
Efficient partitioning for the batch-fabricated 
fourth generation computer 

by N. CSERHALMI, 0. LOWENSCHUSS and 
B. SCHEFF 

Raytheon Company 
Bedford, Massachusetts 

INTRODUCTION 

The computer industry is on the verge of an up­
heaval, due to drastically new hardware and mod­
ern computational concepts. Read-only memories 
which operate near 0.1 microseconds are available, 
while large-scale integration (LSI) offers the 
promise of inexpensive, batch fabricated process­
ing of logic and storage elements. The problem 
which confronts the computer designer is how to 
use these elements in an efficient manner to take 
full advantage of their speed and flexibility. Many 
approaches have been proposed, but none have 
shown a clear solution to the problem. The concept 
presented in this paper is the result of extensive 
development activities. 

The partitioning problem 

A study of both general and special purpose 
digital hardware indicates that certain basic arith­
metic and Boolean functions are repeated in 
various combinations throughout a given com­
puter system. Presently available complex logic 
arrays such as adders, shift registers, and coun­
ters perform many of these tasks, and reduce logic 
cost, compared to the use of simple gates. At the 
same time they create a serious logistics problem 
to the hardware product engineer, because stock 
and maintenance parts increase. In a rapidly 
growing technology, where labor is so costly, the 
design, procurement, fabrication, and test cycles 
are all lengthened by the needs for many different 
types of parts. By combining several related op­
erations into a single array, significant improve­
ments in logistics, interconnect ratios, power-
speed merit figures, and component logic efficiency 
are realized. 

An array can be fabricated with discretionary 
wiring methods (slice technology) or with the 
"cell approach" (chip technology), or with hybrid 
technology. From the component point of view, 
bipolar or MOS devices may be used. 

The size and the complexity of the array is de­
termined by the logic partitioning. The proper 
selection of the components and interconnection 
method is dictated by packaging, power consump­
tion, performance, and economic considerations. 

How can one tell whether the partitioning is 
right? Two numeric criteria provide a measure 
for any given partitioning design; 

a) Maximum Gate /Pin Ratio—This ratio is 
generally between 0.1 to 0.6 in present in­
tegrated circuit (IC) systems. A ratio 
near 1 is considered outstanding. With the 
LSI building blocks described below, a ra­
tio of 3 to 10 can be achieved. The re­
quirement for increased gate/pin ratio is 
a basic reason for the existence of LSI 
arrays, because interconnections on the 
microelectronics level are less expensive 
and more reliable than at the package 
level. 

b) Minimum Number of Array Types (Part-
numbers)—This is the best criterion of 
the logic partitioning, and demonstrates 
the level of coordination between semi­
conductor, logic and system designers. 
Most IC systems employ from 50 to 100 
types of printed-circuit modules. Mini­
mum "part-numbers" is one of the pri­
mary requirements in all military systems, 
and is an economics requirement for com­
mercial and low-volume production sys-

857 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1476589.1476699&domain=pdf&date_stamp=1968-12-09


858 Fall Joint Computer Conference, 1968 

terns. Several digital IC systems (includ­
ing general purpose computers) have been 
built that contain 3 to 15 types of printed-
circuit plug-in boards at 40 or more gates 
per board. 

The penalty paid for maximum gate-pin ratio 
and minimum part numbers is an inefficiency in 
the use of silicon (gates) and hence of power. 
Thus, in "tight" applications such as space ve­
hicles, the designer might prefer to forego the 
economic advantages of this type of partitioning 
in favor of minimum power. 

Directions in LSI computer architecture 

Current developments 

With LSI technology progressing toward ma­
turity, more useful documents are being published 
in the field of LSI system architecture. Most as­
sume the unlimited success of the semiconductor 
process, but only a few cite documented hardware 
development. LSI development projects, either 
completed or near completion, differ in their par­
titioning concepts; all are designed to replace 
third generation computers in whole or in part. 
Some of these development projects are briefly de­
scribed to supply a background to this paper. 

1) The sole producer of discretionary wiring 
(or slice technology), Texas Instruments, 
has designed and built an LSI airborne 
computer, the Model 2502. This general-
purpose 16-bit word computer consists of 
a Central Processing Unit (CPU) and a 
3-channel Input/Output Unit. The single 
address CPU is controlled by a 2 MHz 
clock, and the 36-instruction set is 
executed through four general purpose 
registers. (Reference 1) 

From the partitioning point of view, the 
most significant feature is that the CPU is 
implemented with 16 identical arrays, 
which include all arithmetic and register 
functions except for the control logic. The 
elimination of "special-purpose" registers 
(index, accumulator, etc.) must also be 
emphasized. While the CPU is partitioned 
on a bit basis, the three I/O channels are 
implemented by six arrays of another 
type, partitioned on a functional basis. A 
gate-to-pin ratio of two was achieved on 
both arrays. 

