
Adaptable Concurrency Control for
Atomic Data Types

M. S. ATKINS and M. Y. COADY

Simon Fraser University

In many distributed systems concurrent access is required to a shared object, where abstract

object servers may incorporate type-specific properties to define consistency requirements. Each

operation and its outcome is treated as an event, and conflicts may occur between different event

types. Hence concurrency control and synchronization are required at the granularity of conflict-

ing event types. With such a fine granularity of locking, the occurrence of conflicts is likely to be

lower than with whole-object locking, so optimistic techniques become more attractive.

This work describes the design, implementation, and performance of servers for a shared

atomic object, a semiqueue, where each server employs either pessimistic or optimistic locking

techniques on each conflicting event type. We compare the performance of a purely optimistic

server, a purely pessimistic server, and a hybrid server which treats certain event types

optimistically and others pessimistically, to demonstrate the most appropriate environment for

using pessimistic, optimistic, or hybrid control. We show that the advantages of low overhead on

optimistic locking at low conflict levels is offset at higher conflict levels by the wasted work done

by aborted transactions.

To achieve optimum performance over the whole range of conflict levels, an adaptable server is

required, whereby the treatment of conflicting event types can be changed dynamically between

optimistic and pessimistic, according to various criteria depending on the expected frequency of

conflict.

We describe our implementations of adaptable servers which may allocate concurrency control

strategy on the basis of state information, the history of conflicts encountered, or by using preset

transaction priorities.

We show that the adaptable servers perform almost as well as the best of the purely optimistic,

pessimistic, or hybrid servers under the whole range of conflict levels, showing the versatility

and efficiency of the dynamic servers.

Finally we outline a general design methodology for implementing adaptable concurrency

control in servers for atomic objects, illustrated using an atomic shared B-tree.

Categories and Subject Descriptors: D. 1.3 [Programming Techniques]: Concurrent Program-

ming—distributed programming; D.3.3 [Programming Languages]: Language Constructs and

Features—abstract data types; D 4.1 [Operating Systems]: Process Management—concur-

rency; deadlocks; mutual exclusion; synchroruzation; D.4.8 [Operating Systems]: Performance

—measurements; simulation; H.2.4 [Database Management]: Systems—concurrency; transac-

tion processing

General Terms: Design, Performance

Additional Key Words and Phrases: Concurrent access to shared type-specific abstract data

types, hybrid locking, optimistic locking, pessimistic locking, transactions serializability

Authors’ address: School of Computing Science, Simon Fraser University, Burnaby, B. C. V5A

1S6, Canada; email: stella@cs, sfu.ca

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01992 ACM 0734-2071 /’92/0800-0190 $01.50

ACM Transactions on Computer Systems, Vol. 10, No 3, August 1992, Pages 190-225

http://crossmark.crossref.org/dialog/?doi=10.1145%2F146937.146939&domain=pdf&date_stamp=1992-08-01

Adaptable Concurrency Control for Atomic Data Types . 191

1. INTRODUCTION

Concurrency control for a classical transaction model, where transactions

perform READ and WRITE operations on records in a database, is based on

serializability. Serializability ensures that operations from simultaneously

active transactions are interleaved in such a way that each transaction is

provided with a consistent view of the system state, as if it were executing

alone. Classical database transactions are serialized by analysis of the
READ/WRITE and WRITE/WRITE conflicts between concurrent transac-

tions. Recently, techniques which allow more concurrency through additional

interleavings than are permitted using these conflicts have been proposed,

which employ type-specific properties of objects to recognize when certain

operations such as concurrent WRITE operations need not conflict [13, 14,

16-18, 33-35].

For example, a semiqueue [28, 33] is a species of queue that does not

guarantee to dequeue items in the order they were enqueued. Hence, all

elements are equally eligible for dequeuing. Type-specific concurrency con-

straints for a semiqueue are such that concurrent transactions executing

Enqueue operations do not conflict, and neither do Dequeue operations that

attempt to remove different elements. By incorporating this kind of semantic

information into a precise definition of type-specific concurrency control, the

potential for concurrent access can subsequently be enhanced. Global correct-

ness is achieved because the semiqueue maintains serializability which satis-

fies a nondeterministic specification [33].

Fundamental approaches used by all concurrency control schemes can be

broadly categorized as either pessimistic or optimistic. In a pessimistic

approach, conflicts between concurrent transactions are identified during a

transaction’s execution and resolved by imposing a delay on some transac-

tions. In an optimistic approach, conflicts are identified at the end of a

transaction’s execution and resolved by aborting and restarting some transac-

tions at a later time. Standard pessimistic concurrency control mechanisms

for the classical transaction model, surveyed in Bernstein and Goodman [3],

have been based on two-phase locking [12], multiversion timestamps [241,

and hybrids of these approaches. Optimistic methods are based on validation

[19].

Optimistic and pessimistic approaches to concurrency control are appropri-

ate under opposing sets of conditions, characterized by the probability of

conflict between concurrently executing transactions. An optimistic approach

is efficient only if the amount of wasted work (i.e., work performed by an

aborted transaction) is relatively insignificant. Hence, it is only cost-effective

if the level of conflict is sufficiently low. Conversely, a pessimistic scheme is

less efficient when the level of conflict is low, due to locking overhead causing

transactions to delay, and increasingly cost effective when the conflict level is

sufficiently high. As a result, cost-effective synchronization for transactions
should not just be equipped with one technique or the other, but both. Such a

dual mechanism or hybrid approach could then allow for the selective appli-

cation of the most efficient method of concurrency control.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

192 . M. S. Atkins and M. Y, Coady

Therefore, to provide cost-effective transaction management, several re-

searchers have proposed hybrid optimistic/pessimistic schemes for the con-

currency control of transactions in databases, together with nontrivial proofs

of correctness of compatibility [6, 7, 21, 22, 25, 26, 29]. Herlihy has extended

these hybrid concurrency control schemes to work on abstract data types

using type-specific concurrency control mechanisms to enhance the number of

permissible concurrent interleavings of transactions [16, 18]. Herlihy’s scheme

is designed to allow transactions to execute either optimistically or pes-

simistically at a particular shared data object; hence, for example, allowing a

transaction accessing an airline to use optimistic techniques within the

airline’s database while the same transaction can access the bank using

pessimistic techniques [181.

All hybrid techniques must simultaneously support more than one concur-

rency control method, and because of the increase in overhead for a hybrid

implementation it is not clear whether or not a practical advantage can be

obtained from using hybrid servers.

We have implemented a hybrid concurrency control method based on [16,

18] for transactions accessing a shared abstract object—a shared semiqueue

—through a server, and we have obtained experimental evidence that pes-

simistic and optimistic mechanisms that exploit data type semantics are

efficient under different circumstances. We chose to implement a semiqueue

server to test our ideas, as the theory and correctness proofs for hybrid

semiqueue servers are already published [16]. This hybrid method allows

optimistic or pessimistic control to be applied at a per conflict-type granular-

ity. We compare the performance of a purely optimistic server, a purely

pessimistic server, and a hybrid server that treats certain conflict types

optimistically and others pessimistically, to demonstrate the most appropri-

ate environment for using pessimistic, optimistic, or hybrid control. In order

to achieve reasonable performance, we needed some nonobvious performance

enhancements such as an “early abort” scheme for backward-oriented opti-

mistic servers (detailed in Section 2.6.2), and type-specific deadlock detection

and type-specific “wakeup” calls for the purely pessimistic server (detailed in

Section 2.6.2). We found, as expected, that the advantages of low overhead on

an optimistic approach at low conflict levels is offset at higher conflict levels

by the wasted work done by aborted transactions. Conversely, at low conflict

levels, the pessimistic locking overhead mars the performance of the

pessimistically treated conflict types.

We chose to implement one type of object—a shared semiqueue server—to
test the design principles, and we show that similar techniques can be

applied to another type of shared data object, a B-tree. We speculate that

these techniques can be generalized to other shared data structures with

similar characteristics, with the amount of performance enhancements possi-

ble (such as type-specific deadlock detection) determining the conflict per-

centage at which pessimistic techniques become more efficient than opti-

mistic.

A server that can dynamically change between optimistic and pessimistic

treatment of events according to the percentage of conflict should have a

ACM TransactIons on Computer Systems, Vol. 10, No. 3, August 1992

Adaptable Concurrency Control for Atomic Data Types . 193

performance advantage over a nonadaptable (static) server, provided the

overhead of changing from one mode to the other is not too high. We have

designed and implemented a novel adaptable server for controlling access to a

shared data object, whereby the treatment of conflict types can be changed

dynamically between optimistic and pessimistic, according to three heuristics

based on the state of the object, its conflict history, and some semantic

information related to its transactions, so that optimum performance can be

achieved over almost the whole range of conflict levels. The adaptable

semiqueue server can thus allow one transaction executing a successful

Dequeue operation with an optimistic approach to execute concurrently with

another transaction executing a successful Dequeue operation using pes-

simistic locking. However, as Reidl notes in [25], that, although adaptability

is a powerful tool, its use requires careful guidance because of the overheads

necessary to combine and support more than one data structure and algo-

rithm. We show that the adaptable server performs as well as the best of the

purely optimistic, pessimistic, or hybrid servers over the whole range of

conflict levels, showing the versatility and efficiency of the dynamic server.

We then extend our designs to other types of shared abstract objects such

as a shared B-tree index and show that the same relative performance

advantages can be expected for these adaptable servers. Hence an adaptable

dynamic server is to be preferred over the static locking mechanisms tradi-

tionally employed in the control of concurrent transactions.

1.1 Related Work

Performance studies indicate that optimistic approaches work well at low

conflict levels and low resource utilizations, whereas pessimistic approaches

work well at higher conflict levels [2, 9]. Based on this, several workers have

suggested “hybrid approaches for mixed optimistic/pessimistic concurrency

control in databases and proved their compatibility [7, 21, 22, 26, 291,

although to our knowledge only a prototype of Robinson’s has yet been

implemented.

The RAID distributed database system [5] can use optimistic or pessimistic

algorithms for concurrency control. Reidl and Bhargava present RAID perfor-

mance data [5, 25] for an adaptable hybrid concurrency control scheme based

on simple READ/WRITE or WRITE/WRITE conflicts. Unlike our scheme,

theirs does not automatically adapt between modes, although they have

designed a prototype expert system for controlling an adaptable distributed

system [4]. Their results indicate that an adaptable hybrid system can be cost

effective because the concurrency control is only 10– 15% of the transaction

execution time, so that the increased overhead in the concurrency control

mechanism is not significant compared with the gains in using the most

appropriate concurrency control algorithm to reduce the number of aborted

transactions. Our scheme also exploits semantic information in our adaptable

servers, leading to a greater amount of concurrency; hence the performance
advantages of adaptability may not be the same as those for class-

ical transactions in RAID with no type-specific information to increase

concurrency.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

194 . M. S. Atkins and M Y, Coady

At the same time, other researchers were exploring how to exploit semantic

information on user-defined abstract data types in order to increase the

amount of concurrency a synchronization mechanism can provide [13, 14,

16– 18, 28, 33–35]. All except Herlihy’s are purely pessimistic schemes. Argus

[23], TABS [30], and Camelot [31] are existing systems that provide pes-

simistic-based support for extended transactions on user-defined abstract

types. A specification framework for atomic data types and precise limits of

concurrency levels for pessimistic schemes are defined in [34], but no perfor-

mance data are available. In fact, the only performance data for exploiting

semantic information to increase concurrency appears in [11], where Cordon

and Garcia-Molina show that under high levels of conflict, conventional

two-phase locking schemes are outperformed under certain circumstances by

pessimistic schemes that exploit semantic information. This result was

attributed to the significant increase in the amount of concurrency the

semantic-based control could support.

