + foflf3 + foflf 3

P2 = f0f2f3 + f0f2f3 + W 3 + f o ^

p 3 = f,f2f3 + fifJs + f,f2f3+ flf2f3

(12)

Since f0,fl5f2 and f3 are functions of the n-2 variables
x3,...,xn, pi,p2 and p3 are also functions of the same
n-2 variables x3,...,xn. Thus, each of Pi,p2,p3 can be
realized by using the modular realization of an ULC
of n-2 variables. The three ULC's of n-2 variables
for pj,p2 and p3 are represented by the blocks B4,B5

and B6 as shown in Fig. 13. The 7 signals f0,fx,f2,f3,
Pi>p2?P3 are then fed to a decoder followed by a
ULM-3 which produces the final output f(x1 ? . . . , xn).
The decoder and the ULM-3 connected to the output
terminal have to be of high reliability. It is found
that the decoder will have 7 exclusive-OR gates,
3 INVERTER'S and 4 AND gates. The decoder can
be implemented together with the ULM-3 in a
single reliable package. Let a block containing faulty
ULM's be called a faulty block. It is seen that such
a ULC of n variables will give correct output if
there is only one faulty block. It is also noted that the
ULC will still give correct output for the case that
there are more than one faulty block, provided
that only one erroneous block signal will show up
at a time (under any input combination). If there
exists a faulty block in the ULC, the easiest way to
detect this faulty block is to add three output terminals
to the decoder showing the syndrome of the code
words. The faulty block can be located automatically

i T T :_ » x 1..1 m .
u niversai Logic c i rcu i t s anu i ucn iviuuuiai ivcanz,auuiis

by simply reading the syndrome when the first fault
occurs during the use of the ULC, and no separate
test is required. The increase of cost for implementing
this scheme is that for any n > 3, we have to add
75% redundant ULC's of n-2 variables and one highly
reliable decoder-ULM-3 package. It is notes that the
method illustrated above can easily be extended to
the use of Hamming code with more than four
information bits. Furthermore, the error-correcting
code that can be used for increasing the reliability
of the ULC is not restricted to the Hamming code,
and the number of errors that can be corrected is
not restricted to a single one.

DISCUSSION

In this paper, we have presented simple design tech
niques for ULC's, which are especially suitable to the
use of integrated circuit packages for implementation.
Various effects, such as the number of pins, the num
ber of logic gates and the number of logic levels in
a package, on the design of ULC's have been con
sidered. For the ULC's obtained by the modular
realization method, a diagnostic procedure for locat
ing all the faulty ULM's in a faulty ULC has been
established. Furthermore, a method for improving
the reliability of a ULC using error-correcting codes
has been demonstrated.

It is noted that an important practical advantage of
using a ULC to realize a given logic function is that
we need not find the minimal sum or minimal prod
uct of the logic function, which, however, is required
for conventional realization methods. The only simpli
fication process necessary to be applied to the logic
function is to detect whether it can be written in a form
which involves fewer variables. This result is used
to determine a ULC of the smallest number of vari
ables for realizing the given logic function.

It should be pointed out that the ULC's considered
in this paper are restricted to realizing any single
logic function. A natural extension of this study is to
consider the design of a multiple-output ULC for
realizing any set of m logic function. One way to ob
tain such a multiple-output ULC is simply to connect
the m ULC's, each of which realizes one of the m logic
functions, in the form of sharing the common input-
variable terminals. It is quite unlikely that a multiple-
output ULC with fewer I/O terminals can be obtained,
because in general there are no fixed relations among
the m logic functions to be realized.

ACKNOWLEDGMENT

The work reported here was supported in part by the
U. S. Office of Scientific Research under Grant No.
AF-AFOSR-1292-67.

REFERENCES
1 D C FORSLUND R WAXMAN

The universal logic block (VLB) and its application to logic
design
Conference Record of 1966 Seventh Annual Symposium on-
Switching and Automata Theory IEEE Publication 16C40
pp 236-250

2 J T ELLISON B KOLMAN A P SCHIAVO
Universal function modules
UNI VAC Tech Kept Contract No AF19(628)-6012
(DDC AD-655395) April 1967

3 B ELSPAS etal
Properties of cellular arrays for logic and storage
Stanford Research Institute Scientific Report 3 Contract No
AF-19-628-5828 (DDC AD-658832) pp 59-83 June 1967

4 L HELLERMAN
A catalogue of three-variables OR-INVERT and AND-
INVER T logical circuit
IEEE Transaction on Electronic Computers vol 12 pp 198-
223 1963

5 R B HURLEY
Transistor logic circuits
New York Wiley 1961

6 R A SMITH
Minimal three-variable NOR and NAND logic circuits
IEEE Transactions on Electronic Computers Vol EC-14
No 1 pp 79-81 February 1965

7 W FRANK KING HI
The synthesis of multipurpose logic devices
Conference Record of 1966 Seventh Annual Symposium on
Switching and Automata Theory IEEE Publication 1640
pp 227-235

8 J D BRULE R A JOHNSON E KLETSKY
Diagnosis of equipment failures
IRE Transactions on Reliability and Quality Control vol ol
RQC-9 pp 23-34 1960

9 J M GALEY R E NORBY J P ROTH
Techniques for the diagnosis of switching circuit failures
IEEE Transactions on Comm and Elect Vol 83 No 74 pp
509-514 1964

10 H Y CHANG
An algorithm for selecting an optimum set of diagnostic tests
IEEE Transactions on Electronic Computers Vol EC-14
No 5 pp 705-711 1965

11 D B ARMSTRONG
On finding a nearly minimal set of fault detection tests for
combinational logic nets
IEEE Transactions on Electronic Computers vol EC-14 no 1
pp 66-73 1966

12 W H KAUTZ
Fault diagnosis in combinational digital circuit
First Annual IEEE Computer Conference Digest IEEE
Publication 16C51 pp 2-5 1967

13 Logic partitioning in LSI
Panel Discussion L M Spandorfer (moderator) IEEE Com
puter Group News vol no 6 p 16 May 1967