Although automated design was used to 
assist in the implementation of the control 
logic, the use of ten different arrays with 
low gate-to-pin ratios was required. An­
other disadvantage is that the industry­
wide claims of LSI speed improvements 
do not appear; the computer is three to 
five times slower than is attainable using 
currently mass-produced TTL circuits. 

2) A larger and more powerful general-pur­
pose aerospace computer has been de­
signed (hardware near completion) at 
Raytheon Company. This parallel 32-bit 
word computer offers 94 instructions, in­
definite chaining of Index and Indirect 
Addressing, and Multiprocessor capabili­
ty. The seven full-length registers of the 
CPU are partitioned into eight identical 
arrays. Each array contains four stages 
of all seven registers, including the trans­
fer gate structure. These eight LSI Ar­
rays of one type contain 56 percent of the 
entire CPU logic. 

The control logic is temporarily imple­
mented with 14-lead TTL circuits. Some 
further work is being done to replace the 
majority of control with a Read-Only 
Memory (ROM), leaving only less than 
five percent non-LSI hardware. 

3) In another Raytheon development pro­
gram, a CPU is under construction which 
utilizes 25 "Raytheon AS-80" arrays. This 
multi-purpose 4-bit Counter/Register is 
used as a building block to form the eleven 
working registers which are 4, 8, or 16 
bits long. The block diagram of this ar-

PARALLEL DATA INPUTS 

3-BIT 
FUNCTION CODE 

SERIAL DATA INPUT 
(SHIFT RIGHT) 

Jl Ji ii 

COUNT IN 
CARRY OUT 

CLOCK 
CLOCK ENABLE 
MASTER RESET 

SERIAL DATA 
INPUT 

(SHIFT LEFT) 

COUNTER/REGISTER 
CONTENTS 

FIGURE 1—Multi-purpose counter/register 



Efficient Partitioning for Batch-Fabricated Computer 859 

ray is shown in Figure 1; it will be de­
scribed in detail in a later part of this 
paper. 

The processor is a 16-bit, parallel, single-
address, high-speed unit. Operating with 
a solid-state, read/write memory, it can 
execute an add instruction in less than 
V2 //Sec, and a 16-bit multiply in less 
than 2 Msec average. 

From a partitioning point of view, the 
CPU is organized as follows: 80 percent 
of the logic is implemented by two types 
of arrays (Raytheon AS-80 and Signetics 
8260) and the remaining 20 percent is im­
plemented by high-speed TTL circuits. 
The majority of the control logic will be 
eventually replaced with ROM. 

4) A classical example of functional parti­
tioning is the LIMAC (Large Integrated 
Monolithic Array Computer) concept be­
ing implemented by RCA. The hardware 
of this 16-bit machine is grouped into 
functional execution units, each of which 
contain the control and the operand reg­
isters. A simple centralized control di­
rects the data flow, governed by micro-in­
structions. (Reference 2) 

This concept favors large arrays, but it is 
not restricted to any specific size. As 
semiconductor technology improves, more 
circuits can be included in a package 
which leads to increased gate-to-pin ratio 
and decreased unique parts in this par­
ticular system organization; e.g., with 100 
gate blocks, a gate-to-pin ratio of 2.5 can 
be achieved; with 1000 gate blocks, a gate-
to-pin ratio of better than seven can be 
realized. 

Efficient partitioning with building blocks 

In the following paragraphs two building block 
approaches will be presented. The first utilizes an 
80 gate array with 3 to 1 gate-to-pin ratio, the 
second concept is based on a more complex array 
with gate-to-pin ratio of ten, and Read-Only 
Memories. 

1) AS-80 Processor—A basic register array 
with built-in microprogrammable func­
tions can be fabricated with 4, 8, 16 or 

even 32-bit elements. A 4-bit array was 
designed and fabricated to prove the feasi­
bility of this approach. The block dia­
gram of this Raytheon AS-80 (Patent 
pending) is shown in Figure 1. Simul­
taneously, a processing unit was designed 
around 25 of the AS-80 arrays to demon­
strate its usefulness. 