Herlihy in [18] gives several references to performance studies of opti-

mistic/pessimistic schemes, which are analyzed in [2]. The results indicate

that traditional optimistic techniques are probably most useful if they can be

applied to individual objects rather than monolithically to the whole system.

This is exactly the environment described in this paper.

1.2 Overview of Paper

Section 2 describes type-specific optimistic, pessimistic, and hybrid control

and performance enhancements used in our implementation through the

example of a semiqueue server. Section 3 describes three different ap-

proaches to adaptable dynamic allocation. Section 4 presents performance

tests that demonstrate the practicality and efficiency of this highly flexible

means of concurrency control. Section 5 presents the design methodology to

be used for extending the technique to general shared abstract data types

through an example of a B-tree index. Section 6 presents conclusions.

2. TYPE-SPECIFIC CONCURRENCY CONTROL USING EVENTS

2.1 Objects, Events, and Servers

An object is a container for data, and each object has a type that defines a set

of primitive operations and a set of possible values that provide the only

means for transactions to create and manipulate the data in the object. An
event consists of an operation invocation and a response based on semantic

success (Ok) or failure (Failed) of the invocation, independent of concurrency

concerns [18]. A server completely encapsulates its data object and the

operations that manipulate it. Consequently, a server is responsible for

controlling the concurrent access of transactions operating on its object.

For correct global execution of a set of transaction accessing more than one

object, the servers must employ a local atomicity property [34]. Further, as

concurrency control and recovery interact in subtle ways [26, 35], each server

must use the same local atomicity property for correct global execution. Thus,

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992

Adaptable Concurrency Control for Atomic Data Types . 195

one server using socalled dynamic atomic correctness criterion may not

produce a serializable global schedule with another server utilizing static

atomic concurrency control, where dynamic atomic refers to a protocol such

that each server determines a serialization order on transactions dynami-

cally, based on the order in which transactions invoke operations and obtain

locks on elements. Static atomic refers to a protocol that orders transactions

statically, based on timestamps chosen when transactions start. Both proto-

cols enforce unnecessary waiting for certain transactions. We, like Herlihy

[18], use a hybrid atomic local atomicity property, whereby timestamps for

update transactions are chosen dynamically as they commit [34]. This allows

for more concurrency than dynamic atomicity because the object servers have

more information, namely, the timestamps assigned to update transactions

as they commit.

2.2 Recovery Methods

A conflict-based approach is used for concurrency control (CC), where each

server has a set of predefine conflicts between pairs of events. Recovery from

conflicts is achieved by defining each abstract data object as being a compos-

ite of two components: a permanent state and a set of intentions lists. An

obj ect’s permanent state records the effects of transactions that have termi-

nated successfully. There is an intentions list, recording tentative changes,

for each active transaction that has accessed the object through execution of

an event. When a transaction commits, changes in its intentions list are

applied to the permanent state of the object. If a transaction aborts, its

intentions list is simply discarded. This recovery method is called a deferred

update (DU) strategy, where intentions lists or private workspaces are used

to buffer modifications to the permanent state of the object until a transac-

tion commits. As Robinson points out in [26], DU recovery allows separation

of the CC and recovery mechanisms. The servers are responsible for the CC,

and the only interaction between the two occurs when the server is informed

by the recovery subsystem that a transaction’s intentions list must be applied

to the object. DU is used in all the research work on hybrid concurrency

control because all algorithms work correctly with it, and in some commercial

schemes such as INGRES [27] and POSTRES [32]. However, it is important

to note that for a purely pessimistic approach, an update in place (UIP)

recovery method (as opposed to a strategy that relies on DUS) can provide

more efficient access to some abstract data types. (We discuss this further in

Section 2.6.5.)

2.3 Pessimistic Locks and Optimistic Flags

Transactions access data managed by a server through execution of an event.

The server managers CC on elements of its data through use of event-specific

pessimistic locks and optimistic flags. 1 Pessimistic transactions mark the

element(s) of data accessed by an event with a pessimistic R or W lock. This

1 Herlihy [18] refers to “optimistic locks,” but we prefer the term “optimistic flags,” as there is no

delay associated with an optimistic flag.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

196 . M. S. Atkins and M. Y. Coady

P-lock can be used to delay another permissible transaction executing an

event accessing the same element(s). Optimistic transactions mark the ele-

ments(s) of data accessed by an event with an optimistic R or W flag which is

used to identify R/W sets at validation (commit) time. The P-locks do not use

a transaction id (TiD). However, the Tid is used with the optimistic flags

(O-flags), so that the “early abort” optimization described in Section 2.6.2 can
be implemented.

2.4 Conflict-Based Concurrency Control

Conflict-based concurrency control is based on predefine conflicts between

pairs of events. Optimistic conflicts are detected after a transaction has

performed all of its events upon its intentions list, but before any changes

have been applied to the permanent state of the object. In an optimistic

scheme, successful validation depends on the absence of conflicting events

between the validating transaction and other concurrent transactions (see

also Section 2.6). In a pessimistic scheme, the conflicts are used to introduce

delays. In a hybrid atomic local atomicity scheme for CC, pessimistic conflicts

must be symmetrical because they are detected at the time when an event is

executed and the commit order of transactions is unknown. A pessimistic lock

(P-1ock) for each event must be obtained before that event can be added to a
transaction’s intentions list. Identification of the conflict types between the

events of concurrently active transactions is accomplished by deriving a set of

proscribed serial dependencies. Weihl notes that determination of these serial

dependencies is based on the choice of local atomicity property [34]; we use

the hybrid atomicity protocol, and serial dependencies are derived directly

from the abstract data type’s specification.

2.5. Example: A Semiqueue Server

As an example, we consider the abstract data type, semiqueue, which allows

for more concurrency than a strictly FIFO queue because it does not guaran-

tee to dequeue items in the order they were enqueued [33]. As a result, all

elements in the permanent state of the semiqueue are all equally eligible for

dequeuing. Let the operations associated with this object be Enq, Deq, and

Inspect, which add, remove, and inspect (a generic O(n) read-only operation

where n is the number of items in the semiqueue) elements, respectively.

Inspect also returns a tally of the number of items in the queue. An attempt

to remove an item from an empty queue results in a “Failed response. Recall

that using deferred updates, the 17nq and Ekq operations are made in
intentions lists, and the effects are not seen by any other transactions until a

transaction attempts to validate and commit.

2.5.1 Optimistic Conflicts. Type-specific conflicts are formally expressed

as dependencies D 1 through Dn; the optimistic conflicts at a semiqueue are

shown in Table I, where events in the rows have been executed by a

transaction Tj attempting to validate. Events in the columns are events that

have been executed by any other concurrently active transaction(s). The

events may have been executed in any order at the semiqueue server, but the

ACM Transactions on Computer Systems, Vol. 10, No 3, August 1992

Adaptable Concurrency Control for Atomic Data Types . 197

Table I. Optimistic Conflicts at a Semiqueue

E@)lOKO XOloW Mloimkdo Impe@OK(#ifetns)

Enq(i)/OK() DI D2

Ileqo/OK(i) D3 D4

Deqomiledo

Inspezto/OK(?#ifems)

Table II. Pessimistic Conflicts at a Semiqueue

Enq(i)/OKO DeqofOK(i) Deqo/Fsiledo lnspe@/OK(#i/em)

Enq(i)lOKO D1 D2

DeqO/OK(i) D3 D4

Deqomikdo D5

Inspe@\OK(##items) M D7

optimistic conflicts are only detected when a transaction attempts to validate.

For example, in the case of forward-oriented CC (see Section 2.6.2) depen-

dency, D1 reflects the fact that if Tj had enqueued an item, a conflict with a

concurrently active transaction that performed an unsuccessful dequeue

event (a Deq()/Failed() event) will result. Dependency D2 shows that

enqueuing an item also conflicts with an inspection and tally. Dependency D3

prevents two transactions from removing the same item. Dependency D4

shows that a successful dequeue event invalidates a subsequent inspection.

Note that the optimistic conflicts are not symmetric; if Tj had executed a

Deq()/Fcziled() event, and another concurrent active transaction had exe-

cuted an enqueue event, then Tj is allowed to validate—there is no conflict

here. Upon uncovering any of these conflicts, one of the offending transac-

tions is aborted (usually Tj trying to validate) and restarted as new.

2.5.2 Pessimistic ConfZicts. Pessimistic transactions also have conflicts

D1 through D4, and in addition, they must also include their symmetric

counterparts D5, D6, and D7, as shown in Table II. The extra conflicts D5

and D7 are introduced because the transactions are delayed at execution

time, and it is not known in which order the transactions will commit. Thus if
Tj executes a Deq()/Failed() event, it must delay (because of D5) if any

other active transaction Tk is holding and Enqueue P-lock, even if Tj would

actually have “liked” to commit before Tk.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

198 . M. S. Atkins and M. Y. Coady

2.6 Implementation Issues

2.6.1 Introduction. We implemented a semiqueue server using the high-

level language SR [1] and tested it using different artificial workloads of

transactions. An overview of the implementation is given in Appendix A;

details are given in [10]. SR contains may language features for concurrent

programming which we found very helpful in implementing our various CC

algorithms. We found our initial implementations were not very efficient [10];

we needed to design performance enhancements for an effective implementa-

tion of a hybrid concurrency control mechanism. Although the performance

enhancements described here are specific to the semiqueue example, several

of the same techniques can be applied to other data structures such as a

B-tree (see Section 5.2) and a directory [10].

2.6.2 Type-Specific Performance Enhancement for Optimistic Conflicts:

BOCC and Early Abort. Within an optimistic scheme, concurrency control

techniques are enforced during a transaction’s validation phase. Validation

schemes can be classified into two categories [15, 18]: backward- and

forward-oriented concurrency control (BOCC and FOCC, respectively). Basi-

cally, given transaction Tj that is trying to validate, BOCC checks for

conflicts between Tj and transactions that were concurrently executing with

Tj that have previously validated. If there are any conflicts of this kind, Tj

has been invalidated and must be aborted. FOCC, however, checks for

conflicts between Tj and transactions that were concurrently executing with

Tj and that are still active. If there are any conflicts of this kind, then several

courses of action can be taken, the simplest of which is to abort transaction

Tj. We found that the performance of BOCC was similar to FOCC [10].

