
Program behavior in a paging environment

by BARBARA S. BRAWN and FRANCES G. GUSTAVSON

IBM Watson Resarch Center
Yorktown Heights, New York

Study objectives

This paper is the result of a study conducted
on the M44/44X system, an experimental time-
shared paging system designed and implemented
at IBM Research in Yorktown, New York. The
system was in operation serving up to sixteen
users simultaneously from early 1966 until May
1968. Conceived as a research project to imple
ment the virtual machine concept, the system has
provided a good deal of information relating to the
feasibility of that concept.1 The aim of this study
is to investigate the concept more thoroughly from
a user's viewpoint and to try to answer some im
portant questions related to program behavior in
a paging environment. As an experimental sys
tem, the M44/44X provided an excellent vehicle
for the purposes of this study, and the study itself
forms some basis for an evaluation of the system.

It is recognized by the authors that the results
and conclusions presented here are to a great ex
tent characterized by a particular configuration of
a particular paging system, and as such do not con
stitute an exhaustive evaluation of paging sys
tems or the virtual machine concept. Nonetheless,
we feel that the implications of the conclusions
reached here are of consequence to other system
implementations involving paging.

Conventional vs automatic memory management

There has been much written about the benefits
and/or disadvantages of paging machines and the
virtual machine concept.2'3-4 However, little data
have been obtained which sheds a realistic light on
the relative merits of such a system compared to
a conventionally designed system. From a pro
gramming point of view there is little question
that any technique which obviates the necessity

for costly pre-planning of memory management
is inherently desirable. The question that arises
is—given such a technique, how efficiently is the
automatic management carried out?

From a user's point of view this can simply
mean—how long does it take to run a program
which relies on the automatic memory manage
ment, and is this time comparable to the time it
would take to run the program if it were written
in a conventional way where the burden of mem
ory management is the programmer's responsibili
ty. It is this user's viewpoint that forms one focal
point for this study.

The role of the programmer

Perhaps the most important aspect of the study
concerns the role of the programmer. How does
the role of the virtual machine programmer differ
from that of the conventional programmer? For
a conventional system the role of the programmer
is well defined—the performance (i.e., running
time) of his program is usually a direct result of
his ability to make efficient use of system resourc
es. How much he is willing to compromise effi
ciency for the sake of ease of programming may
depend on how often the program is to be run.
In any case, the decision rests with him. (There
of course exist many applications where his ehoice
of programming style or ability have little effect
on performance; this case is of little interest to
our study.)

When faced with the problem of insufficient ma
chine resources to accommodate a direct solution
of his problem, the conventional programmer is
left with no choice but to use some procedure
which is inherently a more complex programming
task. The quality of the procedure he chooses may

1019

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1476706.1476721&domain=pdf&date_stamp=1968-12-09

1020 Fall Joint Computer Conference, 1968

have a dramatic effect on performance but it is at
least a consistent effect and often quantifiable in
advance. In any event, because conventional sys
tems have been around a long time, there are
many guidelines available to the programmer for
achieving acceptable performance if he should
wish to do so.

The role of the virtual machine programmer is
not nearly so well defined. One of the original at
tributes claimed for the virtual machine concept
was that it relieved the programmer from consid
eration of the environment on which his program
was to be run. Thus he need not concern himself
with machine limitations. As was pointed out
previously, the question is—given that the pro
grammer does in fact ignore all environmental
considerations, what kind of efficiency results?
Assuming that the answer to this question is some
times undesirable, that is, running time is unac-
ceptably long, another question arises. Can the
programmer do anything about it? Clearly it is
difficult to conceive of his being able to reorganize
his program in such a way as to assure improved
performance if he has no knowledge of the en
vironment nor takes it into consideration when
effecting such changes. Thus if the premise of
freedom from environmental considerations is to
be strictly adhered to, there can be no way for the
programmer to consciously improve performance.

Should this premise be compromised to allow
the programmer to influence performance through
exercising knowledge of the system environment?
This study assumes that this should indeed be the
case and shows that there is much to be gained
and little to be lost. It should be emphasized, how
ever, that the original premise need not be com
promised at all in so much as it would, of course,
not be necessary for the programmer to ever as
sume the responsibility of having knowledge of
the environment (unlike in the case of the con
ventional programmer faced with insufficient ma
chine resources). It would only enable him to have
better assurance of acceptable performance if he
chose to do so.

Clearly, the many interesting questions concern
ing the role of the virtual machine programmer
and his effect on performance are worthy of pur
suit. We feel that the measurements obtained in
this study of program behavior in a paged en
vironment provide a valuable insight to such ques
tions and serve as motivation for further consid
eration of them.

Test environment

Before discussing the results of the study we
feel it is advisable to describe the environment in
which they were obtained. Thus included herein
are brief descriptions of the M44/44X system and
the methods employed to obtain and measure the
test load programs. (More complete information
is available in References 1, 5 and 7.) It is as
sumed throughout this discussion that the reader
is generally familiar with the concepts of virtual
machines, paging, time-sharing and related topics;
however, a short general discussion on paging
characteristics of programs is included in order
to establish an appropriate reference frame for
the presentation of the experimental data.