The Raytheon AS-80 is an example of a high­
speed, programmable, 4-bit register contained in 
a single 28-lead flat-pack. As shown in Figure 2, 
eighty NAN.D gates are interconnected to provide 
a programmable counter/register, capable of op­
erating in any one of the following eight mutually 
exclusive modes by entering a 3-bit function code: 

. Clear—Also enter data into selected bit 
positions 

. Shift-left— 

. Shift-right— 

. Load-Enter 4 bit parallel data 

. Hold 

. Complement 
• Count-down—straight-binary counter, dec­

rementing 
. Count-up—straight-binary counter, incre­

menting 

The Raytheon Register comprises four flip-flops, 
each consisting of six NAND gates. Additional 
logic circuits are included to enable storage ele­
ments to be programmed and used as either a stor­
age register, binary counter (up or down), shift 
register (left or right) and to be complemented 
(change state). 

TABLE 1 

AS-80 Array 

Equivalent Logic 
Built of Standard 

TTL IC's 

Number of Packs 
PC Board Connections 
Wire Bonds 
Clock Interval and 

Power 
Speed. Power Product 

60 

1—
1 

28 
56 

ns 0.75W 
45 

28 
292 
584 

125 ns 1.4W 
175 

Several Boolean operations are performed with­
out the addition of external logic, by combining 
coded commands with the "L" data input. For 
example, the execution of both hold and load (L) 



860 Fall Joint Computer Conference, 1968 

yields the logic "OR" function (A+L) . 
Table 1 compares the AS-80 array with equiva­

lent logic, constructed by means of present-day 
standard TTL integrated circuits. 

Interface with the AS-80 is at standard Tran­
sistor-Transistor-Logic (TTL) levels. Input and 
output characteristics are identical to those pub­
lished for high level TTL circuits. Gate outputs 
designed to be used internally on the chip can be 
connected together to form wired OR functions. 
The AS-80 array is currently fabricated by Syl-
vania on a single monolithic "chip" with three 
levels of metallization for the internal connections. 
Figure 3 is the microphotograph of an area of a 
silicon slice where an AS-80 is formed. On the 
periphery the bonding pads are also visible. 

Arithmetic operations require the use of an­
other logic element. A highly complex four-bit ar­
ray was designed which performs most arith­
metic and logic combinations of two operands, and 
can be implemented with 70 gates and 24 pins. 
However, it functionally overlaps the AS-80 reg­
ister array, and its usage is limited; therefore, its 
building block usefulness is questionable. 

Examination of the AS-80 array shows that 
many of the functions of a general arithmetic 
unit are included in the array (shift, complements, 
count, etc.). All that is necessary in the arith­
metic unit are the pure add (and therefore sub­
tract) operations associated with a central proc­
essor. Selection gating provided at one of the 
operand inputs of the register array enables con­
venient implementation of subtraction. In addi­
tion to the register and adder arrays, control 
logic is required to provide synchronization, gat­
ing signals, and a sequence of logic instructions 
in order to be operated as a homogeneous system. 

2) Register Array Concept for the Fourth 
Generation (RACON-4) 
Every system previously described had 
to carry the burden of third generation 
computer operation, such as specialized 
hardware, high application programming 
cost, and excessive processing time for 
internal scheduling (Reference 3). 

Users of third generation systems have 
found that in the case of leased equipment, 
the cost of hardware is only about five 

^ _ > i 

^D"' 
'=££> 

a-h : = ^ ^ j ^ > i 

?; 

o 

o 

1 

1 

'. 
° 
o 
1 
o 

F , 

o 
1 

o 

o 

! 

%w\rr U L F T 

SWFT R.ICHT 

HOUD 
COUNT DOWN 
COUNT OP 
COMPUEMWT 

ZERO DETECT < 
ONE. OCTCCT C *3?)c 

FIGURE 2—Logic schematic of A&-80 



Efficient Partitioning for Batch-Fabricated Computer 861 

percent of the total operating cost. The mastered a new generation of hardware. How-
system electronic circuitry represents ever, if this new generation of hardware is used 
roughly one-third of that five percent. Of only as a replacement for the hardware of a third 
the remaining 95 percent of operating generation system, it will have a doubtful future. 
cost, approximately 35 percent is absorbed 
by software; 30 percent is required 
by special environmental facilities, power, 
and operating costs; and the balance 
(30 percent) is made up of manufac­
turer's costs, sales fees, maintenance, and 
profit. This means that even if LSI tech­
nology makes the entire electronics avail­
able at no cost it does not represent any 
significant economies for the user. 