However, a type-specific performance enhancement is possible for BOCC

which can be supplemented with our type-specific early-abort mechanism.

According to BOCC, given transaction Tj that is attempting to validate, if

there are any conflicts between the events executed in Tj and transactions

that were executing concurrently with Tj but have previously committed, Tj

will be aborted. In BOCC, conflicts are identified by allocating timestamps

according to a logical clock [20]. Timestamps are issued upon each active

transaction’s first execution of an event that could potentially be invalidated.

In addition, timestamps are maintained for the most recent commitment of

potentially invalidating events. Validation is successful according to BOCC iff

all of the validating transaction’s timestamps, representing its first execution

of events that may be invalidated, are greater than the timestamps corre-
sponding to the most recent commitment of invalidating events.

In the case of the conflict type that arises between concurrent transactions

attempting to dequeue the same element from the semiqueue (D3), the BOCC

technique relies on an early-abort strategy. An optimistic approach permits

any number of active transactions to include the exact same element of the

shared semiqueue in their intentions lists. In BOCC, the first transaction to

successfully validate will actually remove this conflict-causing element from

the permanent state of the semiqueue. As a result, all active transactions

that also performed a dequeue of that element (in their respective intentions

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

Adaptable Concurrency Control for Atomic Data Types . 199

lists) become unconditionally invalidated. Hence, BOCC’S early-abort strat-

egy, wherein active transactions are aborted before reaching their validation

phase, kills transactions if their intentions lists include the removal of an

element that is being dequeued from the permanent state of the semiqueue

by a committing transaction. Treatment of this particular conflict type lends

itself to this strategy by virtue of the fact that all transactions attempting to

dequeue a given element are identified within optimistic flag information

associated with that element. Optimistic flags are not blocking (as is the case

for pessimistic locks). Hence, it is most cost effective to exploit this optimistic

flag information at the time when the element is being removed, as opposed

to waiting until each transaction involved in this type of conflict attempts

validation.

This approach can be used for any similar conflict arising in any abstract

data type—for example, on deleting a node from a B-tree using optimistic

concurrency control (see Section 5.2).

2.6.3 Delaying Mechanisms for the Pessimistic Server. In situations where

a transaction’s request for a P-lock is denied (because another transaction

already holds a P-lock for a conflicting event), the event must be discarded

and the transaction must retry the invocation. In order to accommodate these

{delayed/blocked operations, special wake-up calls have been included in the

protocol associated with the release of P-locks, as described in [331.

For example, with an Enq operation, the server checks to ensure that no

(other active transaction holds a P-lock on either a Deq ()/F’ailed() or an

Inspect()/Oh(items) event (DI and D2 in Table II). If there is a conflict, the

.Enq invocation will block, waiting to receive a wake-up message. Wake-up

messages are sent out to blocked operation invocations every time a transac-

tion that has performed an event that conflicts with the blocked operation

has released an appropriate P-lock. This way, when a transaction that

executed a Deq()/Failed() event releases its Deq()/Failed() P-lock, the

blocked Enq operation will be reactivated and retried. If this P-lock hap-

pened to be the blocked Enq’s sole impediment, the operation proceeds,

otherwise it will be blocked again and must wait for the next wake-up

message.

When a transaction has successfully obtained all of its necessary P-locks

and has finished executing, it inflicts the changes recorded in its intentions

list to the global state of the semiqueue. Once these changes have been

accomplished, the committing transaction’s P-locks can be released and

wake-up calls issued to any blocked invocations that could benefit by these

releases. The alternative of using timeouts will cause unnecessary delays to

waiting transactions.

2.6.4 Type-Specific Deadlock Detection. Given two transactions, Tl and

T2, and the following combination of events:

Tl: Deq()/Ok(k)
T2: Deq()/Ok(l)
Tl: Inspect—BLOCKED, waiting for wake-up from T2
T2: Inspect—BLOCKED, waiting for wake-up from T1

ACM Transactions on Computer Systems, Vol. 10, No. z August 1992.

200 . M. S. Atkins and M. Y. Coady

it becomes evident that some kind of type-specific deadlock prevention or

resolution mechanism must be included in the pessimistic server. Given that

Ti is about to block on Tj, a simple type-specific prevention mechanism

enforces the following rule:

Deadlock Rule. For Ti to block on Tj, Tj can not already be blocked on a

lock that Ti possesses.

Consequently, in the example above, T2 will not wait for T1 since T1 is

already blocked and waiting for the release of T2’s Deq()/Ok(l) P-lock. In

this situation, T2 would be aborted and have to be restarted.

Is this mechanism robust enough to handle deadlock between more than

two transactions? The answer to this depends on the kinds of circular waits

that can arise among transactions. In the case of the semiqueue object server,

we show all circular waits of length n must contain a cycle of length two,

hence this mechanism is sufficient. The proof for this type-specific deadlock is

in Appendix B.

The implementation of this deadlock prevention algorithm, which only

checks for circular waits between two concurrent transactions, is very effi-

cient, and unlike timeouts, it means that transactions don’t have to wait

unnecessarily. The implication of this efficient deadlock-prevention mecha-

nism is that the pessimistic CC scheme is favoured more than would be

usually the case; we discuss this further in Section 5.

Unfortunately, it transpires that this simple kind of type-specific deadlock

prevention cannot be extended to all other data types; a counter-example for

the B-tree data type is given in Section 5.2.

2.6.5 Use of UIP Recovery Strategy. An update-in-place, rather than a

deferred update recovery strategy can possibly provide more efficient access

to some abstract data types, when used with purely pessimistic locking

methods. Weihl proposes [33] that transactions accessing a semiqueue could

use an intentions list for Enq operations (the DU technique), but perform
Deq operations directly on the permanent state of the object (i.e., use UIP).

Consequently, since the permanent state of the object contains only those

items which have been Enqueued by committed transactions and have not

yet been Dequeued, a Deq operation does not have to search the semiqueue

for an “unlocked” item. This is an improvement over the pessimistic DU

approaches for semiqueue implementations presented in [23, 30, 31, 33] (and

all the hybrid schemes referenced here), where items in the permanent state

of the semiqueue are individually locked by active transactions intending to

Dequeue them. As a result, in all these systems Deq operations must search

the semiqueue for an eligible (unlocked) item, and hence the cost of a Deq

operation is proportional to the number of items in the semiqueue.

However, the UIP recovery strategy is not compatible with many concur-

rency control methods, and using UIP would also increase the cost of aborts.

Further, as all the optimistic and hybrid techniques referenced here use DU

recovery and as it is not clear how well the UIP recovery can be incorporated

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

Adaptable Concurrency Control for Atomic Data Types .

Table III. Hybrid Pessimistic (P) and Optimistic (0) Conflicts at a Semiqueue

Enq(i)/OKO Deqo/OK(i) Deqo/Failedo” Inspect@OK(#itemr)

Enq(i)/OKO DI(0) D2(P)

DeqO/OWO D3(0) D4(P)

Deqo/Fddo

Inspect/OK(t) items) D@) D7(P)

201

in a hybrid server without increasing the conflicts and the number of aborts,

we decided not to make this performance enhancement to our hybrid scheme.

2.7 Hybrid Control

The hybrid synchronization mechanism introduced in [16] supports the selec-

tive application of type-specific optimistic and pessimistic control on a per

conflict-type basis. Hence, for any abstract object, each type-specific conflict

can be treated independently with an optimistic or pessimistic strategy.

Deciding which conflicts to treat optimistically and which to treat pes-

simistically is a nontrivial task, as the efficiency of the hybrid depends on the

workload. For example, we actually implemented and tested several different

hybrid semiqueue servers [10]. The most interesting performance characteris-

tics among these was exhibited by the server defined by the following six

proscribed serial dependency relations, illustrated in Table III. This hybrid

server treats all conflicts associated with Inspect()/ Ok(items) events pes-

simistically, and so is appropriate for a situation where Inspect events are

expected to occur frequently.
As described in the context of the optimistic server, optimistic conflict types

are resolved by transaction abort during the validation phase (which can be

either FOCC and BOCC). Pessimistic conflict types, however, are identified

during a transaction’s execution (hence the symmetry of these conflict-types)

and resolved by imposing a delay. Thus it is possible for a transaction Ti to

hold pessimistic locks and optimistic flags at the hybrid server. For example,

Ti could do an Inspect (pessimistic) event and a Deq (optimistic) event.

3. DYNAMIC ADAPTABLE SERVERS

3.1 Feasibility

Each of the pessimistic, optimistic, and hybrid servers have performance

advantages over the others, depending on the percentage of conflict between

active transactions. For example, our performance results show that an

optimistic server behaves very badly relative to a pessimistic server when
there is more than approximately 25% conflict between Deq()/Ok(i) events

(see Section 4.2.2). As already mentioned in the Introduction, a server that

ACM TransactIons on Computer Systems, Vol. 10, No. 3, August 1992.

202 . M. S. Atkins and M. Y. Coady

could dynamically change between an optimistic or pessimistic treatment of

events according to the percentage of conflict should have a performance

advantage over the static servers described in Section 2, provided the over-

head of changing from one mode to the other is not too high.

First though, we consider the feasibility of such a dynamic server. A

dynamic server must be able to treat each event either optimistically or

pessimistically, and must be able to switch between these modes without

invalidating serializability constraints on any active transactions. For effi-

ciency reasons, during the lifetime of each transaction’s interactions with a

particular object server, all the type-specific conflicts must always be treated

the same way. For example, if transaction Ti executes, say six Deq()/Ok(i)

events at the same server for object A, they must be either all optimistically

or all pessimistically treated; it is inefficient to allow Ti’s Deqs to switch from

optimistic to pessimistic treatment at server A. If this were not the case and a

transaction Ti could switch from optimistic Deqs to pessimistic Deqs, then, at

validation time, Ti could be aborted because of an optimistic type conflict,

which would be very inefficient because of Ti’s wasted time obtaining P-locks.2

However, a transaction can be optimistically treated at one server and

pessimistically at another; this could be desirable for transactions touching

several different databases, although efficiency arguments against this still

apply. Further, the transaction’s event types need not all be the same at the

same object server; for example, a hybrid server for semiqueue A permits Ti

to execute all Deq()/Ok(i) events optimistically (i.e., without delay) and all

lrzspect()Oh(items) events pessimistically, as shown in Table III.

The difference between the static server and the dynamic adaptable server

is that the latter allows some transactions to have purely optimistic interac-

tions, while simultaneously allowing other transactions to have purely pes-

simistic, or hybrid, interactions. Proof of correctness for this approach is

given in [16].