The experimental M44/44X system

To the user a virtual computer appears to be a
real computer having a precise, fixed description
and an operating system which provides various
user facilities and links him to the virtual machine
in the same way as the operating system of a con
ventional system links him to the real machine
(Figure 1). Supporting the virtual machine defi
nition is a transformation (control) program

Conventional System Virtual System

Real Machine

(Transformation^

Program J

rnr;
j Virtual j
• Machine |

_ J

FIGURE 1—Conventional and virtual systems

Program Behavior in Paging Environment 1021

which runs on the real machine. This program, to
gether with special mapping hardware, "creates"
the virtual machine as it appears to the user. Im
plementation of multi-programming within the
framework of the virtual machine concept permits
the transformation program to define the simul
taneous existence of several separate and distinct
virtual machines.

The virtual machine programmer may write
programs without knowledge of the transforma
tion program or the configuration of the real ma
chine—his concern being the virtual machine de
scription, which is unaffected by changes in the
real hardware configuration or the transformation
program. In the M44/44X system the real ma
chine is called the M44, the transformation pro
gram is MOS, the virtual machine is the 44X and
the virtual machine operating system is the 44X
Operating System (Figure 2).

The real computer

Figure 3 shows the hardware configuration of
the M44 computer. It is an IBM 7044 with 32K,
36-bit words of 2 Msec core which has been modi
fied to accommodate an additional 184K words of
8 Msec core and a mapping device. The resident
control program together with the mapping de
vice and its associated 16K, 2 ^.sec mapping mem
ory, implement the 44X virtual machines on a de
mand paging basis in the 8 Msec store. The back
up store of the M44/44X system, which is used
for both paging and permanent file storage, con-

Non-Overlapped
Channel A Omitted

M44CPU
2/isec
21 Bit

Address Field h~1

16 K
2/i sec

Mapping
Device

32 K
2 ft sec

1050

J"1
FT~U

Additional
1050's

Teletype 33

Additional
Teletype 33's

WWW

192 K
S^sec

FIGURE 2—M44/44X Multi-programming system

FIGURE 3—M44/44X hardware configuration

sists of two IBM 1301 II disks. The page size (a
variable parameter on this system) used for our
tests was 1024 words (I K) . The average time
required to seek and transmit one page from the
disk to core is 0.21 second for that page size (com
puted from our data). The IBM 7750 serves as a
message switching device, connecting a number
of IBM 1050 terminals and teletype 33's to the
system. To facilitate measurement our tests were
not run from terminals (foreground) but as back
ground jobs from tape. (The system makes no dis
tinction between the two for the single pro
grammed case—nor for the multi-programmed
case as long as all jobs on the system are of the
same type, i.e., all background or all foreground.)

The control program

MOS, the control program, resides in the non-
paged 2 Msec store. This M44 program "creates"
and maintains each virtual 44X machine and en
ables several 44X's to run simultaneously, allocat
ing the M44 resources among them. All 44X I/O
is monitored by MOS, and all error checking and
error recovery is performed by MOS. Some of the
design parameters of MOS are easily changed to
facilitate experimentation. The variable param
eters include the page size, the size of execution
store (real core) made available to the system, the
page replacement algorithm, the time slice and the

1022 Fall Joint Computer Conference, 1968

scheduling discipline (via a load leveling facility).
The last two parameters mentioned are applicable
only in the multi-programmed case. As previously
stated, the page size used throughout the study
was 1024 words. The size of real core was, of
course, one of the most important parameters and
was varied to investigate paging properties of the
programs (in both the single and multi-pro
grammed environments).

For the single programmed part of the study
the page replacement algorithm employed was
FIFO (First In-First Out). If a page in real core
must be overwritten, the page selected by FIFO
is the one which has been in core for the longest
period of time. .Data were also obtained for single
programmed paging behavior under a minimum
page replacement algorithm developed by L. Be-
lady.6 A non-viable algorithm, MIN computes the
minimum number of page pulls required by ex
amining the entire sequence of program address
references.

For the multi-programming part of the study,
a time slice of 0.1 second was used. Runs were
made using three different page replacement al
gorithms to determine the effect of this design
parameter on system performance. (Available
real store is competed for freely by all the 44X's.)
The three algorithms were FIFO, BIFO, a biased
version of FIFO which favors (on a round robin
basis) one 44X by choosing not to overwrite the
pages associated with it for a preselected interval
of time, and AR, a hardware supported algorithm
which chooses a candidate for replacement from
the set of pages which have not been recently
referenced. (These algorithms are described more
fully in Refs. 1 and 6.)

The virtual machine

Each virtual 44X machine is defined to have 221

words of addressable store. The virtual memory
speed of a 44X is 10 Msec (44X programs are exe
cuted in 8 jusec store and a 2 Msec mapping cycle
is added to a memory cycle); the CPU speed is 2
^sec. The user communicates with the 44X vir
tual machine through the 44X Operating System,
a 44X program which permits continuous process
ing of a stack of 44X jobs; it contains a command
language, debugging facilities, a FORTRAN IV
compiler, an assembly program, a relocatable and
absolute loader facility, routines for handling a
user's permanent disk files and a subroutine li
brary.

Test load problems

Test problems were chosen from the scientific,
commercial, list processing and systems areas of
computer applications. The problems chosen in
volved large data bases which required the pro
grammer of a conventional machine to concern
himself with memory management. The problems
discussed in this paper include matrix inversion
and data correlation from the scientific area and
sorting from the commercial area. (A complete
report on the entire study can be found in Ref. 7.)

Programs were initially coded for each prob
lem in two ways:

i) a conventional manner where the burden
of memory management is assumed by the
programmer (conventional code), and

ii) a straightforward manner utilizing the
large virtual memory ("casual" virtual
code).