In less than one year, the industry will have 

• p a w • :.i J --• = ' : • : • a* 

Only systems that can exhibit reduction of the 
other 95 percent of cost can be considered ad­
vanced systems and candidates for the fourth gen­
eration family. 

Thinking further ahead, such advanced sys­
tems will lead to a new market situation where 
the cost of the hardware becomes significant and 
a major factor in a Buy/No-Buy decision. 

If we assume that a small number of general-
purpose building blocks can be developed to per­
form all the computer functions, the problems of 

.'3" r . . s r - ; ^ JI, 

FIGURE 3—Microphotograph of AS-80 



862 Fall Joint Computer Conference, 1968 

specialized hardware, of general-purpose capabili­
ties where only specialized functions are required, 
of excessive programming costs, and of prohibi­
tive processing times would be solved for both 
user and manufacturer. The producer of com­
puting machines would build up an inventory of 
these basic blocks and assemble them to the size 
and configuration of the user's requirements with 
a minimum of system design effort. Computing 
systems will then be defined by the total number 
of bits of all working registers, rather than by the 
number and the size of registers. Fixed hardware 
implemented blocks will "personalize" the system. 
The user, on the other hand, will not be forced 
to buy capacity and features he does not need and 
the cost would become linearly proportional to the 
size and computing power required. 

With this concept in mind, the current and fu­
ture computing systems can be characterized as: 

. Third generation: Specialized hardware, 
General-purpose systems 

. Fourth generation: Specialized systems, 
General-purpose hardware 

RACON-4 is a feasibility model of a fourth 

OUTPUT OF 
MEMORY, 

REMOTE CONSOLE, 
OR OTHER 
COMPUTER 

FIGURE 4—System block diagram, RACON-4 

generation system utilizing fourth generation 
hardware. The system block diagram (Figure 
4) can be best explained by starting from the 
working register area. The workhorse of the sys­
tem is a number of RA-4 register arrays. The 
actual number of RA-4 arrays is determined by 
the need and the budget of the user. Each RA-4 
or groups of RA-4's can be programmed by a 
read-only memory to perform any of sixteen func­
tions. The output of this memory passes through 
the Register-Function Matrix (RFM) which 
couples a number of registers together to perform 
identical functions and thus determines the word 
length. The contents of the registers are routed 
through the Register Data Bus (RDB) which is 
a single, dual, or triple-bus system, depending on 
the performance reguirements. Both the bus sys­
tem and the scratch-pad memory are controlled by 
the output of the micro-command memory. This 
memory consists of Read-only Command Memory 
(RCM-16) arrays, each containing 256 bits of in­
formation in a 16 x 16 arrangement, and the 
Read-only Memory Logic (RML) which is basic­
ally an addressing system. 

A sequence (or block) of micro-commands is 
selected by the Instruction Library memory. This 
memory is composed of the same hardware as the 
micro-command memory. An additionad read-
write section is available as an option for the user, 
and utilizes the same RWM-16 hardware as the 
scratch-pad memory. The input/output .Data Reg­
ister is an optional feature since the scratch-pad 
memory could serve the same purpose, with per­
formance restrictions. 

For better understanding of the features of 
RACON-4, consider a processing unit consisting 
of sixteen four-bit variable arrays and a Read­
only Memory Module as shown in Figure 5. The 
memory contains the word address logic, a num­
ber of parallel words, and an interconnection ma­
trix with 64 plug-in terminals. The four control 
inputs of each of the sixteen register arrays are 
permanently connected to the other half of the 64 
terminals. With this concept, each word of the 
memory can program every 4-bit register to per­
form any of the sixteen functions. By inserting 
a point-to-point interconnection pattern between 
terminals and bit lines of the memory, the proc­
essor can be operated as a 4-bit machine with six­
teen registers. It requires words 64 bits long from 
the memory for every step of operation. The in­
sertion of the pattern shown in Figure 5(a) will 



Efficient Partitioning for Batch-Fabricated Computer 863 

READ-ONLY MEMORY MODULE READ-ONLY MEMORY MODULE 

MEMORY 
ARRAYS 

INTERCONNECTION 
MATRIX 

f* 
4 
3 

J 
4 
4 

-» 

-» 

=* 

116 REGISTER MEMORY 
ARRAYS ARRAYS 

4 BIT EACH) 

an an an an 

an 
SB 
an 
an 

3 

=3 

3 
3 

an an an an an 
an an an 
J=L an 
an 

TOUR 16 BIT-WORD CONFIGURATION 
(B) 

TWO 24 BIT + 
TWO S BIT 
CONFIGURATION 

FIGURE 5—Register arrays for a 64-bit processor 

result in a 16-bit machine with four registers re­
quiring only a 16-bit word from the memory for 
each cycle. Another interconnection matrix could 
result in a 32-bit machine with two registers pro­
grammed by 6-bit words from the memory. Figure 
5(b) shows a further possible configuration. 