We allocate transaction Tj a parameter called its class which is valid

during Tj’s interaction with a particular server. The adaptable server uses

the class to determine whether conflicts involving this transaction are all

treated optimistically, pessimistically, or as a hybrid. We use three values for

the class: o, p, and h, corresponding to optimistic, pessimistic, and hybrid.
For the example of a semiqueue server, for an o-class transaction, Tj, pro-

scribed serial dependency relations D 1 through D4 are treated optimistically

as shown in Table I. If Tj executes a Deq()/Failed() event and any other

concurrently active transaction, Tk, executed llrzq(i)/Ok (), then the de-

pendency relation D5 shown in Table II is not asserted on Tj if Tj is vali-
dating while Tk is still active (i.e., Tj is not aborted or delayed, and

Tk is not invalidated). Note that if Tj is a p-class transaction exe-

cuting a Deq()/Failed() event and if Tk is o-class or h-class and executed

Enq(i)/Ok(), no Enq(i)/Ok() P-locks are held by Tk so Tj is not delayed.

2 Note that Reidl does provide this feature by allowing the user to manually switch the class of a

transaction in the middle of its execution.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

Adaptable Concurrency Control for Atomic Data Types . 203

However, if Tk is a p-class transaction, then D5 is asserted and Tj is

delayed on the Deq()/Failed() event.

3.2 Interclass Conflict Resolution

The interclass conflicts arising between, say a p-class Tj and an o-class Tk

are resolved at validation/commit time (not during execution). The dynamic

server permits transactions of different classes to execute concurrently.

The implementation of the dynamic server combines features of all three

static servers (i.e., O-flags and P-locks), and in addition, contains interclass

conflict-resolution strategies.

In most abstract data types, the cost for executing an event for an opti-

mistic transaction will be less than those for a hybrid which in turn will be

less than for a pessimistic transaction. This is because of the amount of

overhead associated with conflict detection for each event within each scheme.

As optimistic events do not include any such overhead (since conflicts are not

detected until the validation phase of an optimistic transaction), these events

are the least costly. Pessimistic events, however, always include conflict-de-

tection (locking) overhead, and hence are the most costly. For example, in the

case of the hybrid semiqueue server presented in Section 2.7 with conflicts

shown in Table III, where a successful Deq event involves both optimistic

conflict resolution (D3) and pessimistic conflict resolution (D4), a hybrid Deq

event is more costly than purely optimistic, but less costly than purely

pessimistic Deq events. Other types of hybrid servers, however, could be

defined differently for Deq events. They could have as little overhead as the

optimistic scheme, dictating an order of optimistic = hybrid < pessimistic,

or as much overhead as the pessimistic scheme: optimistic < hybrid =

pessimistic.

Conflicts between concurrent transactions of different classes are resolved

by introducing a suicidal (S) strategy into the validation procedure for

optimistic transactions and the optimistic component of hybrid transactions,

and commit-and-kill (C & K) strategy into the commitment procedure for the

pessimistic component of hybrid and all pessimistic transactions, as shown in

Table IV. Note that h-class transactions first try to validate optimistically,

and if successful, commit in a single atomic step, called (val & corn).

Row 1 of the interclass conflicts shown in Table IV means that an opti-

mistic transaction will commit suicide during its validation if it conflicts with

an active hybrid or pessimistic transaction. Row 2 means that a hybrid

transaction attempting to validate and commit will succeed if it conflicts with

an active optimistic transaction, but the conflicting o-class transaction will be

killed. However, if the h-class transaction attempting to validate and commit

conflicts with an active p-class transaction, the h-class transaction will have

to commit suicide. Row 3 means that a pessimistic transaction trying to

commit will always do so, but if there is an active conflicting o-class or h-class

transaction, the latter must be killed. In summary, interclass conflicts are
resolved by aborting the transaction of the lesser class, which minimizes the

amount of wasted work.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

204 . M. S. Atkins and M. Y. Coady

Table IV. Interclass Conflicts between Transactions

To(act) Th(act) Tp(act)

T@val) s s

Th(val&com) C&K s

Tp(com) C&K C&K

Our concern is that the extra overhead in the adaptable server in resolving

these interclass conflicts is too high for the advantages gained in providing

such flexibility. As Reidl notes in [25], an adaptable server is necessarily less

efficient than a static server because individual concurrency controllers per-

form better when they have the freedom to manipulate the data structure as

they wish. However, for the particular case of locking and optimistic, it works

quite well, since they have similar constraints on concurrency and hence

similar data structures. We are encouraged by Reidl’s findings that the

overheads on adaptability in a classical concurrency control scheme are not

significant, and we therefore proceeded with the designs and implementa-

tions for three kinds of adaptable servers, detailed below.

3.3 Transaction Class Allocation

Lausen defined two ways to generalize a hybrid optimistic/pessimistic con-

currency control scheme, based on state information in the shared object

(such as the load factor for a B-tree) or based on the number of restarts [22].
We investigated these two approaches, extended the second to use general

conflict information, and added a third, that of preassigning a transaction

class to a transaction on the basis of priority. We then implemented different

adaptable semiqueue servers which could allocate a class (optimistic, pes-

simistic, or hybrid) to a new transaction attempting to execute an event at

the server on the basis of the following:

(1) State information: size of the queue determines class. With a small queue
size, p-class is chosen, as the Deq conflict probability is high. For queue

size above a threshold, o-class is chosen, as the Deq conflict probability is
lower.

(2) Conflict-based assignment: new transactions are assigned a class accord-
ing to the percentage of conflict types in the current environment of the

semiqueue (similar to Lausen’s suggestions based on the number of

restarts).

(3) Preassignment: class is preassigned on the basis of priority.

The server allocates the transactions class in (1) and (2) above, while in (3)

a transaction’s class is assigned prior to its interaction with the server.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

Adaptable Concurrency Control for Atomic Data Types . 205

3.3.1 A State-Based Serniqueue Server. In this dynamic server, a transac-

tion’s class is determined by the size of the semiqueue at the start of the

transaction. When the number of eligible elements in the permanent state of

the queue is less than some user-defined threshold value, new transactions

rely on a pessimistic conflict-resolution strategy. Above this threshold, how-

ever, new transactions employ an optimistic strategy. This assignment is

based on the assumption that, in general, smaller queues must endure higher

levels of Deq conflict (D3, which are the most costly) than larger ones. Hybrid

control is not included in this type of server, since the difference between

optimistic and hybrid control involves their respective treatments of Inspect

conflicts. It is assumed that in most cases the frequency of these conflict types

will be largely independent of queue size. Using the same threshold for both

state transitions could lead to flip-flopping between states, but this is not a

problem because there is negligible overhead involved in a state change.

3.3.2 A Conflict-Based Semiqueue Server. In this adaptable server, the

class of a new transaction is determined by the most recent assessment of the

level of conflict type in the environment of the semiqueue. Periodically, the

server does an assessment of the percentage of conflict types defined by

dependencies D3 and D4, which are the most costly conflicts. Based on these

results, the server automatically determines the most appropriate class

assignment for new transactions. For our server the threshold percentages of

conflict are derived from performance tests detailed by Coady [101, described

in Section 4.2.2, and shown in Figure 1.

Although this automatic method of dynamic control is potentially the most

accurate, and consequently the most effective for dynamic servers, it is also

the most costly as it has the most overhead. The accuracy (and cost) of this

method is directly related to the frequency of conflict assessment. The

heuristic we use to determine the frequency of conflict assessment is the

number of concurrent transactions accessing the semiqueue. Assessment

starts only when the number of concurrent transactions reaches a predefine

threshold value (one hundred in our experiments). If the current class is

optimistic, assessment begins at the start of the one-hundreth concurrently

active transaction, and ends when all of those one hundred transactions have

completed validation. The number of transactions aborted due to each of the

conflict-types D3 and D4 is then determined, and the assignment of class to

new transactions may be changed from optimistic of hybrid or pessimistic

accordingly. In the case where the server is assigning a pessimistic class to

new transactions, assessment involves a count of the number of transactions

currently blocked by either a D3 or D4 conflict type. Due to the symmetrical

nature of pessimistic conflict relations, only one type or the other will exist.

When the server is allocating a hybrid class to new transactions, assessment

is done via both the optimistic and pessimistic methods described above, with

pessimistic assignment taking priority.

3.3.3 A Preassigned-Class Server. Another type of dynamic server can

exploit semantic information by relying on an assignment of class prior to a

transaction’s first invocation of the server.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

206 . M. S. Atkins and M. Y. Coady

03> 20% D3 < 20%

&

04> 20%

I Class t—~ Class I

U.wH!J” D3 > 200/0

Fig. 1. Conflict-based semiqueue server.

For example, transactions that are predominately Enq items (0(1)) can be

substantially less costly than transactions that are predominately Deq, which

is 0(n), where n is the number of items in the semiqueue, as discussed in

Section 2.6.5. Consequently, preassigning Enq transactions with optimistic

and Deq transactions with pessimistic control can ensure the successful

execution of the costly Deq transactions, while potentially providing the most

cost effective means of control for the relatively inexpensive Enq transac-

tions. Likewise, in situations where Inspect operations (0(n)) predominate in

certain transactions, hybrid control can be assigned in order to ensure that

their execution is not wasted due to a conflict with a less costly Enq

transaction. This preassignment can be combined with either of the state-

based or automatic servers for transactions that do not have their class

preassigned. Furthermore, any particular transaction could be preset to run
optimistically at one object server and pessimistically at another.

Within some applications the role of a transaction may also contribute to

its class. For example, it is possible that an application could employ some

transactions that include interactive parts. In the interest of user friendli-

ness, these types of transactions would be most effectively handled as a

preassigned pessimistic class, regardless of their anticipated costs.

4. PERFORMANCE AND EVALUATION

4.1 Introduction

We are interested here in determining whether or not the higher complexity
of overhead associated with an adaptable application-dependent concurrency

control scheme pays off in terms of increased transaction throughput com-

pared with a static, purely optimistic, purely pessimistic, or hybrid scheme.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

Adaptable Concurrency Control for Atomic Data Types . 207

Our system captures on a small scale the fundamental concurrency consider-

ations addressed by distributed transaction systems such as TABS [30] and

Argus [23], where a distributed program consists of client transactions exe-

cuting operation invocations on object servers. These systems adhere to the
philosophy that “coarse-grained” concurrency is much more important than

“fine-grained transaction concurrency—a realistic assumption for many

transaction systems where time spent processing a transaction at an object

server is small compared with the total transaction time. In support of this,

several workers have shown that the execution time of concurrency control

algorithms is a small (less than 10%) percentage of the total execution time of

a transaction [2, 9, 11, 25]. Reidl shows that, to the limits of his concurrency

control experiments, there were no discernible performance differences be-

tween his adaptable shared-object implementations and his specialized static

implementations [25] because the execution time of concurrency control

algorithms is small (a few percent) in comparison to the execution time

required to process a transaction, and hence the differences in execution

times between specialized and generic algorithms are not significant.3 Disk

accesses reduce still further the percentage of transaction time spent in

execution of concurrency control algorithms. For example, simulation param-

eters used by Carey in [9] assume 1 ms for the concurrency control algorithm

and 10 ms for the cpu time to process a data page. At start-up and at commit

times disk accesses taking 35 ms are required, and in Carey’s experiments

every page access also incurs a 35 ms overhead. We decided to use an

in-memory shared object with no disk accesses, because we are only consider-

ing here the overhead of introducing adaptability into a scheme for concur-

rency control of access to a shared object. Taking disk accesses into account

would only reduce further the already small percentage of transaction

time used by the server in executing the concurrency control algorithm, and

would serve only to reinforce any conclusions made to an in-memory

implementation.