Simple modifications were then made to the
"casual" virtual codes to produce programs better
tailored to the paged environment. Our interest
lay in comparing the performance of the different
versions of the virtual codes under variable paging
constraints in both single and multi-programming
environments. We were also interested in compar
ing the conventionally coded program performance
with that of the virtual (i.e., automatic memory
management) codes given the same real memory
constraints.

It should perhaps be noted here that for our
purposes a program's performance is directly re
lated to its elapsed run time. Thus in a paging en
vironment, where this elapsed time includes the
time necessary to accomplish the required paging
activity, poor paging characteristics are reflected
by increased run time and thus degraded per
formance.

Measurement techniques

A non-disruptive hardware monitoring device
capable of measuring time spent in up to ten
phases of program execution was used for all
7044 runs and relevant single-programmed 44X
runs. In addition, for 44X runs (both single and
multi-programmed), a software measurement
routine in MOS was utilized. This routine collects
data while the system is running (using the clock
and a special high-speed hardware counter) and
on system termination produces a summary of the

Program Behavior in Paging Environment 1023

data including; total time, idle time, time spent in
MOS (including idle time), number of page ex
ceptions, page pulls, page pushes and other per
tinent run data.

All programs were run in binary object form
as background jobs residing on a system input
tape; all output was written on tape. For the
multi-programmed runs, a facility of MOS was
used which permits several background jobs to be
started simultaneously. For the single pro
grammed study the 44X programs were first
run and measured on the system with sufficient
real core available to eliminate the need for pag
ing; these same programs were then run (and
measured) in a "squeezed core" environment, i.e.,
with insufficient real memory available, thus ne
cessitating paging.

Program behavior under paging

Program performance on any paging system is
directly related to its page demand characteris
tics. A program which behaves poorly accom
plishes little on the CPU before making a refer
ence to a page of its virtual address space that is
not in real core and thus spends a good deal of time
in page wait. A program which behaves well
references storage in a more acceptable fashion,
utilizing the CPU more effectively before refer
encing a page which must be brought in from
back-up store. This characteristic of storage ref
erencing is often referred to as a program's "lo
cality of reference."6 A program having "good"
locality of reference is one whose storage refer
ence pattern in time is more local than global in
nature. For example, although a program in the
course of its execution may reference a large num
ber of different pages, if in any reasonable interval
of (virtual) time, references are confined to only
a small set of pages (not necessarily contiguous in
the virtual address space), then it exhibits a de
sirable locality of reference. If, on the other hand,
the size of the set is large, then the locality of
reference is poor and paging behavior is corre
spondingly poor. (The "set" of pages referred to
in the above example corresponds roughly to Den-
ning's8 notion of a "working set."

All programs typical of real problems exhibit
badly deteriorated paging characteristics when
run in some limited real space environment. What
is of interest is the extent to which the space can
be limited without seriously degrading perform
ance. Clearly, the size of this space is related to

the program's locality and provides some indica
tion of the size of what might be called the pro
gram's critical or characteristic working set. As
the single programmed results presented below
show, the effects of programming style on the
relative size of this space can be enormous.

Single programmed measurement results

We first measured the behavior of the 44X pro
grams in a controlled single programmed environ
ment. The results obtained are discussed in terms
of the relative effects of programming style on
performance for three problems: Tl—Matrix In
version, T2—Data Correlation, and T4—Sorting.
In each case we are concerned with showing how
even simple differences in programming technique
can make a substantial difference in performance.
Unquestionably there are further improvements
which could be made in the algorithms employed;
however, we feel that our point is best illustrated
by the very simplicity of the changes made.

Timing and paging overhead data are given for
actual runs made on the system employing a FIFO
page replacement algorithm. Also, in order to es
tablish that these results were not unduly in
fluenced by that page replacement algorithm, cor
responding computed minimum paging overhead
data are given (obtained through interpretive pro
gram execution and application of L. Belady's6

MIN algorithm).
The data collected for the comparison of the

automatic and manual methods of memory man
agement is also discussed in this section.

Problem T l . . . Matrix inversion

The virtual machine codes for this program
were written in FORTRAN IV and are intended
to handle matrices of large order. They all em
ploy an "in-core" technique since the large ad
dressable virtual store permits the accommodation
of large arrays (the burden of real memory man
agement being assumed by the system through
the automatic facility of paging). The curves in
Figure 4 give the respective program run times
as a function of real core size for the three differ
ent versions which were written for the virtual
machine. These times are for inverting a matrix
of order 100 (which is admittedly not an unusual
ly large array, but sufficiently large to illustrate
our point without requiring an impractical amount
of CPU time).

1024 F a l 1 ^ o i n t Computer Conference, 1968

3000 -

UJ

p 2000

1500

1000

500

O TUX 42 PAGES
D T U X * 35 PAGES
A T I . I X * * 35 PAGES

IK PAGE SIZE
FIFO REPLACEMENT ALGORITHM
SINGLE PROGRAMMED

8K I6K 24K 32K 40K 48K
REAL CORE SIZE (K = 1024 WORDS)

FIGURE 4—Effects of real core size
Tl—Matrix inversion (100x100)

All three programs employ the same algorithm,
a Gaussian procedure utilizing a maximum pivotal
condensation technique to order successive trans
formations. The differences in the three versions
are extremely simple. The "casual" version,
T1.1X, stores the matrix in a FORTRAN double
subscripted array of fixed dimensions (storage al
located columnwise to accommodate a matrix of
up to order 150), reads the input array by rows
and prints out the inverted array by rows. The
innermost computation loop traverses elements
within a column. Version T1.1X** is the same as
T1.1X except that variable dimension capability
was employed (thus insuring the most compacted
allocation of storage for any given input, array).
Version T1.1X* is the same as T1.1X** except
that the input and ouput is columnwise instead of
rowwise. Obviously neither of these changes is
complicated or of any consequence in a conven
tional environment; however, as clearly shown in
Figure 4, they make a considerable difference in a
paging environment.