The RA-4 is a 4-bit register array similar to 
AS-80, but instead of the increment/decrement 
logic, a 4-bit full adder is incorporated. Program­
mable functions are increased to sixteen. Because 

DATA OUT 

I I I 

I , , 

- — CARRY OUT 

of the bus oriented organization of RACON-4, 
the multiple entry of AS-80 was eliminated, as 
shown in Figure 6. 

The array is capable of performing any one of 
the following functions in eighty nanoseconds: 

1) Load 
2) Load comple­

ment 
3) Add 
4) Subtract 
5) Reset 
6) Exclusive OR 
7) Logic AND 
8) Hold 
9) Increment and 

all one detect 

10) 

11) 
12) 
13) 
14) 

15) 

16) 

Decrement and all zero 
detect 
Shift left by 1 place 
Shift right by 1 place 
Shift right by 2 places 
Add and shift right by 
1 place 
Add and shift right by 
2 places 
Subtract and shift 
right by 1 place 

FIGURE 6—Block diagram of RA-4 

Over 160 gates are needed for the implementa­
tion of RA-4, resulting in a unit with a gate-to-pin 
ratio of ten. 

The flow of data is entirely under the control 
of the micro-command memory, with the aid of 
RDB and the scratch-pad Memory. The process 
portion of the instruction to be executed is used 
as a starting address in the Instruction Library. 
The contents of this memory are one or more 
words which form the starting addresses of the 
micro-command memory. The micro-command 
memory contains the group of 4-bit numbers that 
program the register arrays to perform the ap­
propriate micro-commands. 

Linking of 4-bit groups together can similarly 
be accomplished by "programming" to produce 
any multiple of 4-bit word sizes. Furthermore, 
different computer words sizes may be associated 
with different processes programmed in the sec­
ond memory. This would facilitate, for example, 
the effective utilization of a computer with an ex­
ternal device. 

Because there is no restriction on the special-
purpose instructions or the internal formats and 
word size which could be created, the basic hard­
ware building block approach leads to a system 
organization wtiich provides virtually unlimited 
flexibility to the user. In addition, the potential 
software advantages are considerable; for ex­
ample, existing software can be utilized without 
radically modifying existing pragrams. New in­
structions can be easily added to the existing in­
struction set and higher meta-level instructions 
can be created. Consequently, both programming 
and machine design becomes easier and more 



864 Fall Joint Computer Conference, 1968 

adaptable to any application without any loss in 
generality. 

The entire control system, consisting of all con­
trol algorithms and computer instructions, can be 
represented by programmed blocks of funda­
mental machine operations placed in the micro-
command memory. This approach differs from the 
micro-programmed computers in which specific 
computer functions are programmed, or from a 
standard computer in which specific functions are 
hardwired. Instead of designating special regis­
ters (accumulators, counters, index registers, etc.) 
and parameters (transfers, invert, etc.) in each of 
these blocks of machine operation, a variable rep­
resentation is used. Consequently, the blocks are 
general, so that each block can, with different reg­
ister and parameter" designations, perform the 
functions of a large number of specific instruc­
tions. 

Creating the entire set of computer instructions 
with these general micro-command blocks may be 
contrasted with present-day digital computer con­
trol memory techniques. In today's computers, the 
instruction complement consists of a collection of 
special-purpose instructions which differ slightly 
in terms of processes; there are many different 
instructions, but only a few unique operations. 
Using the general micro-command blocks as a 
basis, any desired set of instructions can be de­
fined. 

In fact, different sets of blocks can be specified 
to effect different system characteristics, depend­
ing upon the application. A representative set of 
blocks forming a complete (and powerful) in­
struction complement is listed below, together 
with the specific instructions accomplished within 
the block: 

1) Transfer: This block implements the op­
erations of transfer, enter, execute, single-
bit tests, etc. 

2) Count: This block implements the count 
(increment or decrement). 