Carey states that the parameters chosen for his simulations are not

intended to duplicate those of real applications; the intention is to investigate

how various multiversion concurrency control algorithms compare with one

another under various conditions. We follow the same philosophy; our test

conditions are not intended to be realistic, but are intended to provide a fair

comparison between the different concurrency control servers. However, the

relatively small concurrency control decision costs lead us to hope that

experimental evidence will show that our adaptable type-specific concurrency

control scheme for abstract data types has an acceptable performance.

In generating experimental evidence, we first had to decide on appropriate

performance metrics for meaningful comparisons of the different severs.

Several workers have shown that the level of conflict is the most dominant

2 Note, however, that Reidl points out that his initial implementation of the generic data

structure did cause a 20% performance penalty on the adaptable server, which he was able to

remove through a careful redesign of a data structure.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

208 . M. S. Atkins and M. Y. Coady

performance factor in the comparison of different concurrency control schemes

[2, 9, 11, 25]. Other variables such as the length and duration of transactions,

the fraction of updates, and the hot-spot access fraction affect the perfor-

mance of the system mainly according to how they affect the probability of

conflicts encountered by the transactions. In keeping with these studies, the

work presented here relies on the percentage of conflict as its performance

variable. Unlike most of the other performance studies referenced, we do not

present simulation results. Instead, we have actually completed implementa-

tions of the servers described here. The servers (and transactions) are imple-

mented in the distributed high-level language SR [1] running on a SUN

workstation.

As already mentioned in Section 1, we used the semiqueue as our example

of a typical shared abstract data type. We initially implemented three differ-

ent servers, using a purely pessimistic, a purely optimistic, and a hybrid

concurrency control scheme as described in Section 2. Details of these imple-

mentations are given in [10], and an overview in Appendix A. The transac-

tions (also coded in SR) invoke operations such as Enq and Deq on the

servers of the shared objects. Some transactions will be delayed at a pes-

simistic server until locks are released, and some transactions may also be

aborted if deadlock is detected. At an optimistic server, some transactions

may be aborted if conflict is detected at validation time. At a hybrid server,

transactions could be delayed or aborted at validation time. We then imple-

mented adaptable servers that could treat new transactions either pessimisti-

cally or optimistically, using state-based or conflict-based information as

described in Section 3.

To test the servers we subjected them to different workloads which were

designed to establish a threshold percentage of conflict above which pes-

simistic schemes outperform optimistic ones. Hence we examined the relative

behaviors of the optimistic, pessimistic, and hybrid concurrency control

strategies as they were subjected to increasing levels of conflict.

The method we used to implement the transaction workload was to main-

tain peak load conditions in the system by arranging that all the transactions

originate at time zero. Each new transaction in the system begins by request-

ing a unique transaction identification number from a transaction server, and

then uses this number to identify its subsequent operation requests. Each

transaction is represented as a sequence of operations to invoke; and the

transactions proceed by executing one operation at a time.

In order to evaluate the respective performances of each of the three
con currency control approaches fairly, all tests were designed to achieve the

same amount of work under the control of each locking scheme (i. e., within a

given level of concurrency, the test for each scheme must successfully execute

the same number and type of events). We therefore held the level of multipro-

gramming and the type of transactions constant over each experiment. This

is similar to Reidl’s closed experiment approach, wherein after one transac-

tion completes, another is immediately started. This compares with an open

experiment whereby transaction arrivals are separated by exponential ran-

dom variables representing, for instance, arrivals of a customer at a teller.

ACM Transactions on Computer Systems, Vol. 10, No. 3. August 1992

Adaptable Concurrency Control for Atomic Data Types . 209

Reidl prefers the closed technique, which provides a constant level of multi-

programming, because the results of closed experiments are consistently

easier to understand and interpret than those of open experiments [25]. We

also found that the experimental results were easier to understand using a

fixed level of multiprogramming (100 in most of our experiments).

We conducted many experiments (of which two are detailed below) for

conflicts of type D3 and D4, which involve Deq events. We chose these

because successful Deq events dominate performance costs (as noted in

Section 2.6.5, the cost of Deq is O(n) while Enq is O(l), where n is the

number of items in the semiqueue). Other tests using different transaction

workloads showed similar relative performance [10], bearing out Agarwal

and Carey’s observation that the level of conflict is a suitable measure for

comparing different concurrency control techniques [2]. To eliminate the

effects of variable network delays, we ran all the tests on a single SUN-3

workstation.

Both experiments have several components:

(1) performance of type-specific static pessimistic, optimistic, and hybrid
servers;

(2) performance of dynamic servers in single operating mode (to measure

overhead compared with the above static servers); and

(3) performance of adaptable dynamic servers changing over a range of
conflict levels.

4.2 Costs of D3 Conflicts

4.2.1 Test Environment. This test deals with the conflict defined by D3 in

Tables I, II, and III, whereby two transactions attempt to remove the same

element. We had to devise a method to force this event to occur for a

controlled variable percentage conflict. The basic idea behind our test method

is that 100 concurrently active transactions attempt to dequeue an element

from the shared semiqueue which has been initialized with x (x < 100)

elements. Hence only x of the transactions will successfully commit; the

other (100 – x) transactions will be delayed (pessimistic server) or aborted

(optimistic server). We define the value (100 – x) as the percentage of
conflict in our test results. However, in order to compare the performance of

the pessimistic and optimistic servers, we had to ensure that the same total

amount of work was done by each server, so that all the delayed and aborted

transactions were eventually executed to completion. Hence we extended the

basic test plan so that there are 100 concurrently active transactions, but one

of them acts solely as a conflict-causing transaction, while the other 99 must

successfully Deq (that is, perform a Deq()/Ok(i) event) 30 elements each.

The shared semiqueue always starts with 2970 (= 30*99) elements. To

establish a controlled percentage p of conflict, the conflict-causing transac-

tion (Trans[11) acts as a “dummy” transaction and puts (30*P) elements in its
Deq intentions list, so it holds Deq()/OK(i) locks (pessimistic) or flags

(optimistic) on (30*P) of these elements. During the test, once the desired

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

210 . M. S. Atkins and M. Y. Coady

level of p% conflict has been achieved, Trans[1] is forcefully aborted (for

testing purposes), making its previously locked elements once again eligible

for dequeuing by other transactions. We tested the server’s performance

under various conflicts.

Execution ordering of pessimistic test for D3 conflicts:

(1) Trans[1] performs a Deq()/Ok(i) event on 30*p elements (where p is

the percentage of conflicts being tested)—this is not included in the

timing results of the tests.

(2) Trans[21 to Trans[101-PI perform (on their intentions lists) Deq()/Oh(i)
for 30 elements each.

(3) The remaining transactions (Trans[102-PI through Trans[100]) each at-
tempt to Deq one element, but all are blocked.

(4) Trans[1] is aborted manually (for test purposes only), and blocked trans-

actions complete their initially blocked Deq events, followed by 29 more

Deq events each.

(5) All transactions (except Trans[1]) commit.

Due to the optimistic nature of this type of conflict in the hybrid server, the

hybrid test for this conflict is identical to that of the optimistic server’s.

Optimistic and hybrid class transactions accomplish the same amount of

work (although they also include some wasted work) as the pessimistic

transactions in the following way:

(1) Trans[11 performs a Deq()/Ok(i) event on 30*P elements (where p is the
percentage of conflict being tested) —this is not included in the timing

results of the tests.

(2) Trans[21 to Trans[1001 perform (on their intentions lists) Deq()/ok(i)
for 30 elements each.

(3) Trans[102-p] through Trans[100] attempt to validate, but all abort.

(4) Trans[1] is manually aborted (for test purposes only).

(5) The aborted transactions are redone.

(6) All transactions (except Trans[1]) successfully validate and commit.

4.2.2 Specific Pessimistic and Optimistic Servers. Performance data for

execution of these 100 transactions on the static specific servers is shown in

Figure 2. Within these tests, the pessimistic server’s performance remains

essentially unaffected by an increasing percentage of conflict, whereas the

optimistic server’s performance deteriorates linearly. The optimistic server
performs better than the pessimistic at conflict levels of less than 26%.

4.2.3 Adaptable State-Based Server. New transactions are assigned a

p-class or o-class based on the number of available elements (i.e., elements

not already in a Deq intentions list) relative to a predefine threshold value,

in that if the number of entries is less than the threshold, then new

transactions are assigned a p-class, else they are assigned an o-class.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

Adaptable Concurrency Control for Atomic Data Types . 211

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

(
\

\
Specific Pessimistic +

\ Specific optim~stlc +
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
b

‘\
‘.

‘.<

-.
~.

‘.
‘.

‘.
‘L. .

-.<

-.~~
--~

, , # ,

0 10 20 30 4C so 60 70 80 90
Percentage of Conflict (D3)

Fig. 2. Throughput for specific pessimistic and optimistic servers testing D3 conflicts.

We measured the overhead of this adaptable server by executing the same

100 transactions while forcing the server to act purely in optimistic mode

(threshold = O) and in purely pessimistic mode (threshold > 2970). This data
is shown as the dashed lines in Figure 3. Comparing Figures 2 and 3, we see

that the static servers are approximately 1096 more efficient than the adapt-

able servers working in purely optimistic or pessimistic modes. As this is a

compute-intensive task, for any realistic transaction system the overhead for

adaptability will be less than 10% which is within an acceptable margin.

Note that the optimistic-pessimistic conflict threshold of around 20% for

the adaptable servers is lower than the specific servers’ conflict threshold of

26’%; thus to demonstrate optimal performance over the whole range of

conflicts, the dynamic state-based server needs to change from optimistic to

pessimistic at approximately 20% conflict. This corresponds to a threshold

value of 2370 within this test; hence, where the conflict-causing transaction

removes 600 elements or more, the adaptable server operating in dynamic

mode assigns the remaining 99 transactions a pessimistic class, otherwise

they are assigned optimistic.

The performance of the state-based server set so that the state changes at

threshold = 2370 is shown as the solid line in Figure 3. The dynamic perfor-

mance has negligible overhead over the static performance when the thresh-

old for the state-based server is accurately set to reflect an appropriate level

of transaction conflict. However, the threshold at which automatic switching

between optimistic and pessimistic should occur depends on the transaction

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

212 . M. S. Atkins and M. Y. Coady

I Maptable Optinisticl Pessimistic +-

2.4
cQtimi3tic +

Pessimistic -i3 - 1

2

1.8

-- .--.-.--+ . ----------- --------------- -
1.6~ L

---.--- ------- ----
. 7

‘\
‘.

1,4 ‘\
v.

---~

1.2
-.-

+.~~

1
-..