The paging overhead data is shown in Figure 5
for the casual (T1.1X) and the most improved
(T1.1X*) versions for both the FIFO algorithm
(corresponding to the time curves of Figure 4)

2 5 0 0 -

z
o
2000
2
V) z < a:

1500

1000

5 0 0 -

O T I . I A
D T U X *

4 2 PAGES (CASUAL CODE)
35 PAGES (MOST IMPROVED CODE)

MIN REPLACEMENT ALGORITHM
FIFO REPLACEMENT ALGORITHM

I K PAGE SIZE
SINGLE PROGRAMMED

5727 @IOK 7335 <©24K

' ^ g r ^ a a ^
8K I6K 24K 32K 40K

REAL CORE SIZE (K= 1024 WORDS)
48K

FIGURE 5—Effects of page replacement algorithm
Tl—Matrix inversion (100x100)

^and the MIN algorithm. This paging overhead is
given in terms of the number of page transmis
sions required during execution of the respective
program when run with a given amount of real
core available under the discipline of the particu
lar page replacement algorithm. (Each reference
to a page not currently residing in real core re
quires a page to be transmitted from backup store
into real core [a "pull"] and often also requires
a page to be copied from real core onto backup
store [a "push"]. The total number of pulls and
pushes is the number of page transmissions.
Given a particular real core size, the MIN al
gorithm employed gives the theoretical minimum
number of pulls required. Belady has shown that
the number of page transmissions obtained by
this algorithm differs insignificantly from the
number obtainable by minimizing both pulls and
pushes.)

As can be seen in Figure 5, there is no great
disparity between the paging overhead sustained
under FIFO and the theoretical minimum possible
(under MIN) for either of the programs. In par
ticular it should be noted that the paging behavior
of the well coded program is considerably better

Program Behavior in Paging Environment 1025

under FIFO than that exhibited by the casual pro
gram under the most optimum of page replace
ment schemes. Certainly these data support the
argument that improvement in programming style
is advantageous to performance, irrespective of
what page replacement scheme is used.

Clearly there are modifications which could be
made to the algorithm itself which would further
improve performance through improved locality
of reference. McKellar and Coffman9 have indeed
shown that for very large arrays, storing (and
subsequently referencing) the array in sub-matrix
form (one sub-matrix to a page) is superior to the
more conventional storage/reference procedure
employed in our programs. (For the 100x100 ar
ray, however, the difference is not significant.)

Problem T2 Data correlation

For the other problem in the scientific area an
existing conventional FORTRAN program, which
required intermediate tape I/O facilities because
of memory capacity limitations, was modified to
be an "in-core" procedure for the virtual machine.
The problem, essentially a data correlation pro
cedure, involves reconstructing the most probable
tracks of several ships participating in a joint
exercise, given a large input data set consisting
of reported relative and absolute position measure
ments. The solution implemented is a maximum
likelihood technique; the likelihood functions re
lating the independent parameters are Taylor ex
panded to yield a set of simultaneous equations
with approximate coefficients. The equations are
solved (using the inversion procedure of problem
T l) , the solutions are used to recompute new ap
proximate coefficients, and the process is reiter
ated until a convergent solution is reached. (Each
iteration involves a single pass of the large data
set.) The measured position data, together with
the accepted solution are used to compute the re
constructed ships' tracks. (This final step re
quires one pass of the data set for each ship.)

For the first (or "casual") version, T2.1X, the
conventional code was modified for the large vir
tual store in the most apparent way. The large
data set, a mixture of fixed and floating point vari
ables stored on tape for the conventional version,
was stored in core in several single-subscripted
fixed dimension arrays, one for each variable in
the record format. As the curve for this program
in Figure 6 shows, the performance is rather poor.
This is accounted for in part by the fact that the

3500

3000

Q

O 2500

f. 2000
z

1500

1000

500

A T 2 . I X 54 PAGES
O T2. IX* 45PAGES

IK PAGE SIZE
FIFO REPLACEMENT ALGORITHM
SINGLE PROGRAMMED

-OA-

8K I6K 24K 32K 40K 48 K
REAL CORE SIZE (K = 1024 WORDS)

54K

FIGURE 6—Effects of real core size
T2—Data correlation

manner in which the data are stored causes a glob
al reference pattern to occur due to the program's
logical use of those data. Version T2.IX* attempts
to improve the locality by storing the data com
pactly in one single-subscripted floating point ar
ray, such that all of the parameters comprising a
single logical tape record in the conventional code
are in sequential locations. (The conversions ne
cessitated by assigning both fixed and floating
point variables to the same array name increased
the CPU time slightly.) The curves in Figure 6
clearly show that this modification resulted in a
significant improvement.

The same ordered relationship exhibited under
FIFO holds for the casual and improved versions
under the MIN algorithm (Figure 7). Although
in the case of the poorly behaving code, the MIN
algorithm does appreciably better than FIFO
given a core size of 32K where FIFO performance
has already deteriorated badly. The improvement
is short lived, however, since deterioration under
MIN occurs with any further decrease in real
core size.