3) Shift: This block implements all forms 
of single precision/double precision left/ 
right, open/closed, algebraic/logical shifts. 

4) Exchange: This block implements swaps 
between any two registers. 

5) Logical: This block implements the logi­
cal operations such as "and", "or". 

6) Sign and Magnitude Add-Subtracts: This 
block implements all of the variations of 

sign and magnitude addition and sub­
traction. 

7) Mask test: This block implements the on/ 
off tests of fields, tests of any collection of 
bits, and indicator resets. 

8) Three-way comparison: This block imple­
ments all three-way comparisons as well 
as two-way logical comparison tests. 

9) Multiply Divide Iteration step: This block 
implements the basic process for fixed/ 
floating multiplication/division of fixed or 
variable length. 

Because any register can be used by the micro-
command block, arbitrary names for different 
registers are unnecessary. Because a register, 
such as an accumulator, has a definition in terms 
of its use, it may be convenient to give a name to 
a register in which a specific function or process 
is generally performed. 

As a direct consequence of the fact that the gen­
eral forms define basic processes, they are inde­
pendent of normal computer word characteristics, 
such as word size and internal field definitions. 
Registers, in application, may have different word 
sizes. Consider, for example, the general form 
for a shift operation. A general shift operation 
is typically a set of the following operations: 

1) Shift A n places and store in A. 
2) Shift B n places and store in B. 
3) Repeat steps 1 and 2 m times. 
4) Shift sign of A to sign of B. 

In this routine, A and B represent registers, the 
parameter n represents the hardwired shift algo­
rithm, and the parameter m represents the num­
ber of times the shift algorithm is used. Obviously 
Steps 1 and 2, used together, represent a double 
precision shift; Step 1 alone is a single precision 
shift. 

It should be observed that A and B could be 
different length registers. 

As a result of being able to program the basic 
control sequences in terms of primitive forms, only 
a small percentage of control logic remains to be 
implemented. Part of this logic, primarily the 
creation of more complex instructions, and the 
control logic required to establish internal for­
mats, can also be handled by programming tech­
niques. 

Specialized processes consist of collections of 
the basic forms. The program to implement these 



Efficient Partitioning for Batch-Fabricated Computer 865 

processes utilizes the "language" of the basic gen­
eral forms. Consider the floating point operations; 
these are programmed by combining the basic 
forms. A "floating add" is a collection of "trans­
fer," "logical," "exchange," "shift," and "sign 
and magnitude" subroutines. "Floating subtract" 
is the same as "floating add" after the first sub­
routine, a sign change. This is analogous to the 
manner in which the control of complex computer 
instructions is presently achieved in computer de­
sign (built-in subroutines with specialized sub­
orders). For example, the standard multiply in­
struction consists of 1) determining the sign of 
the answer, 2) the multiplication process of add, 
shift, and iterate, and 3) the final adjustment of 
the answer. 

The programming of these specialized processes 
is performed in a second read-only memory called 
the instruction library. The ability to program 
this memory, using the general building block 
forms in the micro-command memory as a source 
language, allows functions normally ascribed to 
the software to be built into the hardware by be­
ing programmed in the instruction library. Thus 
specialized instructions can be created and special­
ized routines for which high processing speed is 
required, such as input/output mechanizations 
(reading and writing data, editing procedures, 
input/output buffer control) or a Fast Fourier 
Transform algorithm, can be implemented in addi­

tional to normal computer instructions. 
This approach permits the computer to be tai­

lored for many specific applications within the 
mass-produced standard computer design without 
the need for specialized software. Much of the 
complexity of a higher order language is bypassed. 

CONCLUSION 

Recent developments in batch fabrication of logic 
and memories have made it necessary to reconsider 
the interrelations between design effort, hardware 
cost, and partitioning. It is possible to achieve a 
low "part-number" count by making use of multi­
purpose register array packages that include con­
trol logic inputs. These control inputs are sup­
plied from read-only memories. The control inputs 
cause the data in the package to undergo micro­
programmed operations to form the instructions 
of the computer. 

REFERENCES 

1 R C JENNINGS 
Design and fabrication of a general-purpose airborne computer 
using LSI arrays 
Digest of IEEE Computer Group Conference June 1968 

2 HRBEELITZetal 
System architecture for large-scale integration 
Proceedings of Fall Joint Computer Conference 1967 

3 C J WALTER 
Impact of fourth generation software on hardware design 
IEEE Computer Group News July 1968 