0.8
,

0 10 20 30 40 50 60
Percentage of Conflict (D3)

Fig. 3. Throughput for adaptable state-based server testing D3 conflicts.

access patterns. In applications without a stable transaction access pattern, a

simple state-based threshold for determining the class of a new transaction

cannot be used; instead the conflict crossover point (measured as 20% from

the extreme threshold study) must be used at runtime. We call this the

adaptable conflict-based server.

4.2.4 Adaptable ConfZict-Based Server. Performance data for the over-

head of the adaptable conflict-based server described in Section 3.3.2 is

obtained by setting the conflict threshold to O% and to 100~0 so that no

changes from optimistic to pessimistic occur. The performance results are

shown as the lower three lines in Figure 4. Comparing the optimistic and

pessimistic data with the specific servers in Figure 2, we see there is around

10–15% overhead for this concurrency control decision, as for the state-based

adaptable server.
Due to the optimistic nature of the hybrid server’s treatment of D3, hybrid

performance is similar to optimistic performance, but is slightly worse be-

cause this hybrid server’s Deq()/Ok(i) event includes the pessimistic over-

head involved in its treatment of dependency D4. That is, every successful

Deq event performed by the hybrid server must also check all active transac-

tions for conflict-type D4. This additional pessimistic overhead in optimisti-

cally-treated conflict types adds to the per-event cost of a hybrid Deq event.

This figure (upper two lines in Figure 4) also shows the advantage of early

abort in BOCC (where an active transaction is killed when an element held in

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992

Adaptable Concurrency Control for Atomic Data Types . 213

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

, (8

(Early Abort for optimistic) +
(Early Abort for Hybrid) +

Pessimistic * -
Optimistic -*..

Hybrid +.-
3~

...
.....
, ‘...

< .-\—-—- ~y_ ---- _— ______
‘\ --—-t- --.— - —___________________

“\,
\ ..

‘\. ‘...
N‘..., .,

,.,
~ ------------- .:., -..;. -.------- u ---------- ------------------d 1

\ ..
‘\ ‘...,

‘\ ...
‘-. .,

..
‘\. ,“%

‘ %. . .’’......
..-.. . ---

. -- . -’’...... ..
..-.

- .-.:...-. . .
-- .

, ! ,

0 10 20 30 40 50 60

Percentage of Conflict ID3)

Fig. 4. Throughput for specific conflict-based servers testing D3 conflicts.

its intentions list is removed from the permanent state of the semiqueue by a

validated transaction), as wasted work in the optimistic server is kept to a

minimum. The tests demonstrating the potential performance benefits of

early abort in BOCC represent situations where the active transactions that

were killed held only one item in their Deq intentions list. Under these

conditions, the amount of wasted work is limited to one Deq()/Ok(i) event

per aborted transaction. In the worst case here, however, where all 30 Deq

events are wasted in each aborted transaction, the performance of unopti-

mized optimistic, and hybrid modes is very poor, as demonstrated in Figure 4.

Although the enhanced server can perform much better than the unoptimized

one, the improvement is very workload dependent, and in these tests, using

artificial workloads, we decided to continue to use the unenhanced versions,

reflecting the worst-case performance gains.
Figure 5 shows the dynamic performance results for the adaptable conflict-

based server (together with a repeat of the specific optimistic and pessimistic

servers’ throughput from Figure 2), where o-class allocation is performed

until the level of conflict for D3 is above 2096, at which point p-class is

allocated to new transactions. The adaptable server has a low overhead of

around 10– 15%, despite the complexity of the conflict calculation; this is
attributed to the relatively small percentage of time that the server spends in

the concurrency control decision. If we had used a heuristic that had taken

snapshots more frequently the overhead would have been higher.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

M. S. Atkins and M. ‘t. Coady

2.6 , , 1

Adaptable Optimistic/Pessimistic 4-
Spec>fic Pesslmlstic +

2.4 - ‘. Specific Optlmlstlc ~ -
‘,

2.2

2

1.8

L\. +_ ——_— — __________ +—— ——-— ———-—. —— --

1.6
.

n
-..

-..

1.4 ..-

-..
-..

1.2
. . .+

‘B. .
. .

.-
-. --

1 -..
..-

. .
c1

O.@
, 1 , , r !

0 19 20 30 40 50 60 70 80 9s
Percentage of COnfllct (D3)

Fig. 5. Throughput for adaptable conflict-based server in dynamic mode testing D3 conflicts.

Note that the state-based server can provide as cost effective a means of

control as the automatic server (the state-based server, however, does not

include a hybrid option).

4.3 Tests for D4 Conflicts

4.3.1 Test Environment. Another conflict type tested deals with the pro-

scribed dependency D4, whereby a Deq event conflicts with another active
transaction executing an Inspect event. As for the previous tests, 100 trans-

actions each dequeue 30 elements from the shared semiqueue. Conflict is

introduced when one of the 100 active transactions executes an Inspect

event.

4.3.2 Static Pessimistic, Optimistic, and Hybrid Servers. Performance

data for the static, purely optimistic, purely pessimistic, and hybrid servers
for this conflict type are shown in Figure 6. This figure shows that the

pessimistic server for D4 conflicts behaves similarly for D3 conflicts as shown

in Figure 2. However, the optimistic server for D4 conflicts gains over the

same server for D3 conflicts because in the tests for conflicts defined by D3,

before a transaction can set its Deq O-flag on an element that is already

flagged by another transaction, it must first search the entire semiqueue for

an unflagged element. Since these fruitless searches do not occur under the

test conditions for conflicts defined by D4, the Deq(.)/OK(i) events are less

expensive, and consequently the costs of redoing them are less. This is

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992

Adaptable Concurrency Control for Atomic Data Types . 215

2.6

Specific 5ptimistic +

2.4, -
Spec::. c Hybrid +

Specific Pessimistic +-

[2“’1--Y-----+--
Al

1.8L
;

c I -------------------Q ------------------ ----- ------ +
~

1.6
:

u
g 1.4
y
0

2
* 1.2

1

0.8 , , , * , ,
0 10 20 30 40 50 60 70 80 90

Percentage of Conflict (D4)

Fig.6. Throughput forspecific optimistic, pessimistic, andhybrid semerstesting D4conflict.

demonstrated by comparing the performance of the optimistic servers at 609’0

in Figure 2 and Figure 6, Under these conditions, the percentage of conflict

representing the threshold between optimistic and pessimistic performance

for the D4 conflict is approximately 60%.

As the level of conflict increases, hybrid performance exhibits the constant

behavior characteristic of a pessimistically treated conflict type, but it outper-

forms the pessimistic technique. This is because within the hybrid strategy, a

Deq event incorporates less pessimistic overhead as a result of its optimistic

treatment of the other two conflict types involving Deq operations (D2 and

D3). (But recall that in the previous example, the hybrid server exhibited

behaviour similar to the optimistic server.)

4.3.3 Adaptable State-Based Server. The state-based server would not

change state on this kind of conflict, so its performance reflects either purely

optimistic or purely pessimistic results, according to the threshold.

4.3.4 Adaptable Conflict-Based Server. Figure 7 shows the performance

of the adaptable server with conflicts set so that no changes occur—either all

are pessimistic or all are optimistic. Comparing this with the data in the

previous figure, we see that the adaptable server has < 10% performance

penalty over the specific servers. This figure also shows that the percentage

of conflict representing the threshold between optimistic and pessimistic

performance is approximately 45% for the D4 conflict-type and the threshold

between optimistic and hybrid performance is approximately 15%.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

216 . M. S. Atkins and M. Y. Coady

2.6

Optimistic +--
Hybrid A

2.4 ee~$ilnlstic - -

2, - ———_-—. —_— — - — --------4 —-- —-- —- —---- — —--—-----

1.8

!

----~------------.J1.6

t

----- ----- ----- --------(3 --

1.4

1.2 [

‘t i

,., ~
o 10 20 30 40 50 60

Percentage of Conflict (D41

Fig.7. Throughput forconflict-based semerin static mode testing D4 conflicts.

Results for the conflict-based server operating in dynamic mode are shown

in Figure 8.

The solid line in Figure 8 illustrates that the performance of the dynamic

server set to change from optimistic to hybrid when the D4 conflicts are at

20% (as specified in Figure 1 in Section 3.3.2). The dashed line shows that

the performance of the dynamic server set to change from pessimistic to

hybrid at D4 > 20% when there are more than 20% of D3 conflicts. This

performance is close to optimal for the entire range of D3 and D4 conflicts.

4.4 Analysis and Evaluation

The tests presented here are highly event intensive, so subtle difference in

performance costs incurred by the respective conflict resolution strategies are

essentially negligible. For example, the difference between FOCC and BOCC

validation is small, aside from the potential performance enhancement asso-

ciated with BOCC’S early abort strategy. Also, the additional cost of our

type-specific Wake-up calls as the percentage of conflict increases in a

pessimistic scheme are negligible.

As anticipated, the optimistic strategy is most cost effective at low levels of

conflict, while the pessimistic strategy is most efficient at high levels. And in

environments where the level of conflict reliably varies on a conflict-type
basis, the hybrid strategy can provide the most cost-effective control. our

dynamic servers combine all the best features of optimistic, pessimistic, and

hybrid control, so dynamic servers are most effective when the conflict levels

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992

Adaptable Concurrency Control for Atomic Data Types .

2.61

Adaptable Optimistic/Hybrid (when D3 conflicts <- 20$) +
Adaptable F’esslmlst lc/Hybrid (when D3 conflicts > 20il +

2.4

2.2’

2

I
I

1.8 /
I

1.6” -----––----–---–J

1.4

1.2

1

nR [!

217

. .
0 lc 20 ~~ 40 50 60

Perzentaqe of :.onflict (D4)

Fig. 8. Throughput for adaptable conflict-based server testing D3 and D4 conflicts.

vary, as the most appropriate strategy is selected according to the state

threshold or the current conflict level.

Using the threshold levels established by these tests, we verify that the

adaptable conflict-based server is most effective if, for both conflict-types D3

and D4 the level of conflict is below 20Y0, an optimistic strategy is used. In an

environment where D3 is above 20%, the pessimistic strategy can provide the

best control (based on worst-case early abort results). Furthermore, when the

level of D3 is below 207. but D4 is above 20Y0, the hybrid strategy can

provide the most effective means of control.4

5. DESIGN METHODOLOGY

5.1 General Approach

Our strategy for implementing an efficient adaptable server for shared

abstract objects by finding conflict levels at which the server should switch

modes (or the state threshold at which the state-based server should switch)

is readily extended to any shared abstract object. The activities which should

be performed are described below and illustrated with another example, that

of a shared B-tree, Another example, that of a shared directory object, is

given in [10].

4 Note that these conflict thresholds would be even higher, if the pessimistic deadlock prevention

was not optimized.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

218 . M. S. Atkins and M. Y. Coady

(1) Identify all the events (operations + outcomes).