1026 Fall Joint Computer Conference, 1968

It should be noted that the actual data set used
for these runs was not exceptionally large (as the
total number of pages referenced indicates).
Again, practicality demands that we settle for a
data case of reasonable size. The case at hand in
volved six ships (resulting in 26 equations) and a
rather small data base of only 240 reports. The
data base storage requirements in the case of the
well coded program, T2.1X*, were satisfied by
four pages. In the case of T2.1X, however, the
several large fixed dimension arrays used to store
the data in that program required 13 pages; thus
not only was the data ordering poor but a great
deal of space was wasted as well.

Once again, there are probably other improve
ments that could be made. For example, because
the program is divided into several subroutines
(17) of reasonable length, a change in the order
of loading the routines could improve (or de
grade) performance. We have illustrated here
only the effects of a change in the manner of stor
ing the data base.

AT2.IX 54 PAGES
O T2.IX* 45 PAGES

MIN REPLACEMENT ALGORITHM
FIFO REPLACEMENT ALGORITHM
IK PAGE SIZE
SINGLE PROGRAMMED

8000"- A

7000

</>
| 6000
V)
v>
2
Z 5000

<
t-
UJ
<2 4000
2

3000

2000

1000

8K I6K 24K 32K 40K 48K
REAL CORE SIZE (K= 1024 WORDS)

56K

FIGURE 7—Effects of page replacement algorithm
T2—Data correlation

Problem T4 Sorting

Sorting, a classical example of the necessity for
introducing complicated programming techniques
to accommodate a problem on a conventional mem
ory bound computer, also affords an excellent ex
ample of how drastically programming style can
effect performance in a paging environment.
Ideally, if memory capacity were sufficient for the
entire file to be in core, the sort programmer
would only need to concern himself with the in
ternal sorting algorithm and never be bothered
with the other plaguing procedures involved with
doing the job piecemeal. This was the approach
taken, programming the virtual machine codes
assuming that the file could be accommodated in
virtual store.

Initially, two different algorithms were coded—
the Binary Replacement algorithm (basically a
binary search/insertion technique employed in a
generalized sorting program in the Basic Pro
gramming Support for IBM System 360) and the
Quicksort10 algorithm (a partitioning exchange
procedure). When the completed programs were
run with a reasonably long data set, it became im
mediately apparent that the Binary Replacement
algorithm was exceptionally bad for large lists
because of the amount of CPU time required.
(Note that this characteristic presents little prob
lem for the internal sort phase of a conventional
code which never deals with a very large list.)
We will, of course, acknowledge that someone
more knowledgeable in the field of sorting than
we would have recognized this characteristic of
the algorithm beforehand. Our experience none
theless pointed out rather dramatically that an ac
cepted technique for a conventional machine need
not be acceptable when translated to a virtual ma
chine environment, irrespective of its paging be
havior! Because of its unacceptable CPU char
acteristics, the algorithm was discarded and our
efforts were concentrated on Quicksort since that
algorithm is efficient for either small or large
lists.

Four versions were ultimately coded for the
virtual machine, each of which is described below.
All of the changes made to get from one version
to another were simple and required little pro
grammer time. None of these changes altered the
total number of pages referenced; they simply im
proved the locality of reference. The time curves
in Figure 8 and the paging curves in Figure 9

Program Behavior in Paging Environment]jQ27

4000

3500

3000

o 2500

2000

1500

1000

500

• T4.IXQ 129 PAGES
DT4.IXQK 130 PAGES
• T4.IXQR 129 PAGES
O T4. IXQR* 129 PAGES

IK PAGE SIZE
FIFO REPLACEMENT ALGORITHM
SINGLE PROGRAMMED

4730 SECONDS
AT 64 K

32K 48K 64K 80K 96K II2K
REAL CORE SIZE (K= 1024 WORDS)

FIGURE 8—Effects of real core size
T4—Sorting (10,000 10-word items)

D T4.IXQ 129 PAGES (CASUAL CODE)
A T4.IXQR* 129 PAGES (MOST IMPROVED-CODE)

MIN REPLACEMENT ALGORITHM
FIFO REPLACEMENT ALGORITHM
I K PAGE SIZE
SINGLE PROGRAMMED

I30K

5000

w 4 0 0 0
S
z
2

_ 11983 @ I2K

t
13653 <5>80K

3 0 0 0 -

2000

1000

I6K 32K 48K
&^=tr*JbL^_ ft

32K 48K 64K 80K 96K II2K I28K
REAL CORE SIZE (K= 1024 WORDS)

FIGURE 9—Effects of page replacement algorithm
T4—Sorting (10,000 10-word items)

show dramatically how important these relatively
minor modifications were to performance. (The

size of the file in the case shown is 100,000 words,
occupying 100 pages in virtual memory.)

TU.1XQ, the "casually" coded version, reads in
the entire file, performs a non-detached, keysort
utilizing the Quicksort algorithm and a table of
key address pointers, then retrieves the records
for output by using the rearranged table of point
ers. The records themselves are not reordered dur
ing the sort thus storage references are random
and global during both sort and retrieval, making
locality of reference poor. Deprived of only a
small amount of its required store, this program
behaves very badly. Note that although the MIN
curve in Figure 9 does show some improvement in
paging behavior over FIFO, the improvement is
of no consequence since performance is still quite
unacceptable.

Tb.lXQ* treats the file as N sublists; each is
read in, then sorted using the non-detached key-
sort routine of T4.1XQ. (N is 10 for the case
shown; thus the 100 page file is logically divided
into sublists of 10 pages each.) When all the sub-
lists have been sorted an N-way internal merge,
using the table of pointers, retrieves the records
for output. This modification improves the locality
of reference for the sort phase (for the case
shown, the size of the characteristic working set
during the sort is approximately 12; 10 for the
current sublist, one instruction page and one page
for pointers) but the storage reference pattern
remains random during merge-retrieval since the
records are not reordered within the ten sublists
(during this phase the characteristic working set
therefore includes all the file pages).

TJf.lXQR is the same as T4.1XQ except that a
record sort is performed instead of a keysort, i.e.,
the records are reorderd while being sorted, leav
ing an ordered list to be retrieved for output. The
now sequential reference pattern substantially im
proves paging behavior for the retrieval phase
(each page of the file is referenced only once for
that phase). Moreover, because of the record re
ordering, locality during the sort phase benefits
substantially from the partitioning characteristic
of Quicksort. Performing a record sort, of course,
results in a penalty in CPU time (especially for
large records) since the transfers involve the en
tire record instead of the key only. (For this rea
son, it would not be wise to choose a sorting al
gorithm which requires an exceedingly large num
ber of transfers.) However, the penalty paid is

1028 Fall Joint Computer Conference, 1968

relatively insignificant in view of the improved
paging behavior.

T4.1XQR* is the same as T4.1XQ* except that
it performs a record sort instead of a keysort. The
comments made on improved locality during the
sort phase for both T4.1XQ* and T4.1XQR also
apply to this version. In addition, because the rec
ords are now in sequential order within each sort
area (due to record reordering) the merge/re
trieval phase also exhibits desirable paging char
acteristics (as long as there are enough pages
available to accommodate at least one page from
each sort area, i.e. N pages plus instruction and
control pages—approximately 13 for the case
shown).

Clearly, the behavior of T4.1XQR and T4.IXQR*
demonstrates that the large virtual store can be
used effectively and in a simple manner if thought
is given to the environment. The curves for
T4.1XQ and T4.1XQ* demonstrate equally clearly
that it can -be disastrous not to do so.

Automatic vs programmer-controlled memory
management

The objective of this part of the study was to
compare the effectiveness of automatic and manual
(programmer-controlled) memory management.
To meet this objective, our test problems were
programmed to run on a conventional machine,
using accepted manual methods to accommodate
them on the available memory. The efficiency of
any program written for a conventional machine,
of course, depends on how skillful the program
mer is in utilizing available system resources. We
felt that, although in no way optimum, the effi
ciency of the programs coded was characteristic of
what is normally achieved under practical con
straints of programmer time. (It should be noted
that the programmer time involved in writing
and debugging these conventional codes far ex
ceeded that required for the corresponding virtual
codes.)

The data presented in the previous sections
clearly show that the effectiveness of paging as
an automatic memory management facility de
pends not only on internal characteristics of the
particular system but also on user programming
style. We thus felt that an effective comparison
of the two memory management methods should
include the effects of virtual machine program
ming style. We also felt that our comparison

should in some way include the effect which over
lap capability can have on conventional code effi
ciency since, in a multi-programming environ
ment, that capability does not exist for the indi
vidual user. (We were aware that almost any
proposed comparison would be subject to question
on one count or another because of the lack of
adequate control; we nonetheless feel that the
comparison is reasonably unbaised and has suffi
cient validity to be of interest.).

To make the comparison we proposed to run
both the conventional programs and the corre
sponding virtual programs (i.e., those which util
ized the large virtual store), in their respective en
vironments, which were constrained to be equiva
lent with respect to real machine resources. All
of the conventional program I/O was tape I/O
and the CPU and memory speed were the same for
both the conventional and virtual machines. In
each case the virtual programs were run with the
size of available real core equal (to the nearest
page) to that actually referenced by the corre
sponding conventional program. The numbers in
Table 1 are computed ratios of the respective vir
tual code run times to corresponding conventional
code run times; therefore numbers less than 1 are
favorable to the automatic method.

TABLE 1—Comparison of automatic and programmer
controlled memory management

Casual Virtual Code Best Virtual Code Casual Virtual Code Beat Virtual Code

Tl - Matrix

Inversion

200 x 200

T4 - Quicksort
100,000 word f i l e

[4-way Merge!

14 - Quicksort
100,000 word f i l e
[2-way Merge!

T4 - Quicksort
1,000,000 word f i l e

[4-way Mergel
, Conv. CodeJ

Overlapped
Conventional Code

2.33

0.81

»*1

Overlapped
Conventional Code

1.25

0.81

1.26

Non-Overlapped
Conventional Code

l.*7

0.71

>32

Non-Overlapped
Conventional Code

0.79

0.71

0.99

^ ^ ^

The data indicate that, if reasonable program
ming techniques are employed, the automatic pag
ing facility compares reasonably well (even fa
vorably in some instances) with programmer con
trolled methods. While not spectacular, these
results nonetheless look good in view of the sub
stantial savings in programmer time and de-

Program Behavior in Paging Environment 1029

bugging time that can still be realized even when
constrained to employing reasonable virtual ma
chine programming methods.