(2) Identify which pairs of events cause conflicts in an optimistic environ-
ment by deriving proscribed serial dependency relations. Identify addi-

tional pairs of events for conflicts in a pessimistic environment (must be

symmetrical).

(3) Design acceptable representation of intentions lists, according to the
demands of the application.

(4) Consider optimistic and pessimistic performance enhancements such as
type-specific wake-up calls and deadlock detection (pessimistic servers)

and BOCC with early abort (optimistic servers). Enhancements made

to optimistic servers will push the conflict threshold higher; those to

pessimistic servers lower.

(5) Implement a static optimistic server, a static pessimistic server, and any
appropriate hybrid servers.

(6) NIeasure the performance of these static servers for each conflict type to
locate the threshold conflict levels.

(7) Implement a dynamic adaptable server by combining the static imple-
mentations with a dynamic strategy (state-based, automatic, or preset)

and augmenting the static validation and commitment procedures with

the suicidal and commit-and-kill strategies, respectively.

(8) As in (7), measure the performance of the dynamic servers in a purely

optimistic, a purely pessimistic, and appropriate hybrid modes, to locate

the conflict thresholds. Compare these results with the purely static

servers to confirm that the dynamic overhead is acceptable (say < 10%).

(9) AI1ow the state-based or automatic dynamic servers to switch modes at
the located thresholds for optimum performance and provide for preset

transaction classes if required.

5.2 Example: Shared B-Tree Atomic Data Type

(1) Identify all the events (operations + outcomes).

We consider a B-tree index as a shared abstract object within a dis-

tributed transaction system. The possible events associated with this

object could be:

Insert(n)/Ok()
Delete(n)/Ok()
Delete(n)/Failed()
Search(n)/Ok()
Search(n) /Failed()

(2) We illustrate the conflicts between pairs of events in Table V.

Conflicts D1 through D4 are for optimistic and pessimistic transactions,

whereas D5, D6, and D7 are for pessimistic transactions only. Row 1

shows that Inserting an entry conflicts with an unsuccessful delete of the

same entry (D 1) and an unsuccessful search for the entry (D2,). Row 2

shows that two transactions cannot delete the same entry (D3) and that

an attempt to delete an entry conflicts with a successful search for the

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992,

Adaptable Concurrency Control for Atomic Data Types . 219

Table V. Optimistic (0) and Pessimistic (P) Conflicts at a B-Tree

Insen(n)/OK() Delete@)OK() Delete(n)Eailedo Search(n)/OKO Search(n)/Failedo

Insat(n)/OKO Dl(O&P) D2(O&P)

Delete(n)/OK() D3(O&P) D4(o&P)

Delete(n)/FailedO D5(P)

Search(n)/OKO D7(P)

Search(n)Fiuledo w)

entry (D4). Row 3 shows that a pessimistic transaction cannot have failed

to delete an entry which has been added by another transaction (D5); row

4 shows that a successful search for an item must wait if another

pessimistic transaction has executed a successful dequeue of the same

item (D7) and the last row shows that an unsuccessful search for an item

conflicts with another transaction which has added the same item.

(3) The intentions list data structure has several alternatives. For example,

in some applications transactions accessing the B-tree may actually per-

form a relatively high number of each of the event-types before commit-

ting. In such a situation, intentions lists may best be handled by building

local B-trees as intentions lists. That is, all lrzsert(n)/Ok() events

performed by a transaction Ti would be inflicted upon a B-tree structure

that is local to Ti. Attempts by Ti to delete or search would then start by

checking the local structure before accessing the global object. An advan-

tage to this approach would be that the same procedures used to access

the global object could be applied at the local level. Of course, a disadvan-

tage would be that the costs involved in maintaining these local B-trees

may be prohibitive in applications where transactions perform relatively

few events. In such situations, intentions lists may best be handled

simply by building local linked lists for newly inserted nodes.

(4) Optimistic and Pessimistic Performance Enhancements. Optimistic En-

hancements: BOCC + Early Abort. As with the semiqueue, in the case of

the conflict type between concurrent transactions attempting to delete the
same node from the B-tree (D3), the BOCC technique can rely on an

optimistic early abort strategy. This way, the fh-st transaction to success-

fully validate will actually remove the conflict-causing node from the

permanent state of the B-tree, and all active transactions that include

that node in their respective intentions lists will be aborted. This ap-

proach is made possible by virtue of that fact that all transactions
attempting to delete a given node are identified within optimistic flag

information associated with that node, a useful generalization of this

optimistic enhancement.

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

220 . M. S. Atkins and M. Y. Coady

Pessimistic Enhancements: Wakeup Calls. Pessimistic performance en-

hancements include wake-up calls associated with the release of P-1ocks

and type-specific deadlock strategies. In the case of the B-tree events, the

release of an Insert(n)/Ok () P-lock should send wake-up messages to all

blocked Delete(n) /Failed() and Search(n) /Failed() events (Dl, D2)

and vice versa (D5, D6), and the release of a Delete(n)/Ok() P-lock

should send wake-up messages to all blocked Delete(n)/Ok() and

Search(n)\Ok() events (D3, D4) and vice versa (D7).

Pessimistic Enhancements: Type-Specific Deadlock Detection. Unlike the

case of the semiqueue server where all circular waits must contain a cycle

of length two, circular waits among transactions accessing the B-tree

server may involve more than two transactions. For example:

Tl:Insert(nl)/Ok()
T2:Delete(n2)/Ok()
T3:Search(n3)/Failed()
Tl:Insert(n3)—BLOCKED, waiting for wake-up from T3 (Conflict D2)
T2:Search(nl)—BLOCKED, waiting for wake-up from T1 (Conflict D6)
T3:Search(n2)—BLOCKED, waiting for wake-up from T2 (Conflict D7)

Consequently, the algorithm presented in Section 2.6.4 for type-specific

deadlock detection in the semiqueue wherein all deadlocks must involve a

cycle of two transactions is not adequate for the B-tree server. Instead a

less efficient mechanism must be employed, causing a relative increase in

overhead associated with the pessimistic component of the B-tree server.

Rules (6)–(9) must then be followed: implement static servers to deter-

mine conflict thresholds, dynamic servers with interclass conflicts to

determine the overhead, and, if acceptable, implement an adaptable

server.

Inspection of the specification and implementation design for the B-tree

reveals that its implementation should perform similarly to the semiqueue,

with conflict thresholds from optimistic to pessimistic of around 20’% or a
little higher (because the B-tree deadlock prevention code is not as efficient

as the semiqueue’s) for the most expensive operations (Delete and Insert).

6. CONCLUSIONS AND FUTURE WORK

6.1 Summary

These implementations and performance studies show the feasibility and

practicality of integrating both optimistic and pessimistic concurrency control

in servers for shared objects, where semantic information is used to identify

conflicting events between concurrent transactions.

Herlihy proposed static servers incorporating a hybrid concurrency control

scheme in [16]; we have extended this work to include the facility to dynami-

cally adjust the mode in which a server treats conflicting events. This is

especially useful in the situations where the conflict levels in the server’s

environment vary. We have described three practical methods for implement-

ACM TransactIons on Computer Systems, Vol. 10, No. 3, August 1992.

Adaptable Concurrency Control for Atomic Data Types . 221

null
p v 1 n p v 1 n 000 p v 1 n

null

/ \ R \

Qhead Qtail

NODES. P = Previous Link
v = Value
1 = Locking Information

n = Next Node Pointer

Fig. 9. The shared semiqueue.

ing these so-called dynamic servers; semantic information on the likely use of

the server can be used to identify which technique is most cost-effective.

One method is based on the server’s state information, allowing the server

(the state-based server) to choose optimistic or pessimistic strategies for

concurrency control. Another (the conflict-based server) uses the conflict

history at the server, allowing it to choose optimistic, hybrid, or pessimistic

strategies for concurrency control according to the percentage of conflicts

encountered. The third method uses preset classes for each transaction,

optimistic, hybrid, or pessimistic, which the server must use in resolving this

transaction’s conflicts. The preset method can be used in conjunction with

either of the other two methods.

Furthermore, we have shown how semantic information can be used to

enhance the performance of pessimistic type-specific deadlock prevention and

unblocking strategies and how “early-abort” strategies can improve the per-

formance of optimistic execution.

6.2 Future Work

Our future plan is to integrate adaptable servers for different types of shared

objects into a distributed database and then to test the system with real

transactions.

APPENDIX A: OVERVIEW OF SEMIQUEUE IMPLEMENTATION

Our implementation is in Version 1 of the SR programming language running

under the Sun UNIX 4.2 operating system (release 3.4). Three different
servers were implemented to enforce concurrency control on a shared

semiqueue (called specific servers). The specific semiqueue servers (optimis-

tic, pessimistic, and hybrid) use a doubly-linked list for the shared semiqueue’s

elements. Each node in this list contains an integer value (since this is a

semiqueue of integers) and the appropriate optimistic and pessimistic locking

information. Qhead and Qtail mark the beginning and end of the semiqueue,
respectively (Figure 9).

Every active transaction is identifiable by a unique transaction number,
Tnum. For every Tnum that accesses an object, the object’s server maintains

ACM Transactions on Computer Systems, Vol. 10, No. 3, August 1992.

222 . M. S. Atkins and M. Y, Coady

nuI1

Enq-headUnum] Enq-tiiil[Tnum]

Fig. 10. Enq intentions list,

se n se n 000

Uh_AY

se n null

Deq~head[TnumJ

NODES: s e = Shared Element Pointer

n = Next Node

Fig. 11. Deq intentions list.

an intentions list with two components: an enqueue (Enq) list and a dequeue

(Deq) list. The enqueue component consists of a doubly-linked list of ele-

ments to be enqueued, and the dequeue component consists of a singly-linked

list of pointers to the shared elements of the semiqueue (Figure 10 and

Figure 11). When a transaction successfully commits, the Enq list is attached

to the end of the shared semiqueue, Qtczil is updated, and the appropriate

elements associated with the Deq component of the transaction’s intentions
list are removed from the semiqueue in an atomic action. In the event of

transaction abort, however, these lists are discarded. The nodes of the

enqueue component of each transaction’s intentions list are identical to those

of the shared semiqueue (Figure 9). This facilitates the method of appending

the entire Enq intentions list at commit time.

APPENDIX B: TYPE-SPECIFIC DEADLOCK DETECTION

Given Ti that is about to block on Tj, a simple type-specific prevention

mechanism enforces the following rule:

Deadlock Rule. For Ti to block on Tj, Tj cannot already be blocked on a

lock that Ti possesses.