Multi-programming measurements

The importance of programming style to paging
behavior was clearly demonstrated in the single
programmed part of this study. We were inter
ested in learning if it would have similarly dra
matic effects on performance in the domain more
common to paging systems, i.e., multi-program
ming. Because the most notable changes in be
havior were observed in the sorting area, we
decided to plan our measurement efforts around
these programs. An extensive measurement pro
gram was undertaken which was designed to give
us insight into the relative effects on performance
of the following: programming style, page re
placement algorithm, size of real core, number of
users and scheduling. It should be noted that the
question of performance in a multi-programmed
environment involves both the individual user
response and total system thruput capability. Al
though the study addressed both of these aspects,
the results discussed here pertain only to the
latter. (A complete in-depth report on the entire
multi-programmed measurement study is given
in Ref. 7, Part III.)

The effects of programming style

The two versions of the sort program used for
this study were the "casually coded" version,
T4.1XQ, and the "most improved" version, T4.-
1XQR*. Multiple copies of a given program were
run simultaneously (as background jobs) on the
system with the full real core (184K) available.
(No more than 5 background jobs can be run
simultaneously because of tape drive limitations.)
The curves in Figure 10 compare the multi-pro
gramming efficiency obtained with the two differ
ent programming styles. These curves are plots
of Time/Job vs the number of (identical) jobs
run simultaneously on the system (Multi-program
ming Level).

Clearly the efficiency of the system is nearly
identical whether multi-programmed at the two
level or the five-level in the case of the well-coded
program, T4.1XQR*, but is substantially degraded
for each additional job in the case of the casually
coded version, T4.1XQ. In fact, multi-program
ming at even the two level for that program is

1200 -

1000

o 800
UJ
in

uj 600 -

4 0 0 -

200 -

AT4 . IXQ (CASUAL CODE)
D T4.IXQR*(M0ST IMPROVED CODE)

BIFO REPLACEMENT ALGORITHM
I K PAGE SIZE
0.1 SECOND TIME SLICE
REAL CORE SIZE- I84K A
PAGE REQUIREMENTS -

129 PAGES/JOB

NO LOAD LEVELER

2 3 4
MULTI- PROGRAMMING LEVEL

FIGURE 10—Effects of programming style
T4—Sorting (10,000 10-word items)

worse than running sequentially. (For T4.1XQR*
multi-programming is consistently more advan
tageous than running sequentially up through the
five-level.)

The effects of load leveling

One of the capabilities available on the M44/
44X system aimed at improving efficiency is that
of dynamically adjusting the load on the system
in order to attempt to avoid the overload condi
tion which is characterized by excessive paging
coupled with low CPU utilization. When this load
leveling function is activated, the system periodi
cally samples paging rate and CPU utilization,
compares them with pre-set criteria to determine
if a condition of overload or underload exists, and
then takes action appropriately to adjust the sys
tem load by either setting aside a user, i.e., remov
ing him temporarily from the CPU queue, or re
storing to the queue a user who was previously
set aside. The function of the load leveler is thus
essentially one which affects scheduling.

The extremely poor behavior exhibited by the
casual code when multi-programmed made this
case a likely candidate for studying the effects of
load leveling. Figure 11 shows the remarkable
improvement which the load leveler achieved

1030 ^ a ^ J ° m t Computer Conference, 1968

1200

1000

800

600

400

200

A T4.IXQ (CASUAL CODE) -NO LOAD LEVELER
A T4.IXQ (CASUAL CODE) - LOAD LEVELER ACTIVE
D T4.IXQR* (MOST IMPROVED CODE) NO LOAD LEVELER

BIFO REPLACEMENT ALGORITHM
I K PAGE SIZE
0.1 SECOND TIME SLICE A
REAL CORE SIZE - I84K
PAGE REQUIREMENTS

129 PAGES/JOB

3 4
•PROGRAMMING LEVEL

FIGURE 11—Effects of load leveling
T4—Sorting (10,000 10-word items)

500

w 400

I
<n
m 300
o
UJ

200

100

A BIFO
• AR
• FIFO
A BIFO
D AR
O FIFO)

LOAD LEVELER

NO LOAD LEVELER

REAL CORE SIZE-64K
IK PAGE SIZE
0.1 SECOND TIME SLICE
PAGE REQUIREMENTS-129 PAGES/JOB

ft

OPTIMUM

1 2 3 4 5
MULTI-PROGRAMMING LEVEL

FIGURE 12—Effects of page replacement algorithm
T4.1XQR*

when there were three or more jobs involved. Un
fortunately, the efficiency is still substantially
worse than in the sequential case. We nonetheless
feel that the potential for improved performance
achieved through the use of an automatic dynamic
facility such as this is promising and indicative
that it would be well worth implementing—in par
ticular if it can be kept simple and efficient as is
the case with the M44/44X load leveler.

The effects of page replacement algorithm

As might have been suspected from the single-
programmed MIN study, the role of the page re
placement algorithm appears to be of relatively
little significance. In the case of T4.1XQ, runs
were made using the more sophisticated AR al
gorithm but the data collected differed little from
that obtained for the BIFO algorithm. Similarly,
in the case of T4.1XQR* the difference in the re
sults is inconsequential for those runs made where
all of real core (184K) was available. (Figures
10 and 11 show the BIFO data.) However, when
the same T4.1XQR* runs were made with the real
core size restricted to 64K there was some change
in performance for the different replacement al
gorithms. The curves in Figure 12 compare the
effects of using the different algorithms for T4.-

1XQR* multi-programmed (up to the five-level)
with only 64K of real memory available to the en
tire system, i.e., shared by all the users. The level
of multi-programming for which the efficiency is
optimum is in all cases three; however, in the case
of the AR algorithm, multi-programming at the
five-level with only 64K of real memory is still
more advantageous than running the five jobs se
quentially (with the same 64K of real memory).
Note that this is also true when running under
the other algorithms with load leveling.