PROOF. Let T be the set of active transactions that have completed at least

one event and are not blocked. All completed events performed by the

transactions in T must compatible. That is, there cannot be any conflicts

ACM TransactIons on Computer Systems, Vol. 10, No. 3, August 1992

Adaptable Concurrency Control for Atomic Data Types . 223

among these completed events. Combinations of compatible event types can

be selected from one of the two sets R or W, where

R = {Inspect()/Ok(#items), Deq()/Fcziled()}
W = {Enq(i)/Ok(), Deq()/Ok(j)}

In the case where all the events completed by transactions in T are from

the set R, transactions in T may take on one of three forms:

(1) Inspect()/Ok (items) event type only: In this case, in order for one trans-

action in T, Ti, to incur conflict, Ti must attempt an event type from the

set W. Ti will then be blocked on all other transactions in T, since they all

hold Inspect P-locks and both event types from W conflict with these

P-locks. Any subsequent transaction Tj that attempts an event from the

set W must also block on all other transactions in T, including Ti. Thus,

all circular waits must include a cycle of length two.

(2) Deq()/Failed() event type only: In this case, in order for one transaction
Ti to incur conflict, Ti must attempt an Enq(i)/Ok() event type from the

set W, as the Deq()/Ok(i) event-type is not possible on an empty

semiqueue. Again, Ti will then be blocked on all other transactions in T

and any subsequent transaction Tj that also becomes blocked will neces-

sarily be blocked on Ti, forcing all circular waits to include a cycle of

length two.

(3) A mixture of Deq()/Failed() and Inspect()/Ok(items) event-types. As
with the previous case, in order for one transaction Ti to incur conflict, Ti

must attempt an Enq(i)/Ok() event type from the set W, since again the

Deq(i)/Ok() event type is not possible on an empty semiqueue. As above,

this would force Ti to be blocked on all transactions in T and force all

subsequent conflicts to include a cycle of length two.

In the case where all the events completed by transactions in T are from

the set W, transactions in T may take on one of three forms:

(1) Enq(i)/Ok() events only: In this case, in order for one transaction Ti to
incur conflict, Ti must attempt an event type from the set R. Ti will then

be blocked on all other transactions in T, and any subsequent transaction

Tj that attempts an event type from the set R will also block on all other

transactions in T, including Ti, forcing all circular waits to include a cycle

of length two.

(2) Deq()/Ok(i) events only: In this case, in order for one transaction Ti to

incur conflict, Ti must attempt either an Inspect()/ Ok(items) or a

Deq()/Ok(i) event type. The Deq()/Ok(i) event causes a conflict due to

the fact that although there are items still in the permanent state of the

semiqueue, they have all been Deq()/Ok(i) P-locked and are not avail-
able for dequeuing. As a result, Ti will again be blocked on all other

transactions in T and any subsequent transaction Tj that blocks will
necessarily be blocked on Ti as well, forcing a circular wait of length two.

ACM TransactIons on Computer Systems, Vol. 10, No. 3, August 1992.

224 . M S. Atkins and M ‘t. Coady

(3) A mixture of Enq(i)/Ok() and Deq()/Ok(i) event types: Again, in this
case, a transaction Ti may incur conflict either by attempting an

Inspect()/Ok(items) or a Deq()/Ok(i) event type. As with all previous

cases, if Ti blocks due to a conflict with an Inspect()/ Ok(items)

event type, Ti will block on all transactions in T and any subsequent

transaction Tj that also blocks as the result of an Inspect()/Ok(items)

conflict will necessarily be blocked on Ti as well, forming a circular wait

of length two. However, this final case is different from the rest in that a

Deq()/Ok(i) conflict will only form among transactions that have com-

pleted Deq()/Ok(i) event types. In this case, once all of the items in the

semiqueue have been P-locked for dequeuing, all subsequent dequeue

attempts from any transaction, Tj, are blocked only on the transactions in

T that have completed Deq()/Ok(i) event-types. Tj is not blocked how-

ever, on any transactions in T that have only performed Enq(i)\Ok()

event-types. Thus, a situation may arise where Ti may have completed at

least one Enq(i)/Ok() event-type followed by an attempted Inspect

()/ok(items) event-type, becoming blocked on all other transactions in
T. But T may include a transaction, Tj, that becomes blocked on Deq(i)\Ok

() conflict. Here, unlike all previous cases, although Ti is blocked on Tj,

Tj is not blocked on Ti. Circular waits, however, must include a transac-

tion, Tk, that becomes blocked on Ti. By virtue of the fact that the only

conflict-type that will block on Ti will be an attempted Inspect

()/Ok(items) event-type, and Ti is blocked on all transactions in T, Ti

will necessarily be blocked on any transaction, Tk, that attempts an In-

spect()/Ok(items) event-type. Consequently, all circular waits will nec-

essarily include a cycle of length two. ❑

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8,

9.

10,

11

ANDREWS, G. R., OLSSON, R. A., COFFIN, R. A., ELSHOFF, M. I. NILSEN, I J. P., AND PURDIN, T.

An overview of the SR language and implementation. ACM Truns Program. Lang. Syst. 10,

1 (Jan. 1988), 51-86.
AGRAWAL, R , CAREY, M., AND LIVNY. M Concurrency control performance modelling. Alter-

nates and implications. ACM Trans. Database Syst. 124 (Dec. 1987), 609–654.

BERNSTEIN, P., AND GOODMAN, N. Concurrency control in distributed database systems.

ACM Comput. SurZ. 13, 2 (June 1981), 185-221.

BHARGAVA, B,, RIEDL, J., AND WEBER, D. An expert system to control an adaptable dis-

tributed database system. Tech. Report CSD-TR-693, Purdue Univ., May 1987.

BHARGAVA, B., AND RIEDL, J. The Raid distributed database system. IEEE Trans. Softw.

Eng. 16, 6 (June 1989), 726-736.
BIIARGAVA, B., AND RIWIL, J. A model for adaptable systems for transaction processing

IEEE Trans. Knoul. Data Eng. 1.4 (Dec. 1989), 433-449.

BORAL, H., AND GOLD, I. Towards a self-adapting centralized concurrency control algorithm,

m Proceedings of the ACM SIGMOD Conference (1984), pp. 18–32.

CAREY, M., AND LIVNY, M. Models for studying concurrency control performance Alterna-

tives and imphcations. in Proceedings of the ACM SIGMOD Conference (1985), pp. 108-121.

CAREY, M., AND MUHANNA, W. The performance of multiverslon concurrency control algo-

rithms. ACM Trans. Conzput. Syst. 4, 4 (Nov. 1986), 338–378.

COADY, Y. An investigation of type-specific optimistic, pessimistic, and hybrid concurrency

control. M. SC. thesis, School of Computmg Science, Simon Fraser Univ., Dec. 1988.

CORDON, R., AND GARCIA-M• LINA, H. The performance of a concurrency control mechanism

ACM TransactIons on Computer Systems, Vol. 10, No. 3, August 1992

Adaptable Concurrency Control for Atomic Data Types . 225

that exploits semantic knowledge. in Proceedings of the Fifth International Conference on

Distributed Computing Science (1985), pp. 350-358.

12. ESWAREN, K. P. GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. The notions of consistency and

predicate locks in a database system. Commun. ACM 19, 11, (Nov. 1976), 624-633.
13. GARCIA-M• LINA, H. Using semantic knowledge for transaction processing in a distributed

database. ACM Trans. Database Syst. 8, 2 (June 1983), 186-213.

14. GAWLICK, D. Processing “Hot spots” in high performance systems. in Proceedings IEEE

COMPCON Conference (Feb. 1985), pp. 249-251.

15. HARDER, T. Observations on optimistic concurrency control schemes. Inf. Syst. 9, (June

1984), 111-120.

16. HERLIHY, M. Optimistic concurrency control for abstract data types. in Proceedings of the

Principles of Distributed Computing Conference (Aug. 11-13, 1986). ACM, New York, pp.

206-217.

17. HERLIHY, M. Apologizing versus asking permission: Optimistic concurrency control for

abstract data types. ACM Trans. Database Syst. 15, 1 (Mar. 1990), 96–124.

18. HERLIHY, M., AND WEIHL, W. Hybrid concurrency control for abstract data types. In Pro-

ceedings of the 7th ACM-SIGMOD-SIGACT Symposium on Principles of Database Systems

(PODS) (Austin, Tex., Mar. 21-23, 1988), pp. 201-210.

19. KUNG, H. T., AND ROBINSON, J. T. On optimistic methods for concurrency control. ACM

Trans. Database Syst. 62, (June 1981), 213-226.

20. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Corrunun.

ACM 21, 7 (July 1978), 558-565.

21. LAUSEN, G. Concurrency control in database systems: A step towards the integration of

optimistic methods and locking. In Proceedings of the ACM Conference (Dallasj Tex., Oct.

25-27, 1982). ACM, New York, pp. 64-68.

22. LAUSEN , G. Integrated concurrency control in shared B-trees. Comput. 33, (1984), 13-26.

23. LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust dis-

tributed programs. ACM Trans. Program. Lang. Syst. 5, 3 (July 1983), 381-404.

24. REED, D. R. Naming and synchronization in a decentralized computer system. PhD. thesis,

Laboratory for Computer Science, MIT, MIT\ LCS\TR-205, 1978.

25. RIEDL, J. Adaptable distributed transaction systems. Ph.D. thesis, Computer Science Dept.

Purdue Univ., May 1990.

26. ROBINSON, J. T. Design of concurrency controls for transaction processing systems. Ph.D.

thesis, Dept. of Computer Science, Carnegie-Mellon University CMU-CS-82-114, April, 1982.

27. ROWE, L,, AND STONEBRAKER, M. The commercial INGRES epilogue. In The ZNGRES

papers: Anatomy of a Relational Database System. Addison-Wesley, Reading Mass., 1986.

28. SCHWARTZ, P. M., AND SPECTOR, A. Z. Synchronizing shared abstract types. ACM Trans.

COmpUt. Syst. 2, 3 (Aug. 1984), 223-250.

29. SHETH, A., AND Lm M. Integrating locking and optimistic concurrency control in distributed

database systems. in Proceedings of the 6th International Conference on Distributed Comput-

ing Systems (May 1986), pp. 89–99.

30. SPECTOR, A. Z. Distributed transactions for reliable systems. In Proceedings of the Princ-

iples of Distributed Computing Conference (1985).

31. SPECTOR, A. Z. Distributed processing and the camelot system. Carnegie-Melon Univ.,

TR-87-1OO, Jan. 1987.

32. STONEBRAKER, M., AND ROWE, L. The design of POSTGRES. In Proceedings of the ACM

SIGMOD Conference (Washington, D. C., May 28-30, 1986), pp. 340-355.

33. WEIHL, W. Specification and Implementation of Atomic Data Types. Ph.D. thesis, MIT

Laboratory for Computer Science, MIT\ LCS\TR-3 14, Apr. 1984.

34. WEIHL, W. Local atomicity properties: Modular concurrency control for abstract data types.

ACM Trans. Program. Lang. Syst. 112 (Apr. 1989), 249-282.

35. WEIHL, W. The impact of recovery on concurrency control. In Proceedings of the ACM

Conference on the Principles of Databases (PODS) (Philadelphia, Pa., Mar. 29–31, 1989), pp.
259-269.

Received March 1990; revised August 1990; accepted March 1991

ACM TransactIons on Computer Systems, Vol. 10, No. 3, August 1992.