The effects of real size

Performance is so poor for the T4.1XQ program
given the full 184K of real memory, that it is ob
viously unnecesary to show how bad things would
be given an even smaller memory! In the case of
T4.1XQR* however, performance for the system
is so close to optimum that we were curious to
learn just how small the real core size could be
before performance would be worse than in the
single-programmed case (for the same size of
real memory). The curves in Figure 13 compare
Time/Job for the single-programmed case, with
multi-programming at the three and five levels for
different real core sizes. Runs were also made
multi-programmed at the five level with the load

Program Behavior in Paging Environment 1031

500

§ 400

m 300

8

200

100 -

AR REPLACEMENT ALGORITHM
I K PAGE SIZE
0.1 SECOND TIME SLICE
PAGE REQUIREMENTS-129 PAGES/JOB
NO LOAD LEVELER

3 LEVEL
5 LEVEL

5 LEVEL (LOAD LEVELED)

SINGLE
PROGRAMMED

32K 48K 64K 96K I28K
J

I84K
REAL CORE SIZE

(K-1024 WORDS)

FIGURE 13—Effects of real core size
T4.1XQR*

leveler activated and real core sizes of 48K and
32K. As can be seen in Figure 13, while improving
performance, the load leveler was not able to im
prove it sufficiently to compare favorably with the
single-programmed sequential case.

When viewed in the perspective of page require
ments per job, the performance of the system is
remarkable for the well coded program. Five jobs,
each requiring 129 pages, shared a 32K memory
and still behaved reasonably well! (The time per
job is even a few seconds less than that required
for the overlapped 2-way merge conventional
code.) On the other hand, the performance for the
casual code given the full memory capability of
184K is at best (load leveled) quite a lot worse
than sequential and at worst (not load leveled) a
minor disaster.

The data which we have presented here on
multi-programming represent only part of that
collected for the study. The cases chosen are ob
viously the extreme ends of the spectrum. One
would not (hopefully) encounter all "bad" pro
grams running at the same time on a system under
real time-sharing conditions, nor (regretfully) is
one likely to encounter all "good" programs. The
real situation lies somewhere inbetween—and,
most likely, so does the characteristic perform
ance of the system. We have not directly addressed

the question of individual thruput (or response)
time in the data shown here; however; we have
shown that total system thruput is most certainly
affected by the programming style employed by
the users on the system. We have' shown in our
other work (Ref. 7) that this is also true for in
dividual response time (often even if system thru-
put is unaffected).

SUMMARY

The single programmed data presented in this
paper give strong support to the conclusion that
the effects of programming style are of significant
consequence to the question of good performance
in a paging system. Indeed, as the MIN results
indicate, the basically external consideration of
programming style can be considerably more im
portant than the internal systems design consider
ation of replacement algorithm. We feel that data
obtained for the multi-programmed case, some of
which were presented in the previous section, fur
ther support our conclusions. In view of these
results, we feel that this aspect of performance
must not be disregarded in future endeavors to
implement paging systems. Programming tech
niques should be developed at both the user and
system levels which are aimed at achieving accept
able performance on such systems. For example,
higher level language processors such as FOR
TRAN should be designed for paging systems to
produce good code for the environment as well as
to perform well themselves in that environment.

While we support the stand that paging and
virtual machines are inherently desirable concepts
with much potential, we strongly feel that in order
to fully realize that potential in terms of practical
performance characteristics, the notion of pro
gramming with complete unconcern for the en
vironment must be discarded. Our data have
shown, however, that one can often realize ac
ceptable performance by employing even simple
techniques which acknowledge the paging environ
ment. Their simplicity leads us to feel that the
programming advantages inherent to the concept
of virtual systems can, to a great extent, still be
preserved.

ACKNOWLEDGMENT

We would like to acknowledge E. S. Mankin for
his extensive contribution in preparing the test
load programs for the sort area.

1032 Fall Joint Computer Conference, 1968

REFERENCES
1 R W O'NEILL

Experience using a time-shared multiprogramming system with
dynamic address relocation hardware
SJCC Proceedings Vol 30 1967 pp 611-621

2 P WEGNER
Machine organization for multiprogramming
Proceedings of 22nd ACM National Conference Washington
DC 1967 ACM Publication P-67 pp 135-150

3 G H F I N E CW JACKSON PVMCISAAC
Dynamic program behavior under paging
Proceedings of 21st ACM National Conference Washington
DC 1966 ACM Publication P-66 pp 223-228

4 Adding computers—Virtually
Computing Report for the Scientist and Engineer Vol III No
2 March 1967 pp 12-15

5 The M44/44X user's guide and the 44% reference manual
IBM Corp T J Watson Research Center Yorktown Heights

New York September 1967
6 LABELADY

A study of replacement algorithms for a virtual storage computer
IBM System's Journal Vol 5 2 1966 pp 78-101

7 B S BRAWN F G GUSTAVSON
An evaluation of program performance on the M44/44X system
Parts III III
R C 2083 IBM T J Watson Research Center Yorktown
Heights May 1968

8 P J D E N N I N G
Working set model for program behavior
CACM Vol 11 5 May 1968 pp 323-333

9 A C McKELLAR E G COFFMAN
The organization of matrices and matrix operations in a paged
multiprogramming environment
Princeton University Technical Report No 59 February 1968

10 CARHOARE
Quicksort
Computer Journal Vol 5 April 1962 to January 1963 pp 10-15

